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1995

The object of study here is an integrable conic connection de-
fined on a general conic structure. This holomorphic second-order
geometric structure was introduced in [12] and shown to be (natu-
rally) equivalent to a double fibration inducing a holomorphic fam-
ily of submanifolds; in this correspondence the underlying manifold
of the geometric structure is the parameter space of the family. The
following problems are considered: characterization of those conic
structures which are induced by families of submanifolds, exami-

nation of the ‘degree of reconstructibility’ of the family from the
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conic structure alone, construction of an apparatus for translation
of the invariants of an embedding into differential invariants of
the mduced conic structure, introduction of analogous invariants
(namely fattenings of certain manifolds) even in the case of conic
structures not induced by families of submanifolds, construction of
distinguished connections ete. In connection with the above trans-
lation problem, we restrict our attention to the case of infinitesimal
neighbourhoods of low order, but the method we develop seems to
constitute the rudiments of a general approach to such problems
more direct than the method used in [5]. Furthermore, we obtain
a generalization and reinterpretation in the context of conic struc-
tures of some of the results from [13] on locally complete parameter
spaces of Legeﬁdrian submanifolds. Finally, the above general re-
sults are applied to the ‘hypersurface-directional’ conic structures
equivalent to Gy-structures (in terminology of [4]; the indicated
structural group is a quotient of GL(2)). Among these applica-
tions are a generalization to arbitrary n of a theorem from [4])
on the spaces of Legendrian rational curves and (7,-structures, the
description of a family of rational curves in a surface in terms of mu-
tually compatible G,-structure and projective structure, and de-
termination of the values of the self-intersection index n for which
the G,-structure alone (subject to certain restrictions) suffices for
that purpose. (These resulis generalize from the casés n=1,2to

the general case the description of such families in (8].) Further-
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more, we study the relationship between the intrinsic torsion (or
torsion of the Cartan connection when the latter is defined) of a
G,.-structure and the inﬁnitefsima,l neighbourhoods of the rational
curves. Apart from the theory of GG, -structures, we also show how
some simple conic-structural invariants provide a tool for proving
a result stated in [16] involving the first-order infinitesimal neigh-

bourhood of an anti-self-dual Kaehler surface in its twistor space.
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Introduction

The original objective of this thesis was to generalize Hitchin’s ‘minitwistor
.correspondence’ to arbitrary self-intersection mumber. This essentially re-
“versible correspﬂondence was established in [9] in the following way: any locally
complete holomorphic family of rational curves embedded with self-intersection
two is encoded in the corresponding Einstein-Weyl structure on the parameter

‘space of the family.

: However, in the process of accomplishing the above objective, other results
‘of more general character and of independent importance have been obtained.
ndeed, in the general case of self-intersection n, the analogous geometric struc-
“ture on the parameter space also ultimately admits a description in terms of
standard geometric concepts: it turns out to be either a ‘Gy-structure’ (in
f'_R.. Bryant’s terminology [3]) subject to some conditions, or, in case of low
:Seif—intersection index, a (#,-structure together with a compatible projective

‘structure. (The group G, is the quotient of GL(2) defined below.)

That notwithstanding, in order to establish this correspondence and derive
its further properties, we were naturally lead to view such a structure as a spe-
élal case of a more general geometric structure. Later we recognized the latter
a conic structure, or, in case of low self-intersection, a conic connection,

ntroduced by Yu. Manin in [13].

"In fact, many of the results we have derived in order to study families
-of rational curves in surfaces were of a more general nature; more precisely,

_their natural context was the general theory of conic structures and conic




- connections. Therefore, the objective of the thesis has gradually evolved into
an investigation of general properties of conic structures. In this context the
Gip-structures serve only as a basic example, which, albeit relatively simple,
in comparison with paraconformal conic structures exhibits certain generic

features of conic structures more faithfully.

To explain the original motivation for the study of conic structures, we
“quote Yu. Manin’s own description of the role played by conic structures and
conic connections (v. [13]): ‘... These concepts arose when the geometrical
data in the self-duality theory of the Yang-Mills and Einstein equations (and
--also the Yang-Mills supersymmetry equations) were axiomatized.’ Indeed, the:
. nic structures of paraconformal type (or ‘Grassmanian spinor structures’ in
the original terminology of [13]) have been rather exhaustively studied in the
above quoted work, and also by T. Bailey and M. Eastwood in [2]. There also
exists a vast literaturc devoted to the more special cases of conic structures

associated to self-dual and quaternionic manifolds.

~~gtructures

The following part of the introduction will be devoted to a preliminary and
her formal exposition (without proofs) of some of the results on G-structures
hlch will in Chapter V be obtained by applying the more general and more
ons éu'ential results of this thesis. The purpose of this exposition is to make
e _spécia.l results more readily accesible, i.e. to formulate them using only

bare minimum of the rather elaborate terminology and notation we in-

roduce later on. In other words, we will attempt to formulate less complex




results involving these special conic structures and conic connections also in
an alternative form without reference to these concepts.

Unless otherwise stated, all the objects we consider will belong to the holo-
- morphic category (although many of the results also hold in the real-analytic

:-__ca,tegory).

‘Definition 0.1 Let n € N. We will identify the n-th symmetric power
()0 := @"C? with C™' by means of the basis of (C*)®" built in the
“usual way from the standard basis e, ey of C*. The (closed) subgroup Gy C
. GL(n +1) is by definition the image of GL(2) under its natural action on the
n -th symmetric tensor power (i.e. on the space of n-th degree polynomials
n e, es). A Gp-structure on a (n + 1)-dimensional complex manifold M
'___a reduction Pg, with the structural group G, of the linear-frame bundle

.-éL(n-}-l) on M.

Definition 0.2 In the case of even (resp. odd) n the underlying confor-
mél’ structure (resp. underlying conformal symplectic structure) of a
(7,-structure is defined by transfering the standard structure of a conformal

iclidean (resp. conformal symplectic) vector space on the symmetric ten-

sor power (C?)®" o the tangent spaces T (M) via arbitrary distinguished
frames. The above mentioned standard structure on (C%)®" is constructed
 the (unique due to 2-dimensionality) structure of a conformal symplectic

tor plane on C2 by means of tensor multiplication of inner products.

ark 0.3 The above definition could be rephrased in a more formal lan-

age a's___fo_llows: Let us denote by wg, ..., v, the standard basis of C™tl thus




v; = e @ "', Furthermore, in the case of even (resp. odd) n we consider
on this vector space the euclidean (resp. symplectic) inner product defined by
< Vg, U >= & (resp. by < v, v,—; >= (-1 )*i6;; ). We claim that Gpis
contained in the automorphism group CO(n + 1) (vesp. CSp((n +1)/2)) of
the conformal class of the above euclidean (resp. symplectic) inner product,
and we define the underlying conformal (resp. conformal symplectic) structure

of a G,-structure by requiring that the latter be a reduction of the former.

Proposition 0.4 Let

SRS M (0.1)
.i)e a locally complete (holomorphic) family of non-exceptional (i.e. with non-
: ﬁegative sef-intersection) embedded rational curves (of the form v(p='(m))
for m € M) in a surface S. We will suppose that the self-intersection index
n (2 0) of such a curve is independent of the curve. (This is obviously true
as'soon as M is connected). Then the map v is open and submersive onto
its image, i.e. (0.1) becomes a double fibration if 5 is replaced by this image.
Fg?thermore, in this situation M has dimension n+1 and comes equiped with a
aturally associated G,-structure, which will be referred to as the canonical

tructure on the parameter space of rational curves in a surface. (The

<pli 1t construction of this structure will be given in 0.13.)
nltlon 0.5 For two families

SR M and & RS M




th .palralmeter space; explicitly, such an isomorphism consists of a pair of
olomorphisms ¢ : B — R',¢ : .S — 5’ such that the following diagram is

mmutative:

tructure on M relative to a representative family is virtually by definition
13) independent of the latter, and will be called the underlying G-

ture of the parameter-space structure.

emma 0.6 Consider on a manifold M a structure of a completely geo-
> locally complete parameter space of non-exceptional rational curves
‘surface; the reasonably weak condition of being ‘completely geometric’,
ich is always fulfilled locally for sufficiently restricted families, means by

fin tidn that for any point of the surface the manifold of parameters of in-

ent _'f_a._tional curves (i.e. rational curves through that point) is non-empty

d connected. (In particular connectedness of the surface is in view of 0.4

ivalent to that of M.) Then the family representative of this structure is

rmined up to a unigue isomorphism over parameter space; more precisely,

wo families of rational curves in surfaces {with common parameter space

_reqlizing (i.e. representative of) this structure, the isomorphism over pa-




_'_é,f_neter space between these families is unique. (In other words, the natural
ssociation of completely geometric parameter-space structures to completely
‘geometric families is an equivalence of categories, i.e. the family is functorially

eéonstructible from the parameter-space structure.)

roposition 0.7 Let n > 5. Consider a G,-structure which can be real-
zed as the canonical Gy-structure on the parameter space of some completely
eometric (locally complete) family

S R-E M

of rational curves of sef-intersection n in a surface S). Then this family is
términed (by the G, -structure) up to a unique isomorphism over parameter
i.e. for any other such family

g R M

here ‘exist unique biholomorphisms ¢ : R — R',¢ : § — 5’ such that the

llowing diagram is commutative:

s —— r LM
v e Ji (0.3)
§'e— R — M

v f

et space of embedded rational curves of sell-intersection n is uniquely
mniedl-by the underlying G, -structure. In other words, with the appro-
e iden ification the set of these parameter-space structures on M is a

et of the set set of G,,-structures on M.




emark 0.9 It is well-known (cf. [9]) that an analogue of the above propo-
jon.for n = 2 does not hold. (Indeed, a G; -structure on a 3-fold is easily
en to be simply a conformal structure, and, according to [9], we need a con-
ction in addition to that structure in order to reconstruct the family.) We

< nsider the case n < 4 later in this chapter.

éﬁ_'r_n'i':ion 0.10 Consider a general G,-structure on a manifold M. A non-
subspace V' of a tangent space Tr, (M) is said to be an a-subspace if for
me _or', equivalently, every) frame p at m belonging to the structure there

is_t‘_ a, non-zero vector e € C? such that
V = p(eQn“i © ( C? )@i).

wise, in this equality i is precisely dimV — 1. (In particular, a-lines are
sely vector lines in T, (M) consisting of ‘perfect powers’ since here z = 0.)
_‘otﬁe:f words, if tangent vectors are by means of a structural frame thought
h imogeneous polynomial functions on C*, then an a-subspace consists
1 functions for which a fixed point in P(C*) is a zero with multiplicity

"'t.:less.tha,n a fixed integer. Furthermore, a submanifold X C M is said to

omorphic subfamily of the projectivized tangent bundle P(T(M)) (resp. of
'roj_eétivized cotangent subbundle P(7*(M))) whose fibers are the images

eronese embeddings of rational curves into the projective spaces constitut-




: .ng the projectivized bundle. (We will say more briefly that those fibers are
Jeronese rational curves.) Clearly, this subfamily is in fact a subbundle.

