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Abstract of the Dissertation

Convex Riemannian Manifolds of Non-negative Curvature

by

Stephen David Kronwith

Doctor of Philosophy : %

i1

Department of Mathematics
State University‘of New York at Stony Brook
August, 1977

During the past decade, exciting breakthroughs

have occured in the study of complete, non-compact

manifolds of non-negative curvature. Jeff Cheeger and

Detlef Gromoll have shown that such a manifold contains

a:compact, totally geodesic submanifold S. In actuality,
S has the stronger property of being convex, a set C being

convex if for any point p in the closure of C, there is

o number € (p) with 0 £ €(p) < r(p) such that the inter-
section of C with.an,open ball of radius € (p) has the
property that between any two poiﬂts there is a unique

minimal geodesic completely contained in the intersection

which jolns these points.

In order to study convex seis we introduce the

notion of a2 convex manifold, & compact manifold with

iii
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boundary whose interior iz a smooth Riemannian manifold j
and which can be imbedded into a manifold of the sane
dimenslion as a convex set.

We first show that such a manifold of non-

negative (positive) curvature has a complete metric

We then use thisg result to -discover 1f a convex manifold

|
of non-negative (positive) curvature on its interior. |
of non-negative (positive) curvature can be isometrically

imbedded into a complete, non-compact manifeld of non-

negative (positive) curvature, the converse of the
already known theorems of Cheeger and Gromoll,

We answer the gquestion partially in the general
dimension case where the second fundamental form of the
boundary is positive definite and tle curvature is

ogitive, snd almos®t completely in the case of convex
¥ Al

surfaces, the answer in a2ll these cases being in the

affirmative. The guestion remains open in the case

when the boundary of our surface iz a geodeglce and

the curvature along the boundary is not identically

ZeT0C.

The techniques used are both analytical and

geometrical, including a geometric consiruction of

new convez manifolds from old.
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I-Notation and Basic Definitions

For the basic definitions of differential geometry
and topology ﬁe will need, along with the well known
theorems in the fields quoted without proof, we refer
the reader to the bibliography. For example, (3) and
(8) contain all the basics we will need. 1In addition, we
make the following conventions in this paper:

By (MT(,) ) we mean an n-dimensional, connected,
C® Riemannian manifold with C%° metric {:>» . O0Often, when
the dimension of the manifold isg unimportant, we will
suppress the superscript; and, when it ig clear what the
metric is, we will merely just wrife M. At times, we

will also use the classical line-element form of the

metric, dsz; that is, given UcCHM an open set, x a co-

ordinate system on U with xj the ith coordinate functioh,

we have

2 A
ds \U = Zgijdxi® dxj ’
where gj j —:(Xl,XJ> and X; —§% » the canonical ith
coordinate vector field of the chart.

We define V(M) to be the space of C® vector

fields onVM. Thenhwe have the Levi-Civita Connection

Vi V(M) x V(M) ———3 V(M) and write V(X,Y) =\/yY.
W satisfies




1) VY + Yp) = <7yy1 + <Y,
2) PyfY = X(£)Y + £, ¥

3) V(Xi v x,)¥ = VX1Y +VX2Y
B) g = £ Y | |

where f is a C® real valued function on M, the space of R

which is denoted by F(M). |
If we define the Torsion Tensor T: V(M) x V(M) |

T2 V() by T(X,Y) = \ZyY - VX -[%,Y] where

: Lx,yJe v(M) denotes the Lie Bracket of X and -Y ([_-X,Y] f -

g | = XY(f) - YX(£), f€F(M)), then X7 is the unique con-

nection satisfying T=0 and the Ricci Identity - - {' |
2<%,y = Q%Y + X, 7,7 for all X,Y,2& V().

We define the Curvature Tensor R: V(M) x V(M)
X V(M) =3 V(1), and write R(X,Y,2) = R(X,Y)Z, by
R(LY)Z = ANPy2 - 2y \AE - V[i,f_\ z.

Let pe M, vy and W, € Mp, (Mp being the tangent

space to M at p). Then if v and w si)an a two dimensional
linear subspace of IVIP, call it 6 , we define the sectional

curvature, KG » of M with respect to the subspace by

Kg K(Y.vg) = { RV, wIw.v) /{uvit 2wy 2-("-“’) 2) |

ofp-

i

where || v\ {v,vy 2,

As we see even here, when there is no cause for I
: i

i
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confusion, the base point of the tangent vector will

be dropped from the notation.

Given a C® function fi Me———-> N, we denote by

f*p: Mp Nf(p) the induced map on the tangent .

spaces of M and N defined by (f*v ¢ = v(®of) where

V&MP and € e F(N).

Given an immersion f: Me——e (N, £, 7 ), the
metric induced by f, denoted by f%< Yy and £ .», is s

defi_ned‘by Lv,w)) = <f*v, fawy . It is, of course,

the unique metric on M which makes f an isometric mapping.

If ¥+ I-—————3M, I an interval in R, is a
differeﬁtiable curve, we define ¥ s The vélocitx or
tangent vector of ¥ at t by ‘5’(1;)_ = X*f-ﬁ where;% is
the canonical vector field on ‘R '

Ir (m, {,%) is given, T€ F(1), we denote by
Vf the gradient of f, that element of V(M) whlch

um.quely satisfies
{V1,X) = Xf for all XEV(M).

The Hessian Tensor, Hf: is the tensorfield of

Type (1,1) on M defined by HoX = Vfo. X€V(M), The

Hessian form, hf, is the 2-form defined by

hf(XlY) = <VXVf. Y).




Det i (M, <% )——3 (B, &.N) be an

Vi
isometric immersion, ¥V and ¥V the respective Levi~

Cevita Connections. For a normal vectorfield N along

i, we have the second fundamental form of i with

respect to N, £ s V(M) x V(1) ——3 R, defined by B

| e
«QN(X,Y) = <VXN,Y> . _

Given (M, {,)) we define the distance function : \

ga M XN e R by

§a) = iprfne) loen

i .
where L(c) = Soll c(t)l at is the lénsth of the curve c, |
Emd..ﬂ.pq is the set of all piecewise differentiable !

curves c¢: (0,1} —» M with ¢(0) = p, c(1) = q.'

