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Abstract of the Dissertation

Some Rigidity and Pointwise Pinching Theorems

in Riemannian Geometry
by
Haiwen Chen

Doctor of Philosophy

mn

Mathematics

State University of New York
at Stony Brook

1989

We study manifolds with positive sectional curvature which are pointwise
§-pinched, or which have 2-nonnegative curvature operator, and obtain the
following results: (1). The complex projective space CP™ (m > 1) has only
one metric(up to rescaling), such that it is pointwise 3-pinched. (2). If M
is a pointwise é-pinched (2m-+1)-dimensional manifold where § > 2m(m —
1)/[m(8m — 5) + 3], then the second Betti number b; = 0. (3). If there is
#(+# 0) € H*(M;R) on a §-pinched 2m-dimensional manifold M, such that,
™" = 0in H>(M;R), then § < 4m(m—1)*/[16m(m-—1)*43(2m—1)]. (4).

We classify all compact 4-manifolds with 2-nonnegative curvature operator.
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§0. Introduction

This thesis is concerned with the geometry or topology of riemannian man-
ifolds with positive sectional curvature or positive curvature operator. It is di-
vided into two parts. In the first part, we study pointwise §-pinched manifolds
and derive a rigidity theorem for metrics on complex projective space. In the
second part, we extend results of Hamilton to manifolds with 2-nonnegative

curvature operator.

PART I. A compact (simply-connected) riemannian manifold M with positive
sectional curvature is said to be pointwise §-pinched (6 > 0), if we can find
a positive function k defined on M, such that, at each point z € M, the
following inequality

Sk(z) < K, < k(=)

is satisfied for all sectional curvatures K, of M at z. If k(z) happens to be

constant, then we say M is globally §-pinched or simply é-pinched.

Much work has been done on the problem of determining whether or not
for a given manifold M, one can find a metric on M such that M has positive
sectional curvature and is (pointwise) §-pinched for certain §. We would like
to list some results which are relevant to this thesis: There is a classifying
theorem proved by Berger [By] which states that any %—pinched manifold is

either homeomorphic to a sphere or isometric to a symmetric space of rank

1. Following the classification of symmetric spaces of rank 1, we know that




only CP™ has nonzero second Betti number; see Helgason [H|. There are
examples of manifolds with positive sectional curvature and nonzero second
Betti number in dimension 7 and 13 [B3][W]. There is also the work due
to Berger [Bs], improved by A. Tsagas [T'1][Tz], which shows that for some
specific values of § (0 < § < 1), certain manifolds can not carry a §-pinched

metrics because of their second real cohomology group.

Recently, M. Micallef and J. Moore gave a beautiful result concerning
manifolds which are pointwise §-pinched [M-M]: If M is a pointwise §-pinched

manifold for § > %, then M is homeomorphic to a sphere.

Here we have proved the following result which is related to their work:
Theorem A. If M is pointwise %-pinched, and the dimension of M 1s bigger
then 2, then either H*(M;R) = 0, or M is isometric to CP™ with the stan-
dard metric (up to rescaling).

Corollary. CP™ (m > 1) has only one metric(up to rescaling), such that,

it 15 powntwise i-pinched.

Remark. Theorem A is also obtained independently by M. Micallef [M] and
W. Seaman [S].

The following theorems will improve the work of Berger and Tsagas:

Theorem B. If M is a pointwise §-pinched (2m+1)-dimensional manifold




where
2m(m — 1)
~m(@m—5)+3

then by, = 0.

Theorem C. If there is $(+# 0) € H*(M;R) on a é-pinched 2m-dimensional
manifold M, such that,

96/\‘?5/\"'/\@:0

m—times

in H**(M;R), then

dm(m —1)*
16m(m — 1)+ 3(2m —1)

b <

Note that Berger’s result is é > %:i—:? when the dimension is 2m--1

[Bg]. Tsagas improved this result to 6 > (Smi(:;&iz(l?(;{)fgm —3 [T1]. Tsagas’

2(2m—1}{m—1m
8(2m-1)(m—1)?m+3

result for the 2m-dimensional case is that § < [T2]. However,
there appears to be a mistake in Tsagas’ proofs for both cases. It occurs when
estimating a real function of the form F = a + b — ¢, where a, b, and ¢ are

nonnegative, he enlarged b while enlarging ¢. The author has fixed this error

in his proof.

PART II. A curvature operator Ry can be defined via the curvature tensor R

as follows:

Fix z € M and choose any orthonormal basis {e;, e3,...,e,} of T, M. Then




R

we define

Rufei-e;)= . Rimer-er,

1<k<I<n

where e; - e; is denoted as the Clifford multiplication of e; and e; (¢ # 7).

It is clear that Ras is a symmetric bilinear operator on A*T'M (under the
natural identification of the Clifford algebra CI(M) and A*T'M ).

Ry is said to be k-nonnegative (resp. k-positive) if the sum of the
first k ecigenvalues of Ry is > 0 (resp. > 0). It is easy to see that when the
dimension of M is 3, Ry is 2-nonnegative <> the Ricci curvature is > 0.

There is quite a long history to the study of metrics on homotopy spheres
under the conditions of either §-pinching or nonnegative (positive} curvature
operator. The main results are the following: For é-pinched manifolds, it was
first proved by Gromoll that M™ is diffeomorphic to S™ for some é(n). Later,
it was shown that §(n) does not depend on the dimension and that é6 > 0.8
is sufficient, cf [C-E]. However, if the given manifold is poiniwise é-pinched,
then such § depends on n, and § — 1 as n — oo [R|[Hu|[Ma]. On the other
hand, R. Hamilton studied manifolds with nonnegative curvature operator
and classified all manifolds (up to diffeomorphism) with nonnegative Ricci

curvature when n = 3 [Hj| or nonnegative curvature operator when n = 4

[Ha].

Our results are:
Theorem D. If M* has a metric with 2-nonnegative curvature operator, then

a finite covering space of M* is diffeomorphic fo one of the spaces S, CP?,

83 % 81,82 x 82,82 x 81 x 81, or T4




Theorem E. If M* is a pointwise §-pinched manifold with § > V13 oy

0.3754, then M* is diffeomorphic to 8% or RP%,

REMARK 1. Hamilton’s result for 3-manifolds together with Theorem I give
a classification of (compact) manifolds M™ with 2-nonnegative curvature op-

erator, when n = 3,4.

REMARK 2. Theorem E can not be directly derived from Theorem D, because

we still do not know what §(< 0.4) implies the 2-nonnegativity of the curvature

operator.




§1. Preliminaries
Suppose M™ is an n-dimensional manifold with a riemannian metric { , )

and Levi-Civita connection 57, Then the curvature tensor R is defined by

R’u,w = = Vo Vw T Vu Vo + V['u,w] . (1)

We can define the Clifford bundle CI(M ) as the tensor algebra 3 2 ®’;(TM )
modulo the relation v ® v = —(v,v) for any v € TM. 7 and R act on CI(M)

like derivatives, i.e., for any ¢, € CI(M), we have

V(¢ )= (V) -¥+¢-(VY), (2)

and
R($-9) = (Re) -9 + ¢ (Byp). (3)

The main tool we will use in Part 1 is The General Bochner Identity
D* = v*y +R. , (4)

Here D is the Dirac operator, \/*\/ is the connection Laplacian for the real
Clifford bundle CI(M), and R is a certain curvature operator. Using a local
orthonormal tangent frame field {ey,es,...,e,} with (-} the Clifford multipli-
cation, for any ¢ € CI{M), we define
R($)=— D eirej-Reei(9)- (5)
1<i<i<n

(Usually we omit (-) if it causes no confusion). For more details, refer to Spin

Geometry written by Professors B. Lawson and M-L. Michelsohn [L-M].