(ii) For a given G,-structure on M the underlying conformal inner-product
._ructure establishes a biholomorphism of the manifold of all @-line directions
(at various points of M) and the manifold of all o-hyperplane directions as a

estriction of the induced isomorphism of the projetivized tangent and cotan-




.'If)'osition 0.13 Let us again consider the situation of 0.4. The canonical
structure is explicitly defined in the the following way: For any point in
ﬁfface S the set of parameters of incident rational curves is a hypersur-
in. M. Claim: The jets of the such hypersurfaces through any point of
form a Veronese rational curve and the disjoint union of these rational
s. is a hypersurface-directional Veronese conic structure on M. In par-
_I’a]:'. _there exists a unique G,-structure for which all such hypersurfaces
'-'a.;.hypersurfaces; this structure is called the canonical G,-structure on the

m ter space of the family. Furthermore, every a-hyperplane direction (at

7 point in M) is realized as the (a-) hypersurface of parameters of the

tibna,l_: curves incident with a unique point of 5.

anonical bijective correspondence between the following objects:

ructure) hypersurface exists and is in fact an a-hypersurface; Admissi-
means :that the foliation of the space R of all a-hyperplane directions by
lhfts of the maximal geodesic immersed a-hypersurfaces is in fact a
i_a','r’_l'c'l.__ithat these hypersurfaces are immersed injectively.

Admissible integrable conic connections (in terminology of [13]) on




allel relative to the connection. In the language of conic structures, a
.'omplernentary iff it induces the given conic connection.

_o'ﬁalized’ complementary connections at a point form a (non-
Jn '+. 1)-dimensional affine space (embedded info the affine space of
| connections). More precisely, its vector space is (7,-invartant and
ic to'the Gp-module V, &V, & Vo, where V; denotes the irreducible
ol degree k (i.e. of dimension k -+ 1. Furthermore, the conic structure n
'ym_ﬁzetric in the sense that the space of torsionless complementary
18 ﬁ.bn—empty. More precisely, it consists precisely of the torsionless
1-ndﬁéing the given projective structure. (In particular, it is of
“Therefore, the torsions of complementary connections form

ule isomorphic to V,, ® V, 1.

Finally, we very briefly indicate some of the further applica-
eral conic-structural theory in the case of Veronese conic structures:
with vanishing ‘intrinsic pretorsion’ precisely encode families of

1 rational curves; here the intrinsic pretorsion is an invariant ob-

10




od from the intrinsic torsion of the G -structure by an explicit linear-
pebraic procedure. In particular, since for n = 3 this invariant actually
n _..des with the intrinsic torsion, Legendrian rational curves with the ap-
iate normal bundle can serve to construct 1-flat Gs-structures; this is a
rem proved by a different method in [3]. Furthermore, when the Legen-
i curves are actually lifts of rational curves in a surface, i.e. under the
ssumptions of the previous proposition, the ‘conjunctive intrisic pretorsion’
ich'is finer than the intrinsic pretorsion) and ‘conjunctive intrisic precur-
wure’ vanish. In this situation the geodesic a-curves exist through all a-line

ctions, and in the case of even n they are actually null-geodesics of the

eﬂf};_fing conformal structure. Under the same assumption, a still finer in-
a’r_l.i_;.'constructed from the intrisic torsion precisely corresponds to the first-
infinitesimal neighbourhood of the rational curve in the surface. If this
-'iant:_vanishes, intrinsic torsion also encodes the ‘transverse component’ of

second-order infinitesimal neighbourhood.

eral Conic Structures

':a;n-'.uituitive exposition of the general results a justification for their
lnto the thesis, as well as arguments for further development of the
v Of__géﬁeral (i.e. not only paraconformal) conic structures, would be in
lt_héﬁgh the twistor correspondences producing paraconformal conic
ture =a;é'at present undoubtedly of greatest interest, it should be noticed

i first-order geometric structure can often be thought of as a conic

11




ifferent ways, and each of these associated conic structures may

i a way described further in this introduction) to a set of invariants
mpﬁftance for the geometric structure in question. [For example,
: (ér;formal structure on a complex 4-manifold can be given by the
of one-dimensional null-directions, or {alternatively) hypersurface
ections, or (two-dimensional totally null) o-directions, or f-directions.]
the study of paraconformal structures it may be useful to con-

e interaction with other associated conic structures; in particular, even

ness assumption, the ‘Kodaira’s main theorem’ from [17] implies that

12




n be characterized at least in terms of germs of embeddings; on

A special case of this construction produces a family of Legen-
_dr__lc_:é; n the ambitwistor space of an arbitrary conformal manifold,
_ This family could be thought of as a “family of canonical lifts of

s i a general twistor space for the original conic structure (and




of lower dimension) given up to contact equivalence’; here the ‘general
stor space’ is not just unspecified but often completely virtual, however,
f_]ﬁickenings of those ‘hypersurfaces’ realized by this ‘virtual space’ might
rell-defined and serve as a guide for the study of the comparatively coarser
sendrian fattenings of the ‘canonical lifts of these hypersurfaces’ into the
tact manifold. (In Chapter 4 we give a generalization and reinterpretation
‘the viewpoint of the theory of conic structures of certain related results
S, Merkulov in [14].)

the remainder of the introduction we give a self-contained intuitive (and
s non-rigorous) explanation of the main ideas involved in the method we
to study conic structures.

We first, describe Manin’s correspondence between families of submanifolds
__c'_érta,in second-order geometric structures, namely integrable (second or-
conic connections. These structures are essentially determined by certain
der geometric structures called (first-order) conic structures. In our ter-
nology the expression ‘conic connections’ has been replaced with the term
nections’ in order to emphasize that these objects are neither connec-

s nor necessarily even classes thereof, in particular to avoid confusion with

concept of conic-structure-preserving connections.

o) :sider a (complex) manifold M and integers p < dim M and k. Let JM
ote the manifold of k-jets of p-dimensional (‘unparametrized’) submanifolds
In other words, JM is the k-th-order contact manifold of M. When
_this is simply the total space of the Grassmanian bundle of TM.] Then

generalized conic structure of order k and jet-dimension p we simply

14




d _i_ren independent variable is meaningless. For example one obtains
frﬁ_éture from a standard PDE (on sections of a fibre bundle) by ‘for-
e not only the codomain of a solution, but also the domain (i.e. the
bf the total total space).

C _s’.u.ructures and ‘sufficiently regular’ preconnections are special cases
era_li_z__'ed conic structures of respectively first and second order. More
a'generalized conic structure of first order is simply called a conic
re if the restriction # : & — M of the canonical projection JM — M
0per-§ubmersion. In other words, a conic structure is the total space of

rphic subfamily (conceivably not a subbundle) of the Grassmanian

8 no*@i} consider a holomorphic family

S+—R — M

m‘amfoldé' of S. Recall that this implies submersivity and properness of
ate _f_riapping of the incidence-relation manifold R onto the param-

ace M ;. 111 particular, its fibers, i.e. the submanifolds of § from the

are compact. Such a family can be encoded in a preconnection on its

15




yarameter space (or base) M if and only if it is subject to an additional rea-
onably weak condition; we will refer to the latter as first-order geometric
menability. This condition includes first of all the requirement that the
y be double-fibrational, 1.e. that the other mapping (into the ambient
_a.ﬁ}foid SY also be submersive. In order to explain the concept of first-order

1z . etric amenability, we assume that the family is double-fibrational and

hese are the submanifolds of the parameter space M (for the original family)
hich are obtained by selecting a point s € S and considering the parameter
space (which is easily seen to be a submanifold of M of the same codimension
s the submanifolds of S) of all submanifolds from the original family through
he point s. Since the conjugate family of possibly non-compact submanifolds
':'usly consists of the same diagram with the roles of parameter space and
:-blépt space reversed, the result of the application of the same procedure to
mjugate family is simply the original family: parameters of submanifolds
m the conjugate family through a given point m are precisely the points of
Sﬁbmanifold from the original family with parameter m. In particular, we
in 2 mapping of the submanifold of 5 with parameter m into the the space
ef_s through m (i.e. into a certain Grassmanian space). We say that the
igi; al family is (first-order) geometrically amenable or, more briefly,
_;m'Qtrical, if this mapping is always an embedding. (Since the domain of
: _m._a;.pping was assumed to be compact, and the space of (k+1)-jets tangent
glz_v.en k-jet is an affine space, this is indeed a reasonably weak condition.)

__(ﬁl_"_s_t—order) geometrical parameter space M of submanifolds of a man-

16



S inherits a canonical (first-order) conic structure: indeed, its total
gral-jet space is naturally defined to be simply the manifold of all 1-jets
ﬁ:'para.metrized’) submanifolds from the conjugate family. It is not dif-
lf;_-_ﬁb see that the obvious canonical mapping (cf. the above definition of
Qlf:der geometric amenability) of the incidence manifold R into the the
' ﬁﬁegral jet space of the conic structure is then a biholomorphism over
in this way these two manifolds will henceforth be identified.

Vith the obvious generalizations of these definitions, first-order geometric
nability of a family of possibly non-compact submanifolds is simply the
dition that the induced generalized conic structure be of first order; the
eralized conic structure induced by the conjugate family (on the other base
he double fibration) could be of arbitrary order. [E.g. in the special case
family of rational curves in a surface S, the induced conic structure on
arameter space M is easily seen to be of first order, while the order (ﬁ
neralized conic structure on the surface . (induced by the conjugate

ily) equals the self-intersection number of the rational curves. Inciden-

‘in this case the conic structure on M, which will be referred to as a
n'ése conic structure in this thesis, is precisely one of the conic struc-
(niamely the ‘hypersurface-directional’ one) associated to (and equivalent
-structure. The former term is motivated by the fact that the integral
'__S:;irface 1-jets through a given point form a Veronese curve in the Grass-
(i.e. in the projectivized cotangent space)].

preconnection which is integrable in a certain sense is precisely the geomet-

e. infinitesimally defined) structure which will ‘by design’ be equivalent

17



‘4 priori not differential-geometric) structure of a geometrical param-

o of submanifolds. In order to motivate its definition, it suflices to

: f.:the total integral-jet space of the conic structure induced on the
gﬁer.__ space of submanifolds has been canonically identified with the ‘in-
¢ ﬁié,nifold’ of the double fibration. Thus it comes equiped with two
ons ﬁowever, one of them does not contain new information {relative to
' Etructure) since its fibers are just spaces of integral 1-jets through

oints. Of course, the other fibration suffices to reconstruct the family

aﬁ_ifolds; on the other hand, it is clearly reconstructible from the asso-
dlstzr.ibution. Therefore, a preconnection on the given conic structure is.
d simply as a distribution of a certain type (v. Chapter 2 for more de-
he total integral-jet space, and its integrability as the integrability of
"s_trlb_l_ition. In fact, preconnections satisfying a condition weaker than in-
Iity.._(':a;n be thought of as second-order generalized conic structures such
."eac_h integral (relative to the underlying conic structure) 1-jet there ex-
1Séiy one tangent integral (relative to the preconnectio.n) 2-jet. (Thus,
! %ually obtained a generalization of the concept of a ‘normal second
_Ifdéf PDE given up to point transformations’.) It goes without saying