It is well known that ? defines a metric on M and the

topology induced by this metric agrees with the given

one on M. | :
Finally, given pg M, we set Be(p) = %XEM)

g(x,p)‘(gg to be the open ball of radius € about p.

All other definitions and notations will be

explained as encountered later in the paper.

~




II-Convex Manifolds

1. Introduction

- During the past decade, exciting breakthroughs
have occured in the study of complete, non-compact

manifolds of non-negative curvature, primarily due to

the works of CGromoll and Meyer (9) and Cheeger and

Gromoll (4), It was shown in the latter paper that such ' ‘.

a manifold, M, contains a compact, totally geodesic
submanifold S. In actuality, S has the stronger proper-

ty of being convex in the sense of Definition II.1.

S is called the 'soul' of M. It turns out that the
inclusion i: S~ is = homotopy equivalence.

50 the non-compact manifold has the homotopy type of a
compact manifold..' When K(M)2 0, 8 is actually dif-

feomorphic to the normal bundle of S. So when K9 0,

M is diffeomorphic to r&n. the soul here being a point,

Definition II.1: Given a manifold M, and a set

CCM, ¢ is called convex if for any point p& G, there |

is a number € (p) with 0 ¢ € (p) < r(p) such that
COB e(p)(p) has the property that between any two
points there is a ﬁniqu_e minimal geodésic completely

contained in CNB e(p)(p) which Jjoins these points,

Here'r(p)_ ig the convexity radius of M at p, and C




@t, denotes the closure of C in M.

Using this definition, it can be shown that a

fg_ ; - closed convex set CCM is an imbedded topological

|

_ |

manifold with smooth interior int(C) and possibly : ' ﬂ
non-smooth boundary (which might be empty). Here :ﬂ

and in the future, smooth will mean c™.

Due to the importance of convex sets in the i:
work on non-compact manifolds of non-negative curvature, I!
it is the goal of this paper to better understand their
structure. In doing this, we defiﬁ;rthe abstract no-

. “ i . |
tion of a convex manifold. | : _ !

Definition II.2: A compact topological

- manifold, M:? with connected boundary PM, is called

¢F convex (or is said to have ¥ convex boundary),
r=0,l,.0., 00 if
a) int(M) is a smooth Riemannian manifold.

b) There is a Riemannian manlfold N and an

1sometrlc 1mbedd1ng i M~———$N Wthh 15 C®™on int(M) and ¢t

on 9 M such that 1(M) is a convex subset of N.

Basically, this is not a new notion, and some
information has been known for some time. Two im-

portant facts which - we will not prove but which can

be found in the literature (for example in (2)) are:




a). Let CC I be convex, dim(M) = 2. TIf
pe 9¢, ve(E)C)p, then the geodesic ¥ : [-% ,Q.J —> m
with ¥(0) = p, ¥ (o) = v, stays to the outside of the

interior of C. That is, for sufficiently small § , J‘
J (t)# int(C) for all t € [- §, S']. ) - *‘

| b) If dCis Cz, the second fundamental form }
of an outward pointing normal fielad along the

boundary is positive semi~definite. »

An intuitive way of seeing (b) is the following:

(see figures 1 and 2).

fig., 1
Since the second fundamental form mezsures the
direction in which the normal field falls as it moves

in the direction of a tangent vector vE(BC)p', it




is in the convex case that the normal field N fazlls in

the v direction as it moves along the boundary in

fgf . that direction.

concave

fig. 2

We have only discussed these cases for dim(M)

= 2 because it is more easily seen and it is this

dimension in which we will need these results later on

in the paper.
In the next section we investigate the structure

of convex manifolds of non-negative {(positive) cur-

vature. We will show that the interior of such a man-

ifold can be given a complete metric of non-negative

(positive) curvature. Moreover, and vital to our later




discussions of convex surfaces, this new metric will

agree with the old one off an arbitrarily sméll one-
sided tubular neighborhood of the boundary. We will

also show that under certain conditions, M can be
imbedded into a complete, non-compact manifold of
corresponding curvature conditions. Finally, it

w111 be shown that in almost all dimensions, = p051t1velv
curved convex manifold with smooth boundary is dif- :
feomorphic to the standard disc D™, If the boundary is
ﬁot smooth, we get a hémeomorphism.

In chapter II1I we use these results Lo answer
the following question: since the study of convex
manifolds arose from the work on complete, non-compact
nanifolds of non-hegative curvature, is the reverse
direction true? That is, giveﬁ a convex manifold of
non-negative (positive) curvature, can it be isoﬁetricaln
1y imbedded into a complete, non-compact maniféld of
non-negative (positive) curvature. In chapter II
we answer the question partially for arbitrary di-
mension, and, for the most'part, in chapters III and IV
we completely answer it in the case of gsurfaces. In
chapter III, our techniques will be mostly analytical;
in chapter IV they will be more geometrical and the

results there will yield an alternate proof of




those in the previous chapter.

Finally, let's noté that our definition of
convexity is a local one. Often one speaks of a globally
convex manifold, M. That is, M has the property that
any two points can be joined by'a unique minimal
geodesic, It is elear that in the.compact cases in
which we are working, global convexity and convexity

are equivalent.

2, The interior structure and results

Having defined the concept of a convex manifold,
we will now tackle the first problem noted in the -
introduction; that is, the determination of the interior
structure of these manifolds._ The first theqrem proved _
will deél.with the case K20. And though this result ;
will be the easier to come by of the two gtructure
theorems in this section, it will be the second result

'which we -use in the course of the next chapter. Never

the less, the technique is important for both resulté
and vital to the imbedding theorems to follow;

If one calls a convex manifold in which the
second fundamental_ form of the outward normal is |

positive definite by sirictly convex, then the major

result of this chapter is the following | ‘ ,




Theorem IT.1: Tet M be strictly convex with

o boundary, r»2. Also, let M be positively curved.
Then M can be C° isometrically imbedded into a complete,

|
|
non-compact manifold of positive curvature. _ #

In attempting to prove this theorem, we first

prove the first of the interior structure theorems.