§2. Some notation and lemmas for Part I
To simplify the notation in the following computations, we denote (R, .;ex, €1)

by (ijkl), and in the 4-tuple (ijkl), when ¢ is replaced by o + 3, this means

that e; is replaced by e, + €g. The sectional curvature of a tangent 2-plane

spanned by e; and ¢; is (iji7) or denoted as K ;.

T 22

Lemma 2.1 For any 2-form ¢ which can be writlen as

¢ =2 aien 1€ (6)
=1

in a local orthonormal tangent frame field {ey,...,e,}, where m = [2], then

(R{¢),d) = Zaf Z (Kai_1g -+ Kaiyp)

i=1 #2124 .
— Y daai((26-1),2,(25 - 1),25). - (7)

1<i<i<m
(R is invariant under the choice of any local frame field.)

This lemma has different versions [Bs],{T1]. The advantage of this
proof is that the terms in the calculation can be more casily handled and

better estimates can be obtained.

Proof. Using the property that R is C*°(M)-linear and symmetric on CI{(M),

we have

(R(#),¢) = <R(i aiezi—lezz‘),gdiezi—leze> (8)

1=1

= Z a?(R(ezi—1 €2i), €21 321‘.) + Z za'iaj<R(82i-1e2i)1 €2j—162j)-
i=1

1<i<j<m




By definition,

(R(625—132i),62£—162i)=— E (ekelRek,eg(ezi—leM):62'&—13211): (9)

1<k<I<m

and
- (ekelRek,e;(EZimle?.i)) 62:?—162@:) = (Rek,e;(eﬁ—-le%)) 6k€l€2£—162i>- (10)

(Here we used the properties that (¢,%) = (e;¢, e9p) and e;e; = —1.)

If b =2 —1 and I = 2i or {e,e;} has no common element with {ey;_1, ey},
then erejes;_1€s; belongs to either A°T'M or A*TM by the identification of

Cl(M) with A*T'M. Using the property that
Reje; ¢ APTM — NTM 0<p<n, (11}
we know that in this case

(Reyei(€2i—1€3:), €nereni_1en;) = 0. (12)

If {es, e;} has only one common element with {es;_1, €2}, say & =24 — 1, then

(Rek,e;(eﬁ—leﬁ): Bkﬁlezi—lezi)
= (R33g_1,61(62i~182i)3ele2i)
{(Repi_y er€ri—1)esi + €2ii1 Reyy_, o)(€2:), €1€26)
= (((2¢ - 1),1,(28 — 1), 8)een, ere3;) — (Reyi_, e1€2iy 2i1€1€3:)

= ((27: - 1)al$ (Zi - 1)11)

= K1y, (13)




9
Continuing in this way, we finally get
(R{esi-1€2:), €2i_1€2;) = E (Kai-10 + Kaiy) - (14)
1£2i-1,2
For i # j, by definition, we have
(R(egi1€ai),ezj_1€25) = — 3. {enerRe, e (€2i-1€2:), €25 1€25)
I<k<I<m
= E (Rek,e;(ezi—l 62,;), €Rereaj e2j>' (15)
I<k<i<m

For the same reason as before, if & = 25 — 1 and [ = 2j or if {e, ¢;} has no

common element with {ez;_1,€2;}, then

(Rek,eg(e2i—1e2i)) ekelezj—132j> =0. (16)

If {er,e}n{esj_1,e2} # 0,sayl = 25, but k # 25 —1,andif k ¢ {2i—1,2i},

then it is easy to see that (16) is still true.

If k=2¢—1, then

(Rek,e;(e%—le?-i), €r€i€aj_1 62j)
= ‘(Reg,-_l,eg,-(ezi—wzi), ezi-1€2j€2j—182j>

= {(Repi_yyen; €2i-1)€2i - €2i 1 Ren; e, €20 €2i1€25.1)

= (2 —1),24,2, (27 — 1))

= —(2j,(2i —1),2i,(25 —1)). (17)
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If & = 2i, similarly we have

(Rek,e;(ezi—le%): €ket€2j-1€2,i) = —(23':23',(23‘ - 1): (23" - 1)) (18)

By Bianchi’s Identity, we see that

W(Zj:(Zi - 1)7 Zia(zj - 1)) - (27:’2j: (27: - 1):(23; - 1))
= ((2¢ -1),24,25,(27 — 1))

= —((2i —1),2i,(25 — 1),2). (19)

Weget —((26—1),2:,(2j—1),27) againwhen!=2j1andk=2i—1,2:.

This shows that

(R(ezi_1€2), ezj-1€2;) = —2((2t — 1),2i,(25 — 1), 25). (20)

Combining (8),(14) and (20) gives (7). qed.

Let K; 1 = 1,2,3,...8. denote the sectional curvature of planes in




11

T, M defined as follows:

Ky = 3((2i — 1) - 22,(27 — 1)} + 24, (2¢ — 1) + 24, (25 — 1) + 2j),
Ky = 2(— (28— 1) + 21, (25 — 1) + 27, —(2i — 1) 1 24, —(25 — 1) + 25),
Ky =2((25 — 1) + 24, (20 — 1) + 25,(25 —~ 1) + 24,(2i — 1) -+ 29),
Ky=3Y—((25 — 1)+ 2, —(2 — 1) + 25, —(27 — 1) + 24, —(24 — 1) + 27),
K = ((2i —1),24,(2i — 1), 25),
Ko = ((25 —1),2,(2j — 1),24),
K7 =((2¢ —1),2¢,(24 — 1), 27),
Ky =((25 —1),24,(25 —1),24),
and for ¢ # j, set
K= 3 K.

B=2%—1,2¢
t=25—1,2§

Then we have the following.

Lemma 2.2. When i # j, the following equality holds:
K 2((21 —1),24,(27 — 1),27)

= 1[2(K1+ Ka) + 4(Ks + Ka) + 2(K5 1 Ke) — 2(Kv + Kg)). (21)

Proof. Remembering that, for example,

(= (26— 1)+ 20, —(2) — 1) + 25, ~(2i — 1) + 26, (2 — 1)+ 25)

= (R-"ezi_1+82i,—ezj_1+ezj(“*621?—1 + €2:), —ezj.1 + eZi):

and that the curvature tensor R is a multi-linear 4-tuple, we have

4K, = (26— 1)+20,(25 — 1)+ 25, (20— 1) + 20, (25 — 1) + 25)
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= ((21 —1),(27 —1),(2¢ —1),(25 — 1)) +(2¢,(25 — 1), 2:,(27 ~ 1))

+((26 — 1),25,(2i — 1), 27) + (24,24, 24, 25)

(28 — 1),(2 — 1), 24,27) + (26 — 1), 24,24, (25 — 1))

(23, (25 — 1), (2 — 1),27) + (2, 25, (26 — 1), (25 — 1))

+((22 — 1),(25 — 1),24,(25 — 1)) + ((2¢ —1),27,2¢,25)

(25, (25 — 1), (2i — 1), (25 — 1)) + (24,24, (26 — 1),25)

+((2i — 1),(27 — 1),(2¢ — 1),27) + (24,(27 — 1), 21, 27)

+((21 —1),25,(2¢ — 1),(27 — 1)) + (24, 25,24,(25 — 1)). (22)