_he _ order ‘possibly non-proper’ preconnections could be defined in an

ain principle in the study of conic structures and connections is to

ese objects as ordinary geometric structures, or ‘fields of geometric

18




tities’ in terminology of Alekseevski, Vinogradov and Lychagin in [1], by

out ‘globalization’ at a point of the basic manifold; of course, the
out ‘g

ilization is not relative to the basic manifold, but a subspace of the in-
ce rﬁ_anifold, i.e. the space of integral 1-jets through a given point. (CL
é_tﬁod used by Yu. Manin in [13] to investigate existence and degree of
quer iss of a connection realizing a given ‘omnidirectional’ preconnection.)
precisely, by requiring that the integral-jet spaces at fixed points be

t subranifolds of Gragsmanians and to be ‘isomorphic’ in an obvious

at ?&fious points, we can consider an ‘infinitesimally homogeneous’ conic
U e...e.Ls. a (holomorphic) field (i.e. section) in a certain bundle, i.e. as a
f L ';_:al.ized conic structures (or ‘conic-structural geometric quanti-
Thé 1-jet of this field will be called a conic-structural (1-)jet. Such

ural jets are again local geometric structures (of second order and not

sarily :iéomorphic at various points) and their classification according to
general:..theory of geometric structures amounts to the study of intrinsic
1 Of. iai,.conic structure. [Recall that we can define ‘tangentiality’ (or
1 ‘e 'p?eserving’) of a ‘localized connection’ relative to a given structural
the r_e(iuirement that the structural jet be horizontal for the localized
tion now the intrinsic torsion could be defined as the class of all tor-
__ _ang'_e.ntial localized connections]. It turns out thai the study of such
0nd-—§£der) invariants of (not local, but ‘expanded’) conic structures
otonly classical facts regarding prolongability (of a generalized conic
¢ at z_m::..given jet), but also non-trivial sheaf-cohomological arguments

jven point of the basic manifold applied to the integral-jet space at
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int.- In the case when the conic structure arises from the structure of
ameter space of submanifolds, the principle expounded above precisely
D "'ndé to the fundamental idea of R. Penrose that the local geometric
a pomt of such a space are stored in the ‘vicinity’ of the submanifold

. _parameter, i.e. as the complex-differential-topological propertles of

responding infinitesimal neighbourhood.

gui'aiﬁg idea in our study of conic structures and preconnections 15
ply t}:;é:'above mentioned principle to various auxiliary naturally defined
and: _véctor bundles over the integral-jet space at a point. In order to
s ¢h constructions, let us recall that the vector space of local con-
rs at. a point m, by which we will mean the vector space of the affine

calized connections, is a triple tensor product (namely T @ T &1,

d_en(;tes the tangent space at m). Af a given integral 1-jet we can
ven. d_léi]iﬂct quotient affine spaces of the space of localized connections
s’_qbspé,ce of T', and thus also of T, is distinguished by the jet, and
ap l_y_.::q'uotient maps in various combinations of the three factors.) A
:conminstructure at m will therefore determine seven quotient affine
tl e trivial one) over the integral-jet space. Although these bundles,
mpletely determined by a linear-algebraic structure (i.e. a localized
uctur ?)In a single tangent space), are not in themselves geometrically
. fhey all admit sections), in the presence of a conic structural 1-
1de the starting point for many useful constructions: we can form
tlﬂg'lllsifléd subbundles by imposing various conditions of ‘tangential-

ve tc t_hé structural jet, symmetry with respect to (the obvious ana-
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what A. Besse calls the ‘canonical involution’ in [18]; furthermore,

'nic‘I tructural jet, a careful analysis of these constructions renders
interpretation of these bundles: sections of one of these bundles
d to “integrable localized preconnections’ (and, consequently, their
a necessary condition for realizability of the conic-structural jet
ily of submanifolds); furthermore, two of the above bundles (con-
le uﬁder certain conditions from such a section) can be thought of as
ly) first-order and transverse second-order infinitesimal neighbour-
'he':submanifold with parameter m from any family inducing the
si%fuctural jet.

r words, the information on the (potential) low-order infinitesimal
hoods is stored in certain obvious (at least from a formal viewpoint)
bjects (namely affine bundles) which are naturally constructed from
41l fural 1-jet and thus easily classified in terms of intrinsic torsion.
0£der to extract this information it is crucial to find an intu-
terpretation of these constructions and relate it to an equally intuitive
tion of infinitesimal neighbourhoods.

I_I_l_e_f.ho._'d._ outlined above essentially consists in the study of the close
o1 of.__t..wo ‘PDEs given up to point equivalence’ associated with a

cture: the first of them is the ‘Lie PDE of complete flatness’ (which 1s
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fizied for general geometric structures), and the second is the conic structure

_elf._.' Qur choice of terminology reflects this interaction in a consistent way:

Jodify the well-established terms pertaining to the Lie equation by adding

ain prefixes in order to obtain corresponding terms pertaining to the conic

\s has already been observed, by considering higher-order conic structural
nd connections on higher-order frame bundles, this method seems exten-
hle to the study of higher-order infinitesimal neighbourhoods; however, we
n‘bt dwell on such an extension in this thesis. We only mention that, for
gﬁi)le, in the case of conic structures of finite type the study of interaction
“Lie equation of complete flatness’ and the conic structure enables one
sad off’ the infinitesimal neighbourhoods from the curvature of the Car-
onnection. In fact, the Cartan connections appear in this context in a
ai;ural way: they can be thought of as first-order ‘psendo-prolongations’
he Lie equations. (What is more, Cartan connections of the simpler type
Ctu_al prolongations.) This (apparently not quite standard) interpretation

artan connections leads to a direct generalization of our method in this
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1ic Structures

ic Structures on Geometrical Parameter Spaces

Submanifolds

on Il A conic structure on a vector space, or a vectorial conic
re 0_'1" simply a conic structure if there is no possibility of confusion)
r‘deréd pair T = (T, J¢) consisting of a {finite-dimensional complex)
._:T, which will be called the underlying vector space, and a
ubmanifold J¢ of the Grassmanian space J := Gr(z,T) (for some
‘The (2-dimensional) directions in T' (i.e. points of the Grassma-
ce _-':not necessarily of projective space) belonging to J° are said to be
1.:rélative to T, while the manifold J¢ is called the integral-direction
Thus a vectorial conic structure is simply a vector space in which
e(_:t:ions, which constitute a compact manifold, are distinguished. Since
manian spaces are naturally associated to vector spaces, vectorial conic
res :_are obviously vector spaces equiped with a structure (in the sense of
{’;'heory). Consequently, they form a category, where their mappings
lorphisms) are defined to be structure-preserving linear isomorphisms.
aut _fnorphism group of 1 will be denoted by G=(C G := AutT). The
_bl_iﬁdles TeJ* and T#J* on J° whose fibers (resp.) T and T/ over
eCt_i.(_.)'_n j are defined to be (resp.) the subspace in that direction and

orresponding quotient space are called (resp.) the integral-tangent (or
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ittological’) and integral-transverse bundle associated to 7. (The above

tation for bundles, subspaces and quotient spaces is explained in the Ap-

é_ﬁﬁition 1.2 (a) A localized conic structure (or simply a conic structure
there is no possibility of confusion) consists of a manifold M (called the un-
_rfyjing manifold) equiped with a distinguished point m and a vectorial conic
.cture on the tangent vector space T at m. The integral directions of the
a_;l'ized conic structure will also be called its integral (1-) jets since jets will
ys be understood to be jets of (‘unparameterized’) submanifolds (unless
herwise specified). Such a localized conic structure is said to be located at the
sint m and on the manifold M. Clearly, localized conic structures also form a
tegory (more precisely a category of “first-order localized manifolds equiped
ith a structure’) equivalent to the category of vectorial conic structures if we
eﬁne the mappings (or morphisms) of localized conic structures to be simply
a,ppmgs of the underlying vectorial conic structures (i.e. special 1-jets of
a,ppmgs of manifolds). '
(b) An expanded conic structure (or simply a conic structure if there
no possibility of confusion) with z-dimensional integral jets consists of a
nifold M (called the underlying manifold) and a ‘set-theoretical field” ! on
of localized conic structures with z-dimensional integral jets such that the
Je.M C JM = Gr{z,T).M, defined as the disjoint union of integral-
'paces of these localized conic structures, is a submanifold of the total
e:. J.M (of the bundle of Grassmanian spaces) and projects submersively
to the base M. More succinctly, the manifolds J¢ form a (holomorphic)
family (not necessarily a subbundle) J*M of the bundle JM. The total
pace J°.M of this family is called the expanded integral-jet space (or
ply the integral-jet space, if there is no possibility of confusion). An 2-
mensional submanifold of M (or, more generally immersed manifold) is said
¢ ‘t_ltegral (relative to the conic structure) if all its 1-jets are mtegral. The
ctor bundles 7 J¢.M and T/*Je.M (on the integral-jet space) defined in the

lore precisely, this means a system of localized conic comic structures with the parameter space M such

the localized conic structure with parameter m is located at the point m.
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way are called (resp.) the (expanded) integral-tangent bundle
___e"(_expanded) integral-transverse bundle of the conic structure.
‘“tructures on manifolds are clearly manifolds equiped with a structure

ﬁse of category theory), and thus form a category.

i’t on L3 Let us consider an expandedconic structure, where notation is
I-E(b} A submanifold of M is said to be integral (velative to the conic
ure) if it is z-dimensional and all its jets are integral. More generally,
d‘cﬁn'és an integral immersion by the same condition. The conic struc-
_'.az’d to be integrable at an integml (1—) jctj through a poz’nt mCM

ark 1.4 Compound conic structures on vector spaces and manifolds
eﬁnéd in a similar way, just the maps J¢ — J are not required to be injec-
:1ihmersive Thus, a compound conic structure on a manifold M is de-
lined by a (holomorphic) map over base from a family J*M into the Grass-
i bundle JM. While expanded conic structures are ‘geometric structures
t oi"der (in terminology of [1]) and will often be G-structures (or ‘holo-
h__i:(f'inﬁnitesimally homogeneous geometric structures’), expanded com-
nd conic structures are compound (or ‘generalized’ in terminology of [1])
etric structures of first order on the underlying manifold, and will usu-
e ‘compound G-structures’. (These general concepts will be rigourously
juced in Subsection 1.2.1 only in the case of (ordinary, not compound)
mietric structures; for the sake of completeness we only mention that a
__pound G-structure’ of order k is essentially defined as a reduction of the
me bundle relative to a conceivably non-injective mapping of Lie groups).
articular, a compound conic structure on a manifold is conceivably not a
" if’ol_.d_ equiped with a structure in the sense of category theory (in contrast

onic structure).
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ma L5 Let p : T — HO(TéaS"‘) be a linear system (with parameter

or space T) of sections (of a vector bundle T/aSO‘). (According to the

at snal conventions from the Appendix we do not assume here that an em-

dmg of the base manifold S¢ is given or that the fibers TS are represented

uotients of tangent spaces to some manifold, although this notation is usu-

{iged in such a situation.) We say that pis a compound-geometrically

énable, or, more briefly, geometrical, linear system of sections if for each
it s*(€ §%) the associated ‘evaluation’ map