Theorem II.2: TLet (M,<.») be a convex manifold

of stribtly positive curvature, PM not necessarily
smooth. Then there exists a complete metric of | i
positive curfature on int(M). ' |
proof- We first define the function f: int(mM)
B [ oy £{x) = S?(::»:, B M) where g is the
Riemannian distance function on M. Then it ig known :
(compare (6)) that frcan be approximated by a €C* convex
function ?} where convex means that the hessian Fform,
h%, is negative semi-definitee | |
Let f = 1/f. Then lim ¥ (x) =0 . We also

Ko B Y
have that

ho (v, Vo) = By p(v,v) = (T TA/D W) =
{7 R vy = -7, VR VY
S va/BANE v 18257 VD) v
ni/"f'z(hgf;(vgﬂ) > 0.

i

aAnﬁfﬂ

e ey

_{::}




E ' Now, we define H: int(M) xﬂ)\ —> W by
1 H{x,t) =’¥J (x) - t. Since H, = (# ,,-id) we have that

H is a regular map and by the implicit Tunction theoren,
H'l(o) = W= graph of %, is, with the metric induced
from the product metric on int(M) x @\ y & Riemannlian
submanifold of int(M) }:W\, and, as we will show in the

Lemma following this theorem, the metric is a complete

one on-ﬁi‘.'
Pl r ~
Let X denote the curvature of M. Ilet v t )
. A ~
Vp + D(d/dt"t ’ W(p,‘t )—W +$d/d-t\-t L] @ ?éﬁ

be linearly :mdependent "tangent vectors in M( ot ),
their span. Then by the Gauss Eguations (8), we have
b (%,9) by (7, %)

%& = Kjént(M) R 1/ WP HW? act
. hH(v,w),hH(w,w)

To evaluate the determinant we note that’

VV —<v VH v) = <§V+d\d/‘it(v¢; -d/dt),
v '&d/dt) = &Gy + {0y gray-a/at),
e{d/dt> = <VVV']'” v) + 0 = hw‘(v,v)'.

So then the curvature is positive by the Céuchy-
Schwartz inequalil ty for pos.ﬂ:lve semi-definite forms

‘on a vector space.,

~ ’ '- ~ .
So we have KQ'? 0. Let G: int(M)—————3M be




defined by G(x) = (x,",’(x)). If we give int(M) the
induced metric from M,.i’c is readil ¥y seen that G is
an isometry. So int(M) is given a complete metric

of positive curvature. ' ' |

As stated, we still must prove the following

Lemma IT.1: The construction of the graph,

as given above, yields a complete metric. \
: ~N
proof- As we saw above, the graph of ’\f y My

sits in int(M) x R . The product distance function,

S(in‘t(}d) x R ) satisfies

o g(int(M) xR) [((p,’f’(p))h ’P(q))] ¢ -

[gim;(m)(P-Q)]z + \’P(P) - ’f'(Q) l

Lét %(x 'f‘(x )-g be a Cauchy sequance in .
Then, for all €7 0, there exists an N such that for n,n !
7 N we have g(int(m) x ) E(Xn’ (x))y (x5 'Y’(X ))](.6. |
' By (1) we can easily see that both § x 75 and
i’i’ (x. )_i are also Cauchy-sequences in int(M) and
respectlvely. Now we ask, what is the range of ‘)"'
Well, :E‘, ags defined in the theorem, takes on a maximum

on M by compactness and since f)io and is zero on O M,

this maximum must accur at an interior point of M, say

A where £(®R) :37 - So the range of ’*’ = [b"l,m) and




since [l/.f; ,tﬂ) is complete, ’r/ (xn') converges to,

say, - a point £€W\ .
What about ixnz, ? It is clear that it can

do one of the two following things:

a) {xn'ﬁ can appreach some p€ int{(m).
Wéll, if this happens, it is trivial to see that
{(xn,’?(ﬁn))g converges to (p,{) by continuity.
b) {xn'g approaches some g€ 9 M,
If this happens, qﬁ(xn) ——> 0% by continuity.
But, 'P(Xn) is a Cauchy-sequence and therefore
bounded in ﬁ., S0, in reality, this possibility

cannot occur.

So the only alternative is (a) and therefore

W is complete and we're done.

Corollary II.1: With the same hypothesis

as in Theorem II.2, int(#) is diffeomorphic to [Rn
proof- By Cheeger and Gromoll (4), the soul

of int(M) is a point.

The problem with the foregoing graph tech-
nique is that the new metric is, of course, not the

old one. Worse still is that this  new metric does

not agree with the given one anywhere on int(M).




What we do next is improve our technique so that the

new metric will agree with the 0ld one off an arbitrarily
small, one-sided tubular neighborhood of the boundary. -
This is the result that will prove useful in what's

to follow in the next chapters. The only change in /

| hypothesis is the demand for smooth boundary. But

8ince this is usually the only type of boundary ever

talked about, the trade off is not a bad one.

Theorem I1.3: Let (M, {,) ) be convex, 3 M

smooth and K90 (K 70). Then given €70 sufficiently
small, there exists a complete metric of non-negative
(positive) curvature on int(M) such that this new

metric agrees with the old one off the one-gided €-

tubular neighborhood of the boundary.

proof- Again we let f: int(M)———>R be |
f(x)::'g(x,ﬁm). Now we have that f is continuously ' g

- convex, but in the K90 case, there is no approximation
theorem as we had in the gtrict case. In fact, such
a theorem is still being sought. The best result known
to‘date is again due to Green and Wu (?). But since

? M is smooth, there is a one-sided tubular neighborhood

of the boundary which will exclude any points of the cut

locus of I and therefore on which f will be ¢ {cf. 3).

- Call this neighborhood Bg (9 M), that is, Bg (9MN) =




%x@.int(m) ‘ ¢ (x, Bu) ¢ e’ .