Replacing (2i—1) (d.e., ezi21) by —(2i—1) (3.e., —€3i1) and (2§—1) (i.e., ezj-1)

by —(2j — 1} (i.e., —€z;—_1) in (22) shows

4K, = (—(2i—1)+2,—(25 — 1) +2j, (2 — 1) + 23, —(25 — 1) -+ 25)
= the first four rows minus the last four rows

in the right hand side of (22). (23)
Consequently,
2K, +2K, = K" 42[((26-1),(25 —1), 24, 25)+-((2d— 1), 24, 24, (25 — 1)}]. (24)
Exchanging (2¢ — 1) with (25 — 1) in (24), we get

2Ks + 2K, = ((2i—1),(25 —1),(2{ —1),(25 — 1)) + (2, 24,2i,25) (25)

+((2¢ —1),21,(2: — 1),28) + (25 — 1),25,(27 — 1),25)

F2[((25 — 1), (2 — 1),2i,23) -+ (24 — 1), 24, %, (2 — D)}
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Taking  (24) + 2(25)  yields

2(Ky + Kp) + 4K, + Ky)
= 3[((20 - 1), (2 — 1), (2 — 1),(25 — 1)) + (24, 25,24, 25))]
+((24 — 1),27, (26 — 1),25) + (24, (25 — 1),24,(2j — 1))
+2[((2i - 1), 23, (2i - 1),2i) + (25 — 1), 25, (27 — 1), 25)]
+2[—((2t — 1),(27 — 1),24,27) + ((2¢ — 1),24,24, (25 — 1))]
—4((24 — 1),24, (25 — 1),25)
= 8K —2(Ks+ Ke) + 2(K7 + Ks) — 6((2¢ — 1), 2i,(25 — 1), 27),
“here we have used the basic properties of R that the first two entries or the last
two entries are anti-commutative with each other and that the first two entries
are commutative with the last two entries. We also have used the first Bianchi’s

identity to simplify the result.

Lemma 2.3. (Berger [Bs]) If M is pointwise §-pinched, then
cery o 2
| GikD [< 20— )k(e), (26)

for all 1,7, k, and I mutually distinct.

Lemma 2.4. If A is a 2n % 2n real symmetric matriz whose diagonal entries

are all equal and invariant under Ad, (g € U(n) C SO(2n) under the natural

imbedding), then A = aly, for some constant a.




Proof. Let
a
A=
®
we will show that ay; = 0 for 7 # 1.
¥ j=2%-1 i#1,
Let
2i—1
—~—
cos § sinéd
cos @ siné
i
g — 1
—gin @ coséd
—sgind cos @
then

cos 0-.-0 —sing 0...0

g”lAg -

14

*
a
)
€ U(n),
1
1)
f cosf!
a e a1,2i—1 ‘e 0
a’l,zi—l a ‘—SiIlB
0




acosf - ay9; 18in8 ... @y 3cosf —asind

acos? 8 — 2a19;_15in6cosf | asin? @

a - aygi_18in20 ...

Since # is arbitrary and (g7 Ag)s = (A)11 , we should have

Choosing
21
cosf ;-;TB
cos @ —sind
1
g = 1
sin @ cos &
—sinf cos @
1

\

we can show that ay4; = 0.

The proof for the rest cases follows in this way.

15

( cos @ \

@1,2i-1 = 0.

qed.
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§3. Rigidity Theorem for C'P™

Proof of Theorem A. We first show that if § = 1, then R is nonnegative, i.e.,

(R(4),4) >0 (27)

for any 2-form ¢. Because D) = d + d*, where d is the exterior derivative and
d* is the formal adjoint of d, the kernel of D consists of all harmonic forms. If

¢ is harmonic, by (4), we have

0 = [ UV v éd)+(Re.4)
= [ {(v$,v9) + (R, $)}. (28)

Then either ¢ = 0 or ¢ is parallel, because {7 ¢, ¢} is nonnegative.

The inequality (27) will be proved in two cases:
Case 1. n=2m-+41.
In this case, the proof will be deferred to §4. Actually, we will prove that for
even smaller §, (27) is still true.
Case 2. n=2m .

From Lemma 2.1 and Lemma 2.3, we get

(Re,d) = 3 [(a? +al)K™ — daza;((2i - 1),24,(25 — 1),27)]
1<ig<m
s .. 1 8 1
> X (a2 + ety x 5 — 3 L aiay | (1= )| k(e)

= 2 (lal=1]a; k(=) > 0. (29)

1<i<jsm
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If ¢ is harmonic, then (R¢, ¢) and {7¢,/$) have to be zero for all z € M.

This means | ¢; |=| a; |=a, for some constant a. If we assume ¢ is non-zero,

then by choosing an orientation of TM and rescaling ¢, we can assume that
¢ =erez+ -+ €am_1€2m-
Therefore, from (29), we can see that
K% —2((2i —1),2i,(25 —1),2§) =0 i .
Hence by Lemma 2.3 and the pinching assumption,
Ky = %k(m)

for any k€ {2t —1,2¢}, [ € {27 — 1,27} and ¢ £ ;.

On another hand, by Lemma 2.2 and lemma 2.3,
1

so we must have

Kyi_1,2i = k() for all 4.

Therefore, with respect to any orthonormal basis {ey, .. .es,} which “diago-

nalizes” ¢, we have .

k(=) *

Ric, = (30)
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We know that eje; 4+ -+« + e2pn_1€ay, is invariant under the action of U(m),

i.e., for any g € U(m), if

(61: .- 'e;m) = g(ex,---eam),

then
t r i L}
6162 + e -I' ezm_lezm = €1€4 "Jr“ LR + €9n—1€9:m-
- B + + . . -
This means that under another basis {e;,...,e,,,} which is conjugate to

{e1,...s€am} by U(m), the Ricci tensor still has the same form as in (30).

In another words, Ric, satisfies the conditions of Lemma 2.4. Hence,

1
Ric, = = h(@) o ,

which shows that M is Einstein, and its scalar curvature ﬂ";—“Lllk(a:) is con-

stant. By the classification theorem for (globally) %-pinched manifolds, M is

isometric to CP™ (or CP™),

ged.
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§4. Smaller § for the second Betti number b,

Proof of Theorem B. Let ¢ be a harmonic 2-form on M?™+!, and suppose

that locally we can write ¢ as

m
‘?5 = E :aiezi—1ezi-
=1

where {ey,...eym 1} is an orthonormal tangent frame field. (This can be done
on an open-dense subset of M).

Using Bochner formula (4) on ¢, we have

0= (D@4 = —5 AW+ (Ve v + (Red),  (31)

where A is the usual Laplacian operator, and

2m+-1

Vo = Z (ve.“nﬁ) ® €.
i=1
Multiplying by [#[*"~* = (£1%, a?)™* on the both sides of formula (31),

T

and integrating them give

0> [ 1617 9 + (Re, )}, (32)

since
m

— [ [P > o

1 212 2y
=51 e ="

and the equality holds iff Y7, a? is a constant.
Locally,

m

V¢ = ZV(aiezi—lezz‘)

=1

m

= Z[(Vai)eziqezi + a; 7 (ez-1e2)].

=1
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Since
(Vai)ezi—iea, (Vaj)esj_1eq) =0 iy,
and

((vai)eZi—leh')aj vV (623'—162;1')) =0 for any 7’9.7 3

m

Ve, Vo) = ) (Vai,Vai)
i=1
+ E a; 7 (€2i—1€2i), Z a; V (ezi1€) ) -
i=1 =1

Then we have the following.

Lemma 4.1
(f;asw-l(iwai, vai)) > m"”(v(f[l @), v(ﬁ @) (33)

The equality holds iff ¥ = a2 = ... = d?..

