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Abstract of dissertation

Stability of flows of an ideal fluid and the
geometry of the group of diffeomorphisms

by
Gerard Misiolek
Doctor of Philosophy
in

Mathematics

Department of Mathematics

State University of New York at Stony Brook

1992

We are concerned with the stability of flows of an ideal fluid in Lagrangian
coordinates. We find conditions for linear and nonlinear stability of flows in
the Lagrangian sense and construct classes of stable and unstable flows. Our
method involves the study of the geometry of D,(M)-the group of volume

preserving diffeomorphisms of a smooth, compact Riemannian manifold M,

which is the region filled with fluid. Related to stability is the existence of

conjugate points on D,(M}. Using Jacobi fields we construct such points for

E spheres 5%, 5% and ball B°. ]
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Chapter 1

Introduction

We are concerned with the stabﬂitj‘ of flows of an ideal fluid in Lagrangian
coordinates. We find conditions for _lif_ledr and nonlinear stability of flows in
‘the Lagrangian sense and construct classes of stable and unstable flows. Our
method involves the study of the géé_ﬁiéﬁy of D,(M) - the group of volume
preserving diffeomorphisms of a smoij)ti}_i.,":;:ompa.ct Riemannian manifold M,
which is the region filled with flnid. Related to stability is the existence of
conjugate points on D,(M). Using J a.(gab_if-._ﬁ.élds we construct such pomts for

spheres S%, 5% and the ball B3

In the Lagrangian formulation of hya'f;;dynamics of ideal fluids, as devel-
oped by V. Arnold [A], D. Ebin a,ud'.j.. .I.V..Iehlrsden [EM], D,.(M) can be con-
sidered an infinite dimensional manifold equipped with a weak Riemannian
structure. It is well known that fluid flows in M (with or without boundary)
correspond to geodesics in D,(M). Using the weak Riemannian structure we

introduce the notion of Lagrangian stability of fluid flows in M saying that

a flow n(t) is stable if all geodesics in D,(M) with sufliciently close inilial




conditions at t=0 remain close for all 1>0.

It must be emphasized that stability in Lagrangian coordinates is not the
same as stability in Eulerian coordinates. Roughly speaking in the Lagrangian
case one is concerned with positions of the fluid particles, whereas in the
Eulerian case with their velocities considered as functions of their position in
space. Thus a velocity field u(¢) of the fluid on M is stable in the Eulerian sense
if small changes in initial conditions u(0) result in small changes in u(t) for all
later times. The classical result of Rayleigh (cf [Li]) gives conditions for (linear)
Eulerian stability of stationary plane parallel flows. We construct examples of
flows which are stable in the Eulerian but unstable in the Lagrangian sense
and also flows which are unstable in both senses.

In section 2 we describe the functional analytic setting following [EM].
In section 3 we show thal the (weak) curvature operator of D(M) and the
(weak) second fundamental form of D, (M) are bounded in the (sirong) H*
topology, s > % + 1. Next in section 4 we prove the existence and uniqueness
of Jacobi fields on D,(M). In section 5 we use the Gauss’ equation to compute
the (weak) curvature of D, (M) and obtain results on linear stability of fluid

flows while in section 6 we treat the nonlinear case. Finally in section 7 we

give examples of conjugate points on D, (M).




Chapter 2

A weak Riemannian structure for D° and Di

The proofs of all the main results in this section may be found in either

[EM] or [E1].

We begin with D(A) - the group of all diffeomorphisms of a compact Rie-
mannian manifold M. D{M) can be considered a smooth, infinite dimensional
manifold modelled locally on a Irechet space C(TM). To avoid Frechet
spaces one can enlarge D to include all bijective maps 1 : M — M such that #
and =1 are of Sobolev class H*. If s >"§ +1 this enlarged set D*(M) becomes
a smooth manifold which now locally, around each of its points 5, looks like
a Hilbert space H)(TM) = {V : M — TM : V € H*,w oV = n}, where
m:TM — M. A chart at 5, ® : H(TM) — D* is defined by ®(X) = expoX
where exp is the exponential map of M. That @ is a local homeomorphism
and the overlap maps are smooth follows from the usual properties of exp.
Furthermore, D¢ can be given a group structure with multiplication being the

composition of two H*® diffeomorphisms, and then be continuously embedded

in the group of C! diffeomorphisms by the Sobolev lemma. Right multiplica-




tion in D? is smooth but the left multiplication 1s only continuous in the H*
topology.

I M has a nonempty boundary M, we embedd it in its double M. We
choose a metric on M for which @M is totally geodesic and let D*(M) consist
of all H* bijections mapping M to M with H® inverses. The construction ot
charts is now analogous to the one described previously except this time the
exponential map comes from the metric on M. Consult [EM] for additional
details.

Using the L? inner product we can equip D*(M) with a weak Riemannian
metric given by

(VW)= [ (V(@), W(@)le) (2.1)

where n € D°, V,W € T,D*(M) = H3(TM) and {-,-) and g arc the Rieman-

nian metric and the volume element of M.

g The weak Riemannian connection ¥ associated with (-,-) on D can be
obtained as follows. Let K : T?M — TM be the connector induced by V, the
Riemannian connection of M. Then if X, Y are smooth vector fields on D¢

define
VxY =Ko (TY(X))

This connection is preserved under right multiplication by D°. The geodesics

of V are all those curves n(¢) in D* which for each * € M are geodesics
t— p(t){z)in M.
Similarly we define D5 (M) to be the completion of D (M) - the group

of all volume preseving diffeomorphisms of M - in the H° topology. From the




implicit function theorem it follows that D, is a submanifold of D*. It is also

a subgroup. For each y € D;, we have a smooth map given by
P,: T,D" - T,D,

Py(X)=(P.Xon ") on

where P, is the orthogonal projection onto the divergence free part in the

Wey! decomposition:

H*(TM) = div'1(0) @ grad H*H' (M)

where div™'(0) = {u € H*(TM) : divu = 0,u tangent to M }.
In order to provide a formula for P, we must further decompose H°(T'M).