Again, let ’F’ = 1/7T. ’P is ¢° on Be (® M) and
Iim%(x) =@, A4As before, for PE€B. (®M), we have
Xy & M
ha(vev) %0,

Now define g:R-—————3R 1y

sley = 5 2 2 | |

5 emt/(s71/e ) ds , t»1/a , '

1/6 ‘
0 else. B || i
|
g is C" with a g/du | 1/ = O for all n. . I |
Let "}:: int (M)————2® Dbe defined by |

e : 7 |
Fx)= CP(x), x € B, (& M) g

¥ (%) elge, |

where ¥ ig any' c® extension of ‘}5* outside of Bé.(é? ). r
Finally, let P = ge%: il’l"iJ(M)"“"““’““”ﬁ?@-
We have that lim i

(x) = @ ,0isc® ana
in By (8 Mwe havo e oo |

hp(viv) = ngo g ) = (g'e &) VF V)
(g's & )(\"FVV"}‘J V) o+ vig'e '%?:) (I vy
(g'o!’fj )h;?;(v,v) + (g"o;; )v(ﬁb’)v(%) . ]
(80 § )0 (v.v) + ("0 IV(&)? |

.

it

In B (9 M), hﬁ? is non-negative and since g*




and g" are also non-negative, hP(VvV')WO' ir

PEM - Bg (B M), g' and g" = 0 so hy = 0. By continuity

then, h o (v,v)N 0 for all peM - B, (AM). So P is
(noh-strictly) concave, o
We now proceed as before by taking the graph

of ' and our theorem is proved.

proof of Theorem II.l: By definitio'n. M? ¢ N7,
Since K(M)» 0 and the second fundamental form of
the boundary is positive definite, by continuity
N can be chosen to be' a compact convex manifold of
positive curvature. Then, by applying Theorem II.3

to N, we get our result.

If the strict curvature and boundary conditions
are relaxed, we cannot as yet use Theorem 11.3, for 7
an extension is not guaranteed. Tt is ’pfgc,ijs.fély "b_hfl"S‘-
problem for surfaces that is dealt with 1nchap‘Eer III

~All we can say here is the following

C-oro'llar,v IT.2: If M is cdnvex, K{M)>» 0 and
M can be imbedded into a convex M with K(M)),O (K(#)

7 0), then M can be imbedded into a complete, non-

compact manifold of non-negative (positive curvature).

proof- Just apply Theorem II.3 as above o




the ambient manifold.

We now prove directly a theorem shown to be
True In slightly greater geherality by Cheeger and
Gromoll (4).

Cdrollary IT.3: Let M? be conveX with -

possibiy non-smooth, simply connected, boundary, K> 0.
Then M is homeomorphic to the disc bn for n>5.
proof- As we have Just sﬁdim, int (M) is
diffeomorphic to (R ™, and therefore contractible.
S50, given € 70 sufficiently small, B(oM) =
?pe M. Ig(p, o M) >€% , is contractible. But if &
is small enough, we can connect all points on Ble (2H
to 3M by unique minimal geodesics and then it is
clear thaf by retracting the boundary along these
trajectories, we get that M is itself contractible
(see figure 3). |

Then by Smale (15), we get the result.

Corollary IT.h: M" convex, M smooth: Then
if K70 and n # 4,5, nw2, M is d¢iffeomorphic to p",
proof- There exists only one differentiable

structure up to diffeomorphism on o™,

Now that we have determined the interior
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fig. 3

structure of convex manifolds, we can begin the classi-
fication of surfaces as noted in the introduction,

We will need some preliminary notions Tirst
and these will be deal® with in the beginning of the |
next chapter. But before we begin chapter 1II, it ‘ o [
may be interesting to note some further questions _ i‘

reléted to this chapter which still remain open:

1) As noted, can a continuously convex function

on a manifold of non-negative curvature be approximated’

bj a smooth one?
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2) Can Theorem II.3 be proved without the

smoothness condition on the boundary? (0f course,

an affirmative. answer to (1) answers affirmatively for

(2). | |




IITI-_Convex Surfaces And Their Imbeddings

1. Introduction

- In this chapter we study one of the most
neglected dimensions in modern differentisl geometry—2,
We concern ourselves with convex surfaces and the |
possibility of imbedding them into complete non-
compact surfaces of the same curvature conditions,

Also, imbeddings into compact surfaces are studied,

To initiate the study, we first review two
known topies in differential geometry—Fermi coordinates
and geodesic curvature. These notions can be found in
many books but we will exhibit and prove facts about

them in our context.

2. Fermi Coordinztes

Let N be a subset of T(M), the tangent bundle

of M, such that if (m, ¥ )eN, then-exp Y is defined.

As we know, N is an open set and exp is C™ on N.

N _
In particular, Let M = i (m,0) € m(M) \m el\a‘g . Then

: L [ NN
~there is an open set N in T(M) such that M CNCN,

N
It is then known that if we define ¢: N————-2»M x M

by G(p,¥ ) = (p,exppY ), then G is ¢® ang G, is non-

singular and onto at all points (p,0) in (M),




Now let 6 be a C * curve in M that is_ uni-

valent on the open interval Ic<fR. Let g eneep

be the C® fields on 6 that afe independent at each

6 (t) where e (t) = T (t), the tangent vector to 6

at g(t). ILet ZysesesZ, be the dual base to €1 reensy

for each t. By the above, there is a neighborhood-

V of gIC.T(M) such that G is a diffeomorphism of V

onto a neighborhood Ny of the diagonal in M x M,

Let U= §(n,Y) inv|m= G(t) and z (Y) = 0 for

some ‘teI% « Then F = GlU ;‘LS a one-to-one Cmmap_

of the submanifold U into M x M. beeover, F, is

non-gingular at each point of U, so F is an imbedding

of U into M x M. The map H =‘\T2°F then gives a one-

to-one C* map of U onto an open neighborhood W of the

image set G(I). (Here, 1\’2 is projectibn orﬁ?o the

second factor). i
Define Fermi-coordinates Yireeesy, on p in f

W by letting H_i(P) = ( 8{(t),Y) in W and yi(p) = |

zi(Y), i=1,¢ee,n-1 and yn(p) = %, ‘r
Now let M? be a Riemannian manifold, ¥ a

coordinate map on M with domain U and X = uio?

