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Abstract of the Dissertation
VOLUME PRESERVING FOLIATIONS AND
DIFFEOMORPHISM GROUPS
'by
Ira Stuart Moskowitz
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1983

This thesis is an investigation of the iocal
cohomelogy of the group G of volﬁme preserving diffeomor-
phisms of a closed n-manifold M with volume form w
(reéﬁlts independent of which w chosen). This is the

5., BG,

real cohomology of BG, the homotopy fibre of BG
where G is the group G with its underlying discrete
topology. This cohomdlogy is closely related to the

Lie algebra cohomology of divergence free vector

fields on M. The space BG x M has a canonical foliation
F with transverse volume form . We ﬁse O to construct

a vector space homomorphism : HY (M) » H*(FG). Our main

concern is to investigate the kernel of ¢, and in
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particular to find necessary and sufficient conditions
for y(lw]) in H" (BG;R) to be non-zero,

The map y is related to the classes ¢y (M) in
HR{EG;HHHK(M;R)), 1 < k < n, defined by McDuff. For
example y ([w]) = cn(M). These classes measure how
much the léaves of F differ from being BG x pt.

McDuff has shown that the top clasé vanishes for even

spheres and is non-zero for odd spheres and closed Lie

_groups., She has some other examples and also looks at

i*ck(M], where 1 is the canonical map from G to BG.

In this thesis we develop a product rule for the
classes in the image of y and investigate the relation
between y on H*(E) and on H*(B) where E—3B is a
fibration; Gottlieb‘s work on‘the transfer map is used
to show-that_the vanishing of i*ck(M) is dependent upon
the non-vanishing of the Buler characteristic or of a
Pontrjagin number of M. i |

The main result is that y(fw]) is non-zero for

closed parallelizable manifolds and non-zero for

closed odd-dimensional stably-parallelizable manifolds.

Several different techmiques are used in this
thesis. If K is a cycle in BG we construct certain

foliations on K x M to get some geometric results.

~We use the fact H*(BG) is isomorphic to H*(SM), where




Sy is the space of liftings of the classifying map
for T in BSL(n,R) to Bfgg(the Haefliger classifying

space for volume preserving foliations), to get many

interesting results on the map V.
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Conventions

(1) All manifolds are C, closed (compact without
boundary),ofiented and n-dimensional (unless noteéd
otherwise).

(2) A1l H* and Hx are with R-coefficients (unless

noted otherwise).




0. INTRODUCTION

In this thesis we will investigate the local
cohomology of DiffwM, the group of volume pre;ef#ing
diffeomorphiéms of the closed n-manifol&iﬂ(voluﬁe form
w) with the C* topology. Very little is known about
these groups. McDuff [M-2] and Hurder [Hu] have some
results onIRn, Sn, and Lie groups. “ ‘

The local cohomology of an infinite dimensional
Lie group can be defined through a construction of,
Haefliger's [H-2] involving the.associated Lie algebra.
In the case of DiffN, the spacelof diffeomorphisms of M,
the Lie algebra is QM. The algebra B is the set of
vector fields on M with the usual Lie bracket. For

pifg M the Lie algebra is 8 the subalgebra of BM

M,w’
of divergence free (with respect to w) vector fields
[H-37.

Given a subalgebra g of By Haefliger [H-2] defines
a space Bg which is the classifying space of Q—fbliations

on products XxM, that are transverse to the slices

{x}xM. The local cohomology of DﬁffwM is defined to be

the cohomology (with real coefficients) of the space

BgM we The homotepy type of BgM’w depends only on the




algebraic and topological ﬁroperties of Diff@M in a
neighborhood éf the identity [Ma-1]. This explains the
word "local".

Haefliger [H-2,3] has shown various relationé

between the'reai cohomology H*(Bg), and the Gelfand-Fuks

~cohomology H*(g}. Associated to Bg we have its PL-DeRham

complex A*(Bg), and the differential subalgebra Ad*(Bg)
which is made up of forms, that whén restricted to a
simplex, vary smoothy, as we Smoofhly vary the simﬁlex.
The cohomology of A*(Bg) is the staﬁdard {real) |
cohomolégy of Bg, and the-cohomblogy of Ad*(Bg), denoted

as Hg(Bg) is referred to as the differentiable cohomology

of Bg. Haefliger defined a universal characteristic
morphism y from C*{g), the Gelfand-Fuks cochain algebra
of g, to A*(Bg). In fact, x maps injectively into the
subalgebra A % (Bg).

o ' X
c* (g} —3A* (Bg)
N,

\Ad*(Bg)

When g is the Lie algebra of a finite-dimensional

Lie group the Van Est theorem [H-2] tells us that

%
H*(g) and Hd(ng are isomorphic via the map induced




by ¥. One may also obtain similar results for infinite-

dimensional Lie groups such as DiffwM {H-31.

e

In this thesis we will show that certain natural
. classes in the local cohomology of ﬁiffwM are non-zero

for a fairly large class cof manifolds., McDuff [M-2]

has shown how these classes are réiated to the map ¥.
These classes, labeled ck(M), 1 <k <n, were first
defined by McDuff [M-2]. They are elements of
Hk(BgM,w;Hn'k(M)). Of particular interest -is the top
class c (M) in Hn(BgM,w). |

The space BgM,m may be defined equivalently [T]

- as Ebifme (see §2). From now on we will write

Epﬁfme to put the importance on the group instead of

the Lie algebra.

The classes cktM) are defined via a canonical
codimension-n foliation ¥ on FﬂiffwM x M. Because the
elements of DiffwM preserve the volume form g our special

foliation F is volume preserving and hence has a transverse

volume form ¢ (see §1). This is a closed n-form whose

cohomology class [Q] is in HU(FDiffwM x M), McDuff's classes

arise by looking at the components of [Q] in HR(EDiffwM]

when Hn(ﬁDiffwhix M) is decomposed via the Kinneth formula.

The classes ck(M) measure how non-trivial ¥ is, that 1is,.

how much the leaves of F differ from being EDiffwM x {m}.




If F were the pull-back of the point foliation on M by
the projection map T, % would be m*w which has no compon-
ents in HS(BDiff M).

McDuff [M-2] has shown that for M a Lie group the

top class is mon-zero. She has also shown that for a
sphere s" the top class is non-zero if and only'if nis

odd. McDuff's main conjecture is

(0-1) Conjecture._ If Mis odd~dimensiona1 then Ck(M)

is non-zero, 1 < k < n, {when Hn"k(M) is non-zero).
In this thesis we show the following

" Theorem (4.16). If M is parallelizable then the top

¢class 1s non-zero.

Theorem (4.8). If M is odd-dimensional and stably

pérallelizable then the top.class is non-zero.

These results are obtained by using a fundamental

diagram (4.1) first suggested by Thurston [T]. We use

the classifying properties of ﬁbiffwM to show




Theorem {6.2) If c; (M) and cj(N) are non-zero then

Ci+j(MxN) is non-zero.

There is a canonical inclusion i (§2) from DﬁffwM
to EbiffwM, This enables one to study i*ck(M}e
Hk(DiffwM;Hn_k(M)). McDuff has shown that
(0.2) Theorem [M-27. If the Buler characteristic x(M)

of M is non-zero then i*cn(M) is zero. " , .
We extend this result by showing

Theorem (5.3).

1} If -y(M) is non-zero then i*ck(M) is zero for
all k. | -

2) If M is 4g-dimensional and has a non-zero

Pontrjagin number, then i*ck(M) is zero for all k.

In §6 we discuss various results on homogeneous

spaces and fibrations.




1. FOLTATIONS

A foliation F on M of codimension-q is é waylof
slicing up M into (n-q)-dimensional submanifolds called
leaves that fit together in a coherent manner. -The
coherency'comes from asking that our manifold instead of
just being locally modelled onﬁmn,”is in factrmodelled
locally by R™ % x RY, where we-think of this product
as being decomposed into the leaves r" 4 x {x}, x e 1’9, _\
We require that the change of local coordinates preserves
this product structure,. in the sense that it takes each
leaf R % {x} to another such leaf R" 9 x {y}. At
least locally our leaves are the inverse images of
R4 x {pt.} via the local coordinates. -If we project
from RT™9 x RY to RY we sce that the local transition

functions give us a diffeomorphism from RY to RY.

(1.1) Definition. A foliation of codimension-q on M .

is a maximal family of submersions fi:'Ui + RY, where
the {Ui} form an open cover of M, such that if x is in
“the non-enmpty intersection of Ui‘aﬁd Uj then there
exists a local diffeomorphisnm Y?i of RY such that

fj(v) = y?iOfi(v) for all v in some neighborhood of x.