Given uw € H*(TM) let p be the solution of the Dirichlet problem

Ap=divu,
22)
suppp C M,
and let HE(u) be the solution of the Neumann problem
AHE(u) =0,
(2.3)

{grad HE (u),v) = (u — gradp, v},

where » is the outer unit normal field on IM.

It is easily seen that gradp and grad HE(u) are L? orthogonal and that

the projection onto div™'(0) summand is now given by




P.(u) = u — gradA™"divu — gradHE (u)

whereA~1div « denotes the solution of the Dirichlet problem above.

We shall also denote the orthogonal projection onto grad H*¥' (M) by
Q.(u) = grad A~tdiv u + grad HE (u) (2.4)

Ds(M) becomes now a weak Riemannian submanifold of D* with the metric
(2.1) and the Riemannian connection V.=PFPo V inherited from D°, where P

is the projection defined above. The metric on D}, as well as its connection

5

*(M) correspond to fluid flows in

V are right invariant and the geodesics in D
the following sense. If 5(¢) is a geodesic then u(t) = () o 7 () is a vector
field on M which satisfies the Euler equations of an ideal fluid

Jau(t) + V.lh(t)ii(:tj:'i grad p(t)

divu(t) = 0, u(O) = Ug

where u(t) is tangent to M and p(t) is the pressure function which can be

determined from u(t).

6




Chapter 3

Curvature and second fundamental form

In this section we use the weak Riemannian structures of D%(M) and
D*{M) to introduce the weak Riemannian analogues of finite dimensional ge-

ometrical invariants.

But first we shall obtain a 1no1e.001'1\r1ement for our pmposcs formula
for V. Forn e D*, X, € T, ’Ds and Y G C°°(TDS) let { — (1) be an integral
curve of X, in D* passing through n ie. go([)) =1, dt 22(0) = X,. Then since
Yory 0 7 1(t) is a curve in Ty M for each T E M we have fmm the definition

of a connector (cf for example {El])

() o ot ) @(t))|i=o =

_ d “d |
(TxY), = Kol(o(¥y ))homod(y
d ]
= S (Yemow” t ))|t oo+ (VX,TOWYZ? on 1) on (3.1)
' i
Alternatively we can wyite ;
_ d ' 1
(V) = 55 (ot)lco + To(Xo, ) 52)

where I, : 1, D* x T, D* — T,;D* is the map which in a local chart (/,z*) on

%
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M" 1s defined by

(X, ¥, ZI‘ onn_lYkon_]‘g%;:)on

1.?1

Using the connections ¥V and V we first introduce the second fundamental

form S of D; (M), by
Sy TyDs x TyD% — v, D

5 Xy, ¥y) = Qu(VxY) (3.3)

where 7 € D5, X, Y are extensions of X,,Y, to C* vector fields on D} (M),

o
vDs, is the normal bundle of Dj (M) with respect to the weak Riemannian
metric (2.1) and
| Qu(Xa) = QX 0n™)) 0
can be computed from (2.4).
Thus 5, 1s a bilinear vector va,lued'.map which being in fact the difference

of two Riemannian connections VyY — VyxY is also symmetric.

We next define the (weak) Riemannian curvature tensor R by
R, :T,D° x T,D* x T,D* — T,D*

Rn(XﬁvYn)Zn = (‘7)\"71’2)11 - (vaXZ)n - (vIX,Y]Z)n

where n € D* and X, Y, 7 are smooth extensions of vectors X,,Y,, Z, to

E a neighbourhood of 1.

Proposition 3.4 The curvature R of D*(M) is completely determined by the
curvature of M. Furthermore S, and R, are invariant, with vespect to the right
multiplication by the elements of D;, mullilinear maps which are bounded in

the H* topology if s > 5§ + 1.




Proof. let X,,Y,,Z, € T,D°, n € D and let XB® Y Z% be smooth
right invariant vector fields such, that X%(y) = X,,Y®(n) = Y,, Z8(y) = Z

7-

Then, using the right invariance of V | R can be computed as follows.

R(X,,Y,) 7, =

IRE
= (@XﬁvyRZR)(??) — (vyR@XRZR)(??) — (?[XR,yR]ZR)(?]) =
= (ngleéQZf) on — (erRvaZf) on — (V{Xeg?’yen]z:l) cn =
= (R(X, Y2 on = (Be(Xyon™,Yy0n7) 209 Yoy (3.5)
where V, R are the Riemannian connection and the curvature of M. Right
invariance of R thus follows from the right invariance of V. Similarly for
S,. Now choosing a chart (I/,z") on M and denoting by the same letter the
representative of n € D*(M) in U we have by the composition lemma for H*

maps {[E1], chapter 4) and the fact that H® functions form a Schauder ring if

s > 2 ([E1], chapter 2)

| R X, ¥o) Zyllizs = [(R(Xyon™ , Yyon ™) Zyon ™ on|g: <

_— 4 8
<3 CIRuXion Yoy 2 0 7 5=l

< CN X |z 1Yol 215 | Zg |}

welmazd () (Il +1) <

ijk

where ¢ denotes any constant which may depend on s,  and the deriva-
tives of the metric g;; of M. Let now € D} and let X,,Y;, € T,D;. From
(2.2), (2.3) and [ADN] (section 14), we obtain