the 10 coordina‘te‘function, u; the 13 coordinate

function on ™, Also let X; = gi-' The coordinate .
L L
\‘ ’

system X4,.44,x  1is orthogonal if ¢ X.,%.Y = 0 for
1 n - 1779




i# 3. We have the following

Lemma III.1: (Gauss). Iet ¥ be an arbitrary

univalent curve in a surface M parametrized by arc-
length on (a,b) and let X be the unit tangent to ¥
and Y be a unit ¢%® fielg along ¥ such that{X,Y)
= 0. Then the Fermi-coordinate system induced by Y
on a.neighborhood of ¥ is an orthogonal coordinate
system about Y .

| proof- Let;e be the Fermi-coordinate map
from the neighborhood U df ¥ onto a set Vc({z'(see | B

figure 1). : , |

¥ (b)

fig. 1

Then for (%,s) in Vv, ‘f"l(t.S) = eXD o (4 sY.
We let X and Y be the coordinate fields on U which

extend X and ¥ along ¥ . Since the y-curves are




. geodesics parametrized by arc-length, Y?YY = 0 and
{Y,¥) =1. Then Y{X,Y}) = {TX,¥y + {2,207
=<VYX,X7 = %X(Y,Y > = 0, since T =0 implies
that VX = ¥,Y. Then {X,Y) is constant along the

y-curves and since {X,Y) =0 on ¥ , we have

{X,Yy =0 on U.

S0, given the curve, we have a coordinate system
(x,y) such that the line element ds® = dy2 + gdxz,
- where g = {X,X). What we will be dealing with in
the coming sections, is the case where ¥ is a simple
closed curve homeomorphic to a circle and parametrized
by arc-length, Where ¥ bounds a convex manifold
which is imbedded inte an ambient surface. We will

attempt to extend g to a & past the boundary ¥ which

is the y = O curve such that g agrees with gon ¥

up to certain order and such that certain other conditions
are satisfied. It will be clear from the context
that solutions of the problem locally in an open neigh-

borhood of." a point on the curve is tantamount, by the

compactness of ¥ and agreement of g and g, to

proving the assertions globally on the whole curve,

Joining up at the éndpoints._ So we will always confine

ourselves (as will be seen later) to local extensions

along a univalent part of the boundary ¥ .
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A straightforward calculation shows that if

we have an orthogonal coordinate system about a curve

¥ , as? = dy™ + gdx”, then the curvature is given
by the formula

K =(-1/VB)( 9%V 9 v2).

3. Geodesic Curvature

Let If be an oriented surface. If @ is an

oriented C® curve in M with unit tangent T, let T,N

be the orthonormal oriented base along 6 and define

the geodesic curvature of G +to be the C ® function ";; [

k with ¥pT = kN, k is defined since 1{2,T)= 0 = -
_ <VTT,T) ,. S0 VTT is a mul'tip?;e. of N. |

Lemma IIT.2- If (x,y) is an oriented-orthogonal

coordinate system on UCM, where ds? = dy2 + gdxz,

then the geodesic curvature ky of the y-coordinate

curve is given by (-1/28X 9g/9v).
proof- Let X,Y be the coordinate vector fields

of the orthogonal system, X © ¥(t) = T{t). Then k=
<Vx/mx/r§, T). Now 9&/9y = YLX,x) =
2<VXK’X> . Since the tersion is zero we have that

e/ 0y = 2<VXY,X> . Since <X.Y> = 0 we get




XLXYY =0 = L0, 1+ { X, VD), So 3g/Py =
-2V XYY So -1/2g (De/9y) = (UK, YY) /e.

But k, = 1/{E (Vx(l/rg)x,yj = {X(1/rB)X +

1/ @VKX;Y> = 1/¢g <'VXX,Y> so our lemma is proved.

L. Convex Surfaces

We now take up the @iscussion of convex
manifolds of dimension two. The major question taken
-up will be if convex surfaces of non-negative (positive)
curvature can be igometrically imbedded into complete
surfaces of non-negative (positive) curvature. The
proce dure will be to first imbed our surface Vinto
anothef convex surface of the same curvature condi- : 'i
tions as a proper subset. Then by invokihg Theoremn
II.3,.we get the desired result. This section will
deal.mainly with the-analytic tools discussed ;n
the foregoing sections, This wiil suffice for a while

but will fail in certain cases. In chapter IV a

more geometrical approach will be developed to con-
tinue on.
As an immediate consequence of Theorem I1I.1 is

the -

Theorem ITT.1: Tet M be a strictly convex

surface of positive curvature. Then M can be imbedded

{




into a complete, non-compact surface of positive

curvature,

Without loss of generality (by the existence
of orientable covers), we will assume that all
surfaces discussed from here on are orientable.
| Iet ¥ =9 M be parametrized by arc-length.

We pick once and for all an orientation on M such that
%’ and the global unit normal vector field N form an
oriented base along ¥ .

As before, we define the geodesic curvature
of ¥, kg » as (Vk% , N?. Since ‘6 <"5' ,N) = 0,
we get then that <V3.ﬁ" ,I\b: _<~5 , \‘\7_{ N7 o
-<£fo ,%’), where ’QN is the second fundamental form
of‘ﬁ with respect to N. By the definition of M
being convex, f% is positive semi-definite,sé there-
fore k § 0. | |

Choose an orthogonal coordinate system on E’,
such that the y-coordinate curves are the arc-length
géodesics perpendie ular to § . We have the line
element d_sz = d.y2 + gdxz where g = (X,X? y X = a/@xi.

What we will be doing in this section ig ex-

‘tending g past the boundary, keeping the metric in the

same form, keeping the curvature conditions, and for

some y = y, curve, having kyo = 0.