T — Téa, v pv)s” (I.1)

urjective, or, equivalently, that through each vector in the bundle there
asges a section parameterized by some vector from T. Let us denote the
rnels of maps (I.1) by T%; thus for each 30‘ the corresponding map (L1)
descends to an isomorphism T# = T/T* — T§ . Claim: The resulting {set-
eoretical) family of subspaces T C T Wlth parameter space S gives a
‘holomorphic) map S* — J, l.e. it constitues a compound conic structure
‘the vector space T with possibly non-compact compound integral-jet space.
‘1is is the motbivation for the term ‘compound-geometrical’.) In fact, the
\werse is also true, Le. a compound-geometrical linear system of sections 1s
this way determined up to a unique isomorphism by a general compound
nlé structure with possibly non-compact integral-jet space. [The rigourous
roof of holomorphicity of the map 5% — J will be given in Subsection 11.2.2.
- the time being it will suffice to know the obvious weaker set-theoretical

ersion of this lemma.|

Remark 1.6 This construction is an obvious generalization of the construc-
ion of a mapping of the base of a line bundle into a projective space if a ‘suf-
ntly rich’ or ‘base-point free’ parameter vector space of sections is given;
seing a compound-geometrical parameter vector space of sections precisely

eans this ‘sufficient richness’.

Definition L7 A linear system of sections (of a vector bundle) is said to be
eometrically amenable, or, more briefly, geometrical, if it is compound-

cometrical and in notation of 1.5 the map §* — J constructed there is an

2
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ddmg In other words, geometrical linear systems of sections are precisely

e ompoundwgeometrlcal linear systems of sections which in the sense of

pond to those compound conic structures with possibly non-
pact compound integral-jet spaces which are in fact conic structures with

bly non-compact integral-jet spaces. (In classical terminology, a geomet-
is said to be a parameter vector space

Biicorres

pa.rameter vector space of sections
ions which ‘distinguishes between points of the base’ and induces an

e_I_‘S_I_OIl of the base into the Grassmanian. )

1e following definition we review some standard concepts which are of

m ntal importance in this thesis.
nition 1.8 A (holomorphic) family
S«—R—-M

brianifolds S¢ of a manifold S with parameter space M consists of a
.rphlc) family of manifolds (R — M) = - BM, i.e. a proper holomor-
submers:on with total space R := B.M and base M, and a holomorphic
R s § whose restrictions B — S to the fbers of the family are embed-
s therefore the manifolds B from the family will usually be identified with
magés $® (via the restrictions of the map R -+ 5), and the family BM
conséQuently often be denoted by S*M. The total space R will in this
> be called the incidence manifold. The canounical linear system
I'rn'al-vector fields along the submanifold S with parameter m (or of
n vectors to the space of all submanifolds at the submanifold S* with

eter._ m) is the linear mapping T — H G(T/“ 52} of the tangent space at

ameter vector space’) into the vector space of sections of the normal

wof the submanifold $¢ defined in the following way: with a vector v
0’c1:' tes the (obviously well- defined) field of normal vectors which are

med by mappmg (under the differential of the map (B — S)) arbitrary

-we introduce some non-standard terminology:
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ﬁelds along the submanifold 5% with parameter m (with respect to the
ical linear system associated to m). Intuitively this condition means
-~ each normal vector of the submanifold §¢ is ‘realized’ by some ‘tangent
ot at the submanifold (to the space of all submanifolds) which arises from
ngent vector at its parameter m. It is a well- known (and trivial) fact
family is compound-geometrical iff it is a double fibration of the
dence relation manifold R. (This by definition means that the projection
e incidence manifold to the manifold S is also submersive.) Therefore,
_he case of a compound geometrical family, the (set- theoretical) family of
bsets M = p(v='s) of M (where s € §) with parameter space S is in fact
famﬂy of possibly non-compact submanifolds. We will refer to the latter as
njugate family of the original family. (It is clear that the conjugate

amily of the conjugate family is precisely the original family.)

oposition 1.10 Consider a compound- geometrical family of submanifolds,
¢ notation is as in L.9.

(i) According to the weak version of L5, the tangent vector space T at
pblnt m in this situation comes equiped with a set- theoretical compound
i¢ structure. Claim: The set-theoretical map S« — J := Gr{z,T) which
tltues this localized structure can alternatively be defined by mapping a
it of s € S* into the direction at m of the submanifold M* (from the
jugate family) with parameter s. (In particular, subspaces T in integral

ctions are in fact tangent spaces to submanifolds M® from the conjugate

roof of (i): According to the very definition of T* {v. 15) the evaluation
[.1) descends to a canonical isomorphism of the integral-transverse space
(more precisely, the transverse space to the integral jet with parameter s)

th the normal space Tgla to the manifold $* at s. On the other hand, in this
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tion the above evaluation map has been defined by descent of the obvious

ective mapping of the tangent space Tg at r:= 3.7 into 7% /* The kernel T§

16 latter map is clearly the direct sum of the tangent spaces to the fibers
5 :and % m of the two fibrations (constituting the double fibration). It
'ams to observe that M%.s C R projects onto M* C M. QED]

(n)' The set-theoretical localized compound conic structures from (i) are in-
d' by a distinguished expanded compound conic structure: by ‘assembling’

maps from (i) for various m we obtain a mapping of the incidence-relation
"fold R = §%.M into the contact manifold J.M of (z- -dimensional) 1-jets
M); and this is in fact a map over base S°M — JM (between families
m 'ﬁifolds) We will refer to the structure constructed in this way (i.e.
sisting of this map) as the compound conic structure induced by
ompound-geometrical family of submanifolds. (In particular, the
set-theoretical localized conic structures on the manifold M are in fact
d compound conic structures. )

of (11) Holomorphmlty of the above map follows from the holomorphic-

-.ollary 1.11 A family of possibly non-compact submanifolds is said to be
metrically amenable or, more briefly, geometrical, if the canonical
r. Systems of normal-vector fields along all submanifolds of the family
eofnetmca,l (v. 18 and L7 for definitions of these concepts). If is easy
that geometric amenability of a family of (compact!) submanifolds is
'alent to the requirement that the family be compound geometrical (v.
and the induced (expanded) compound conic structure on the parameter
(V 1.10) be in fact a conic structure. [Indeed, let us suppose geometric
nabﬂ]ty The tangent space s to the parameter space, being geometrical
meter vector spaces of sections thus inherit vectorial conic structures {cf.
'“herefore the map R — J.M (in notation of 1.10) which defines the

compound conic structure is an injective immersion. The fact that this
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ituation the above evaluation map has been defined by descent of the obvious
active mapping of the tangent space Tg at r := s.rinto Téa. The kernel T3
he latter map is clearly the direct sum of the tangent spaces to the fibers
‘s and S%.m of the two fibrations (constituting the double fibration). If
nains to observe that M®.s C R projects onto M* C M. QED]|

“(i1) The set-theoretical localized compound conic structures from (i) are in-
ﬁ'céd by a distinguished expanded compound conic structure: by ‘assembling’
"e:ma,ps from (i) for various m we obtain a mapping of the incidence-relation
anifold R = 5%.M into the confact manifold J.M of (z-dimensional) 1-jets
_n-.M ), and this is n fact a map over base S°M — J M (between families
“ manifolds). We will refer to the structure constructed in this way (i.e.
é(;nsisting of this map) as the compound conic structure induced by
the compound-geometrical family of submanifolds. (In particular, the
sbove set-theoretical localized conic structures on the manifold M are in fact
localized compound conic structures.)

[Proof of (i1): Holomorphicity of the above map follows from the holomorphic-
y of the tangent distribution to the fibration MS of R and the fact that

the differential of the projection 2 — M is a morphism of holomorphic vector

‘bundles. QED]

Corollary 111 A family of possibly non-compact submanifolds is said to be
‘geometrically amenable or, more briefly, geometrical, if the canonical
linear systems of normal-vector fields along all submanifolds of the family
are geometrical (v. 1.8 and L7 for definitions of these concepts). 1t is easy
to see that geometric amenability of a family of {compact!) submanifolds 1s
equivalent to the requirement that the family be compound geometrical (v.
1.9) and the induced (expanded) compound conic structure on the parameter
space (v. 1.10) be in fact a conic structure. [Indeed, let us suppose geometric
amenability. The tangent space s to the parameter space, being geometrical
parameter vector spaces of sections thus inherit vectorial conic structures (cf.
1.7). Therefore the map B — J.M (in notation of 1.10) which defines the

above compound conic structure is an injective immersion. The fact that this
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sund conic structure is in fact a conic structure, i.e. that this map is an

eddmg, follows easily from compactness of the manifods from the given

tuitively, the fairly mild condition that a family be geometric means
th'.e conjugate family of submanifolds of M is well-defined (compound-
tric amenability) and the submanifolds from that family have no first-
c_qntact with each other’, i.e., that the submanifolds of the original family

ndered as spaces of some 1-jets in M through their parameters’.

tion L.12 It is clear that a submanifold for which there exists a geo-
{ cal family of submanifolds containing it, must itself be ‘geometrical’ in
foll.owmg sense: a submanifold is said to be geometrically amenable or
metrical if its normal bundle is an ‘geometrical vector bundle’, where ge-
tric amenability of a vector bundle is in turn defined as existence of
s metrlcal linear system of sections. It is clear that the latter requirement
he .bundle means simply that its entire space of sections is & geometrical
p ameter vector space of sections (and consequently 1s canonically endowed

4 vectorial conic structure}.

finition 1.13 Clasically normality of a compound conic structure on the
ot space T given by a map J° — J (v. L5) is defined by the requirement
ﬁhe corresponding canonical linear system of sections of the compound
ral-tranverse vector bundle T/ J¢ (with parameter space T') be complete
n.ing bijective). (In other words, T is simply required to be the entire
r-space of sections of that bundle.) Although this terminology is strictly
aking unambiguous, avoiding confusion with the notion of a normal bundle
ch will often appear in the same context), requires some concentration.
efore we will replace the word ‘normal’ by ‘completive’ when it is used in
irst meaning. For instance, what is clasically called ‘a normal embedding
a manifold into a projective space’ will be called ‘a completive embedding’.
ilarly we will have a completive localized (resp. expanded) conic
ucture. (Explicitly, completivity of an expanded conic structure is defined

mpletivity of the induced localized conic structures at all points.)
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Structures on Special Geometrical Parame-