We can recover the leaves from this definition by

taking the components of f;l(r), T Equ, and matching

them up as we switch neighborhoods.

A foliation with additional structure can be defined

by asking that the local diffeomorphisms presérve a

structure on RY. For examnple if they preserve the

standard metric, ds2 = deg, we say that the foliation. is
i

Riemannian. If the local diffeomorphisms preserve the

standard volume form, Xm,A"'Aqu, then our foliation is

g ' volume preserving. If our foliation is volume preserving,

by locally pulling back dxlA---Adxq‘via f?,we get a form




that patches together since the ¢§i preserve XmA'°'Adxq.
This gives us a global closed q-form called the transverse

volume form for the foliation. In fact,if A is a non-

vanishing closed q-form which is locally decomposable

(i.e. x» = dflﬁn--Adf for some functions fi) theﬁ A

q

determines a wmique foliation of which it is the transverse

volume form. In fact, the vectors that contract X to
zero form an iﬁvolutive‘distributién which we integrate
by Frobenius' theorem to get_éuf foliation {Lil.

Certainly not every foliation is volume preserving.
A mnecessary comndition for a foliation to be Volume‘pfe~
serving is for the Godbillon-Vey classrto vanish. This
follows because the Godbillon-Vey class of a codimension-q
foliation (defined by the‘form &), is represented by
na(dn)? where dg = naa. Since our foliation is volume
pfeserving do. is 0 and n can be_téken to be the zero
l-form. It is werth noting that every Riemannian folia-
tion is also volume preserving but the converse is

false, ' :

(1.2) ‘Example,
1} 1£f f:+ M »- N is a submersion and N has volume
form w, then the pull-back of the point foliation on N

to M is a volume preserving foliation with transverse

volume form f%u.




2) Lazarov and Pasternack. [LP] have examples of
Riemannian foliations whose leaves are the orbits of a
Lie group acting by isometries on a Riemannian manifold.

3) Let f € piff M. Then M x I/(m,0) ~ {(f(m),1)
has a codimension-n veolume preserving foliation whose
leaves are from {m} x I. If f preserves no Riemannian
metric then our foliation is volume pieserving but not
Riemannian.

If we take the vectors of M that are tangent to

the leaves of F we get an integrable subbundle T(¥)

of TM. The quotient TM/T(F) gives us the normal bundle
v(¥) of F. Note that v(F) is a g-bundle (q is the

codimension of F). The normal bundle can also be obtained

by patching together the fi(TBfﬁ by using the differ-

entials of the Y?i [ST1. Because v{F) is defined so nicely
in terms of the local data giving F, it is v(F), not
T(F), that is of interest in thé classification problem
of foliations.

One would like a means of classifying foliations
of a given codimension. If we try to set up a classi-
fying space situation we run into trouble becausé the
pull-back of a foliation need not be a foliation. Let
us try to be more exact, If £f: M » N is a smooth map

and N has a foliation F, of codimeﬁsion~q, do the
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inverse images of the leaves of F by f fit together

to form a foliation?- If £ is transverse to the leaves
of F then it is easy to see that this is so. Let us
denote the pull-back foliation by £¥*(F). Clearlf £5%(F)
can be defined as in (1.1) by using'{f_l(Ui)} for our

open sets and fi°f for our local submersions where

'{Ui,fi} define F. The fact that f is transverse to

F is whaf guaraﬁtees ﬁs thét the fi°f‘are actually
submersions.

The transversality condition is too rigid to carry
over to a classifying space situation, since here things
should depend only on the homotopy class of a map.
Taking this info account Haefliger [H-1] weakened the
definifion of foliation into one that could fit a
classifying space set-up. . It is a remarkable fact that
Gromov, Haefliger, Phillips, and Thurston were able to
use this weakened definition to in fact dlaséify

foliations.

(1.3)  Definition. Let X be a space and r9 the groupoid
of germs of local diffeomorphisms of RY with the sheaf
topology. (A basis for this topology consists of the

sets'{gx: x € domain g}, where g is a local diffeomorphism

of RY and gy is the germ of g at x). A codimension-q

10
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Haefliger structure H on X is a maximal covering of X

by open sets {Ui} such that for each i,j where Ui n Uj

is non-empty there is a continuous map ¢4j: Ui_n Uj > 14

ij°¢jk = ¢ oM Ui n Uj N Uk'

Note that we get a map ¢ ° Ui nu, = U, - 4. From

this we can define a continuous map £.0 U > RY by
setting £ (u) edual to the source of the germ ¢ii(u).
Note that ¢ji°fi equals fj on U, n Uj' It follows that
if X is a manifold and the f; are submersions then our

Haefliger structure is actually a foliation. If we

replace r4 by Fg the groupoid of germs that preserve

2’5
Xmh""Aqu, then we say that our Haefligef structure

is volume preserving.

Given a codimension-q Haefliger structure H we can
associate an RY-vector bundle Q(H) to H. This is called

the normal bundle of H. We form this bundle by using

for our transition functions d¢ij: Uy ﬂ'Uj - GL(q). If
our Haefliger structure H comes from a foliation F
then it is easy to see that v(H) = v(F).

One can form the classifying space Br of the
groupoid T much as if r% were a group [H-1]. It

classifies Haefliger structures in the same way that

BGL{q) classifies. vector bundles.
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(1.4} Theorem (Haefliger [H-1]}. The set of homotopy
classes of maps from X to Bri, [x,Br4y, is in bijective
correspondence with the set of homotopy classes of

codimension-q Haefliger structures on X.

The correspondence comes about from the fact that if

f:X » Y and Y has a Haefliger structure H given by
{Ui’éij}" we can givé X a Haefliger structure f£¥*H

by using‘{f'l(Ui),¢ijef}. The space qu comes equipped
with a universal codimension-q Haefliger structure which
we pull-back via the maps in our homotopy classes. If

F is a codimension-q foiiation on X with corresponding
Haefliger structure H we will call the map f: X » BPq,
which classifies H, the classifying map for F.

We can also form a space Bfg2 which classifies
volume preéerving Haefliger structures. The groupoid
sz is made up of germs of volume preserving.diffeomorpﬁisms
of R topologized similarly. to 4, Brgl has something

very special that Br4 does not have., There is a cohomology

class p in Hq(BFEQ) called the universal transverse

volume class. The class 1 can be constructed directly

from the germs Fgg, or it can be derived by a functorial

principle {see [Bt}, Thm. 10.16). The class p has the

property that if f: X » Br9 classifies a codimension-q

sl




volume preserving Haefliger structure H, then we have
a class £*1 in H9(X) called the transverse volume class
for H. If f is the classifying map for a foliation with

transverse volume form A then
(1.5) - A} = £

Since Br% has a nbrmal bundle'éssociated to its
universal Haefliger structure;rthé bundle can be
classified by a map d: Brd BGL(q). This map d is
induced by the groupoid homomorphism from rd . GL{q)

given by
gy dgy

where gy'is a gérm of a diffeomorphism at x with
differentialdgK at x. The map d has a homotopy
theoretic fibre Br4. We will choose models so that we

get a Hurewicz fibration
(1.6) BrY » Br% -+ BGL(q).

Brd is in its own right a classifying space. It classi-
fies codimension-q Haefliger structures whose normal
bundle is framed. Recall that framed means that a

specific trivialization of the bundle is given; i.e.

we have chosen a specific bundle isomorphism between vw(H)

13




5 " 14

and €9, TFor the volume preserving case we get a map

d: BI‘(;Im -+ BSL(qg}, as above, whose fibre is ﬁfgg.

= i d
(1.7) Brgg 3 Brg $ BSL{q)

%

ﬁrgz classifies volume préserving codimension-~q

Haefliger structures whose,normal.bundle is framed.
Very little is kndwn about the homotopy groups of

the fibres BrY and §Pg£. However they are quite highly

connected, a fact which will be important to us later.

To be precise the results are

(1.8) Theorem (Haefliger, Thurston}. BrY is (q+1) -

connected.