Theorem II1.2: Let M be a s‘trictly convex

surface of positive curvature. Then M can be imbedded
into a compact surface {without boundary) of positive
curvature. ’

proof- We want to extend g to a & with ¢

agreement ony = 0 with ky = 0 for some Yoo
: . 0 . -

Flrst we canextend 2 to g in ( d ®) X
[ O;G] for sufficiently small €, & small, by continuity
such that K?0 and k { 0 for ail y ¢ [O €]
lReCalling the last sect;ggs we have
N G S AR -1/3E <az/ay2<J§>)

If we set u = J_g.we have that k40 is equiv-
alent to -1/2u% (__f_u ) = -1/u' {(ouw/ay) do. 'So-
having pg/» y?,O lS equlvalent to Pu/dy 0. Also,
K0 is, in the same way, equivalent to @ u/ayz' o,

Therefore,'wé are faced with the following
Vproblem} we wish to extend g to § on (-, &) x [ 0,8]
where 5.’: € such that

j.) El(x’o) = z(x,0) up to all orders,

2) B (X,y,) F 0, vaoe$
9? 4] 4] )

ag/ay 40

-N_bﬁ_'déﬁne ‘E on  (~d;R) x [O, 9] . %!-.G, by

3)




= - o
g{x,y) = g{x,P(y)) where P is a C extension of f(y) =

y whose maximum value, 4 , occurs before &  and has

the propertiesr

1) p(0) = o,
2) P%(0) = 0 for all k »1, P'(0) = 1,

3) Pk(yo) = 0 for all k (see figure 1).

€
e- L
graph of P
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fig. 1

Then we have

a) g(x,0) = B(x,P(0)) = z(x,0),

b) D&/By(x,y) = 8/ Dy(x,P(y)P'(y) so
dE/9y(x,0) = 9%/ 5y(x,0),
| ¢) 3%Y/8y%(xy) = DE/Dy(x, P3P " (y) +




(P (y? g/ay (x,P(y)) so 92g/?y (x,0) =

9%/ 9y? (x 0},
A9 (E)/9y5%,0) = 852/ 9y%(x,0) for a1l k,
) B/Bx=0= 9F%(x,0) and 5@ K =
0 = kg/bx (x,0) for all k,since g is constant

along the x,y = o curve,

f) Since 9§/ 9 x and agg/ay and higher partial
derivatives are continuous, mixed partials are equal,
This can be used, for example to show that
| P8 vax (x,0) = 925/2x9y(x,0)
ézg/axay(x,y)\ = 8/0x(3g/9y(P'y))
P (y)N8/8 A3 &/3 y] = P'(0) 3§/ Dy 9x(x,0) =

2g/ 2y 9 x(x,0).

tH

We can equally show that z and g agree up to
all orders at y = 0, _ . -
2% 2 - . . 2 . 2= 2
g) 8°E/3y" = I vP(y) + (2 (y))? 2%/ oy°.
Since 8/®y» 0, P"(y) <0 on [O,S], and azé/é’yz( 0,
we have E)zé/_ ayz(x,y)L 0. So K remains positive,

Now take the double of M where M is M union

'thls added collar up to y = Yo+ In the first copy

2 2

of T, 45 = dy_ + gdx as it is in the second copy.

What we need is the following fact:




If g (-0l ,e ) x [O,a‘] ' .}[R_, then when
is the function nil-e, ) xl-g g b ———s defined
by

hlx,y) = Y EEY) , yw0,
g{x,-y), v&o
c®at y = o?

Tt is clear that the answer is precisely
when @kg/® ;y'k(x,())-: 0 for all k which our g satisfies
at yOJso the copies of M it along their common boundary
-differentiably .and ¥ is therefore diffeomorphic

.‘to SZ.

\

Theorem IIT1.3~ Let M be strictly convex

surface where KW 0. Then M can be imbedded into a

o .
convex M where K(M)¥ 0 ana LN ﬁé 0 and this imbedding
ig ¢°,

First, lets notice that a C2 extension is the

best we can hope for. For if p is a point on the boundary

with I'{p = 0 and K/ 9 y< 0, there is‘no way to extend so
that there is C3 agreement along the boundary and ¥
still non-negative since X/ dy is just the third
derivative of g and havihgr ‘th.e. thrirdr derivative con-
tinous forces K40 in any extension.

proof- Again, look at our orthogonal coordinates.

We are given 9g/® y{x,0) »0 and azg/'a yz(x,O)SO.




We need to extend g to § which agrees with g ¢? on vy =
0 and satisfies the same inequalities.,

Define o [0,6-‘] -————>W\ by gx(y) =
g(x,0) + Bg/ay(X.O)y + Bzg/é}yz(:{.o)yz/z. Then let
elx,y) = g (y).

1) B(x,0) = g,(0) = &(x,0),

2) 8/ eyix,y) = lim B, y+h) - Elx,v)
. —> 0 h .

il

= lim g (y+h) - g (y) = g/ (¥), so PE/0y(x,0)
h-—30 -

gX'(O) = 9%/837(2{,0), }
3) 9F ox(x,y) = lim  ZE(cth,y) - Blx,y) |

)

h—30 h
lim g (v) - g (y) = 1lim [g(x+h,0) +
h—y0 Xt X h—3p 0

h

pa/dy (xth,0)y + 92a/9y°(x+h,0)y%/2 - (g(x.o) + N

9e/9y(x,0)y + 3°8/9y"(x,0)y"/2 )1/ h L

= 1im g(xth,0) - g(x,0) + lim e/ @ y{x+th,0) -

h —3 0 h N30 7 i
M2 a2 2 2 2

Qe d y(K.O:}}y) /h +h1_§ﬂ(a g/ vy (x+h,0) ~a‘g/ay (X'O))%}/\\ |

= ®g/dx(x,0) N D%e/3x By(x,0)y + a3g/@xay2(x.0)y2/2,-

so ©F/ & exists and is continuous. Alse g/ ®x(x,0)

= Qg/Ox(x,0). In a similar fashion we get existence

of all partials and mixed partials and agreement in

" a ¢° fashion on y=0,




Now note that 8°2/dy° = g "(y) = 8/ 9y (x,0)

£ 0. So the curvature is extended constantly on

the perpendicular lines. Let & = inf.‘g y‘ /D yy0 3 .

Then if P = nin(€ ,K), E extended to {(-o, o) x
[O,'ﬂ satisfies what we want.

Corollary III.1: With the same hypothesis

of Theorem III.3, we can imbed M into a compact
surface diffeomorphic to Sz. in the 02 sense.

proof— Same as. in Theorem III.2

Corollary ITT.2: With the same hypothesis,

M can ‘r;e 02 imbedded into a complete manifold of non-
negative curvature.

proof- Since I is ¢ imbedded into a convex
surface, we proceed as before and apply Theorem J:rj

t0o the ambient surface.