155 (X Y2

4y

Hs = ||(Qe(vxnon"1Yn o)) onllme <
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< C||gradA_]divVqun_1 Yoo Has + CllgradHE(V x,0p-1 Yy © 7 Vs <

< ONMivY o001 ¥y 017 1105 ) + CIHV tyon=s Yo 07 = gr2dp, ] 3

Land C is as above.

where p = A™'divVy 1Y, 097
For the boundary term we observe that M is a smooth n —1 dimensional
Riemannian submanifold of M, whose second fundamental form can be written

as
(Vi Ynon vy =Xyon™ - (Yyon ' w) — (Yy007, Vi op1v) =

= w<Yn 0 7?“1;VX,7011“1 v)

Next we note that s > 221 42 = 2 and thus H s=3(§M) also forms a Schauder

ring. Now using the trace theorem (cf [P], chapter 10)

1% 007 Vatyons ) ot agy < CllYallme 1 X 1o

” <g1‘a'dp’ y)”]—f"_‘%(@j\{) S Ongra’d‘p”Hs

where C' depends on v.

1

Since X, on~ ! and Y, o np~! are divergence free direct calculation shows
nC0 n QN ave

that
divVx ot ¥y 07" = Ric(X, o™, ¥ 007 4 tr(V(X, 097) - V(Y 0n7h)

From the assumption s > % + 1, thus H*~'(M) is also a Schauder ring
and so

| divVx, on-1Y5 0 7 a-rny <

< | Ricy X} o g7 Y o e + [Vi(X5 0 V(Y 07 e <




< O X || rs || Yol e

where C depends on s, 7 and the derivatives of ¢;;. The Proposition follows.
Finally let us turn to the (weak) curvature & of Ds(M).

R, : T,D x T,D% x T, D — T,D;,

R(X,,Y,)Z, = (VxVyZ), - (VyVxZ), — (Vixn4)y

where y € D, and X, Y, Z are as before.

The right invariance of R follows again from the the right invariance of
the connection V.

From the formulas for the second fundamental form of Dy, and the curva-
ture of D° we are now able to compute R using, as in the finite dimensional
case, the Gauss’ equation. o

Let X,Y be two smooth vector fields on D3(M), then for any 5 € D2 we

have

(Rn(X: VY, X)y = (Ry(X, Y)Y:_X)n + (S X, X), 55(Y,Y))y —

- (Sn(XaY)sSn(YaX))n (3'6)

We shall use this formula in the stability computations in section 5.

11




Chapter 4

Jacobi equation

In the next section we shall consider the linear theory of stability accord-
ing to which stability is governed by the linearized geodesic equation - the
Jacobi equation. Here we shall derive this equation and show the existence
and uniqueness of J a,c.obi fields.

Let M™ be a compact Riemannian manifold with boundary. The geodesic

equation on Dj (M) can be written as
Vel = S(6,6) . (4.1)

Equivalently, reducing to the first order system

£ Z(€,€)

where Z(£,£) = ;-Fg(é,é) + S¢(€,€) is smooth in ¢ and bilinear in £. Let 5 be
a geodesic in Di(M). We shall linearize {4.1) in the neighbourhood of  and

refer to the resulting equation as the Jacobi equation.

12




Theorem 4.3 Let  be a geodesic in ;. The linearization of (4.1) about
(n,7) € D5(M) x T,D: C H*(M, M) x H*(M,R") in the direction (Y,Y) €
H*(M, R") x H*(M, B*) is given by

- (4.4)

where

Ay(m,)(Y) = (D), Y5 0) + Ty(V, Ty, 1)) = T, T (1, 7)) + Ry (9, Y Vit
+[{Y o7, grad), grad A1), (divVen-11 0 07 1) 0 9+
+2grad, A;0,(7, V) + (Y o™, grad),grad, HE(Veg-17 0 71) 09—
—g1‘adnA;1(l/ o7, grad), A HE (Vgon—1 07 ) o et

+erad, HE (O, (1, )

Aa(n, 1)(Y) = 2grad, AN (divVy,, im0 g™ ) o — 20,(Y, %)+
-i—gl‘&dn?'ign((vl}on—lf] o n_l + vﬂon_1Y o Tf—l) o ??)

and where 8, and O, are defined in (4.7) and (4.6) below and HE was defined
in (2.3).
If s > 2+ 1, then given Y,,Y, € T.D*, there eaists a unique H*® vector

field Y (1) along 1 which is a solution to (4.4) with Y(0) = Y,,Y(0) =Y,

Proof. Let £(t,5) : [0,{0] X {—¢€,€) — D;, be a smooth family of curves

such that each £(2, s), for fixed s, is a geodesic starting at e and é(t,0) = n(t).