. : Proof.
(V(H a;), V(H a;))
i=1 i=1
= QO MMaesva,d Il va)
=1 ji =1 joi
1 . . m
= - > a---al-- ak---al (val, Va,?) +>°11 aﬁ(v%, Va;)
2 1<iciem - =1 e
< Y deeaieeale-dd (Ve vas) + 6l (Vay, vag)) + 3 [] dd{var, vas)
1€i<j<m i=1 j#i
= S it dvas va)
i=1 j=1

mm—ﬂ

1 T e
< (D)"Y (Ve vay).
1=1 7=1
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It needs an explanation for one line in the above estimate, i.e.,
(veai,vdl) < 2(al(va;, vai) + af (v a;, Vas)).
But this is just an application of Hélder’s inequality, i.e.,
{(val,val) = 4{a; V a;, @V a;) < 2(a| v ail” + &f| v %),

It is easy to see that if af = o for all 4, 7, the equality holds. ged.

Lemma 4.2

(E az)m_ <Za vV 32%132«.) Za'z YV (621, 1‘321)> > mm? H a?(vezmm V€2m+1),
i=1 i=1 =1
(34)

and the equality can not hold at all z ¢ M.

Proof.

(g ai)™ <Z“e V (e2i-1€2), E‘I V (€2 162e)>

m 2m-|-1 m =
> (; ai)™" ; ; a; 7 (€zi—1€2i), €5€2mq1)’
= (i af)™* Z: a;[{Vesi_1; eami1)’ + (Vea, emi1)?]
= (i af)" i a;[(esi—1;, Veami1)? + (€2 Veamt)?]
> 1ym™-1 i ﬁ aj[{esi—1, Veamia)® + {2, Vermy)’]

i=1 j=1

m
Haf €2i-1, Vermi1) + {€2is Vermi1)’]

7=1

2'm

> mm

> ™y
m

= m" H a?(VeZmH, V€2m+1) »

i=1




22

here we have used the inequality (372, o)™ > (m — 1)™ 1[4 a? for the
last second inequality and (m — 1)™~ ' > m™~? for the last one. The equality
holds iff either a; = 0 or \/(ej;_1ex;) = 0 for all i . But neither can happen at

all x € M.

qed.

Let ?/\ GA - A ¢ denote the 2m-form obtained by taking the m-fold

m—times

wedge product. Consider this in the Clifford bundle. Then we define

b= i(gndA- NG,

m—times

where w is the volume form. Locally, ¥ =[], @i€amt1- Since pAGA---A ¢

w
m—times

is d-closed, D{¢ A ¢ A -+ A @) € A*™ 'T'M, and we have in the Clifford bundle

m—times

that

D %(gﬁ/\qﬁ/\v---/\@ :%D(ﬁb/\qﬁ/\v---/\q&) € A2TM,

m—times m—times

which implies that locally

2m+1
Dip = D(ay -« @meamir) = E e; Ve; (@1 @meamy1)
i=1

2m
- Z Ve.'(a'l "t a’m)eie2m+1 + Ay ree by
=1

2m

Z ((Ve;ezmﬂ: ej) - (Ve_.; €2m+1y €i))6£€j + Z(meH C2m+1, ei)32m+lei

1 gi<j§2m =1

Hence,

(D(Ch T Gm€2m+1)a D(a'.l vee Gm62m+1))

2m+1

..<_ Z (Ve,’(a'l e a’m) — &g am(Ve2m+162m+1: ei))z

i=1
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+a’i e a‘fn Z ((Ve.’e2m+17 ej) . (Vej62m+1-,~ ei))z
1<i<;<2m

< 2AV(ar- @), V(a1 -+ am)) + 261 - 0p {V€2mat1, Ve2mia)

= 2(V(031 ve a’meZm-I-l)) V(Ch v a’m62m+1))

ie., |D¥]? < 2| v ¥|?, which together with (4) :

[ 06,0} = [ (76, 79) - (RGE), 9

yields

[owow) = [ (®R®),)
:fM(Ricw),qp) > /M2m5|1,b[2. (35)

Putting formulas (32)—(35) together with Lemma 2.1 and 2.3, we establish

m m ]
0> ‘/1;1 {2111 ﬁlaf...afng_l_(za.iz)m—l [2(21{1—-1)62312 — g Z a.iaj(l—&)] }
i=1 i=1

1€i<i<m

Then we déﬁne

F(6) = 2m™ a2 - -a 6—[—(2 a)™? [2(2m — 1)62&? — S:; > aiai(1- 5)]

=1 1<igi<m
and want to show that F(§) > 0if § is big enough. Hence § should be smaller

than some certain number. Note that

5 3 Zl< <J<m J(Ex— Z)m -

> 2
F(‘S‘) Z 0 < - 2(2m—1)(2iﬁ 2)m+3 Z1<;<]<m 31“1(21_ 2)m_1+2mm_131“‘5fn
or 6.11 a; = 0.
We define
2 m-—1
G1(@1y .-y 0m) = El<z<3<m a;a; (274 a;

(2m - 1)(21_‘1 '&) +3 21<2<J<m a; a’J(Et—l 't)m -t + 2mm 1a‘ a’?n
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for a; > 0.
By a simple trick that both f/(f + g) and f/g get the maximum value
at the same point as the functions, we only need to locate the point where G

gets the maximum value, here

8 2ym—1
8 Y ciciam @i (L7, &)™

2(2m — 1)(LL, @)™ + 2m™=1af - a}

m

def.
G(all,---,a!m) e:f

for a; > 0.

Proposition. The function G; assumes maximum value at a; = a3 = --- =

A -

Proof. As we mentioned before, we only need to locate the point for G. Using

the homogeneity of @ on all a;, we assume that 331, a] = m, then,

4

3 21<ici<m Gidj
Glas, ... a) = B ASISm 20
(0155 @) (2m —V)m+a}---a,

Applying the Lagrange’s method of multipliers on it, we have

(Skp an)[(2m — Vym + af - a2 ] — § Tichcicm ] - a0 @,

[(Zm—l)m%—af---afn]z s
or
{(Z ap)[(2m — )m + at-.. afn] -2 Z aka;;a,f ey afn}aj
ki | 1<k<I<m
= {(z ap)[(2m — 1)ym + a% .. -a,fn} -2 Z akagaf R TRE afn}a,;. (36)
oy 1<k<I<m
Adding a;a;{(2m — 1)m + a? - --a2,] on the both sides of (36), and simplifying

it, we obtain

(X ax)i(@m —1)m +al---al)(a —a;) = 0
ki
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Hence,

8 m——lmgm—lz
37 3

G.(1,...,1) =
1L 1) 2(2m — L)mm + Spm-1mm=ll  opym-1
_ 2m(m — 1) '
~ (8m —5)m+3

is the possible maximum value in the interior of our region. We want to show
that it is the maximum, and that therefore é has to be smaller than this
number.

Suppose that G; gets maximum at some a; = 0, say @, = 0. Then, assume

that Y™ 'l =m—1,

i =

4
3 2al<i<j<m—1 Fi%;
Gal..am_]_(]: = REM
(1o 0) (2m — 1)(m — 1) + 5 Cicicicm-1 %05 |
which achieves maximum iff at @y = -+ = @1 = 1. However,
4{m-1){m-2) 2 —9
Gi(1,...,1,0) 2 _Hm-2)

_ 3 _
(2m — 1)(m — 1) - 2{m=thm=2 8m — 7
which is smaller.

ged.