Corollary III.3: ILet M be convex, I'{'?IO, kg 0.

Then if we have K[am =0 , @i can be imbedded into a

complete surface of non-negative curvature in a C2

gsense.

proof- From the proof of Theorem III.3, we

can exbtend g to g o keep K20. But /9y = g/ 9y(x,0)
+ (azg/ayz).\f = |kl+‘_® « So if k40 and K\ '

=
O)

M

fx, 0




we can keep k negative.

The problem still remains to tackle K7 O,
k& 0. But, u'éing orthogonal coordiﬂates, we see that
if kp = 0, the positivity of K forces k.to increase
and therefore we cannot use the technique. The same
is true for the general case Km0, k¢ 0O when the
hypothesis of Corollary III.3 is not satisfied.

We first tried to vary the curves chosen to
evaluate the geodesic curvature from the y = constant
curves to the curve ¥ (%) where Re¥ (1) = t, yo ¥ ()
ol (t)‘,'o( variable. But we get

Lemma TTT.3: Let (x,y) be a Fermi-chart as

before. Let ¥(t) be the curve satisfying }io‘(('t) =

ty vo ¥(t) = A(t) where t is ‘the arc-length parameter

of the y = 0 curve, and & (%) 1g a non-negative,

real valued function. Then if kyo represents the

geodesic curvature of the y = Yo curve, the geodesic

curvature of ¥, ke 18 :
1/;!5[(&&"— ®'X(g)/2g + k(y o ¥ (t) (1+2 '2/@]

~where A=1l¥ll, 0 = +(°{'2)/€-

proof- By our definition of ¥, we can see

that ¥ = X +£Y where X = 2/9x, Y= 9/9y and
fo¥(t) =o' (t). Let A =W¥N, Then T -¥%/p is




the unit tangent field along ¥ . Note that ¥ (f) =
¥ .a/at(z) = a/as(s °o¥) = " Now

Vit = Vi, 58 = 1a N ¥/n -
1/1.\(3*(1/::)3 + 1/&%‘6) = 1/A(-¥(A)¥ /p°
/AYeY ) = ca/alya)e + 1 Vi (x + 1) =
/AT (DY + 1/p Vex + &y + ¢ Y, 1) =
~1/82 ¥(h) o+ /A (Vyx + IV Y + oy + £V, ¥).
Let N= -f/g (X) + Y. We see that {¥ ,N) =0,
Tet P =0UNN = 1+'%/s. Then

kg gy = VY = L/ A (dVx +2Vy vy
Vyy -f/g(X) + Y>) = 1/,-,& (- f/g(v <X, .{) +
Vx5, 1) - 225 <V LX) + 149, LYY e o
2/g<v LTXY * f<v YL,Y?)=1/pa (- ﬂ'X(g)/Zg*"
y=‘€(t) (1 + ZD('Z/Q;) +& ") since ¥, XY)‘&'(t) =

ky = % Uty » @5 proved before.

As one can see, this is a very unwieldy formula
and our technique seems unable %o be effective.

In the next chapter we develop geometric

techniques to continue on.




IV-H-convex Extensions

1. Introduction

. As we saw in chapter III, the analysis breaks
down when we reach the K20, k£ 0 case. The use
of orthogonal coordinates leads us hoﬁhere, The most
general case, (except for the special instance of
Corollary III.3), that is, KwO, k £0, looks even -
more hopeless.
| What we do in this chapter is to tackle
these problems with a more geometric.approach. We
provide a construction of new convex surfaces from old,
called H-convex extensions. If'will be through this

technique that the most general results of this

- paper will come. _ _ ‘ | |
Recall, before we begin, that with M compact (?
and convex, there exists an r » 0 such that each ball

B.(p) is strongly convex for each p&M, (cf. 8).

2. The Construction and Resulis

Definition IV.1: A convex surface is called

H-convex if its boundary consists of a piecewise

smooth geodesic.

Theorem IV.1: Iet M be a convex surface ' ?j

36




with "f’ : [Q,l] --———-—)S)M an arc-length para-
metrization on the boundary. If K0 (K»0) 'and
if there exists a point pe M -wi'th kp< 0,
then M can be non-properly imbedded ((32 imbedded)
into an H-convex surface of positive (non-—négative)
curvature, |

proof- First, of course, we have M sitting
in an unbounded surface N with the same curvature
conditions. If K¥0, we have that this is a ¢ % im-
bedding; if K‘ao, our imbedding is 02 as described in
Theorem III.3. Since M is compact, there is a compact
VCN with MCV. ILet d be the elementary length of
V (see (8) for the definition) and let u be the
smallest parameter value such that any geodesic tangent
“to M at its boundary at p lies %o the outside of
Br(p') for all parameter values less than u,. where
this is the p with kp( 0. Now let § = min(u,r,-d)
where r is as in the remark at the end of the intro-
duetion. _

About our point p choose the ball B s/z(p).
We might as well assume that P (o) = p. Let v = ‘f’(o).

By convexity, the minimal geodesic ®°, with o (0) = P

and 0( (0) = v lies to the outside of M for all t €

[70, 5/2] . Let e((_g_) = Q€ 9B S/Z(P) (see figure 1).
- o _




fig. 1

Let 'tl be the point such that t1> 0 and |
‘\('(tl)ﬂ B'%/leﬁ # . Let ’f"(tl) = . We choose

points 1:@ € [0,1':;] and ro& M as follows:

a) point of type 1- If the interval | Eto,‘ci‘_}
is such that k| [t,,%] = 0 and ky [t,-€, t) # 0 |
for all € 70, then let rj = ’)b(’co) (see figure 2).

b) point of type 2- If k L0, let r, =
| (e, )¢ 0
8 = /Y((tl) (see figure 3).