Spaces of Submanifolds

ogeneal Conic Structures on Homogeneally Geometrical

r'arin.eter Spaces of Submanifolds

ided conic structure has been defined as a special ‘expanded
'strﬁcture’ ie. a manifold equiped with a ‘set-theoretical field of
g ometrlc structures’ (or ‘geometric quantities’ in [1]) in the sense
ory of G structure s, the concept of its “nfinitesimal homogeneity’
ogeneahty in our terminology) is well-defined as an obvious necessary
o its homogeneity (cf. [1]). Before the more detailed rigorous intro-
h_1s""concept, we recall some obvious facts about general geometric

s and apply them to the case of conic structures:

14 Let us consider a category of rhi-dimensional vector spaces equiped
ructure In this remark we will refer to its objects as spectfic structures
spaces Recall that this category can alternatively be defined by a
socmtlon (i.e. functor) of sets U to ri- dimensional vector spaces 1"
_'ntext.U is simply the set of (parameters of ) all specific structures with
lyit g vector space T. (In other words, a specific structure with the
ng vector space T' can be identified with a pair (T, u), where u € U.)
‘say that the given calegory (i.c. the category of specific structures)
orga'msed into a category of holomorphic structures on vector spaces
___I_na'de a ‘simultancous’ choice of structures of complex manifolds
the sets U of specific conic structures on rh-dimensional vector spaces
Wo. conditions are fulfilled:

:atufal association of the sets U to vector spaces T' becomes a natural
of manifolds Uy to vector spaces T,

Jove natural association of manifolds to vector spaces is holomorphic
"_lng sense: for cach vector space T of that dimension the naturally
Ctloﬂ of the automorphism group G := AutT (of the vector space

e:_r_n_amfold Upg 1s holomorphic. (Notice that in case of transitivity of
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jon of G on T this condition alone uniquely determines the structure
plex manifold on U).

ly 1et us suppose that all specific structures are isomorphic, 1.e. that
e ast one (or, equivalently, every) T the natural action of the group
U T upon U is transitive. We will now review the proof of the follow-
+d fact: The category of specific structures can be organized into @
of holomorphic structures on vector spaces in at most one way, and
e criterion for this is closedness of the automorphism group G* of at
___(or, geuivalently, every) specific conic structure (T, u) in the auto-
m group G of (the underlying vector space ) T. Indeed, uniqueness
alréady from the condition (b) alone and even for for each T inde-
since the actions of the groups G on the sets U are by assumption
In order to check the criterion, it suffices to recall that the auto-
_nr__l'group (% is simply the stabilizer of the point u relative to the above

tive action and to apply the already established uniqueness.

al 15 Let us consider a ‘set-theoretical’ conic structure on a manifold

anmg. a pair formed by M and a set- theoretical field of localizedconic

res _'n M. We will say that this structure is infinitesimally homoge-

_r-:r_nore briefly, homogeneal, if all the induced localized conic struc-

e éonjc structures on the tangent vector spaces T' at various points
'rfiﬁtuaily isomorphic. (In other words, the category of homogeneal
eorétmal conic structures is a special case of a category of homogeneal
retlcal’ geometric structures, cf. [1].) Suppose the given structure is
eneal In particular, an isomorphy class of localized conie structures is
; Iely the class with the above mentioned representative structures).

is lemina we will call structures of this class localized specific conic struc-
d denote the dimension of the underlying manifolds by ri2. Thus, the
ctﬁre is a ‘set-theoretical’ (ezpanded) specific conic structure in the
ha all induced localized conic structures are specific.

Let '_us first observe that the automorphism group G of any (in par-

-.s’p__emﬁc) conic structure on any vector space T is a closed subgroup of
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he automorphism group G of T'; indeed, the action of (7 on the Grassmanian
':.13 holomorphic, the subgroup consists by definition of those elements which
the integral-jet space J, and the latter is due to its compactness a closed
ibset of J. Therefore, the category of localized specific conic structures can
a,ccordmg to 14 in a unique way be organized into a category of holomorphic
alized specific conic structures. QED

(i) In view of (i) and the general principles the theory of geometric struc-
tures, for the given manifold M we obtain (owing to its rh-dimensionality)
undle UM of spaces of localized specific conic structures. (Of course, its
al space, 1.e. the structure of a complex manifold on the set U.M is con-
ucted by means of the 1-frame bundle of M ) Therefore, we can define
lomorphicity of the given ‘set-theoretical’ conic structure as holomorphic-
: f the constituent set-theoretical field of localized specific conic structures
the bundle UM. (In other words, the category of holomorphic homogeneal
Onic tstructures is a special case of a category of holomorphic homogeneal ge-
tric structures; note that holomorphicity of inhomogeneal set-theoretical
nic structures can not be defined in this way.) According to the well-known
| properties of general holomorphic homogeneal geometric structures,
given set-theoretical conic structure is holomorphic iff it is a G-structure
s Lie group is the automorphism group G of the specific localized conic
ure); recall that the latter condition by definition means that the given
retical reduction’ of the 1-frame bundle of M is actually holomorphic.
1 Note that both homogeneal conic structures and holomorphic homo-

nic structures have been defined as set-theoretical fields of localized

ofa bundle of spaces of localized specific conic structures, which is
n the set-theoretical family of spaces of localized specific conic struc-

nstituting the holomorphic expanded specific conic structure; notice
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a,{ﬁ_ this by no means implies complete flatness of the latter in spite of the
al triviality of the bundle.) Incidentally, we will later give some reasonably
2k sufficient conditions on the category of localized specific conic structures

‘order for the converse inclusion to be valid.

2 Completive Conic Structures on Locally Complete Parameter

Spaces of Geometrical Submanifolds

ﬁhition 1.16 A parameter space M of submanifolds 5% of a manifold 5 is
1d to be locally complete if at each point m the canonical linear system
1.8) of normal-vector fields along the submanifold 5¢ of S with parameter
s complete (i.e. bijective). (In other words, the tangent space T' at m is a

lete parameter vector space of such fields relative to the canonical linear

sition I.18 Let M be a parameter space of submanifolds 5* of a man-

Suppose M is geometrical (relative to the given family). In this situation
s conceivably not a locally complete parameter space of submanifolds.
m: Local completeness is equivalent to the following condition:
é:"éxpanded conic structure My, induced by the geometrical family of
anifolds is completive (v. 113 for definition of completivity). [This is an
vious consequence of definitions.QED]

) ﬁppose submanifolds S® of S from the family are geometrical and M 1s
ty '_cbfnplete. In view of 1.12 these assumptions obviously imply geometric
ability of the family. QED




nview of (i) and (i) we infer that the concept of a locally complete
fer space of geometrical submanifolds is equivalent to the concept of a
c.a,l parameter space with completive induced conic structure. QED

'Suppose M is locally complete and geometrical. Then for a given point
_morphy class of the localized conic structure at m and the isomorphy
he normal bundle of the submanifold S* with parameter m com-
determine each other. Explicitly, they clearly correspond to each other
0. he obvious bijective correspondence between isomorphy classes of
t_w_é vectorial conic structures and isomorphy classes of amenable vector
‘more precisely, the above correspondence is induced by associating

mpletive vectorial conic structure its integral-transverse bundle. QED

rk L.19 An obvious analogue 1.18 could be stated in the more general
of' compound- geometrical families. In this version some of the concepts
1_r_1g in I.18 would have to be replaced by resp. ‘compound-geometrical

' ‘compound-geometrical submanifold’, ‘com-
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k 22 Suppose we are given a connected locally complete parameter
of normally rigid geometrical submanifolds 5@ of a manifold 5; here
dér) normal rigidity of an embedding is defined as simultaneous
of the manifold being embedded and the pormal bundle of the em-
‘According to 118 the given parameter space 1s (due to its local
eteness and geometric amenability of the submanifolds) geometrical and
ulped with a completive expanded conic structure. Claim: The latter
'oge_nea,l, i.e. (v. 1.18) the normal bundles of the submanifolds of the

isomorphic. [Indeed, .21 is applicable in view of the normal rigidity

tion. QED]

s;t_ltsn 1.23 Suppose we are given an isomorphy class of manifolds and
swer y such that any y-codimensional non-exceptional embedding of a
ld of that class gives rise to a normally rigid geometrical submanifold.

/" manifolds of that class are rigid, and all fiberwise y- dimensional
undles admitting nontrivial sections over manifolds of that class are
ble and rigid.) Our objective is to describe the first-order geometric
ure’ 1nduced on arbitrary locally complete connected parameter spaces
dlmensmna,l submanifolds S of the given isomorphy class. Claim:
parameter space of submanifolds is geometrical and the induced conic
.Whlch is well-defined for that reason) has the following two proper-
ich ére equivalent for any conic structure on a connected manifold:
‘onic structure is completive, its integral jets are y- codimensional and
lized '.integrai-jet spaces are of the given isomorphy class.

oi_iic structure is homogeneal and completive, its integral jets are

"nsidnal and its localized integral-jet spaces are of the given class.

36




‘We first prove the equivalence of (1) and (2) for any expanded

ssumptions on the given isomorphy class of manifolds,

cture: by the a
(1) the integral-transverse

anded conic structure with the property
ate all rigid; this, along with .21 shows that (1) and (2) are indeed

enains to observe that M 1s indeed geometrical according to L13.
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G’Qometric Description of the Structure of a Ge-

OIﬁetrical Parameter Space of Submanifolds

‘Geometrization of Double Fibrations by Preconnections

e n'.in previous sections that a locally complete space M of normally
eometrlca.l y-codimensional submanifolds 5% of a manifold 5 comes
"'.th a homogeneal expanded conic structure with y- -codimensional
“jets (or G*=-manifold for some G*). Often the structure on a man-
:f"a, parameter space of submanifolds, which induces a given conic
.umquely determined. However, this is not always the case. More
ff_o_m the conic structure alone, the manifold S and the locally com-
a 'I&_I_'_of submanifolds in it can in general not be reconstructed (not
Ip to i_s_bmorphism type, so all the more they can not be naturally as-
) T_hﬁs the question arises of what additional geometric structure on
._a.ndéd_.conic structure M is needed to recover the manifold S and the
_ _W:hich M parametrizes submanifolds of 5.

order to answer this question, we will consider the more general situ-
om ﬁh__e last chapter: instead of locally complete families of normally
geome.t.i:‘i.cal submanifolds we will study more general families, namely

al (v. L11) families (possibly not locally complete) of submanifolds
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y not mutually isomorphic as complex manifolds). The reason for do-
s‘..t{a:\'rofold: On the one hand, this is a more natural framework for the
_r_. lem since (as was seen in previous sections) a geometrical parameter
f: ﬁbma,nifoids also comes equiped (essentially by the very definition)
0_1__1:i._c structure (but this is conceivably not homogeneal, i.e. the induced
ed .(.)nic structures are possibly not isomorphic for various points m). In
on to that, it will turn out that even in the theory of complete spaces of
:cﬁ_rves in surfaces certain associated non-complete geometrical families
anifolds will play an important role.