Proof of Theorem C. Given ¢ as a harmonic 2-form, we choose as before a-

local frame field {ey,..., €3, }, such that

m
¢ = Z A;€2{_1€2;-
=1

We have already shown that

me

Vo, Vo) = D {Vai,Va)

i=1

m e

+ Z a; 7 (e2i_162:), Z a; (‘32{—1621:)

1=1 =1
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Then we want to estimate the second term at right hand side in terms of the

first one. Choose another local frame field {el,..., e, } centered at z, such

that,
ei(z) = e;(x) and V €;la = 0.
Under this coordinate,
¢ =Y azen s+ 2 Ci€rEr
i=1 (ko) # (20 — 1, 24)

where ay;(z) = 0 . Then

m

(Vo ve) =3 Ava, va)+ > (Ve Vey)  atbe
i=1 (e, 1) # (24 — 1,24)

It is very easy to verify that ya; = va, at & by evaluating V¢ at ex_; ex(=
€5;_1€5;) on both local frame fields. Hence, '.

Z a; V (€e2_1€2:), Zai V (ezi-tex) ) = Z (V'a;d,va;d) at z.

i=1 i—1 (ky 1) # (21— 1,2i)

Since ¢ is harmonic, Dé = 0. The coefficient of e,; , for D¢ is
Ve'.a; + Z (—1)* v, a’;e,%—l € = 0,1.
= B2 1,2 *
The coefficient of e,; is similar. The coefficient of e,;_;eq;ep (k# 21— 1,20) is
(—=1) Ve; a,; +(-1)® Vel. | a;i,k + (=1)" Ve, a;i_l‘k €1, €2,€3 = 0,1,

By the inequality

a® < p(bT + -+ b2) if  a=by+--+by,

we have

m

Svesve)<2m—1) Y (Vay, vay).
i=1 (kD) # (2¢ —1,24)
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Hence,

(V‘?Sa Vﬁb) ) Z Vau va'z)

2 Sm 1)

Following the argument shown before, we establish an inequality

05 [ f ool o) Dl o)) + () (R

(37)
The equality can not hold because it requires that a; = ... = a,,=constant,
which contradicts that 4 is a zero class in H*™(M;R.).
In [T3], Tsagas shows that
/M(v(al o)y (s ) > fM 9msal. .., (38)

Substituting (7) and (38) in (37) gives

2 1
0>f { e 1mm_15cai...afn

ikl 8
O™ - 16Dt~ 3 lasl(1 - 5)
i=1 i=1 1<i<j<m

This leads to considering the maximum value of

3 El<1<3<m a’aag(z.,_l 2)m—1
4m — 1) (XL e)™ + 5 Elﬁiﬁﬁm a;a;(30, a2)™ 1 2m 1mm 2. a2,

for a; > 0.

Il

Similarly we can show that the maximum can be obtained at @y = .-

a = 1. Hence,

—-1 -
8 mim m 1

e |

4(m — 1)m™ + %ﬂ‘%ﬂlmm—l  2mdyym—1
4m(m — 1)*

_ d.
16m(m — 1)® + 3(2m — 1) | 1
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REMARK 1. Theorem C can not be extended to the pointwise case, because
we have to estimate the first non-zero eigenvalue of the Laplacian operator A

by using the é-pinching condition.

REMARK 2. For a given 2-form ¢, at an arbitrary = ¢ M, generally we can
not find a local orthonormal frame field {e;,...,e,} on its neighborhood, such
that, ¢ can be diagonized. However, the measure of such z’s is zero. By the

continuity of its norm and gradient, we are sure that the global estimates are

valid.
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§5. 4-manifolds with 2-nonnegative curvature operator

In this section, we will prove Theorem D. The outline of the proof is
similar to Hamilton’s work [Hz]. Here we will adopt his notation, and use
his results with some modification.

Let V be a vector bundle on an n-dimensional manifold M, which is
isomorphic to the tangent bundle TM, with an isometry {ul} between V
and TM. Let {u’} satisfy the evolution equation

8 .
gl = 97 Rty

where g/ is the inverse of a metric g;; on M and Ry is the Ricci curvature
of M. We pull back the Levi-Civita connection 7 and the curvature tensor

R on V via {u{}. Then, under the unnormalized evolution equation

o
g = —9
5 Re

the pull-back curvature tensor Ry, satisfies the heat equation

d
5 Ror = ARy + R, RY (39)

where Rys is treated as a lincar operator from A*TM to A*TM, Rfl is an

abbreviation of Ryt Ryr and generally A#B is defined by

(A#B)ap = CaynCpio(A)ys(B)ns

where C,g,’s are the Lie structure constants related to a standard orthonor-

mal basis of A?(V) 2 so(n), which are fully anti-symmetric, i.e., Cagy =

—O‘ga,y = Cg.ya, cte..
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To simplify the problem, Hamilton shows that, instead of studying the
partial differential equation (39), one can study the related ordinary differ-
ential equation

d

R = R: + RE (40)

and he shows that if the solutions of the ODE stay in certain closed convex
subset X C Sym(A*V), so does the solutions of the PDE.
Because we have to take derivatives of some functions which are not quite

differentiable, we should give the definition of derivatives:

Definition 5.1. If f(t) is a Lipshitz function of t, we say

d h)— f(t
d—']; <e if Iin;:lseup flt+ }1 f?) <ec; (41)
%’-;- >c  if  liminf ft+ h;)b —f® . (42)

Lemma 5.2 [Hz] If f(a) < g(a) and df/dt < dg/dt on a < t < b, then
F(b) < g(b).

Let G be a smooth function of t € R and y € R* and f(t) = sup{G(t,y) :
y € Y}, where Y is a compact set of R*. Then f(t¢) is Lipshitz, and we
have '

Lemma 5.3. [Hz]

© 1(1) < sup{ 2 C(ty) v € Y} | (43)

where Y (1) = {y : G(t,y) = f(¢)}.
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When we say that Ry is k-positive (resp. k-nonnegative), we mean
that the sum of its first k eigenvalues is > 0 (resp. > 0). Hamilton observed
that the positivity of Rps is preserved by equation (39). Actually, we will

show that more can be preserved by (39).

Lemma 5.4. The 2-positivity (resp. 2-nonnegativity) of Ras is preserved by

equation (39).

Proof. By Hamilton’s work, we only need to show that the 2-positivity (resp.
2-nonnegativity) of Rys is preserved by equation (40).
Let Rjs be diagonized as

i1

i

3

then by lemma 5.3, ry; + rj2 satisfies the following differential inequality

d(r11 + r22)
_(T > Tf1 + ng + Z C’12:z-r,('l"'11 + Tzz)rnn + Z (Of,m + OZZW)T'WTW )
7>2 yru>2
(44)
If 7114792 > 0 (resp. > 0) at t = 0, then ry1 792 > 0 (resp. > 0) forall ¢ > 0,

since the right hand side is nonnegative. qed.

Let r be the scalar curvature and fM be the traceless part of Ry, the

work done by Hamilton [Hj] and Huisken [H] shows that if | Ry | < Cr1~5
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preserved by equation (40) for some constant C and § > 0, then M is diffeo-
morphic to a space form with constant positive sectional curvature.
However the problem is very difficult for general dimensions. But it is

rather easy for n = 4, because there is a canonical decomposition of
A= AL+ A2

determined by the volume form w. This gives a decomposition of Ry as

A B
Ry =
‘B C
By computation, we have
A#* B#
RI =2
gt o

each block above is 2 3 x 3 submatrix.

Therefore, equation(40) can be decomposed as

%A=A2+2A#—|—B*B,

%B:AB+BC+ZB#,

%C:Cz+20#+‘BB.

Remark. B¥ is not always same as in the definition, but has some signs

altered.

Let B be diagonized with eigenvalues 0 < b; < by < bg, and let

a, < ap < az and ¢; < ¢y < ¢z be the eigenvalues of A and C respectively.
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Set @ = a; + a3 + a3, b= by + by + b3, and ¢ = ¢; + ¢, + c3.