Let P be the unique minimal geodesic from

q to ry. By the triangle inequality, g (rg,a) < <.
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Now we have the triangle (p,q,ro). If ﬁo
is already tangent to d’, call the triangle and its
interior t;p.J If not, depéndiﬁg upon our orientétion,
either f@(tl) or —fi(tl) is interior to the triangle
(p,q,ro), Let that interior vector be called v (see
figure 4), o

fig, 4

By the parametrization of W, v is of unit
length. Let ¥(t) = exp, tv, t€ [0,u] . this
geodesic will have to leave the triangle sooner or

later. The question ig, how can it do this?

a) It can't leave by crossing ’)b y Since ’Jb is

41




not a geodesic by choice of p, and in our neighborhood,
convexity forces ¥ away from ’)& .
b) If ¥ leaves by crossing $ (see figure 5),
we would have a conjugate point on the minimsal geo-
desic ?with respect to r, at some point 84 of intersection,

contradicting our choice of 9 .

fig. 5

S0 ¥ must leave the tfiangle by crossing &

and making a convex angle ® at the point of inter-

section, x. We call this triangle now which is
contained in B 5(;0 and its interior by [&p ( see

figure 6).

Now, if Ty is a point of typell, we continue




along ¥ until we find a point Py (call now p = pl)
where kp2< 0 and start again. If there isxﬁo such
point, we are done with this part of the construction.
ir ro is of Type 2, we sfart'the process over
again at ry» choosing another ball and continuing as
before. )
By the compactness of qﬁ, we can continue
around "P coming up with M = Mu i\a)I A P where
I is a finite set. M is an H-convex extension of M

and we're done. Figure 7 shows a typical end product

of the consiruction. Q.E.D.

Now that we have our extension, we wish to




make it a proper one; that is, we wandt an H-extension

n
M of M such the M N DM = £,

Let's look at three successive geodesics of

~ . |
© M., Call them & , §, and ¥. (see figure 8). ’




We call the convex angle whére & meets P at
the point p by 6-1,- the convex angle where P meets ¥
at the point q we call 6'2.

~Now pick an outward unit vector X at P such
that 3 (L,-&(p)) = X (X, B(p) =(2r- O)2.
Next pick an outward unit vector Y at ¢ such that

¥(r,-8(a)) = ¥(1, (@) =(20- 6,2 (sce figure 9).

N -y

Y

fig., 9

Nowlif D and g are not conjugate %o each other,
'there_exists a Jacobi field J along % with J(p) = X
and J(q) = Y. The Jacobi field does not vanish
anywhere along $ as long as there are no conjugate

points at all along § . If all +the geodesic segments

b5




of our H-convex M are minimal, then there is no
problem with conjugate points. Certainly, all those
geodesics added on to M are minimal by construction,
However, as in the case of points of Type 1, they may
hook up with a geode81c which is part of the original
boundary of M. If the sum of the lengths of these

geodesics is too long, conjugate points may ocecur. 8o

we must make sure that any geodesic segment of & I

has, first, no conjugate points to begin with, and L
éecond, when hooked upAwith added geodesics of the
COnstruction, no conjugate points will occur, Well,

it is clear that all we have to ask is that there are
ho conjugate points on our original ® M since, by going
out a small enough parameter value when needed in

the construction, we can assure that whén The two

geodesics are hooked up, there will be no conjugate
points. ‘

S0 we have our non~vanishing Jacobi field J.
ThlS field, in turn, generates a varlatlon through |
geode81cs, 5o we get a geodesic B ' as shown in

figure 10 by going outward, say, a parameter distance

of 1. .

We now continue with this process at all corners

to get our proper He-extension (see figure 11).







S0 we have M sitting properly in an H-convex
A
M. What is left to do is smooth out the convex
corners keeping convexity. In ﬂkz it is straight-

forward to do this and similafly in our case (see

figure 12).

Tig. 12

So, we get as final product a smooth convex

surface M; properly containing M where the extension

is € ® if K0, ¢% if K¥%O.

We have thus proved the foliowing

Theorem IV.2: Let M be convex, dim(l) = 2,

with K20 (XW0) and a point p such that }cp< 0.

Then, if there are no conjugate pbints along




the boundary @ 1, M can be properly c® (02) imbedded

into a convex surface of positive (non-negative)

curva‘tﬁre.
- Using Theorem IT.3, we then get the

Corollary IV.1: ILet M be a convex gurface,.

K720 (K%0). If there is n point pe B such that
kp< 0 and no conjugate poin{:s on ®M, then I can be
ce® (Cz) imbedded into a complete, non-compact
Surface'and alsé a comﬁact surface without boundary

diffeomorphic to 5 with K> 0 (K30). |

Corollary IV.2: Let M be a convex surface

“with K30 (KE%0). Let.Az‘ipe an\kp= o%. If A

is discrete, then the results of Theorem IV.2 and

Corollary IV.1 hold.

broof- There are no points of type 1, therefore

no geodesic segments and therefore no conjugate points.

The existence of conjugate points impliesrthat
locally, geodesics intersect,so we get a converse %o

the existence of proper convex extensions in the

Corollary TV.3: M convex, KX»0. If there

exists conjugate points on the boundary, then there does

not exist any proper convex extension of N ar-

bitrarily close to M.




of courée, Corollary IV.3 is not true for
sufficiently large proper, or sufficiently small non-
proper exten;ions since on the paraboloid the convex
set shown in figure 13 sits in the convex half-
paraboioid and in a sufficiently large ball‘about r
even though the boundary contains the conjugate points

p and q if the geodesic segment is large enough.

P

fig. 13

Unfortunately, the same example shows that the
converse to Corollary IV.1l is not true either since the
paraboloid is complete and net compact.

~

S0 the question still remaing:

a) M a convex surface, K% 0 (K),'O), k£ @ and




© M contains conjugate points. What; if any, are the
precise conditions guaranteeing the imbedding of M
into a completé, non-compact surface of positive

{(non-negative) curvature®

It should be noted that the Gauss~Bonnet

Theorem shows that if M is convex and K% 0, then
K il €290, S0 if K70 and @1 is a (possibly

reparametrized) geodesic, then it would be impossible

to imbed M into a convex ﬁ of non-negative curvature,

proper or not. But, the questions that still remain i

are:

b) M convex , X%0, S K= 29 . ~ Can M be

M
imbedded into a complete, non-compact surface of

3
i

non-negative curvature

¢) M convex, K ¥0, S‘MK = 240, Can M be imbedded

into a conmpact surface of non-negative curvature?

.

And, of course, many more questions still

remain for dimensions higher than two.
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