ordance with that, let us consider an arbitrary geometrical family
Se—R-—M (IL.1)

manifolds 5 of .5 with parameter space M. Our objective is to find
meﬁfic structure on M from which this family can be ‘reconstructed’.
S'é,_..We expect the conic structure induced by the family (v. L11) to
stituent part of this geometric structure. We first recall that as a
f the geometric amenability assumption, the family (IL1) is in fact
_ﬁBration. Thus, it can also be interpreted as a family of (also y-
n_s'i_(;nal) possibly non-compact submanifolds M® of M parametrized by
Of S. Next we recall how this conjugate family induces the expanded
S‘trﬁcture.

us denote by S*M the family of manifolds underlying the family (IL.1)
a ifolds of S (in other words, this is one of the two fibrations of the
nce-relation manifold R := 5% M that appear in the double fibration,
the fibration over M). Consider the mapping of the incidence-relation
d R into the space JM ( = Gr(z,T).M) of all z-dimensional jets in
termined by the double fibration (II.1) (in the way described in previous

ns; explicitly, r is mapped into the direction at the corresponding m of
branifold M® parametrized by the corresponding s). We have seen in
j,us._::_ections that this map is actually an embedding (this in particular
-tﬁat manifolds M* corresponding to different parameters s are different

13 more, they have no contact of first-order). The image, denoted by
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_(;)S_ltloi.l_l I1.2 Consider on a manifold M; a structure of a geometrical
plete parameter space of submanifolds such that the (conceivably
Inpa.ct) submanifolds {of M; from the conjugate family are non-empty

T egfzed. Let us choose two families of submanifolds (with common




-r space M) realizing (i.e. representative of ) this structure. Then the

phism over parameter space between these families is unique.

sirse, this ‘double fibration structure on M’ is not yet (differential-
etrlc in the sense that it is not given by “Yocal data’, i.e. it is not
as a “field of geometric quantities’ in termmology of [1]. Thus, our
1_._ve-: will be to ‘localize’ this structure or, more precisely, to see what
localized geometric structures (‘geometric quantities’) could serve to
the expanded structure as a field of such localized geometric structures.
us “observe that with the above identifications the fibration S*M (i.e.
e of the two constituent fibrations of the double fibration, which has
base), is precisely given by restricting to R (= J°.M) the projection
onto M. The structure of a parameter space of submanifolds on the
ed conic structure is obviously determined precisely by the other fibra-
ofﬁR ¢ J.M, namely the fibration M>S (with base S). It is now clear that
"_éﬁure can indeed be ‘localized’ (what is more, not only with respect
ut even with respect to R) as soon as the fibers M of this fibration
nected: then the fibration clearly coincides with the foliation which 1s
ed by the integrable distribution on R formed by tangent spaces to the
M s C R. For this reason we now impose on the original geometri-

fniljfof submanifolds the slightly stronger condition from the following

tion 11.3 A family of submanifolds is said to be completely geo-
ical if it is geometrical and the conjugate family (v. 1.9) consists of

eivably non-compact) non-empty connected submanifolds.

() _Shown that the structure of a parameter space of submanfolds is
to this additional hypothes completely determined by the above dis-
01_1_'._"_. Let us denote fibers of the latter (at various points r) briefly by
C Tyum (in other words, the distribution is denoted by F7R; the use
upper index, which in our notation usually suggests an embedding will
"ﬁétiﬁed). The localization with respect to M can explicitly be accom-

in the following way: the appropriate localized geometric structure at
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nt m by this definition consists of the localized conic structure ans the
of aubspaces '™ of the tangent spaces to the manifold J.M at integral
hrough m (i.e. jets belonging to the space Sem c RC JM). Let us
ve that this system actually actually constitutes a vector subbundle F7.J?
wmJS (which satisfies certain additional conditions, as we shall soon see).
Jearly a second-order localized geometric structure, and we have seen
be field of these localized structures indeed encodes the double fibration.
fore introducmg snitable terminology, let us examine the obvious prop-
f he localized geometric structure F'7J° considered above.

: dimensional subspaces F'™ of the tangent spaces Ty at various jets
€ R C J.M are of a very special type: under the differential of the
ctlo'n': JM — M such a space clearly projects bijectively precisely onto
_space Te of the tangent spaces T' in direction j, (i.e. the subspace
para.metel is the direction j). Let us equip the manifold J.M with the
cal structure of a contact manifold. (By the latter we mean the obvi-
'her codimensional generalization of the concept of a ‘hypersurface-
manifold’; v. [5] for a precise definjtion.) Furthermore, let us denote
'-.M__the constituent distribution on J.M of the contact structure. (Ex-
1t fiber F' C Tas over the jet j.m is the preimage of the space 7% in
on j.'l.ll'ldel' the differential of the projection (J.M — M).) Thus we have
hat spaces F’ are necessarily direct complements in integral-tangent

F f the contact manifold of the vertical spaces 7. This observation

_e_s_the following definitions:

fon IL.4 Let I J.M denote (as above) the integral-tangent bundle of

'n'oni:'cai contact manifold J.M of z-dimensional (I1-) jels in a manifold

tj through a point m. The direction ¢, € Jp = Gr(z, F) C Jim =
1u) of e direct complement F'™ of the vertical space Ty in the (contact-
I integral-tangent) space F {(at jom) will be called an elementary
_ne.ctlon on the manifold M at the jet jom . (Thus F7 is in this

thé:tangent space to the elementary preconnection.) The space of

42




reconnections on M at j.um wil be denoted by C (CcJrCJ M)
le C_J, which we call the localized elementary-
{on the localized jet space) of the manifold M.
a restriction of a bundle C,J.M, which we call the expanded

econnnection bundle (on the expanded jet space) of the

atly get bund

ton: bundle

£ there is no possibility of confusion with the concept of a
connection’ (which is to be defined shortly), we will often supress
' the expression ‘elementary preconnection’. (For example, if no
es_aﬁ:e considered, this causes no ambiguity.) The motivation for
andard) term is the strong analogy and interaction between the

lex associated to the ‘Lie equation of complete flatness of a conic

the Spencer complex associated to the conic structure thought of

point transformations’. (We will soon clarify these concepts. )

ninology for the former compler 1s well- established, we will carry

¢ latter complez by adding the prefix ‘pre’. Thus the role of a

esp- intrinsic torsion, ‘conic-structural jet’ ete.) in the theory of

uctuv‘es is analogous to the role played by (both ‘elementary’ and

econnections (resp. ‘intrinsic pretorsion’, ‘conic- -structural prejet’

ct, this analogy is twofold: if a general homogeneal geometric
hought of as a ‘generalized conic structure’ (cf. IL11) on a certain
ans of the above Lie equation, then all the standard concepis

ory' of geometric structures coincide with the their ‘elementary

the theory of ‘generalized conic structures’. In order to indicate
tion _b'etween the two sets of concepts, we mention that a ‘connection

fold at a point m in a given direction j’, which will be defined

ibe ha.s an elementary preconnnection as an essential part.

L 6:.A localized (resp. expanded) conjoint preconnection
1 preconnection if there is no possibility of confusion) on a guwen
consists of a localized (resp. expanded) conic structure on M

_élémentary preconnections Cr defined along the integral-jet space
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Je ¢ J (resp. R := J°.M C J.M) of the conic structure. [(It is implied
‘that this field is a section of the localized (resp. expanded) elementary-
preconnection bundle C,J° (resp. C, It) of the conic structure, where
this bundle is by definition the restriction of the localized (resp. expanded)
‘elementary-preconnection bundle C,J (resp. C,J.M) of the manifold M|
Of course, this field can equivalently be given by a distribution F7J* (resp.
F7R) in the manifold J.M defined along the submanifold J° (resp. R) such
hat directions in Tyas of its fibers F'” are elementary preconnections on M. [In
particular, this distribution is contained in the restriction #J¢ (resp F R) of the
onstituent ditribution FJ.M of the contact structure.] The above distribution

Wi_ll be called the tangent distribution of the given preconnection.

Rémark I1.7 Clearly, localized preconnections form a category, more pre-
éely, they are second-order localized geometric structures (i.e. ‘second-order
ocalized manifolds’ equiped with a structure.) Similarly, the expanded pre-
nnections form a category of manifolds equiped with a structure. In fact,
these are also geometric structures in view of the following trivial observation:
expanded conjoint preconnection (or simply a preconnection if there is no
ossibility of confusion) on a manifold M can alternatively be given by a field
ocalized preconnections on M which is holomorphic in the following sense:
corresponding field of localized conic structures forms an expanded conic
icture, and the set-theoretical field of elementary preconnections ¢, defined
ong the expanded integral-jet space R simply by ‘assembling’ the constituent
entary-preconnection fields of the above mentioned localized preconnec-
ns; is holomorphic. (In other words, it is a section of the restriction ;R
he expanded elementary-preconnection bundle CrJ.M to the expanded

ral-jet space of the conic structure.

nition II.8 We say that an expanded preconnection is tangential if the
F7 of the tangent distribution {of the preconnection) are (in notation of
ﬁgent to the submanifold R of JM (more precisely, for each point r the
ponding space F'7 C Ty is contained in the space Tp C Typr). In other
s, tangentiality simply means that the tangent distribution F"R (in the
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d J M along R) is actually a distribution in R. (It should be noted that

'l_c_)g’bus condition does not make sense for a localized preconnection.)

clear that with this terminology at our disposal, the geometric structure
s' onstructed before on a geometrical parameter space of submani-
which was shown to completely encode the family of submanifolds,

brleﬂy be described as a preconnection whose underlying conic struc-
recisely the one associated to the family. In order to characterize those
ctions which actually correspond to families of submanifolds, let us
:how_ the family of submanifolds was reconstructed from the associated
1€ tion: The fibers M®.s of the fibration of R over S were precisely the
. maximal connected integral submanifolds) of the distribution '™ 2.

tion to that, the very definition of the conic structure on M induced
.’.f.a',"mily of submanifolds clearly implies that these leaves are precisely
‘onical lifts to the contact manifold J.M (D R) of the manifolds M*.
_indicates that the latter manifolds are ‘integral manifolds’ of the
sction thought of as an ‘invariantly defined’ second-order PDE or a
iven up to point transformations’; however, before a precise staterment

sult we digress to clarify these concepts in the following subsection.