13
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Let é(t,s) = £,0; and Y(t,s) = {8, Since [£,Y] = © (V is symmetric)
and véf = Sg(f‘,{.) along £(t,s), we have: @évéy = Véﬁyé = Re(€, V)€ +
Vy Se(€,€). Using the formula (3.2) for V we obtain:

d

- _-C_IE(FE(}/NO) - P{(Y,{) - rﬁ(‘farﬁ({f?y)) + Rf(g’lf)g—l_

Y

d

ds

(Se(€,€)) + Te(Y, Se(€,))

To proceed with the proof we need the following

Lemma 4.5 (Tt (V,€)) = Te(£,Y) + Te(€,Y) + (D) (£, Y €)
L(Se(6,€)) = (Y 0 £, grad), grad A= (divV goeif 0 £71) 0 £+
+28rad, A7 (divVype 16 0 €71) 0 6+ 0c(£,Y))+
+H(Y 0 &1, grad), grad]eHEe(Ve-aé 0 €71) 0 6~
—grad, AT((Y 067", grad), AlHE(Veogn€0 & M) 0 4
tgrad He(Y 0 61, mrad)eHE(Visemf 0 €1 0 64

Terad HE((Vigemr €0 671 4 Vg V 0 £ 0 £+ O¢(¢, 1))

Proof. We use the summation convention here. The proof follows [E2]. Using

a local chart (U, 2%) on M™ and the definition of Te

d : ! L . a
—(Le(V,6) = é((r}kgj 0V 0t )08) =
d . . . d ) L __ 9
= _C—E(F;kfl? o] f_ll/k o 6“1%) 0 é’ + (61 o é‘——lal(l'\}kéj‘ o f“lyk o fkl)awi) Oé

From £ 0 {71 = e we find that

d o iim o, e-im ko e
() = RETME 0




and hence
(o) = ot (oo™
L 0g) = Vo — a0 6o
Thus we get
d . . v _ 8 P —1vk - 9
G 8) = (8 0 VR og gn 4 T 0 g o ¢ s

R 8
+E 0 ¢ AT E 0 7Y o 1@)
the desired result for T

From (3.3) and (2.4) we have
Se(€,€) = grad AT H(divVige-1€ 0 671 0 £ + grad HE(Vigemnb 0 £7) 0 ¢

where for an arbitrary operator L a.nd'f € D:, we denote Lg = Re o Lo Ry,

R¢ being the appropriate right translation. We first find that
d —1m —~1mysk ~1
— (7)) = =G Y o
ds

d .. . N
(@ o) =Viot T = g oY R0 g
s
Using the above formulas and computing as before we have

(Vi€ 0E™)08) = (Vyagb ot 4+ VgV 0606 4 044, Y) (46)

where ©; is defined by

.
dzt

Oc(6,Y) = (& 0 &0 0 £ 1B (Y™ 0 &)

0

+

+Yt0§_1§:jo§_1éko§"16’gf’: Joé

ik dzt




Next we find that

d .. N ..
j((dlvvﬁoi“‘?{oé_l)oﬁ)—_(( (€706 V(£ 0t™ ") Ricy; 0™ E 0f ™" ot

since ¢ 0 ¢! is divergence free. Similar computations as above together with

the formulas for £(£71™) and £(£7 0 £71) give

(VY grf 067 0€) = 2(divTyenfo €M) 0 £ 20,6 Y) (11

where 8, is
05, Y) = (=0k(€ 0 €AY 0 €7)G;(E 0 €71)~
O (E 0 (Y™ 0 6T 0 €T, 4+ Bi(E 0 EEF 0 €TIY ™ 0 €720, T+
FEF ot 0 ETIY ™ 0 £710,,1 + %akRicijg'i o Vi ot Y ot ot
Let now f € C°(M), then we gel

@ (grade ) = - (gpad (Fo £7)) 0 & + (V¥ 0 £ Dylarad(f 0 €N ) 0 =

d
= (0D 0 £ 0 £ NP ¥ 0 B 0 67 ) 5) 0 € =

= {{V 0 &1, grad), grad)¢ f (4.8)

where (Y o ¢, grad) is the differential operator ¥* o £710y.
We shall now compute EAE and therefore must first obtain idivg. Let

W € C°(TM) then from the formula for & (£7™) we have

%(divw):%(amﬂ'a@-(g-“) E+WITE 0f) = (—O(W ot )a(Y 0 £™)+

AW oY o 1AT) 0 £ = [{Y 0 €71, grad), div]eW

16




Therefore

d d d
_— = - 1. " 2. 1 —_— N —_—
ds(A'E) 7 (dive)grad, + dive T (grad,)

= [(Y o £, grad), divlegrad, + divg[(Y o £ grad), grad), =
= [(Y o ¢, grad), A (4.9)

Because of the boundary condition the calculation of %Agl requires more

consideration. Let f € C°(M), then

AN f =S (4.10)
AN = f—Hef (4.11)
where H, f = g is defined by
Algot™) =0

(grad(g o £71),v) = (grad(f o £77),v)
and v is the outer unit normal field 611 oM.

Using (4.10), (4.11) and the fact that H;A7' = 0 we obtain

d. _ _ (l _ d
E(Ag]) = —A 1“(A6)A51 -

14 d.S (HE)Aé_i

ds
To compute &(H) we use AgHe = 0 and (4.11) again. If g € C*°(M), then

d . d d
'&;(Ha)g = —Ag 1'@(&5)%9 + Hag(ﬁeg) (4.12)

He(Heg) is harmonic with the same boundary values as & (Heg). Consider

Heg = h,. It is harmonic and

{grad(h, 0 &™), v) = (grad(g o &™), »)

17
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Applying £ to both sides we sce that the boundary values of £(Heg) satisly
g ds ds 3

(arad(35- (ki) 0 £7), ) =

= (grad(({Y o £}, grad)¢h,) 0 €71, ) — {grad(({Y o ¢, grad)eg) o N, )

Therefore He4(Heg) = —He({Y 0 7', grad)e A7  Agg) and letting now
g = A;'f we obtain from (4.12) and (4.10)

) _ _ -
E(IH“E)AE = ~H((Y o€ 1,gra,d)5AE 1f)
and thus
d -1 -1 d -1 VAP e N =1
B ) =D T B)AT 4 He(Y 0 £ grad)e by =

—ATM(Y 0 €71 grad), Al AT 4 He(Y 0 €78 grad) AFt =
= (Yo & grad), A7 (4.13)