(1.9) Theorem (McDuff [M-1]). Brd s (q-1)-connected

SQI

" In fact it is easy to see that ﬁq(ET% )y £ 0.
For let p in HQ(ETER) be the pull-back of the universal

transverse volume class u

A

(1.10) T

in‘Hn(Bng). Then if Q is a parallelizable q-manifold

with volume form w, the point foliation F of Q has

transverse volume form w. Choose a framing of v(F) & TQ




and let f: Q ~» Ergg be the corresponding classifying
map. Then by (1.5) £*1 = [»] € H%(Q). Since [u] # 0,
the class g is non-zero. In fact, McDuff showed that

1 is q~characteristic.for ET? In other words the map

e

(1.11) [a} » <a®u, [T

is an isomorphism of Wq[Eng) withiR; where a: S9 =+ §F§9

ﬁ)'

represents the element [a] € ﬂq(grg

o

15




2. DIFFEOMORPHISM GROUPS

We will consider the group DiffM of diffeomorphisms
of M with the usual C® topology.. This may be described
as follows. Let f ¢ DiffM and suppose that.(Ui,wi),(Uj,@jj
are local coordinate neighborhoods. Let K be a compact
set in Uy such that f(K) c'Uj and let ¢ » 0. Define
'3(f;(Ui,wij,(Uj,wj),x,e) to be the set of all diffeo-
morphisms g of M such that HDk(ijfowil)(x) -
Dk(mjﬂgotﬂ;l)(x]il < e for all x € o, (K), vk. A
neighborhood of £ is a set that contains the inter-
section of a finite number of the sets B(f;(Ui,mi),
(Uj,wjj,K,E). This topology is often referrgd fo as the
topology of c” uniform convergeﬁce on compacf sets,

We will write DiffsM for the group with the discrete
topology. The inclusion map i:.DiffﬁM - DiffM is |
certainly a continuous map which passes to a continuous
map, also designated by i, at the classifying space
level. BpiffM is the classifying space for bundles with

fibre M and structure group DiffM, while BDiffﬁM

S,

classifies M-bundles whose structure group is Diff
Evidently, if E is the universal M-bundle over BoiffM

then its pull-back i*E is the universal bundle over

16




Bpifed

M. Since i*E has a discrete structural group we
may consider it to be foliated (in a generalized sense,
since BDiffSM is not a manifold)}. Our main concern here

is with the homotopy fibre BpiyfM of i. Thus we have

the fibration
(2.1)  BoisfM » BDiffSM o BDi £M.

ED{ffM‘is the ciassiffing space fof M-bundles with a

flat structure along with a globéi trivialization. The
bundle i*E pulls back to the universal trivial bundle
BDiffM x M over BDiffM. The foliation on i¥*E also

pulls back to a foliation on EpiffM x M that is transverse
to the M-factor.

Lét us now consider DiffwM? the space of'diffeo—
morphisms that preserve the volume form.é, with the C%
topology. An obvious.question at this point is: does
DiffwM change if we change w? The answer 1S no. Let
us first assume that @' is another volume form on M such
that po7z w! = wa' = mezzva w. Moser [Mo] has shown-
that there is a diffeomorphism £ of M such that
50 = w'. Therefore, we have an isomorphism between

1

piff M and pify M by sending g to £ legef. If vol '

is not the same as poi w we can always normalize w'

by multiplying by X = poil w/vel ' and noting that

17
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Diffhw,M equals Diffw,M, since clearly f preserves '
if and only if it preserves Jw'. There is also no
trouble if we switch the orientation on M. If w is a
volume form for the old orientation then -w is a volume
form with respect to-the new orientation, and as above
DiffwM equals Diff_wM.

As in (2.1) we may form the following fibration with

respect to Diff@M.
(2.2) Bpiff M + BDAfEOM » Boiff M

On the universal trivial M-bundle ofer EﬂiffwM we have.a
foiiation-r. To be precise we must introduce particﬁlar
models here: wup to now our spéces have only been defined
up to homotopy type.

Let SingﬁiffwM be the smooth singular complex of
DéffwM. Thus a k-simplex is a smooth map ht: Ak =
DiffwM, i.e. the maﬁ from Ak x M+ M given Bf (t,x) » ht(x)
is smooth. Note that_Difng acts freely on SingDiffwM
by multiplication on the right, so it also acts freelj
on its geometric realization [SingpiffwM|. We can now
form the quotient space !SingDiffwM|/Dif££M. If we

continue (2.2) to the left we get the homotopy fibration

o . . i
(2.3) DIfEOM » DIff M 3 BDiff M,




Using the specific models from above we may form

(2.4) DLFECM - |Singpify, M| > |Singpiff, M|/Diffom.

Since (2.4) maps to (2.3) it follows that the base
spaces arec homotopy equivalent. We will use
ISingDifme;/nifng as our model for Boiff M. (55
[Ma-2]). |

Thus EDiff@M has a PL structufe in which a k-simplex
is a smooth map Ak-+piffwM whichlis well defined up to
composition on the right by an element of DiffSM. To

get rid of this ambiguity. we can ask for the 0-vertex

to go to the identity diffeomorphism.
K - o
(2'5) ’ (A :@J -+ (Difme’ll

t e h£

This formula shows us that we get the same classifying

space il we just use Diff, M, the component of Diff M
. ‘ 0
containing the identity map. From now on, to agree

with [M-2], we will say Ebiffw M instead of EDiffwM.
O ' .

This also shows us why H*(Ebiffw M} is referred to as the
!

local cohomology of the group DiffwM: The local.
cohomology is just concerned with the topological

properties of the group in a neighborhood of the identity.

19




20

We now define the canonical foliation F on

ﬁDiffm M x M, To each k-simplex in EDiffw M we can
o 0
associate a foliation on Ak x M with leaves

(2.6) 5, = {(t,h (m): t € 4¥).

This foliation is the pull-back of the point foliation

on M by the map £: (t,m) - h;l(mj. The foliation is
volume preserving.and-has %y for its transverse volume
form, where w is the volume form on M. The form f*w

is the unique transverse volume form that-restricts to

w on each {t} x M. The foliations on each {k-simplex} x M

fit together so that we get a (PL) foliation on %

([Singpiﬁ& M]/Diffg M) x M. Morecver, because the h
0 o

preserve w, the volume forms %y fit together to define

a transverse volume form f, which on 2K % M s just
f*y. This is a PL n-form [Suj.

" From now on we will just wffte ﬁbiffm M for
lSingDifme[/DiffiM and when we need to usg the specific

PL structure we will discuss it.

In summary: We have a space Ebiffm M which we
0

interpret as a classifying space for foliated M-bundles.

On Ebiffw M x M we have a codimension-n volume preserving
!
foliation F with transverse volume form Q.
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3. McDUFF'S CLASSES

A, Mchuff's Classes - Singular

We will give a different presentation than that
which McDuff gave in [M-2]. Associated to the space

EDiffm M x M we have a closed Pl n-form Q. The class

[2] is an element of Hn(ﬁDiffw M x M). By the KuUnneth

! . .
formula we have H™(BDiff M x M} T @ HY(Bpiff ™M) & HI(M).
: Y% it+tj=n Yo
n
This enables us to decompose [R] as © [Q]j, where
- : i=o

[e]; € B *(Bpifr, M) @ HU(M). The class [2]; equals
L. 0]

Ea%ui e B%, where j is indexed over the rank of Hi(M),

3 ' : : ' | |
j nei e . i i |

o4 € KI@ips, W, and 8] € HIOD. 5

We may now define the classes'ckgﬁ € Hk@%iﬁﬁjMﬁfkkOQ)
. . -

by the formula

(3.A.1) cq (M)x =§<ui,K)'B%hk

where k € Hk(EDiffw M). Note that the class ck(M) is
: 0

. independent of the choice of a;~i and B%. in fact

ck(M)K is just, neglecting sign, the slant product of.

n-k°

[anwk with «. For {@h—k /k is (-1jk(n"k)§§ai,K>-BJ




We will use absolute value signs to show that we neglect

sign. Thus, we will also denote ck(M)K by
(3.A.2) [ [e1/x|.

If the leaves of F were Ebiffw M x {m} then [0]
0
would be w&[m], where Ty is the projection from

Ebiffw M x M to M. In this case, the c (M) clearly would
) : , _ - _
all vanish.

B Déiﬁﬁ% g

Of particular interest to us 1s the top dimensional
class cn(M). If n is an n—cYcle in EDiffw M, then cn(M)
0
18 (ué,ny-Bi. For simplicity let us take Bi to be 1 for

Sé in HO(M). Then cp(M)n = (ai,n)

n

<[] _,n>. This

tells us

(3.A.3) c (M) = [a], = af}l Q 1
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if we identify Hn(ﬁpiffwM) with H“(Epiffw M) ® 1 in
(o} 8]

Hn(ﬁpiffw M) & HO(M).
O

Fathi has observed that we can view the classes
in terms of a degree preserving vector space homomorphism

(3.A.4)  y: HEQM) - ﬁ*(ﬁbiffw M)
) 0

= (-1) (aUCk(M)K,[M]P ;

d
p(ale

- k |

= (-1)"<a, [M]0c, (D))
where ¢ € Hk(EDiffw M). From this we see that

o _
¢: Hk(M] > Hk(Ebiffw M) is the zero map if and only if
_ o ;

cx(M) = 0. Let us look at y: H'(M) » H'(BDiff, M).
: ‘ _ o

1]

(3.4.5)  w(lw}n = (-1D¢wjve, (00, [M]

- (-1)ncn(MJn([w],{M]>

c, (M- (-1)%vor,, .