'Symmetric Preconnectors, Second-Order Jets and General-

_Z__ed Conic Structures

¢ ctive of this subsection is to interpret the concept of a preconnection
'-'1anguage of the theory of ‘PDEs given up to point transormations’,
lized conic structures’ in our terminology. We first give an informal

lptlon_of these structures. {A precise exposition will follow shortly.) ‘Gen-

_nlc structures’ are often obtained as certain structures underlying
n:da,r'd_ PDE on a fiber bundle, namely structures obtained by ‘“forgetting’
Iy the trivial connection on the bundle (defining the notion of codomain
grals), but also the fibration (defining the notion of domain) itself. In
Wofds, such a ‘generalized conic structure’ is obtained from a PDE by

"bhly the totalspace and the set of ‘permissible’ k-jets of its eventual
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;al submanifolds; integrals are still defined as immersed manifolds with
missible’ k-jets at each point. For the time being we are interested only in

_oder generalized conic structures’ (or ‘generalized conic 2-structures’).

rk 1.9 We will use some non-standard terminology and notation in
or to make the exposition of the theory of conic structures more systematic
he' terminology more suggestive. In particular, constructions related to
nat'ural association of vector spaces with affine spaces will be reflected in
'ermmology and notation in a simple and consistent way. Thus, the objects
h are usually called ‘differences of connections’ or ‘connection coefficientts’

qi_;orsions , namely the elements of the vector space of an afline space of
ctions, will be called ‘connection vectors’ or, more briefly, connectors;
p;jetise definition of the ‘localized’ and ‘expanded’ versions of that concept
e reviewed in Remark IIL1. (The motivation for the term ‘connection
ors’ is the etymology of the term ‘vector’: Latin ‘vehere’ means ‘to carry’,
Véctors from the vector space of a given affine space are the objects which
’:or ‘translate’ one affine point into another. In the case considered above
fline points are connections. The shorter term ‘connector’ could be justi-
n the same way: by means of a connector we can generate new connections
given, e.g. trivial, one.) Analogous terminology will be applied to other
;paces: thus we will introduce e.g. ‘tangential connectors’, ‘preconnec-
tangential symmetric preconnectors’ and ‘structural directors’ as vectors
ain affine points called resp. ‘tangential connections’, ‘preconnections’,

ntial symmetric elementary preconnnections’, ‘structural directions’.

Next we review the standard invariant description of 2-jets (of submani-
) as ‘symmetric’ elementary preconnnections, and expound some elemen-
but not quite standard related facts concerning the tensor-type invariants

ementary preconnnections.

ark IL.10 (i) Let us first observe that the space C, of elementary pre-
ections at a given I1-jet in the manifold M comes equiped with the ob-

--_s_t?"ucture of an affine space. The associated vector space 1s clearly
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@ T*/*®2, where the notation for the integral-tangent and integral-
épace ‘s as in Definition 1.2 and T*/ denotes according to our
| conventions (v. Appendix) the space Tex (= T*]T*, where T™
'.p'ndlcular of T® i T*). These ‘elementary preconnnection vec-
| é briefly called elementary preconnnectors. (V. Remark 11.9 for
a,tion of this terminology). Furthermore, notice that the elementary
ectlon space is canonically represented as a product affine space: in-

¢ elementary preconnnector space has a canonical decomposition into

-_éum of spaces of (resp.) symmetric an antisymmetric elementary
nectors, where the symmetry and antisymmetry are defined relative to

w0 indices. We introduce the following notation for these spaces:

Ez-a = Earo(**)
E?’rﬁ == E’JT l[**]

lo ered parentheses (resp. brackets) indicate symmetry (resp. anti

imetry). Of course, the corresponding quotient spaces, €.g.
E;r'rsa — T/'a ® T*/oz/\? — E’JT.[**]

dentlﬁed with appropriate subspaces. For reasons expounded in (b),

t is well-known that the 2-jet of a submanifold M* of M is completely
ined by its 1-jet and the 1-jet (which is by definition the direction of
nt space F'7) of its canonical lift to the contact manifold of 1-jets.
_phed the 1-jet in the contact manifold is taken precisely at the above
ied 1-jet in M.) Such an 1-jet in the contact manifold is according
fAnition 114 clearly an elementary preconnnection (at the 1-jet in M ).
,in general not all clementary preconnnections at a given 1-jet in
ots in M: the latter form an affine subspace of the affine space Cx
fary preconnnections at the given 1-jet in M, where the associated

ubspace consists precisely of the symmetric connectors. For this reason
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9-jets tangent to the given 1-jet will also be called symmetric elementary
preconnections and the space they form will be denoted by C3°.

[The proof of (ii) exploits the notion of the canonical (affine) mapping
of elementary preconnnections into elementary pretorsions, which is
defined in the following way: with a given elementary preconnnection we as-
sociate the elementary pretorsion obtained (with respect to the obvious iden-
tifications) by restricting the Frobenius tensor of the contact manifold to the
tangent space F'7 of the elementary preconnnection. It 1s not difficult to see
that this is indeed an affine map with obvious associated linear map and that
the elementary preconnnections which determine 2-jets are characterized by

vanishing of the associated elementary pretorsion (i.e. by isotropy relative to
the Frobenius tensor).QED]

Remark I1.11 (i) A generalized pseudo-conic 2-structure consists of a
manifold M (the underlying manifold) and a submanifold C7 . J.M (called the
expanded integral elementary-preconnection space) of the total space
¢, . J.M of the expanded elementary-preconnection bundle of M; here cs JM
denotes the set-theoretical family of the obviously defined (jet-localized)
integral elementary-preconnnection sets C7. (The latter are conceiv-
ably not submanifolds of elementary-preconnnection (affine) spaces c.) I
the subset R of J.M formed by points with non-empty integral elementary-
preconnection sets defines a conic (1-) structure (called the underlying conic
structure) and the restriction CZ R of the above set-theoretical family is in fact a
(holomorphic) subfamily with possibly non-compact fibers, then we will omit
the adjective ‘generalized’. Similarly if the integral elementary preconnnec-
tions are all symmetric (i.e. 2-jets), we will omit the prefix ‘pseudo’ and call
Ct . J.M the expanded integral 2-jet space of the generalized conic
2-structure.

An integral immersed manifold in M (of the given generalized pseudo-conic
92-structure is defined by the requirement that its obviously defined canonical
lift into the (second-order) contact manifold of 2-jets J*.M{= C}* J M C

C, J.M) be contained in the expanded integral elementary-preconnnection
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space. (Note that this lif is formed by all first-order jets of the canonical Lift
into the first-order contact manifold.) Integrability of the given generalized
pseudo-conic structure is defined as existence of integral submanifolds tangent
to any integral elementary preconnnection. It is clear that the given structure
must actually be a generalized conic 2-structure in order to be integrable.
QED

(ii) It is clear that preconnections are second-order generalized pseudo-conic
structures of a very special type, their main feature being that there exisis at
most one integral elementary preconnection at a given 1-jet jet. Therefore, we
define an integral immersed manifold for a given preconnection My, as an
immersed manifold which is integral relative to the preconnection viewed as a
generalized pseudo-conic 2-structure. Explicitly, this is an integral immersed
manifold for the underlying expanded conic 1-structure (v. 1.2) such that its
canonical lift to the contact manifold is an integral immersed manifold in R
for the distribtion F”R (in the manifold J.M along R) or, explicitly, that
lift has the property that its tangent space at a 1-jet r in M is precisely
F7 C Tym coresponding to r. In fact, from a well-known property of the
constituent distribution FJ.M of the contact structure on the 1-jet space it
is clear that any z-dimensional immersed integral manifold of the distribution
F™ R is locally the lift of a unique submanifold of M, which is therefore integral.

Similarly, an expanded preconnection on M is said to be integrable if it is
integrable when viewed as a generalized pseudo-conic 2-structure. Explicitly,
for each point m and each integral (relative to the underlying conic structure)
1-jet § at m, there exists at least one integral manifold in Mg, tangent to
7 (this integral manifold is clearly locally unique since its lift has to be an
integral manifold in R for a distribution of the same dimension). It is clear
that tangentiality is a necessary condition for integrability. Furthermore, an
integrable preconnection could alternatively be described as an expanded conic
structure equiped with an integrable distribution in the integral-jet space R (or
equivalently foliation of R) such that directions of its fibers F” are elementary
preconnections in M. (Indeed, from the observation made above it follows that

the leaves are locally canonical lifts.) In particular, tangential curve-directional
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preconnections (and even general tangential curve-directional pseudo-conic 2-
structures) are always integrable. QED

(iii) The pretorsion at the point m &€ M of a preconnection is by definition
the field of elementary pretorsions of the integral elementary preconnections
at the point m. Thus, a preconnection is pretorsion-free iff it is symmetric,
which by definition means that it consists of 2-jets {or symmetric elementary
preconnections). Thus, a symmetric preconnection is a conic 2-structure whose
main feature is that there exists at most one integral 2-jet tangent to any given
1-jet. Similarly, an integrable preconnection on a given (expanded) conic 1-
structure roughly corresponds to the classical notion of a complete integral of

a generalized conic 1-structure. QED

Remark II.12 A conic structure with z-dimensional integral directions will
be said to be omnidirectional (or “full’ in terminology of [13]) if all z-
dimensional jets are integral. Of course, this conic structure is trivial in the
sense that it is completely determined by the underlying manifold and the
- integer z. (It is also completely flat as a geometric structure.) In the case
-z =1 (resp. = > 1) this structure will be called the projective (resp. Grass-
man) conic structure. We say that a preconnection is omnidirectional
(resp. Grassman, projective) if the underlying expanded conic structure
has that property. Let us observe that omnidirectionality of a preconnection
in a trivial way implies its tangentiality. In fact, an omnidirectional symmet-
ric preconnection on a manifold precisely corresponds to the classical notion
of ‘a normal second-order PDE given up to point transformations’. Since a
" projective preconnection is fangential and curve-directional, it is according to
[.11(iii) integrable. It is clear that a projective structure is by its very
definition precisely a projective preconnection which is ‘connection-induced’
in a certain sense. In fact, it turns out that (owing to the holomorphicity
assumption) any projective preconnection is necessarily connection-induced,
le. a projective structure. Futhermore, we will show that the property of
. being connection-induced also makes sense for preconnections with higher-

dimensional integral 1-jets. What is more, with a connection on a manifold
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we will agsociate preconnections with z-dimensional integral 1-jets in two dif-
ferent ways; the two preconnections thus obtained (which will often coincide)
will be called ‘the canonically associated preconnection’ and ‘the canonically
asssociated symmetric preconnection’; the integral manifolds of the former
(resp. latter) are called autoparallel (resp. geodesic) submanifolds relative to
the connection. We will dwell on these and similar issues later on, since for

the time being those results are not necessary.

II.1.3 Conclusion

With the terminology and facts from the previous subsection at our disposal,
we are able to formulate concisely the results already deduced in this section
as the first assertion in the following fundamental proposition. Let us again
consider the tangent distribution /7R of the preconnection induced on a geo-
metrical parameter space M of submanifolds. Since the spaces I'" were defined
as tangent spaces to the manifolds M“.s, and these are obviously the canonical
lifts to the contact manifold of submanifolds M of M, the directions (of the
spaces F'7) are in fact elementary preconnections of a very special type, namely
2-jets of z-dimensional submanifolds of M. (This is an obvious consequence

of the Remark I1.10.)
Proposition I1.13 Let M be an arbitrary manifold.

(i) There is a canonical injective correspondence between

(a) Structures on M of a completely geometrical (v. I1.3) parameter space of
submanifolds (recall that these structures have been defined by I1.2 as classes of
completely geometrical families of submanifolds isomorphic over the parameter

space M)
and

(b) Admissible integrable preconnections on M, where admissibility is defined
as the conjunction of the following two conditions (in notation of Definition
11.6):
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(b1) The foliation of R by leaves of the integrable distribution F"R is actually
o fibration (whose base S is therefore clearly the space of maximal connected
integral immersed manifolds in M }.