Finally if W e C®(T'M) and HE:(W) = hs, then from (2.3)
Alhs0€™1) =0

{grad(h, o £71),v) = (W — grad(pw), v)

where py is determined from (2.2). As hefore we compute

d I
LHE(W) = —A7

ds

(AHEL(W) + Hgd—‘i(mgw/)

ds

Differentiating the boundary condition gives

(grad(- (k) 0 £7), ) — (gead({Y 0 £, grad)eh,) o €7),v) = 0
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Therefore

d
—_ V4
S HE(W)

—Agl[(Y o ¢, grad), Al HE (W) +

Since

d . d .
'CE(SE(&O) = :{;(gl‘ade)Agl(divvéos_lé o 5—1) o &4

+ HAY o &7, grad) HEA(W) (4.14) .
!
1
|
|

ad, <L (AT (divT a0 671 ad, AL (v 1 E 0 671) ‘
+gra E;Z_S( ¢ NdivVgesf 0l ) o + grad, 5‘&;((“" tog-1§ 087 ) 0 E) }

d . _ d . .
T (@rad YHE(V i 0 €71) 0 € grad g (HE) (Vgm0 € 0 £

d . .
—|—g1‘a‘d57'{5£&—3((v505-1§ o€ ) o)

the lemma follows from {(4.6), (4.7), (4.8), (4.13), (4.14) and the above.

From Lemma 4.5, evaluating at s = 0, using the fact that 5 is a geodesic

in Dj and rewriting some of the commutators we get

Y = —(DT), (3, W39) = 2050V, 0) + Ty (Y, Ty (5, 9)) — T, T, Y)) 4
¥Ry (5, Y )0+ ([(Y o™t grad), grad A ], (divV oyt 0™ ) o
+2grad, A7 (divVy, i 0 ™1 o + 8,(Y, )+

+{Y oyt grad)ﬁgra.dn?-igg(Véoﬁ_lé ot ott

—|—g1‘adnH€5((V1;of_]é oM+ Véog_ll'/ ot Non+0,nHY)) ‘
To show that the right hand side of this expression defines a bounded
3
|

operator in H* @ H*® we need another
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it

Lemma 4.15 Let ) be a geodesic in D5 (M™),s > % +1, 7, Y € T,D;. Then

2 2

< C(n, 9:5. ) (4.16)

n,H* 1, ¢

Proof. From their expressions in local coordinates and Proposition 3.4 we see
that the first five terms can be estimated using the composition lemma and
the Schaunder ring property by C(p){|Y 097} ||c,m=. For the remaining terms we
use again the elliptic estimates.

Let v = Vg, 0on™", then

I([{Y o n7t, grad}, gl‘adz_\_l]divv?-?mr_lﬁ o 77_1) o 7|

He <

< C Y o~ | gs|lgrad A~ dive| | gens + Cyllerad A™HY o 57!, grad)divel| g

< C|lY o n_1||e,Hs + Cylldive| Yo 77"“1||Hs_1

He

Similarly
I({Y o ™", grad)grad HE(v)) 0 9|z < Cm)IY 0 7 ||

Using the formula for 8 in (4.7) and div(pon™!) =0

|1g1‘ac1/.k'1cliv3>°n_nj o P+ 0o Y o )|g: <
< CollY o™ el o n e + Cyllion |3 llY 007 e

where the constant C,, depends again on 9, g;; and its derivatives.
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From (2.3) and [ADN] and proceeding as in the proof of Proposition 3.4

H(grad'Hf(th_lﬁ on~t 4 Vﬁon-—ly on 1400 7Y o 77_1)) o 7|

He <

< Goll{Vyopan 0 77“1 + vﬁoﬂ‘1Y o 77_1’ v)|

Vo wd o™

+C, {00 0™, Y o™, v + Cy|{gradp, v}l

7= o "% (oM) <
where p = A"1div(Vy,,ion™' + Vﬁonmli} on 4+ O(on1,Y on™!)). Here

pis H¥V i Y is H*® by the divergence free condition, also
(vﬁC’?i_lY o, v)= ""(Y on”t, Viog-1v)

and since H*~7(8M) is a Schauder ring (s — 3 > %), using the trace theorem

[P], we obtain

CIY o0 me@ry + COY 077" | s any

1 and the previous estimates

where we used the linear dependence of @ on Yoy~
to estimate the p term. Pul together the above estimates prove the lemma.
The last assertion of Theorem 4.3 follows now from the existence and

uniqueness theorem for ordinary differential equations on a Hilbert manifold.

Remark Using the connection V and the curvature R of D5, equation

(4.4) is

Vi Vil o+ By (Y, )i = 0 (4.17)




Chapter 5

Stability and curvature

In this section we infroduce the notlon of 11neeu stablhty and construct
examples of stable and unstable ﬂmd ﬂows OUI main tool W]H be the Gauss’
equation relating the curvatures R and R Wlth the Second fundamental f01m
S. Roughly speaking curvature of D} contlols as in ﬁnlte chmensmns the be-

haviour of Jacobi fields, which are solutlons of the lmeen 1zed geodesm equation

and thus control the behaviour of geodesms-.._.a--'-;'_. : ;
Following [A] we say that a fluid m0t1on 7)( ) 1s (La,gz dngld.ll) sta,ble if the

carvatures in the directions of all two dunenmona,l p]anes contammg n(t) are

positive along n(t).
We first examine flows whose p.ressu'ré.'fﬁnét'ioﬁ: p(t) remains constant
throughout. Such flows correspond to those geodeslcs in D“ (M) which are

also geodesics in D*(M). This is evident in the proof of the following

Theorem 5.1 Let M™ be a compact Riemannian manifold of nonpositive sec-

tional curvature, If 5 is a pressure constant flow in M™, then 1 is not stable
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Proof. Since 5 is a geodesic in D; (M), from the Euler equations, the

formulas for the second fundamental form S and the connection V
.. S d,. _ .
Sy ) = @y(Vid) = @u(z(hon™) o+ (Voo™ ) o) =