Now we assume that M is a 4-dimensional manifold with 2-nonnegative

curvature operator.

Lemma 5.5,

d
TR > a? + 2b% + 2a,a3 ,

d
! > ¢ + 2b% + 2¢4¢3,

d
Eﬂe < aa;z; + 5:25 + 2a1a, ,

‘%03 < el 4+ b2+ 2¢cy ,

d

E(bz +b3) < (az + €2)b; + (as + c3)bs + 2(b; + b3)b, ,

d

aE(alur az) > a? + aj 4 262 + 2(ay + ay)as , (45)

d
Szl e) > e + & + 267 + 2(er + ex)es

Proof. The first five inequalities were proven in [Ha] by using lemma 5.3.

The last two inequalities can be proven in the same pattern, because

artaz = inf{(A(u1), ur)H{A(uz), uz) | ws,us € A2, uy L oug, Jua| = Jus| = 1},
and

&1+ ez = inf{{C(v1),01) + (C(03),03) | 01,2 € A2, 2y L v, o] = Jua] = 1} .

qed.

Lemma 5.6

%(a—%—]—c) > (ag+2b 4+ c1)(e—2b+¢) . (46)




34

Remark. This lemma was proven in [Hp] under the stronger condition on

Ry

Proof. Hamilton has shown that
%(a—%-{—c) >ir(A+2B+C)#(A—-2B+C) .

First, we observe that A — 2B + C is always 2-nonnegative by applying Rar
to any unit vectors (21, —21) and (@2, —z2) € (A2, A%), where z; L 2, under
the bases of A3 and A2 which make B be diagonal and nonnegative.

Let P and @ be two symmetric 3 x 3 metrices. Q is 2-nonnegative. Let p;

be the smallest eigenvalue of P and ¢, ¢s, g3 be the eigenvalues of Q. Then,

1
rP#Q = ‘2“[1711(9'2 + @3) + P21 + @) + pas(qr + @2)] = prg -

Applying thisto P=A+ 2B+ C and Q = A — 2B + C with the facts that
P12 ay+2b + ¢y and g = tr(A— 2B + C) = a — 2b+ ¢ completes the proof.
ged.

Now Hamilton’s argument can be brought to our case without too much
change. The only difference is that we have to use (a1 - a2)/2 (resp.. (cz +
€3)/2) for the estimates instead of a; (resp. ¢1).

More precisely, we will list all theorems parallel to Hamilton’s along with
proofs if they are necessary.

Let E be the set of all symmetric bilinear forms R* on the Lie algebra
so{n). By the canonical identification of so(n) with A*TM, we see that

Ry € B.

Definition 5.7. We say that a subset Z C F is a pinching set if
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(1) Z is closed and convex.
(2) Z is invariant under the action of the Lie group O(n).

(3) Z is invariant under the flow of the ODE

d * *12 *\H
—R = (R + (R)* .

(4) | R | < Cr'? for some C and all R* ¢ Z.

Theorem 1. If we choose successively constants @, H,J,K and L large
enough, §,¢ and @ small enough, then the set of Z C {R* is 2-positive}
defined by the inequalities

(1) (b2 + bs)* < G(ar + as)(ex + 3),

(2) a3 < H(ax +a3), and ¢z < Hie, + ¢3),

(8) (b2 -+ b3)*** < J(ay + az)(er + e2)(a — 2b + ¢)°,

(4) (b2 + b5)*™ < K(ar + a5)(c1 + ca),

(5) as < (a1 +a2)/2 + L(as + a2)'%, and c5 < (e1 + ¢3)/2 + L(cr + e3)' .

is a pinching set for the flow (40) in the sense of definition 5.7. Moreover,

every Ry which is 2-positive lies in some such set Z.

Remark. At this moment, we only discuss M* with 2-positive curvature

operator. The 2-nonnegative case will be treated later.

Proof. All other claims can be proven cxactly same as in Theorem 7.1 of

[Hz]. The only thing we have to show is that the inequalities are preserved

by (40) for some chosen constants. The corresponding lemma we need is
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Lemma 5.8.
d by —a;)?
—In ay 2 261 + 20.3 + (——E——-ﬂ + 2E(a2 - al) if a > 0, (47)
dit a; a1
a2
ilncl Z 261 + 283 + u + 22(62 - C1) if c > 0. (4:8)
di C1 (5]
d (a1 — as)? 2
—1 > 12 — _[2h; — . {49
7 n(a; + ay) > 2(a1+a2)+ 1+2a3+2(a1—|—a2)[ 1 (e +ap)]°. (49)

20..10,2 — 0,3((!,1 + (1.2)

d b2

alnaaéas-i‘al—%'az*l""i-l- a (50)

dln(b +bg) < 2by + a3 -+ b [( )+ ( )] (51)

— _— — ez — c3)].

dt 2 3] > 401 v 43 - C3 by + bs a3 — ay 3 — €2

d (c1 —¢)? 2

ad > X1 %) (25 — .

a1 In(e1 + ¢2) > 2 + c2) + 2by + 2¢3 + 2er F 62)[ 1— (c1 + c2)] (52)

B2 2 -

iln es<ecztetegt+ =24 e1ez = eaes + ) . (53)

Clt C3 C3

d

aln(a, —2b+¢) > ay + 2b; + 4. (54)
Proof. This is just the rewriting of Lemma 5.5 and Lemma 5.6. ged.

Now we will prove the first three inequalities listed in the Theorem 1 in

4 cases:
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Case 1: a1 > a3/3 and ¢; > ¢;/3.

In this case, @y and ¢, are positive and bounded from below, Hamilton
[Hz] shows that for suitable constants, the inequalities where a; + a, and
¢; + ¢z are replaced by @; and ¢; are preserved under the flow of the ODE .
Then reverse replacements give our inequalities.

Case 2: a1 < ap/3 and ¢; > ¢,/3 .
Case 3: a; > a,/3 and ¢; < ¢2/3 .

Case 4: a1 < a,/3 and ¢; < ¢;/3 .

We will only prove the second case. Other cases follow in the same way.
Actually, we will prove that the inequalities are preserved by the Ricci
flow when ¢; + ¢; is replaced by ¢;.

(1). By formulas (48), (49) and (51), we have

d (al + Gg)cl (al _ az)z 1 2
@ Z 28, —
dit n (bz + 63)2 - 2((1,1 -+ az) 2(‘1’1 + az)[ 1 (a,l + a,z)]
132
e =) o, e
5] [}
b
+2:——[(as — az) + (s — ¢2)]

b; + bs
> 0.

the inequality (b, + b3)* < G(a; -+ az)e; is preserved for any constant G.

(2). Since a=1trd =trC =¢,
1 1
1 S"s“((h-i‘cz-l“cs): 5(‘11 +ay+az) <as,

and

(bs -+ 53)2 < Glay + az)er ,
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we see that
2

b
2 < G(a1 -|—(1.2) .

a3
Then by formulas (49) and (50), we have

ag
—In

i ot e <(G+1)as+az)- a3 , (55)

because all other omitted terms are nonpositive, so is [2a1a5 —ag(ay +a;)]/as:
Recall that a; + a; > 0 and if a; < 0, then ay > 0 and

2a1ay — az(a; + az)
a3

<0 .