So up to a constant ¢([w]) is Cﬁ(M)' Our major concern

is the injectivity of ¥. We will mostly address ourselves

to the question of whether or not ¥{([w]) is non-zero.

Using the map ¥: Hk(M) -+ Hk(FDiffw M)} we may see
: 0
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certain properties more clearly as follows.

p(@k = (-1Faue, 0k, (M)

i

-1 5¢au] [0, _ /e, (1)

X . .
(“1) ?(@i:K)'(iiUBljl_k: [M]>
This enables us to_expreés y(a) as

-1k j o
(-1) §<auen,k,[M]> i

an element of Hk(ﬁbiffw M). We may denote by pa the
0
unique cohomology class in Hn*k(M) such that (by duality)

¢aupa, [M]) = 1.

Suppose now that a is non-zero and is in one summand of
Hk(M). Then we may decompose [Q]n_k so that there is a

- 2 | .
j' such that B%hk is pa. This gives us

I

p(@) = (-1 aupa, M1y 0f
= ('1)kail.

1f Hn‘k(M) (or Hk(M)) has rank one then we may decompose

[Q]H_k as

(3.A.6) -1)%a) 8 pa
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for a € Hk(M), a # 0. In general if {ai} is a basis of
H* (M) then
deg a.

(3.A.7) el = 5 (-1) 1¢(ai) f Da,.

a .
1

This is nice for it gives us a caﬁonital way to write
).
There is an important property of [n] that we have
not discussed. Since § is the n-form defining a codimension-n
P, foliation, it is locally pulled back fromimn, hence

Q7 = 0. 5o

(3.A.8) 212 = 0.

We may exploit the above to get certain relations between
the ¢, (M). These relations are more easily expressed

in terms of .

(3.A.9) EXample.l Let Mn+mtm s™ x s™ where both n and m
are even. Furthermore, let mﬁ and Wy be the volume forms
on ST and s™ respectively such that <wi’[81]) = 1. We

give s™ x s™ the volume form W AW - Then by (3.A.6)

(2] = pClurwd) 8@ 1+ pClu 1) & [u]

o) 8 Ju 1+ 18 [w Aw T,
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By (3.A.8) we have
0= [21% = (o rn 1)% 8 1
* 29 Clagau, 1) U yClog]) @ o]
* 29 (lwpae, 1) U (Lo 1) 8 [o]
20 Cloy]) U Cugl) ¢ pCleae,]) & [ ae 1)
1f we assume that w([w#Awm]) is'non—zero thén we have
p(fw, 1) # 0, 1Jlf([wm]) # 0
(o 1) U (1) # 0, and, i;»r_egardléss of ([u_rw_])
pClono,d) U CT;1) = 0, 3 = n,m.

As of yet we have been unable to. show that w([wnAwm]) is

non-zero,

B. Ceometric Realization of Cycies

This section is more in the spirit of the way McDuff
originally defined the ck(M). In 86 we will have to
explicitly construct certain foliations over complexes
to achieve some non-vanishing results. This is in
contrast to the‘préceding results which involved section

spaces.

If « is an integral k-cycle in [Sing pify, M|/Diffl M,
' . Q (&)
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then k can be expressed as Zziﬂﬁ, where the z; € Z, and

A? is a (smooth} k-simplex. Since k is a cycle, we may

form the geometric realization of k. Since x is in fact
a k-cycle, and mot just.a k-chain, the realization is-an ' |
oriented polyhedron, P, whose k-faces correspond to the i

A?, along with a map f: P > Ebiff@ M, Furthermore
o

if [P] is the fundamenta1 C1ass of P then £,[P] = k.

(The point is that because k i1s a cfcle the (k-1)- |
dimensional facés of its k-simplices cancel in pairs,. |

Therefore one may suppose that each (k-1)-simplex

in P occurs as a face of exactly two oppositely oriented |
k—simplices. So we may take P as the disjoint union o
of the AE with the (k-1)-faces idehtified invpairs.
Then Hk(P;Z) ~ 7 and is generated by the fundamental
class [P].) We see that on P x M Qe have‘a volume
preserving (PL) foliation with (PL) transverse volume |
form £*q = 2(p). Therefore, to calculate |[[Ql/«]|,

we may instead calculate

(3.3.1)  [[a(P)1/[P1]. | '

- Note. The preceding discussion is a good example of é

Epiffw M as a Claésifying space.
o _

Conversely, say that one has an oriented k-dimensional
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polyhedron P. If, on P x M, we have a (PL) volume
preserving foliation FtP) that is transverse to the
M-factors and its transverse volume form Q{P), restricted
top x Mis g, then we have é k-chain in EbiffwoM defined
és follows. (If P haé a fundamental class {P], then we
get a k-cycle in Ebiffw M). Let us begin by ordering

O

k

the vertices in P and take a k-simplex A"~ of P, When

we restrict F(P} to Ak x M, every leaf is a 1-fold
covering of Ak. By traveling on the leaves we see how
f_"""_‘_“:'--h._,..’-“"""\‘lf-

v“*\_/

M "

-

R /

L

o™
T Zlk

to map Ak to |Sing Diff, MVDiffg M (We always normalize
0 0 :

m

so that (Ak,O) > (Diffw M,1), as in our convention--
_ : 0
this is why we ordered the vertices, see [Ba]) as follows.

We let ht stand for the diffeomorphism that t is mapped

to. Define ht[m) to be the point on t x M that the leaf




that passes through o x m hits. The map f£: P~ Fbiffm M,
0

derived in this manner, classifies.F(P) on P x M, If

[P} exists, then £_.[P] is a k-cycle in ﬁDiffw M and
o

¢, (M £, [P] is equal to LI (PY1/1PY].




4, MAIN RESULTS

As we saw in §2 FDiffw M x M has a codimension-q
0

volume preserving foliation F with transverse volume
form 9. Let &: ﬁDiffw Mx M~ BTER be the map
’ o . '

classifying ¥ and consider the following diagram.

' o
—_— . . n
(4.1) Bmffwom x M 9BIT
w ' o p d
, T
M _ YBSL (n).

Here 7 1is projection, and t classifies the tangent
bundle of M. . (We may.assume that v maps to BSL(n)
since by choosing the volume form w we give TM an

SL(n)~structure.} The bundle v(f) is just gbiffw M x TM,
- 0

since ¥ is transverse to the M-factors. We classify
v{f) by the map ded. Note that v(F) is also classified
by ter. Since classifying maps are only determined up

to homotopy we may pick maps and spaces so that (4.1)

commutes and such that d is a Hurewicz fibration.

Let % denote the pull-back of BPEQ by 1. We are




kY

interested in ${M), the space of sections of =.
Equivalently one can look at (M) as the space of lifts
of v. We can, amd will, freely pass between the two

notions. We will define a canonical map

(4.2) I: "}imszw M > s(M)
. 0 -

by setting

.3 am %€ 5w,

for each b ¢ EDiffw M. Since M is compact and n-
0

n
sy’
(n-1)-connected, the space s(M) is not connected.

dimensional while the fibre of = is BF which is

However Ebiffw'm is connected, so the image of T is
0
in one component of g(M). We will denote this component

by SO(M). McDuff,‘in the spirit of Thurston fT],‘has
shown that T* is a cohomology isomorphism. This enables
us to view MCDuff‘s classes as being in H*(SO(M))

if we wish. Let wus exploit fhis philosophy.

Define ¢: SQ(M) > Ergg.as evaluation at the fixed

point m in M. Cdnsider F|, F restricted to Ebiffw M x My
. e)
The bundle v(F[} is isomorphic to Ebiffw M x R". This
0 :
tells us that F{ is a codimension-n Haefliger structure

with trivial normal bundle. Due to this we see that
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o], the map classifying §|, 1s homotopic to a map with

itmage in EPZQ' Without loss of generality we may assume

that ¥| actually maps into ﬁrgg . The map ¢| equals
2(-,m ) and goll(-) equals ®(-,m0), so the following
diagram homotopy commutes.