= (gradp)on =0

Then for any vector field X (t) along 5 the Gauss’ equation (3.6) gives
(Rn(X:7})7}:X)n = (Rn(Xa ), X)n — ”Sn("%X)H%,? =0

The last inequality follows from the right invariance of I, (3.5) and the

assumption about the curvature of A

In fact it also follows from this Proposition that any geodesic with initial
conditions sufficiently close to those of a pressure constant n will diverge from
7 at least as fast as in the flat case.

In [A}] Arnold used Lie group methods to compute the curvature of D? (1'?)
at the identity, where 72 is the flat two torus. He found, that in few directions
the sectional curvature was positive. Later Lukatski [Ln] used the same ap-
proach to study the field v = —3:252—; + 55'1‘52‘; on the two shere 5% and proved
that sectional curvatures at the identity containing v were non-negative.

Below we show that any infinitesimal isometry of M generates a fluid
flow 7 such that the curvatures along n are non-negative (we shall call such

weakly stable). We have

Theorem 5.2 Let v be a Killing vector field on a compact Riemannian man-

ifold M™, Then v generates a stationary weakly stable fluid flow such that

(Ro(v,0)0,v)e = | P(Vo)llE2

23
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for any w € T.D,(M").

Proof For v a Killing field dive = 0 and for any w € C*(T'M)

(V0 + %gmd|v|2,w) (V) + (v, Vo) = (Lg) (v, w) = 0

where ¢ = {-,-) is the metric on M.
Therefore
1
Qe(v'yv) = -igrad|v|2 = V.U'U

and since 0w = 0, v solves the Buler equations on M.
Let n{t) be the corresponding geodesic in D3(M). Since (1) is stationary
it suffices to do the computations at the identity.

Now #(t) o n™1(t) = v € 1, D,(M) being Killing also implies }
(R(v,w)w,v) + (V,u, V,w) = —w - (V,0,0) + (Vuv, Vo)

for every smooth vector field w on M.

By stationarity Q.(V,v) = V,v, so that from Gauss’ equation (3.6) we

get
(Re(vv ww, v}, = (RE(an)w?U)e + (QB_(V'UU): Qe(V0))e—

M(Qe(vluv): Qe(vlvv))e =

— AJ{(R(U,'{U)’UJ, U) + (Vq;v,vww)} — (Qe(vwv)’Qe(vwv))e _

== [ w-(Vyv,v)+ /M(Vw-u, V) — (Qe(Vuv), Qe(Vyv))e =

M

= (vwvs v'wv)e . (QB(VWU): Qe(vwv))e =

= (Pe(vwv)a Pc(vwv))e >0




The last two equalities follow from (Qe(u), Pe(u))e = 0 for any vector field u

on M, and from the fact for any u € T,D,(M) and f € C*(M)
./Mu-f = /M(u,gradf) == jaMf(u,V) — /Mf cdive = 0.

Before considering examples we make few remarks.

Remark It is well known that if M is compact without boundary and
with strictly negative Ricei curvature, then there are no Killing fields on M.
They can be easily found however on other manifolds, for example rotation
fields mé-é-z; — ;?.?j-é%;, 1<1,7<nonS"of any dimension n are Killing.

Remark Perhaps the simplest examples of pressure constant geodesics are
provided by flows generated by parallel vector fields on M. If M 1is compact
without boundary a vector field is parallel if and only if it 1s harmonic and

Killing. Again there are no harmonic fields on such M if the Ricci curvature

is strictly positive.

From Theorem 5.1 pressure constant flows on nonpositively curved man-

ifolds are necessarily unstable. Not so if the curvature is positive.

Example 5.3 Let M be a compact Lie group with a bi-invariant metric. Then
any left invariant vector field generates a weakly stable, stationary, pressure
constant fluid flow on M. This is becanse here left translations are isometries

and

RV = %Qe[v,v] =0

Furthermore, if w is another left invariant vector field on M such that jw,v] #
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0, then also Q).V,v = 0 so by Theorem 5.2
> 2 1 2
(Re(v,w)0,v)e = [|Pe(Vuv)||72 = 1 jM [{w,v]|° > 0

and thus the nearby geodesics £(s,t) = eXpt(v + sw) will pull toward 5 at least

initially (eXp is the exponential map of the weak Riemannian metric on D;).

Example 5.4 A simple nonstationary example of a pressure constant flow in

D,(T?), T? the flat two torus, is given by
T]('ﬁ')(ﬂfl, 372) - (3,'1 + th(l’g), To -+ Ct)

where ¢ is a constant and A is a smooth, periodic function. In this case the

geodesic equation (4.1) simplifies to
£oé™ = gradA ™ e(DE o £71)?

Cleatly 9(t}a1,22) = (A{xq),c) and 7(t) = (0,0) and since a straightforward
computation shows that tr(D5on™)? = 0, 5() is a geodesic in D,(1?). Fur-

thermore using (3.2) we get
Sy(:1) = Qu(Van) = Qq (1) = (0,0)
On the othér hand
PV g1t 0 71) = Vgogmaii 017" = (e — 1), 0)
thus 5(t) is pressure constant but not stationary.