If a; > 0, then

2a1a2 — as(@1 +az2)  ar{ay— a3) + az(a; — a3) <0
as o as - )

Then we consider function f = a3/(ay + as) — H, where H (> G+ 1) is a
fixed constant. We want to show that if f > 0, then df/dt < 0. This means

that when f < 0 initially, then it remains so.

df as d a3
S —In
dt 4 + as dit a; + az
a3
< % g —as] = —asf .
S o az[ (a1 + az) — a3] as f

The proof for ¢ < He, is similar, Because a; + as < 2¢3, we only need that
H>2G4+1.

(3). By the assumption that a; < ':1;(12, we have

((1,1 — (1.2)2 i ag ag — 4y
T2 2 >3 8T %
2a vap) 8T 25 2 T

We also have
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Lemma 5.9.  If (b, + b3)® < G(ay + ag)c; and ¢y < Hey, then for § <
min(1/16H,1/+/3GH), we have

(C}_ — b1)2 262
— > b(ex — .
o -+ ba T by (c3—ca) > 8(es €z)

Proof. We consider two cases:

Case 1: b; < ¢;/2. In this case we have

(61 - 51)2

5]

Cq C3 Cz — Cp
>0 8 B
=2 T4~ aH

Case 2: by > ¢;/2. In this case, since

a1 t+az < ay+ay;+a; <3¢ <3Hey ,

and by + b < 1/G(ay + az)er < V3G Hey, we get

2b, 2b,
> >$6
bz+b3_V3G.HC]‘M

qed.

As a consequence we see that

i n (a1 + az)en

dt (by + by)? 2 8(as —a1) + (s — )] -

Since we also have

d b1 + b,
I —212 - _
dtna—2b—|—c_(a3 a1) + (e ) >

we conclude that the inequality

(bz + b3)2+6 S J(a.]_ —I— a,z)cl(a — 2b -I— 0)6

will be preserved for any constant J.
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As one may expected, eventually, a; will be > as/3. Then we come back
to case 1, and choose new G, H, J bigger and 5 smaller which have bounded
ratios with the old ones. We can see that the new constants are also good in

case 2. The remaining cases are handled in the same way.

Lemma 5.10.  There ezists n > 0, such that, on the set defined by in-
equality (3) in Theorem 1, we have b < (1 — n)a.

Proof. If & < a/2 = ¢/2, it is trivial. If b > a/2, then by + b3 > 2b > a/3 and
for some constanf k we have

a®t? < ka*(a—1b)*

which makes a < k'(a — b) for some k', or b < (1 — n)a for some 1.

Corollary 6.11.  There exists X > 0, such that, on the set defined by in-

equality (3) in Theorem 1, we have

(al - a’2)2 1 2 262
2b, —
st ar) T 2 eyt et @)l

(as —az) > Xa . (56)

Proof. We will prove inequality (56) in several cases:

Case 1: 2b; < (1 — Z)(a1 + a3). In this case, we have
' 1 nz ,n2
— [2b, — 25 1° > T,
oyt a2~ (e F @)l 2 gp(antar) > 72(H +1)°
Case 2: 2b; > (1 — 2)(@1 + a2). Then we have to consider two subcases:

Subcase 1: If a3 < (1 — %)as, then

o — )2 2 2 2
(o 2) il & > 7?8(@1 + ag)

2((1';1 -|— (12) - E(ai -|— az) 28

n2

> —q .
= 288(H + 1)"
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Subcase 2: If a; > (1 — %)as, then we claim that a; < (1 — 2)as. If it is

not true, by the assumptions, we have

3 7 3 n 7
> 1< =1 -2 _ 1
b > 8h > S(1— e+ a) > S(1 - D2 - Nes

> S0-12-Dey> - 20— La> (1 -n)a,

when 7 is sufficiently small. This contradicts to Lemma 5.10. Hence,

2b, (1-2)ar+as)y (1-2)%
—_ — > L e > .. 678
bz+b3(a3 @) Z a 37 =6(H +1)"

Choosing A the smallest among these numbers completes the proof.

ged.

(4). Now we prove that inequality (4) in Theorem 1 is preserved: By Lemma

5.7 and Corollary 5.11, we have

4. (a1 + az)(er + ¢3)

dt (by + b3)? 2 Aa .

We also have

d

d—tlﬂ(bz -+ bg) < Zbl +az+ ez <4da .
Choose € = A/4, we see that

d . (14 ax)(er + ¢2)
—1 >
A" ety 200

served for any K.

on the previous set.

and it follows that the inequality (b + b3)** < K(ay -+ a3)(es + ¢g) is pre-

Corollary 5.12.  For some constants k and 8 > 0, we have b} < k(a;+a;) %ag
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(5). The proof for inequality (5) is almost identical with Hamilton’s. How-

ever, it seems that a print error occurs in his paper [H).

Lemma 5.13. Let f = [a; + ap + L(ai + a2)'7%)/2as , we can show that if
8 > 0 is made small enough and if L then made large enough, we will have

df/dt > 0 for f <1, which shows that the set f > 1 is preserved.

Proof. Rewriting formula (45) in Lemma 5.5, we have

d a1+ a
32111(041\-!-(12) > —1~"§—~3+2ﬂs )

then

ay + az + (1 — 8)L(a; + 62)1—9(0':1 + aq +2a5) .

d 14
— Yy >
7 In(ay+ay+L(a1+az) %) > a1 + az + L(as 4 ag)t 2

With 8 < k(a1 + a2)'~?a; and formula (50), we get

d
a—tlﬂaa <as+ay -+ ay + k(a; +ag)' "

It is easy to see that

a; +az (1 — N L(ar + 0»2)1_6
aq + [12) -] L(a1 + az)l“’

2 1— 9L(G1 -|— az)—ﬁ,

and
21—;2 - 20.3 _<_ 30,3 S 3H(a1 —I— a-g).
Then we get
d I N 0L _gy, 01+ a L 1-6
;ﬁﬂf > (1—6L(a; + ap) )(—2——“}“2‘13)—“(63"*"&14-02-1— (a1 + a3)*™°)
a1 + ag

2 az — —“2— — (3.H9L + k)(a,1 —]— az)l“g.
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Now if f <1, then a3 — (a1 + a3)/2 > %(-‘11 + a3)'~%. So df/dt > 0 provided
% > 3HBL + k. This will hold if we first make 8 so small that 38 < 1/4

and then make L so large that L > 4k.
qed.

Now we consider a manifold M* with 2-nonnegative curvature operator.

But we have more general results. L.et F be a vector bundle over M, f a

section of F.

Lemma 5.14 [Ha]. Suppose 8f/8t = Nf-+@(f). Let s(f) be a convex function
on the bundle invariant under parallel translation whose level curves s(f) < e
are preserved by the ODE df/dt — $(f). Then the inequality s(f) < ¢ is
preserved by the PDE for any constant ¢, Furthermore if s(f) < ¢ at one

point at time t = 0, then s(f) < ¢ everywhere on M for all t > 0.

Corollary 5.15.  Let R* be a symmetric bilinear form on so(n) satisfying
(40), which is 2-nonnegative, then either R* is 2-positive when t > 0, or R*

s nonnegative.

Proof. Let r; + r; be the sum of the first two eigenvalues of R*, then 7y - ry
is a convex function on M. By Lemma 5.14, if r{ + r; > 0 at any point of M

when ¢ = 0, then it remains so when £ > 0, and if »; - 7o, > 0 at some point

when t = #o, then r; + 7, > 0 at everywhere when ¢t > ty. Supposery +7r, =0
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for 0 <t < #y, then ry + ry satisfies the following partial differential equation

8(7‘1 + ?"2)

g = Alrtr) britr ) Chy(ritralrm+ 3 (Ol +Ca)rymy -

n>2 T>0>2
The right hand side is nonnegative, hence it should be identically zero on
M, in particular, we have r? = r2 = 0 at Vo € M, which implies that R* is
nonnegative.

qed.