’EpifwaM
I
(M)

't

0

Recall from (3.A.3) that cﬁ[M) is [ﬂ]o ¢ Hn(ﬁDiffw M) .

_ o o
However, [Q]o is just‘[Q]I, [n] restricted to Ebiffw M % m, .
0
Hence, &]%p is c,(M}. Since m* is an isomorphism
(‘4."4) Cn(M) #F 0 s s*p #F 0.

We will use the above to show that cp(M) is non-zero.

The map e* then is obviously of great interest to us.
In general the space 5,(M) can be quite cbmplicated in
a topological sense due to the twisting of TM. At the
present time one has. been unable to deal with thel
twisting. Thereforé, we will look at manifolds where
this 1s controlled. |

Before preceding further we must establish a
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criterion for determining the components of S(M).

(4.5) Lemma. If f  and f, are two sections of s(M),
viewed as lifts of ¢, then they are in the same component
of g(M) if and only if fga = f;ﬁ.

Proof. See Appendix. The techniques are those of

obstruction theory.

Ifbe FDiffw M then T(b} is in S, (M). The section
o
n(b) is &(b,-), and ¢(b,-)*n is [p] restricted to

b x M, which is [w]. This tells us that
(4.6) . fe s, (M) = £ = [u].

Manifolds where the twisting of TM is cbhtfolled
are parallelizable and stably parallelizable manifolds.
In general a bundle gn is stably parallelizable if

gn ® ek =4 €n+k

, for some k » 0. For the case of TMn,
since the base space of TMY is n-dimensional, it follows
from stability theory that k can be taken to be 1. The
most obvious example of a stably parallelizable ménifold
1s a sphere. In fact, the following proposition shows

that spheres "classify" stably parallelizable manifolds.
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(4.7) Proposition. The manifold M is stably parallel-

izable if and only if ™ = v*(TS™) for some map y from

M to ST,

Proof. Tf TM = yv*(TSM), then T™ 8 ¢t =~ y*(TS™) @ «

2 f(rs™) @ el = 4% (TS 8 V) ¥ v (e

Thus M 1s stably parallelizable.
1, n+l
¥ € .

1 has a non-zero section o such that el = TM.

If M is stably parallelizable then TM 8 ¢

S0 TM @ ¢

Denote the section 6: M » M mﬁfl by m~ (m,8(m}),

so we have 6: M +1Rn+1 - 0. We can normalize © so that

we have a map n: M ~» Sn. Note that TS" pt. = n(pt.)l,

so n*(Ts™ = T™™. Q.E.D.

We are now ready to prove our main theorems.

o

(4.8) Theorem. If M is an odd-dimensional stably parallel-

izable manifold, then cn(M) # 0.

Bpmark. It is essential that n is odd for McDuffl has

2n, o _
shown that czn(S ) = 0.

Proof. - «case (i) - Suppose that M is stably parallel-

izable but not parallelizable. Then by (4.7) TM = v*(Ts™y.

The map y can not be nuli-homotopic, for if it were




v*(TS™) would ndle. Recall from §2

that we can give M such that [w,] =

w’M
n*[ms], where [wg ” volume form on S
(Since vy is of ndn' ] # 0.) Consider

the following diagray

(4.9)

¢ classifies TS", Thé'ma

n*(Ts™) =~ T™M. Say f ¢ 5.

fore, by lemma (4.5); foy é;s M

(4.10) 5 (s™

is evaluation at n(mo) ¢ s" and 5 -'

]]]0 c M_ Si]-ice Emo-\{(f) = E (fon) -..._:..flon(]n .S

above diagram commutes. Recall that McDuff has shown

36
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that cn(Sn) # 0 for n odd. (This will be discussed in

:’:

§6.) Since eg = y“e” and cn(Sn) £ 0, (4.4) tells us

%
m
that €:“ # 0. So E;u # 0 and therefore c (M) # 0.

-case (ii)--'M is.-parallelizable, The previous argument
will not work for n may bé of degree .0. However, let’

t now stand for a map c¢lassifying T™M into BSL(n).
Without loss of generality we may take T as a constant

map. In this case (4.1} becomes:

(4.11) BDLff, M X MﬂmmnﬁBr2%-wwﬁBFgg
| . |

T d ' d

M s G 3BSL(n)

Again we are allowed to vary the maps up to homotopy.
Now g(M) = Maps(M;gfzg) and we will designate the

. !
component corresponding to SO(M) as Mapsl(M’Brsk)' So

s € Mﬂml@mETg if and only if s*p = [w], where w is the

o)
volume form on M. The evaluation map e:SOCM) + ETEQ

n n
g4 s’

that €y # 0. As discussed in §2 w is chosen so that

(lwl, [M]p = 1.
Recall that wnfﬁrg

becomes e : Mapsl[M,FF ) - BT Qur aim is to show

- n i7% n
~ TR and let f: S = BFSQ

2] |
1€ w (BrD)), i.e. ¢£u,[s"]) = 1.

be a mép such that [f] =

(See (1.11).)
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Let us give S™ a volume form w, so that % = [w ]
We will say that g: M+ 8" is of degree one if g*[ms] =
[wl. Let Mapsy(M,S™) be the maps of degree 1. Now
s 2. ' —_
let us define a map f: Mapsl(M,Sn) > Mapsl(M’BFsg)—
by setting f(g) dgf fog. This is well-defined for if -
T -~ = fo =1
g € Mapsl(M,BFSE) then £(g) = f g € MapsliM,BFSz)

because (fog)™u = g*f*, = g w,] = [w].

~

n i = 1N
(4.12) Mapsl(M,S ) }Mapsl(M,sti)
g €
N
g £ ABTR
sh

The maps ¢ and ' represent evaluation at mb so the above

diagram commutes. Since f*y = [Qg], if we can show that

'E'*[mS] # 0 then we will have shown that &%y # 0.

Now Mapsl(Sn,Sn) is the space of maps from Sn‘

]

]

to S™ such that f*[ms] [ms]. Let £ be a fixed element
of Mapsl(M,Sn) such that g(mb) = g, the south pole of s™.

Define £: Mapsy(S",S™) - Maps, (M,S) by E(h) = het.

~

(4.13) Mapsi(sn,sn}—é—wﬁMapsl(M,Sn)
E‘ﬂ E'
gh identity ygT!
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¢" is evaluation at g hence the above diagram commutes.
If we can show that g"*[ws] # 0 then we will have shown
that ¢'*[w_] # 0. Therefore the proof of the theorem

is completed by the following lemma.

(4.14) Lemma. If n is odd then in the following

fibration g"*[ws} # 0.

n

(4.15) \ gnsl

’ ‘ 1" ‘
- Mapsl(sn,sn) €, st

where QHS? is the obvious component of QnSn.

Proof. We will use the cohomology spectral sequence of
(s™
n

for 1 > 0 we see that QnSl is a connected space with all

- NNy .
(4.15) to prove the lemma. Slnce_wi(g Sl) =28
of its higher homotopy groups being torsion. We wish
to appeal to the R-Hurewicz Theorem but we need our
spéce QHS? to be simply-connected. Unfortunately

ﬂl(QnS?)'§ ﬂn+l(8n) = ZZ. To get rid of this problem we pass

. _ P 4
to QHS¥, the 2-fold universal cover. . Note thatﬂnﬁgandsfﬁ?
- ' . S ive .
have the same (real) cohomology. Since S1 is simply

7 Aoh | Ll -
connected and wi(ﬂ Sl) R R = 0 for i > 1 we have that

| H*(QHS?) = 0. Thus the fibre of (4.15) has no cohomology.
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The Eg,o term. of our spectral sequence for (4.15) is

Hn[Sn] ~ R but E%’J = 0 for j > 0, hence E;’O lives
forever. The term Eg’? is generated by [ws] 50

g”*[ws].% 0. This completes the lemma and hence

Theorem (4.8). Q.E.D.

Now we will prove a more general version of case
(ii) of (4.8). This proof is not as elementary as
case {1i) of (4.8), so the other work 1s still of
interest.

(4.16) Theorem. If M is parallelizable then cn(M) # 0.

" Remark. Here we have removed the condition of n being

odd but yet we still use s™ in our argument! First we
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need a fact from the thesis of Hirsch [Hi, Thm. 6.3].

(4.17) Proposition (Hirsch). 1f Mt is parallelizable,

. . . n+
i1t can be immersed in R 1.