Our next example points out to the difference between the Eulerian and

the Lagrangian notions of stability of fluid flows. As mentioned in the Intro-

duction, in the Lagrangian case one is concerned with positions of the fluid




particles, whereas in the Fulerian case with their velocities considered as func-
tions of their position in space. Thus a time dependent vector field u{f) on M
satisfying Fuler equations is stable in the Bulerian sense if any small change
in the initial conditions u(0) results in small changes in u(¢) for all later times.
The example helow shows that it is possible to have a flow stable in Eulerian

but not in Lagrangian sense, as well as a flow unstable in both senses.
Example 5.5 Let us consider a curve in D,(S5* x [0, 7})
n(t) = (z1 + tsin v, v3)

i.e. a periodic plane parallel flow in a'strip. The cylinder being locally flat, the
geodesic equation in D, simplifies as in Exaz‘nple 5.4 except here to compute
A~! we must solve a boundary value problem. As before we find that 5 o
7~ (21, 23) = (sin 24, 0) and show that 7 is a stationary geodesic. The classical
stability criterion of Rayleigh (cf [Li]) states that a necessary condition for
(Eulerian) instability of a plane parallel flow 1s that its velocity profile have an
inflection point. For symmetric velocity profiles this condition is also sufficient.

sin@y has no points of inflection on [0,7], so 7 is stable in the Eule-
rian sense, Similar computations to those .in Example 5.4 show however that
Sa(m,m) = 0 thus it is not stable in. the Lagrangian sense. In fact if we take

X, € 1.D,, X, = (cos zq sin 2x,, % sin z1(1—cos 2z4)) then from (3.6) we obtain

(Re (Xes 7?(0))7?(0): Xe)e =

T 2 ] '
o= j / |gra,dA‘]Z cos &1(cos T2 — cos 3m2)|2dm1d3;2 —
0 0

372

© 160
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Thus at least initially in some directions the Lagrangian insta‘bility' i.s';'évéh_;_..__; G
exponential.
Consider another curve in D,(S' x [0, 7])

() (#1,22) = (21 + tcos 2z, 22)

As above we can show that v is a stationary, pressure constant geodesic. This
flow has a symmetrical velocity profile with two inflection points, hence the
classical criterion implies Eulerian instability. To show +’s exponential (La-

grangian) instability we may take for example
X. = (2cos 1 cos 2z3, sin y sin 2i,)
to get (R Xe, 5(01)1(0), X.)e < 0 as above.

Finally we shall show that there are manifolds which do not admit pressure

constant Hows

Theorem 5.6 Let M? be a compact Riemannian manifold without boundary
and with nowhere vanishing Gaussian curvature K # 0. Then there are no

pressure constant flows on M?
Proof. If 5 is a pressure constant flow, then v =17 o 5™* satisfies
v+ V=0
dive =0

Applying div to both sides of the equation above and using the divergence
condition gives

divV,v = Ric(v,v) + tr(Vv - Vo) = 0




Let p € M be the point where |v|* achieves its supremum, then d|’vl2(.p.):

Choosing normal coordinates at p we obtain

divV,u(p) = K(p)|v|*(p) — 2det Dv(p) = 0 o

dle*(p) = (v Dv)(p) = 0

But if v(p) # 0 the second of the above eqations implies that Duv(p) is
singular, hence det Dv(p) = 0, a contradiction with the first equation and the

assumption on the curvature. '

Remark Example 5.3 above shows that pressure constant flows can be
found on manifolds with nonvanishing sectional curvature if the dimension r
is greater than 2, for example if M™ = S%. We shall return to this in section

7.




Chapter 6

Nonlinear stability

Our method here is based on the linearization method. We will use a
different notion of (uniform) stability, which is more suitable in the nonlinear
case.

Consider a differential equation in a Banach space B with norm | - |

da
— = f(t,x
dt f( 31’)
where f{t,0) = 0,¢ > 0. A solution x(%) is uniformly stable on [0, c0), if for
each ¢ > 0 there exists a § = é(¢) such, that for any 41 > 0 and any other

solution Z(t), |x(t1) — Z(#1)| < 6 implies that l2(t) — &(t)| < e for all £ > ¢,.

We shall also make use of the following concept (cf [DK]). Let

dz
== At
o Alt)z

be a linear, nonstationary differential equation in B. The greatest lower bound

of all numbers p for which there exist numbers N, such, that

[e(t)] < Npet (7}
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for any t > 7 2 0, is called the (upper) Bohl exponent of the eque.i,t'.i'(:jﬂ._.- :

Consider the geodesic equation (4.2) in D;. Let n be a solution .'6f:t:_h1_s__'_ i

equation and let

I Y e B R
di T dl 7 -
14 £ 7
0 1 Vv 0
= + (6.1)
Ar(n, ) As(p) ||V fE 2 D22 (6L, E(D))(V, V)

‘where Z, A; and A, were defined in (4.2), (4.4).
It may be expected that the stability behaviour of (V, V) approximates
that of (Y, Y), the solution of the Jacobi equation, provided a suitable estimate

can be found for the perturbation term on the right. In fact we shall prove

the following

Proposition 6.2 Let M™ be « compact Riemannian manifold and let s >
2+1. Suppose that n(t) is a geodesic which stays in a compact set in D5 {M™).
Then if there is a Jacobi field Y () along n(t) such, that Y(0) = 0,Y(0) =

Y, and-the two dimensional curvature of the plane spanned by Y(t),n(1) is

nonpositive for all t, then n(t) is not uniformly stable.




Proof We need three lemmas.