Now we can quote Hamilton’s result [Ha).
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§6. Pointwise §-pinched 4-manifolds are space forms
When we considered M* which was pointwise §-pinched, our first thought
was that although we need § > 0.4 to make the curvature operator nonneg-
ative, we might get a 2-nonnegative curvature operator by using a smaller
- 6. Unfortunately, we failed. Nevertheless, we can find a smaller § to make
the whole process work. The number is given in Theorem E. Actually, this
number can be improved slightly with some extra work. But we do not think
it is so significant. |
We explain how it works. From the proof in §5, we see that, under the
condifion of 2-positive Ryy, all we need are the conditions:
(1) a; +a; > 0,
(2) e, + ¢ >0,
(8) A— 2B + C is 2-nonnegative, and a—2b+c¢> 0
for all # > 0. The first two inequalities are automatically preserved by the
Ricei flow by formulas (49) and (52). The third one is not. One way to cure

this problem is to show that if
(by + b3)* < (a1 + az)(c1 + )

at ¢ = 0, then it remains so for all ¢ > 0 by the proof for formula (1) in

Theorem 1. Hence, we have
2(62+53)§a1+a2+c1—|—02 foraﬂtEO,

or

a1+ag—|—c1+c2—2(bz—|—b3)20 fora,lltEO,
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which means that 4 — 2B + C is 2-nonnegative for all £ > 0.

Lemma 6.1. Given an orthogonal basis {¢y, da, ¢} for N2 R* and {1p1,ps,5}

for A2 R", where all vectors have norm /2, we can find an orthonormal basis

{e1,e2,€3,€4} for R, such that,
@1 = e1€s — €3es, Pz = ej1e3 + €264, ¢z = €164 — €633

1 = e1es + ezeq, Py = e1e3 — eg€y, 3 = ereq + ezes

with their signs altered.

Proof. First, recall that every 2-form in A?R™ can be identified with an
n X 1 anti-symmetric matrix. The change of the basis for R™ implies the
change of the matrix representation under the associated adjoint operation.

Let &) = ¢y + ;. @, is a 4 X 4 anti-symmetric matrix which can be
diagonized, i.c., we can find an orthonormal basis {e;, €3, €3, €4} for R*, such

that, ®; = aeje, - begey. Let w = eyeqsesey be the volume form. Then

_@1—}-(0@1“@—6 @1—(1)@1_0’-’-6

b1 5 =— (e1e2—eseq), P = 3 ==

(erea+tesey).
Since ||g1f| = ||91]| = v/2, by changing the signs of ¢; and 1, we have

¢»’1 = (6162 — 6364) and ’l,b]_ = (6162 + 6364).

Let

cosf sind

—sinfd cos#
g= € S50(4).
cosn sy

\ —siny cosn }
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It is easy to check that ¢, and v, are invariant under Ad,. That is equivalent

to say that if (e}, e}, e}, €4) = g(e1, €3, €3,€4), then
¢ = (eleh —ezel) and 1 = (ehe; + eyel).

Let ¢y = a{ere3 1 ezeq) +b(e1e4 — e2e3) and ¥, = c(e1e3 — €ze4) + d{e1e4 +
ezeg). Let &3 = b3 + ¥2. We have that as an element of so(4),

( —a — ¢ mbwd\
|
, b—d —a+ec |
$, =
ate —~b4+d
\b+d a—c }
We want to show that by choosing 8 and 7, we can get
(0 o b o)
1 0 0 0 O
9 ®ag = (57)
~f 0 00

\0 000)‘

To simplify the computation, we introduce the submatrices of g and @,:

cosf sind cosn  siny —a—¢ —b—d
A= B = and C =

—sinf cosd —siny cosn b—d —a+c

+
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Then by the multiplication rule on submatrices, we see

t4 C A
g P9 =
‘B —tC B
AC A
~tBtC B
‘ACB
~BiCA

Therefore, equation(57) is reduced to find # and 7, such that,

'ACB = o (58)

0 0

Since detC = (a + c)(a — ) + (b + d)(b — d) = 3(||62]* — [[42]I*) = 0,
carefully choosing # and 7 confirms our claim on equation(58).

Then, under the new orthonormal basis for R?, ¢, should be + (e;e4—eze;3)
and 13 ;ir (e1eq + eze3).

qed.

Lemma 6.2. If § > 1/4, then we have a; +a; > 0 and ¢, + ¢, > 0.

The equalities hold only if § = 1/4.

Proof. Choose two cigenvectors ¢; and ¢, with respect to a; and a, re-

spectly. We assume that ||¢:1] = ||¢2|| = /2. By Lemma 6.1, we can find a
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locally orthonormal frame field {e;, €4, €3, €4}, such that,

Qﬁl — €1€3 — €3€4 and gbg = €1€4 — €2€3.

Then

2a1+a3) = (Ruld1), 1) + (Ru(2), p2)
= Risia + Ragas — 2Ryas4 + Risa + Raszs — 2Rya14

= Ryss + Rassa + Rig1a + Razaz + 2Ra104

Applying Lemma 2.3, we get

v
ol

2oxtaa) 246 - Z(1-6)>0 if §

the equality holds only if § = 1.

Similarly, we have same statement for ¢; + ¢,.

qed.

Lemma 6.3. If§ > %, then

(b2 + 53)2 < (a1 + az)(e1 + ca) . (59)

Proof. Let ¢y, ¢, b1 and ¢, be the cigenvectors of norm +/2 with respect to
a1, @z, ¢1 and cy respectly. By Lemma 6.2, we can find a locally orthonormal

frame field {e;, €3, €3, €4}, such that,

951 = €1€3 — €3€4, ?52 = €164 — €2€3, 1/)1 = 1€y + €364, ",bz = ejey 1 eézes.
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Then using Lemma. 2.3, we obtain

a1+ az)(er +¢2) = (Rm(¢1), 1) + (Rar(2), ¢2) + (Bar(1), 1) + (Raa (), 42)
= (Ruzz + Rasza + Ruiara + Ross)® — 4RZ,,

> 188° — 1—9€i(1 — &) (60)

To estimate by, let ¢ € A*TM and ¥ € A2TM be the 2-forms of norm

V2 with respect to b;. By Lemma 6.1, we can write

b = e1es — ezey, P = €€y + €gey,

then
20, = (RM(QS)H!’) = Ryg1g — R3gsa <1 -6, (61)
Similarly, we have 2b; <1 — 6.

Hence, by inequalities (60) and (61), the proof is reduced to determine §

by the following inequality:

48% — 3(1 — 82> (1 -6
<= 366 > 13(1 — §)?

<= 66 >V13(1 - §)

6++/13

qed.

Lemma 6.4. If M* has positive sectional curvature, then a —2b1 ¢ > 0,
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Proof. Let ¢; and ; be the eigenvectors of norm 1 with respect to b;,

1 =1,2,3. Since

a= E(RM(QSi):Q{’i) and c= ;(RM(¢i)7¢i) -
we have
_ 3
a—2b+c= Z(RM(¢£ — i)y bi — i) (62)

By Lemma 6.1, we see that ¢; — ¢; can be written as v/2e;e; for j,k €

{1,2,3,4}, hence, the right hand side of equation (62) is just the sum of some
sectional curvatures. By the assumption, a — 26+ ¢ > 0.

ged.

Ifé > 6531—3, by Lemma 6.2 - 6.4, we know that a; + a3 > 0, ¢; +¢; > 0,

A — 2B + C is 2-nonnegative, and a — 2b+ ¢ > 0. Then the proof follows

exactly same as in §5.
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