Proof of (4.16)}. We will consider M as being immersed

inﬁmn+1 with a fixed immersion. We will also freely

1. "This caﬁses no trouble

identify M with its image in R
as will bécome apparent. Our goal is to define a certain_
map y from M to Mapsl(M,Sn). We want fer-€°wz M » sh
to have non-zero degree, where ¢'is evaluation at m,.
If this property holds fhen E'*[ms] 7 0.

o ¥
(4.18) M : —%Mapsl(M,Sn)

Let ¥ be g'oV. . ‘ . |
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W

To start with let us choose an ¢ greater than 0 which is
less than the injectivity radius of M and is small enough
that every (open) ball, B(p,e), with center p, p € M

and of radius e, is émbedded by the immersion.

(9

o

%(bQB ' .?

Consider Emp_lr B(p,e) - TMp. Exp(vp) is the point on




the geodesic, through p (at t = 0) whose initial,
is Vp» at distance va[] (et direction) from p.
since we are using the induced metric from R+

3

is the usual Buclidean length. This implies
Empnl: B{p,e) - B(g ,g);:TMp. Let v be the Causs map..
from M » S™.  The Gauss map sends m to the p01nt on S"
correspondlng to the outward pointing unit normal on M
at m. By parallel translation in R" l.we get a congruence
from TM > ISn( ) Remembering that y is the Jnjec11V1ty

v(p)>™
diffeomorphically onto S™ - A(y(p)), where B(o ),ﬂ) c

radius of the sphere we see that Emp maps B(o

TS$(p) and A is the antipodal map on 8"

C @) By

A (‘o”CPD

Now define z: TS" + Tgh by c(?) = 1/e.-v. The map

¢ has the effect of mapping‘B(ég,e) "radially diffeo-
morphically" onto B(? sT) . Now we are in the pos1t10n
to define ¥: M - Mapsl(M s™y. Cn

Decompose M as B{p,e) U {M-B(p,e)}. We must say




44

what ¥(p)m is for m € B(p,e) and m ¢ B(p,e), m € M.

Consider the composition of the following maps.

(4.19) Bp,ec) -ﬁm-s\B(o ,e)—” L% BB (pye)

™~ c

o,

diffeomorphism B(o ),ﬂ)

v.(p
Fxp

S"-A(y (p))

If m € B(p,e) we define ¥(p)m to be the image of m
under the above composition. At this stage we want

the orientation on B{p,e)}, induced from the orientation
of M, to go to the usual orientation on S - Aly(»)).

1f it does not we give M a different orientation and

volume form. If m ¢ B(p,e) set v(p)m = A(y(p)).




As we vary p we get a continuous map ¥: M »
Mapsl(M,Sn]. Each ¥Y(p) is of degree one for ¥{(p) is
just a standard collapsing map of degree one. Now

consider diagram (4.18). Our claim is:

(4.20) Lemma. deg ¥ = (-1)n+1deg Yy o+ (-1)n; where deg

stands for degree of the mép.

~ Proof. TIf necessary, the first thing that we will do

is adjust € in our definition of .¥ to make sure that in

a neighborhood D containing B(m,e) we-caﬁ slightly

deform M so that D is flat. If we do this then the Gauss
map Y 1s constant on.D; hence f(D} = y(moj. Let us

look at y more closely. Since v(:) = w(-)mo we see that

on M - D, ¥ sends x to ?(x)mo Alv(x)). If xeD
we must be careful. If xeg D - B(m, ,e) then y(x) =
W[x)mo = Aly(x)) = A(Y(mo)) since D is flat. Now if
X € B(mo,g) we have some work. View Bimo,gi as the

Snnl(r), where Sn_l[r) = 3B(m_,T).
0.

disjoint union
T

< m

If we restrict ¥ to Sn_l(r), referring to (4.19), we

see that Sn_l(r) gets mapped diffeomorphically onto

the Sn-1 on S that is distance g-- T from_y(mo).

45
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1

as a map from S" " to gh-1

Viewing ¥ we see that

Sn—lﬁr)

it behaves like the antipodal map. So ¥ restricted

to B(mo,s) has degree [—1)n, since £he direction of the

1.
is preserved.

tangent vector perpendicular to st-
The map ¥ is not smooth on BB(mO,ei. Therefore,
we must replace it by a smooth map V' to ecasily calculate

its global degree.

Let us denote'gBimé,ei by C. Recall that
¥(x) = Y(xIm . If ¢ € C then T(c).= ¥Y(c)m, = Aly(e)} =

Aly(m,)). Also, ‘@"(_moj = ¥v(m Im_ = y(m,).
7 Tlmy)

—

A e (m ) =W {C)
The point is that ?(ma) and Y(C) are separated so we can

find a neighborhood U » C such that @(mo) and ¥(U)

are separated. In fact we can take the distance between
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them to be Z§. Let B be an open set, containing C, and

properly contained in U. Therefore M - B is a compact

set and ?IM"B is €%, for on the bit about m_ it is

the "reversed source" map, and on the rest it is‘Aoy.
The smooth approximdtion theorem tellsrus that

there is a smooth map ¥': M » S" such that

(1) S ARPVIRY

(2 ¥'yg F ¥ing

(3) ¥' is g §-approximation to V.

Thus we may calcﬁlate_deg‘w by Calculating the Brouwer
degree of the smooth map'?'. Choose ¢' > 0 so that
B(m,e') n U = ¢, and set W= ?‘[B(mo,g‘)). Since the
critical values of a smooth map have measure zero both
?'7and Aey share a regular value v not equal to Y(mo)
but very close to it in W. Note that (A°Y)—1(V) noD=¢
for A(y (D)) = A(y[mo)). Let us éonsider (W‘)_l(v] c M.

We know that there is a point x,

€ B(mo,g') that ¢

maps to v since W'IB(mO’E,) = yiB(mo,eg is a diffeomorphism
onto W of degree (-1]n. On B(mo,g)-s,ﬁ“ is v, which is

a diffeomorphism here so'(?‘)_lfv) n (Blmg,e)-B) = x,-

Since V' is a §-approximation to ¥ and y(U) is distance
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26 from Y(mo), the fact that we chose V_Very‘close to
y(ng) tells us (¥)71(v) o U =¢. OnD- (Uu B ,e))
yv'(x) = y(x) = A(y(m )} # v. Thus the only other points
in (?‘)_1(v) besides x_  must lie in M - D. On M - Dy’
is the same as y, which is Aey here. Let {xl,...,xj}
denote these other regular points. . Note that because
Aoy is constant on D, (AQY)fl(v) = {xl,...,xj}. Now

let us calculate the Brouwer degree of y'. We get a

contribution of C~l)n from x

o» and (-1)n%1deg y from

'{xl,...,xj} - recall that deg A = [41)n+1. Since
¥' ~ ¥ they have the same degree, so deg v = -1

+ (wl)n+1deg y. The proof of the lemma is now complete.

Rémember that we are trying to show that'if M is
parallelizable then c (M) # d. Recall diégram (4.12).
If'We can show that g'*[ws] = 0 we will have shown that
Cn(M) # 0. By the lemma we just proved ¥ has degree
(-1 + (—1)n+1deg Y. If we can show that this is non-
zero then (4.18) tells us g'*[ws] # 0. This is our plan.
We will vary our immersionslof M so that we get deg y to
our liking. We will now appeal to some results of

Hopf [Ho,Mil to accomplish this.
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n+l . ;
be an immersicn

(4.21) Theorem (Hopf). Let i: M o> R
with corresponding Gauss map y(i): M o+ g™,

(a) If{ n is even, deg vy(i) = %X(M), where y (M)
is the Fuler characteristic of M.

(b) If n is odd and deg y(i) = k, then given any

m one can find an immersion j = j{m) such that deg vy(j) =

k + 2m.

Now we will complete the theorem,

n even. Since M is parallelizable x{(M) = 0, hence
deg ¥ = (-l)n + (-1)H+IQ%LO = (-l)n # 0. Therefore

e *fo ] # 0 = c (M) #’Q._

n odd. Let us juét vary the immersion y so that
(-1 + (—1)n+ldeg v # 0. Therefofe s'*[ws] # 0 = ¢, (M) £ 0.

Q.E.D.

(4.22) Remark. It is worth pointing out that all
3-manifolds and products of spheres with one factor

being odd are parallelizable and therefore have cn(M) # 0,
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5. CHARACTERISTIC NUMBERS

Recall from (2.3) that we can look at the classes
i*ck(M). We will use results of Gottlieb to get farious
vanishing results. The map i pulls F back to i¥*(¥F)
on Diﬁ&BMx M. We see from_ouf construction of ¥ in §2
that i*(¥) is the pull-back of the point foliation on

~

M via the action map «¢.