Lemma 6.3 Let 5 be a geodesic which slays in a compact set in D;’;(]IJ“.))
s > 2 + 1. Then there exists C(V, V) with im0 C(V,V) = 0 and such,
that

1D*Z(£(), €NV, VYl < COV VIV V)

uniformly for all ({,f) in some neighbourhood of (n,%).

Proof The Lemma follows immediately from the fact that Z(¢, ¢ ) s (2

and bilinear in ¢,

Remark In this case the perturbation term in (6.1) involving Z(£,¢) is
said to satisfy the quasilinearity condition [DK].

Next we have

Lemma 6.4 Let 5 be o geodesic in Df, and let Y1) be a nonzero Jacobi field
as in the Proposition above. Then the Bohl exponent of the Jacobr equation is

non-negative.

Proof. Since by taking inner product with Y(t) we may rewrite the
Jacobi equation as

1 d?

SV = IVaY3e — (B (Y, ), Y )y
2 dt

the nonpositive curvature assumption implies that ||Y||%.(¢) is convex. Ii fol-

lows that since Y'(0) = 0, there exists ¢; > 0 such, that £||Y{|%:(t1) = ¢ > 0

for some e¢. Therefore

IV 122(8) = et — )| Yol Vel e
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whenever ¢ > #;. For each m > 0 let t — t; = me™||Ve||%., then

2 2

Y Y
(t) (0)-m (6.5)
v G
s s

which implies the non-negativeness of the Bohl exponent.
Finally we use the following

Lemma 6.6 ([DK]) In order for the zero solution of equation (5.1) to be uni-
formly stable for any perturbation satisfying the quasilinearity condition it is
necessary and sufficient that the corresponding unperturbed equation have a

negative Bohl caponent.
Proposition 6.2 follows.
As an immediate corollary we have

Theorem 6.7 If 5 is a periodic, pressure constant flow on ¢ manifold M™

with nonpositive sectional curveture, then n is not uniformly stable.

Proof. This is obvious since by Theorem 5.1 the curvatures along any

such n(t) are nonpositive for all ¢.




Chapter 7

Examples of conjugate points in D,

The question of whether there exist conjugate points on D,(M) is of
particular interest in that it provides some information about the stability
behaviour of geodesics.

Let i be a geodesic in D, (M ). We say that two poiuts #(ty) and 5(t;) arve
conjugate with respect to 5 if there exists a nonzero Jacobi field Y'(¢) along 5
such, that Y (¢) = Y(té) = (.

We first note the following consequence of the Gauss’ equation.

Corollary 7.1 Let  be a pressure constant geodesic in D,,(M). If M has

nonposilive sectional curvature, then there are no conjugate points along 7.

Next we construct three examples of stationary flows in M, which have

conjugate points. We begin with the boundary case.

Example 7.1 Let M = B3, the three dimensional ball in R?. Consider a one

parameter family of rotations

1(s,0)(w) =
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(21 cost — (22 coss + xzsin s)sin ¢,

(z1sint + {23 cos s + z3sin s) cost) cos s — (—zgsin s + z3 cos 8) sin s,
(wy8int + (x3 cos s + @z sin s) cost)sin s + (—zg sins + 23 cos ) cos s)

Then 4(0,t}{z) = (wycost — zasint, xysint + xacost, z3) is a rotation

about the as-axis and v(s,0)(2) = (21, T2, z3). We shall show that for each s
¥(s,1) is a family of geodesics in D,(B%) and compute its variation field along

¥(0,1).
We first find that

v(s, ){z) = Y(s,t) oy (5,4)(2) = (-~~zy cos 5 ~ 235in s, 31 OS5, 71 5IN )

which implies that tr(Dv(z))? = —2. From the Euler equation the pressure

function p(t) must satisfy the Neumann boundary condition, thus

AT (-2) = *—2—:1,3 - 5:&% cos® s TyTa 5N 8 cOs 5 — —2-;1"% sin” s

and we have that
A(s,1) oy (s, 1) (x) =
= (—z, —3 cos% s — T3 51N S COS S, — T 81N S COS S — Ty 8in? 5) =
= grad A 'tr(Du(s)(z))?
which means that v(s,t) satisfies the geodesic equation in D,(B*). The vari-

ation field of this family is

Y(t)(z) = %(ﬂs,t)(:z:))hzo = (—wgsint, x3cost — £3, 2 sinl + 25 cost — )

and clearly vanishes for ¢t = 0 and ¢ = 27,




v = { 0 £71 is a time-independent Killing

heorem 5.2 satisfies the Euler equations.

£(0,¢) can be now computed as in the previous example and shown to be zero

at t = (0 and t = 2’;7

Remark Theorém: 5.2 shows that the above example generalizes to the

case of a general flow by 1sometrics on a'compact manifold of positive curva-

Example 7.3 Let M =S It will e convenient to think of S* as the unit

quaternions. Let

sintcoss + ysintsins) - @

d {. Also, the inverse is

We have Jac((s,1)

(s, 0)(2)

coss — gsintsins) - a

and we find that

(icoss+ jsins) -z




is a right invariant vector field on $3. The metric on $° is bi-invariant and

thus V() @yv(s)(z}) = 0, therefore ((s,t) are stationary geodesics in D, (5?)

parametrized by s. The variation field of this family along ((0,¢} is
Y(t)(x) =7 -zsint

and Y(0) = Y(r) = 0, thus ((0,0) and ¢(0,7) are conjugate to cach other in
D,(S?).

Remark The Jacobi fields computed in the above examples can be inter-
preted as stable perturbations of the initial flow, It is interesting to note that

the first two examples involve flows of variable pressure, while the flow on 2

is pressure constant (compare Example 5.3).
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