A

£

(5.1) DIff M x M M

€ (d,m)——pd” L (m)

Hence i®(F) is a volume preserving foliation on

Diff, M x M with transverse volume form Q' = ¢*w. So

0
we can look at

(5.2) i*c, (M) e,Hk(Diffw M H? K )y

_ o
The i*ck(M) are interesting in their own right but of
course knowledge that i*ck(M) # 0 tells us that .
ck(M) # 0. McDuff [M-2] has shown, by using a result
of Gottlieb, that if y(M) # 0 then i*cn(M) = 0. We

will show:
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(5.3) Theorem. If y(M) # 0 or if M is 4%-dimensional and
has a non-zero Pontrjagin number, then i*ck[M) = 0,

1 <k <n.

Proof. Gottlieb (Thm. A [G-2]) shows that yx(M)-e®[w] =
1 x (- [w]) € H'(Diff, M x M). Therefore [2'] = *[u]
has no component in the Dgffw M factof. - This implies
that i*ck(M), 1 <k <n, are 211 zero since i*ck(M)K

equals |[R']/k]|, where k € Hk(Diffw M) .
. o]

For the second part of the theorem we will use
another result of Gottlieb (Thm. 8.8 [G-1]). 1In our
case this séys that if ¢ € Im ¥, where 1: M + BGL(42)
classifies TM, then e¥qy equals 1 x g which is in
H*(Diffw M x M). Let us assume that M has a non-zero
Poqtrjaggn numbeT which we will denote by Py EIR.

Thus py = <pilu...UpirJM]>, where@pij is the ij-th
Pontrjagin class of M. Choose a volume form w on M so

that {[w],[M]> = 1. Using this we can write Py as

U"'UPi .

PI<[N]3{M]> = <PI{N]:[M]>- This SaYS PI[w] = P~l ‘
T

1

The Pontrjagin classes aré.characteristic classes, i.e.
they are in Im t%, so prlwl € Im t*. If we apply

Gottlieb's result we have that g*(pl[m]) = 1 x pi[m] =

py(1 x [w]). However [n'] equals g*[w] so prle']
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equals pj(l x [w]) and we see that [R'] equals 1 x [w].

Therefore i*ck(M) is 0 as in the first case. Q.E.D.

(5.4) Corollary. There exists a manifold that has
x{M) = 0 but yet i*ck(M) =0, 1 <k < n.

~Proof. One just has to exhibit a 4¢-dimensional manifold
with y(M) = 0 and one non-vanishing Pontrjagin number.

There are many examples of such manifolds. -Let M be

4 g 8

eet woept or P w18 o 28 o , where # is connected

sum. Therefore ¥ (M) equals 5+5+040+0+0-2-2-2-2-2 = 0,

4 4, T8 + T8 + T8 + Tg, where +

4

M is cobordant to EPT + EP

is disjoint union. Note that TP’ has 'a non-zero Pontrjagin
number P and T8 is a boundary. Pontrjagin numbers are
cobordism invariants and they are additive through

disjoint union. Therefore M has a non-zero Pontrjagin

rnumber,




fibrations of
e relationships

- total space, and

ations-covering

spaces. A coverin | ; ndle with discrete

fibre.

covering

(6.1) Prbpositib

space with finite erd then so

-

i
o
o

is Ck(Mlj .

Pfdof. If M, has the

form wy = ﬂ*wz.  Since

k-cycle k¢ such that.ék

Let P be the geometfic Te:

On P x M, we have a ﬁd1u e

transverse volume form Q(

In fact there is a mdp*f P

classifies F, £*q = q(P),

Consider the maﬁin 
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i1 P x Ml -+ P x MZ

(x,m} = (x,7(m})

Since 7 is a submersion it is transverse to F so we

may take [%*F,%*Q(P))‘on P x.M Our new foliation is

1°
volume preserving, transverse to the Ml—factors and
%*Q(P)IPXM = w,. By our earlier discussions P gives
"2 ' -
us a k-cycle g in EDiffw Ml' Furthermore
. e} :

1 e (P) /P|

|9/k |

7 [2(P)/P] # 0

since 1% H*(Mz) N H*(Ml) is a cohomology'isomorphism.

Therefore ck(Mlj # 0 by (3.8B.1). Q.E.D.

Another type of simple fibration is that of a
product. Here, instead of the fibre being simple,

the structure of the fibrations is simple.

{6.2) Theorem. If ci(Mm),% 0 and cj(Nn) # 0 then

ci+j(M$N) # 0. If c;(M) # 0 then ci(MxN) # Of
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Proof. Since ci(M) # 0 there is an i-cycle I in

FDiffw M such that I[Qm]/11 # 0, where 0, is the

M
0
transverse volume form for FM’ the univerval foliation,
on EDQ?@ M. Similarly there is a J € Hj(EDiffm, N)
o] : ' o]
such that I[QN]/JI # 0. The homology class (IxJ) is in

Hi%j(ﬁpiffm M x Ebiffw, N). Let us consider the closed
0

o ,
(i+j)-form HM*QMAHN*QN on{EDiffw M x Ebiffm»ﬂ x {M x N),
O 0

where Ty and Ty are the obvious maps. This form defines

a volume preserving foliation. that is defined

N
as follows. Tf Ay € |Sing piff, M|/Diff] M and
| ) - o o
o 6
A, € |Sing thfw,oNI/lefME

N then, by subdivision, we

can consider Ay x Azrc ISing-DiffwAw,oM x Nl/DiffmAw,OM X N.

This gives us a map i: Boefr, M x BDLffys N BDEff a0 M X N
- _ 0 0 o

which is covered by a map i: (ﬁbif}w M x EDiffw, N) x
) o

(MxN) + (BDZff,,,+ MN) X (MxN). The map I = i x id.
0

o -
If we Testrict ourselves to simplices i is smooth. This

o . &% % ' ®
tells us that i FaxN © FM,N and 1 [QMXN] Ty [QM] U Ty [QN],
where ¥ is the universal foliation on (ﬁbiffwAw,

MXN OMXI‘J]>< (MxN)

with transverse volume form R

To show that Ci+j[M¥N]

MxN*




is non-zero we must exhibit an (i+j)-cycle £ in

+ M x N such that ”QMxN]/EI i5 a non-zero element
)

of Hm+n~[i+j](MXN)' We claim that 1,{rxs) is such an

(i+j)-cycle. Note that

g3, (0x) | = | TRy 1/ E () |

1

5% Ty 1/ (e |

I lay) U omyg* Tayd/ () |
= Jlayl/1] x [ layl/q]

which is a non-zero element of Hm+n~(i+j)(MXN)' If
c;(M) # 0 and we wish to.show ¢; (MxN) # 0 just do the

previous proof with J as a point. Q.E.D.

In the top dimension c, (M) # 0 if and only if
w*([w]) 1s non-zero (3.A.5). However, in'the intermediate
dimensions there is more to ask than just if c; (M) # 0.

This is since the rank of Hi(M) need not be one. If

the rank is one then ¢*(o) # 0 if and only if c;(M) # 0

3

where o is a non-zero element of Hi[M). Referring to

{3.A.4) we see that we have the following homomorphisms.
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Uy ﬁ*(M) > H*(ﬁbiffwoM)

by HYON) > B (Bpiss,, N)
o]

L ek : .
Dyt HEOHN) > H (BDLffwAw‘ MxN)
0

A mnatural question and a generalization of (6.2) is

(6.3) Corollary. If Yy la) and wN(B) are both NION-ZEero,
then wMXN(axB), waN[axl), and wMXN(le) are non-zero,
where o ¢ Hl(M), B € HI(N).

Proof. (In the proof everything is up to sign.) By
our hypothesis there is an i-cycle 7 in Ebiffw'M and
o : , - )

a j~cycle g in Ebiffw..N such that
; 0

0 # yyla)I = ¢a U ey (M1, [M])
= ¢ay | [oyl/r], My
0 # yy(B)J = (B v ey, [N]>

il

<B U [layl/a], IN]>.
By definition of yy(axg)

UlexB) s = L(axp) U oy, (MxN) ., [MxN]y




Uy (@xB) (i, (1%d)) =

CCoXBY U | TRy 1/2 WZ50) [, [MeND

{CoxB) U (fIoyl/D) [ < [Tayl/a]), [MxN] )

(o U [Lo]/T]) x (B U [[ay]/7]), [M]x[N])

1

<a U layl/z], M1y - <8 v [[ayl/a), [N] )
# 0.

So wM(axB)' . Similarly the rest follows. Q.E.D,

Consider the Hopf fibration

52 is a homogeneous space 83/81 but yet CZ(SZJ is-O
while clcsl) and CS(SS) are non-zero. Note however that
p*[mz] is 0, where w; is the volume form for st

~However, McDuff used a fibration to show that
Zn-1

) # 0. We will state a general theorem that-

C2n~1CS

inciudes odd-spheres as a special case.

(6.4) Theorew., Let G/H be an n-dimensional homogeneous
space, with associated fibration H » G +» G/H (all spaces

closed, connected, and oriented as usual). Let G/H cafry

59
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a volume form w, and suppose p*[w] # 0. Then i*cn(G/H) # 0,

For an explanation of i* see (5.2).

- Proof. Since G/H is compact we can always define a
G-invariant volume form w' by o' = J g*wdG. (remember
G

G is compact). Without loss of generality we will

assume that w is G-invariant. Thus ¢ < Diffw G/H.

: 0
Consider the following diagram.

(6.5) G x G/H % G/H

As in §5 we can form a foliation F on G x G/H by pulling

*

back the point foliation on G/H by e, e(g,x) = gnl(x)
However T is also the pﬁllmback of the canonical foliation

on piff, G/H x G/H via.the inclusion map. The map j
' o - :
sends g to (g,ell}, where e is the identify of G, and

1

p{(g) = g "H. Hence (6.5) commutes. Since by hypothesis

p“[w] # 0, there is an n-cycle in Diff, G/H over which
o

e*[w] does not vanish and hence i*cn(G/H) # 0 (5.2). Q.E.D.
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{6.6) Examgle. Consider the homogeneous space U(n)/U{n-s)

and its fibration

U(n-s) 3 U (n)——L 3U(m) /U(n-s).
Borel [Br] shows that

1) H*(U@)) - A(X%ﬁil,X§§13,.;.,x§“>)

2) WU Um-s)) = 4§ xE) xS S n-s) 1)

ke(s) _ y(m) -
3} p X2j+l - X2j+l 3 n-5s S,_ J S— I'l‘“]..

The dimension of U(n) is nz, and the dimension of
U(n)/U{n-s) = nz—(n~s)2 = an—sz; Let 3 be a U(n)-invariant

volume form on U(n)/U(n-s). The class [@].E

2 -
HZSHHS (U(n)}/U(n-s)) TR, so [w] is a non-zero real
- multiple of Xé%%_s)+1A...AX(52 . This says that p*[w]
: _ . ; (n) (n)
s a non-zero real multiple of XZ(n~s)+1 e Xyl

hence p*[w] # 0.. We now see that the top McDuff class

and’

of U(n}/U(n-s) is non-zero.

(6.7) Note. Observe that U(n)/U(n-1) is SZn—l' This

271~
is McDuff's proof that ¢ Sl l];% 0. Therefore

Zn—l( -
we see that there is a (2n-1)-cycle H in U(n) c

s”°1 such that <&%[w],H> (sce (5.2)), is non-zero.

DIfF,

0O
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Let us now exploit this fact for some more results.

The spaceIRP2n+1 is 52n+1 ' , and L2n+1 is S2n+]_ .
Zz p Zp

We will show that the top class of these spaces is

non-zero.

(6.8) Proposition. The class i*cn+1(M) is non-zero

for M = RPY or Lg, where n = 2k-1.

" Proof. sl Comes from the fibration U(n-1)—2-U(n)—E—
Szn_l, g2n-1 g comes from the fibration
P
1 r N -
U{n-1) Xﬂﬁfj;%Uﬁﬂéjlw%Smljyé. We express Zp as {1,r,...,7? 1},
o : : P '

the-pth_ roots oflunity. VIf (A) € U(n-1) and rJ € Zp’

then 1' acts as follows.

(1o o

\

an element of U(n). We may now hook up the two fibrations

into a commutative diagram




Un-1) — 2 s U(n)—PB__y52n-1

o 8 Y

il 2n-1

U(n—l)xzpwwm_muww+U(nj—mmﬁim$8

/Zp

where, a(A) = ((A),1)
B(B) = B
= [s],

Y(s)

The standard volume form w may be pushed down to the

Zn—l/zp_ The form w' is preserved

by U(n). Since B*p'*[w'] equals p*?*[w?, we see that

velume form w' on §

p'*[w'] is non-zero and by applying (6.4) we are done.
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7. REMARKS

In this thesis we have used two philosophies. The
first exploited the section space 5,(M). The second
was very concrete and geometric. A éonjecture of McDuff
is that ¥ is injective for odd-manifolds. I believe that
the best path to take is to use SO(M). Hopefully in
the future we will be able to obtaih more results on
fibrations and products and perhaps even toqprove the

conjecture.
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&. APPENDIX

In this section we will prové lemma (4.5). Let

us recall the situation from §4.

n —.n
Br, BI,
if i
L4 l Je
E 1 \,BI‘Z“2
h 4 hy d
| v v
M 1 » BSL (n)

[x3

- {n,b) € M x BPE Dr(m) = d(b))

' L
t'{m,b) = b
h:, is a lift of 1 | e
hi is a cross-section of d!'
T'°h§ = h.

: i i :
s
e (m,hy () = b (m)
We have 1 € Hn(BPER) and i*} = y. Let u' be the class

Tt

' ¥ in Hn(E)- Thus i'*u = 1. Between cross-sections

(1ifts) we have the concept of vertical homotopy,

denoted by 1. We say that hz v hi (ho v hl) it they




are homotopic through cross-sections (1ifts).

SN S r~
(8.1) hO v hl i ho v h1

We should also note that

5% s %~
hi TR hi T
%
= (t'°hi)
= hiii,
Thus,
‘ s¥. . s¥. Ko ae
(8.2) hO = hl Ut‘ '<=-—~:--hou = hlu

If we can show

) ~ *_v :’CN
(8.3) h> Vhimhi B'o= by §it,
then combining (8;1), (8.2), and (8.3) we will
(8.4) hy ¥ hy «s hoh = B,

which is what our lemma statés.

Proof of {8.3). Let hs,hi and hi denote arbitrary

ctross-sections of d', Denote by Sn[hi,hi) in Hn(M)

the primary difference of ho,h1 (may vary indices).

Obstruction theory tells us ([W] Thnm. VIi.e.5-1)

have




N, S 15, s ™~ .S
S (ho’hl) = 0 e h0 v hl'

This reduces our task to showing

E]

* s
1

Iﬁr = h 1

i} 5 S S
(8.5)  ST(hg,h]) = 0 e B

"

Before proceeding further we'must examine
no€ Hn(ETSE) more closely. McDuff [M-1] has shown

that 3 is the identity homomorphism in Homz(ﬂn(g?ggJ;

wn(’B‘r;1 )} - Hn(ﬁr: ). Suppose we identify the first

2 b2
with B via the Hurewicz isomorphism. Then i1 becomes

n

the inverse of the Hurewicz isomorphism, an element of

N =T . ! - . ..
Homz(M (Brsg)’ﬁn(Brsg))' Thus, following Whitehead [W]

we may call y the characteristic class of ET:

'Q‘ . -

(8.61 Proposition. The class (-1)nﬁ' = En[hsj 3

d'%g; a€ | (M), where g7 (h%) is T"(1,h%0d") € H'(x).
Proof. By ([W], Thm. VI.6.7) we have that i'*g™(h®)

(-1)™,. We also have that the following is exact

w « g ®
H (M) d} u'z) L (e

82)'
Since y is i'*}' we have thatri'*(—lJnﬁ* - it* e (h5)
is zevo. Therefore, (—1)nﬁ' - En(hs) is an element

in the image of d'®*. Q.E.D.




(8.7) Proposition.r Statement (8.5).

It

Proof, En(hi,hsj §%(10h7,n%01)

8% (1oh,h 0t oh?)

. |
([W]Thm.VI.6.5-3) hi §H(1,h%ed)

il

-j\-
hY e (h®).

By proposition (8.6) , i

I

it S
§7 (h,h) :

ST - drtg)
By ([W] VI.6.5-2)

TN, 8 Sy . N, S 48 N S S
F'(h3,h]) = TP(hd,n%) - 3 (h],h%)

ek - . * ~ "
ho (DMt - dt*a) - b) (CDMNir-a e

.
DG E - ny R,

s* ., a sy % -
since hi d'%o = (d'Ohi) o o= o.

- *'\o
.o 6n(h2,h§) = 0 e hg u!

s

FP;
=
Fe
i
=

Thus we have proved the lemma.
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