(b2) The projection of this fibration maps the submanifolds J°.m of R injec-
tively into the base S.

More precisely, the correspondence is defined in the way described in Sub-
section IL1.1: For a family as in (a) compound-geometric amenability means
 precisely that it is in fact a double fibration. Thus, the given family of sub-
manifolds of S can also be interpreted as the conjugate family of submanifolds
M? of M with parameter space S. The corresponding preconnection as in (b)
is now built from the conic structure induced by the family and the distribu-
tion in its integral-jet space B which determines one of the two fibrations of
R appearing in the double fibration, namely the fibration over S. In other
words, the preconnection is defined by the requirement that the submanifolds
M= of M from the conjugate family be integral.

[As remarked above, the assertion (i) has already been proved earlier in this
section.QED]

(i) The injective correspondence considered in (i) is in fact bijective. What
is more, the inverse corespondence can explicitly be described in the following
way: Consider an admissible integrable preconnection on M. If we denote by
S the base of the fibration of R formed by the leaves of the tangent distribution
F" R (of the preconnection), the corresponding geometrical family of manifolds
in S is defined to be the diagram

S+—R— M

formed by the obvious projections. [The proof of (ii) is equally straightforward,
so we will provide only a few salient details: This diagram is obviously a
double fibration and thus indeed defines a compound-geometrical family with
parameter space M of submanifolds S* of § which can clearly be identified
with the spaces J°. Next we prove geometric amenability of the family, l.e.
that for every point m the canonical (relative to the family) linear system T' —

H° (Tg’"‘ 5e of normal-vector fields along the submanifold S* with parameter m,
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s geometrical. What is more, we would like to see that the localized conic
structure obtained in this way coincides with the one underlying the given
ocalized preconnection. All this follows easily from the fact -proven in 1.10-
hat for an arbitrary compound-geometrical family of submanifolds the map
§* — J := Gr(z,T) which constitues the induced localized structure can
“alternatively be defined by mapping a point of s € 5% into the direction at m
of the submanifold M® (from the conjugate family) with parameter s. QED]

‘Remark 11.14 The previous proposition could be formulated (and proved n
.-éxactiy the same way) in a somewhat more general version. More precisely, we
"é:()uld consider a larger class of integrable preconnections, namely, we do not
..:-'l.'lave to require that the spaces J° be mapped injectively into the space S of
;'_ maximal connected integral immersed manifolds in M. The twistorial descrip-
“tion of this geometric structure turns out to be the following: the underlying
‘manifold is equiped with the structure of a geometrical parameter space of
"possibly non-injectively immersed manifolds J* = S in an arbitrary manifold
S. However, from the point of view of local differential geometry, this version
‘is in fact not more general: as has already been said, in the next remark we

“will see that even a general integrable preconnection is locally admissible.

' Remark IL15 Consider an integrable preconnection on amanifold M. A
" straifghtforward reasoning shows that for each point m there exists an open
neighbourhood M’ such that the restricted (obviously integrable) preconnec-
tion on M’ is admissible, i.e. essentially the structure of a completely geomet-
rical parameter space of submanifolds. [Explicitly, with notation analogous
to the one from Definition I1.6 the foliation of R’ formed by the leaves of
the distribution F™R' in R’ is in fact a fibration and its projection maps the
localized integral-jet spaces of the restricted conic structure injectively into
its base manifold $/. Thus, according to the previous proposition, M’ is a
geometrical parameter space of submanifolds of S’ with respect to a canonical
parametrization, namely the one described in the assertion (ii) of the previous

proposition. ]
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Remark IL.16 In this section we have accomplished the process of ‘geometriza-
tion’ of the structure of a geometrical parameter space of submanifolds. It is
not difficult to see that the condition of geometrical character is indispens-
able in this context: even the structure of a compound-geometrical parameter
space of submanifolds can in general not be ‘localized’ in the sense that it can
not be thought of as a field of localized geometric structures (which can be
‘transferred’ from point to point by jets of biholomorphisms). What is more,
the latter structure is a priori not even a k-th order ‘compound’ (or ‘gener-
alized’ in terminology of [1]) geometric structure; this by definition means a
“fiberwise built’ {or first-order ‘bundle-founded geometric’) structure on a k-
th order compound G-structure (i.e. on a reduction of the k-frame bundle
relative to a conceivably non-injective mapping of Lie groups, cf. 1.4). In
fact, the structure of a geometrical parameter space of submanifolds is usu-
ally a second-order expanded ‘bundle-founded geometric structure’ (defined in
‘a plausible way) on a first-order compound G-structure, more precisely on a
‘holomorphic homogeneal compound conic structure’ (cf. 1.15). In particular,
a compound geometric structure (namely the compound conic structure) is

'ci)nly its constituent part.

II.2 Non-degeneracy of a Double Fibration and Geo-

metric Amenability

Geometric amenability of a compound-geometrical family of possibly non-
“compact submanifolds has been defined as the strongest ‘non-degeneracy’ con-
dition, i.e. 1-regularity, on the conjugate family. In this section we express the
differential version’ of this condition as a somewhat weaker non-degeneracy
“condition on the original family. In this context ‘complete degeneracy’ of the
“original family will intuitively mean that submanifolds from the family through
“a given point do not differ from each other (although their parameters may

form a manifold of positive dimension):
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Definition IL17 In the situation of 1.9 we say that the given compound-
geometrical family of possibly non-compact submanifolds of S is completely
degenerate (resp. differentially completely degenerate) if for each point
s € § the submanifolds S* from the original family through s (whose param-
 eters form the submanifold M® from the conjugate family with parameter s)

coincide with each other (resp. belong to the same germ of submanifolds).

Remark IL18 Clearly, an example of a completely degenerate compound-
geometrical family is given by the obvious double fibration of the total space
of a family of possibly non-compact products of manifolds. More precisely,
such a double fibration is obtained from fibrations (or families of possibly non-
compact manifolds) S*B and M*B (with the same base B) in the following
way: we define S := 5% B (the totalspace of the first fibration), M = M*.B,
R:= §% x M .M (the totalspace of the fibration by products of fibers of the
given fibrations, i. e. the ‘Whitney product’ of the given fibrations) and take
"as projections of the incidence manifold R onto S and M the obvious maps.
In fact, it is not difficult to show that a general completely degenerate family
of possibly non-compact submanifolds is essentaially of this form: indeed, 1t

" suffices to observe that the conjugate family is also completely degenerate.

11.2.1 Frobenius Tensor of a Double Fibration

" Proposition I1.19 Consider the situation of 1.11. (In other words, we are
given a general compound-geometrical family of possibly non-compact sub-
" manifolds.)

(i) Notice that the spaces T8 C Tg at various points r form a distribution
T2R (on the incidence manifold R of the given double fibration), namely the
" sum of the distributions associated to the fibrations S*M and M*S of R (ie.
the fibrations forming the given double fibration; notice that the sum distribu-
tion is well-defined due to intersectional transversity of these fibrations). The
Frobenius tensor of this sum distribution will be referred to as the Frobenius

tensor of the double fibration.
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~ (i1) Choose incident points m and s. The fiber TS of the sum distribution
at the point r 1= s.m is (by definition) the direct sum of the tangent spaces
Tg¢ and T* to the submanifolds (respectively) S (2 m) and M*(3 s) with
_ parameters (respectively) m and s. In order to simplify notation we iden-
| tify these two spaces with their images in the direct sum. Let us denote by
fred om(Tg"?, T/ the Frobenius tensor of the double fibration at the point
~r. (Recall that the transverse space T/ R of the sum distribution at r is ac-
" cording to 1.10 canonically isomorphic to the normal spaces Téa and T/ of
" the submanifolds resp. $° and M.) Note that the restrictions of this tensor
to subspaces T¢"? and T*"? vanish (since the summands of the sum distri-
bution were integrable distributions). Therefore the Frobenius tensor can be
recovered from its restriction to the subspace T§ AT & Te @ T TG AT

Claim: The ‘essential part’ of the Frobenius tensor of the double fibration,
i e. the above restriction, admits the following alternative interpretation: The
mapping

TS — Hom(T*, T), v& r+ (v* > fr(vg,v%))

is precisely the differential of the mapping S¢ — J constituting the family-
induced compound conic structure on 7" with possibly non-compact integral-jet
space . [The proof is a straightforward application of the main properties of

the ‘canonical involution from {18]. Alternatively, one can consider the flow of
vertical vector fields. QED]

1.2.2 Flat Conic Structures

Lemma I1.20 Let us consider a compound conic structure on a vector space
T, where notation is as in L5. Then there is an up to a unique isomorphism
determined ezpanded integrable compound preconnection on (the underlying
manifold of) T such that the corresponding integral submanifolds are precisely
the affine subspaces of 7' whose vector spaces are compound-itegral spaces
of the given compound conic structure. This compund preconnection could
alternatively be characterized in terms of the associated family of submanfolds:

This turns out to be precisely the linear system of (the images of ) sections (as
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submanifolds of (Téa 5} given by the compound amenable linear system. This
preconnection and the underlying conic structure is called flat. [The proof is
straightforward. QED]

I.2.3 Frobenius Tensor and Geometric Amenability

The next straightforward lemma is in fact an analysis of the immersivity con-
dition for a map into a Grassmanian space. Incidentally, assertion (ii) of this

lemma, namely the case of a projective space, is stated (without proof) in [19].

Lemma TL.21 Let us again consider the situation from 1.10. (In other words,
we are given a vectorial compound conic structure.) The differential Djse €
Hom(Tg,Ty) of the map (s* — j) at a given point s* can be explicitly de-
scribed in terms of the given parameter vector space of sections in the following
- way:

We first recall that Ty = Hom(T,T/). Therefore we have the following

sequence of canonical isomorphisms:

Hom(T2,Ty) = Hom(T2,(Hom(T*, T")) ~ Hom(T®, Hom(T§,T"))

Claim: The element of Hom(T®, Hom{Tg,T®)) corresponding to Djse is
_ precisely the negalive of the map which assigns to a vector v™ € 1% the dif-
ferential at s* of the seclion {vP}sa with parameter v*. More concisely, the

above mentioned element is the map
(T — Hom(T, TF)) := (T* — Hom(T$,T*), v — D(v);0).

Here D(v/),a denotes the (completely invariantly defined) covariant differ-
 ential (of a section vanishing at the given point) with respect to the canonical
fiber-transverse space at a zero vector in the total space of a vector bundle;
in view of the fact that T precisely consists of parameters of those sections
‘which vanish at s® this differential is in our case well-defined .

[Proof: (See 11.22 for an alternative proof. Since the present proof does not

invoke any facts about donble fibrations, it is somewhat longer. However, it
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is simpler and one obtains an additional insight from its main idea, namely

struction of a ‘regular’ local trivialization of the compound integral

5' con
) Let T% be a direct complement of T%. Tt

integral-transverse vector bundle.
is a standard (and obvious) fact that the open subspace J* ol J consisting
of all directions j € J transverse to T8 has a canonical structure of an affine

pace with associated vector space Hom(T#,T?) and that the trivialization

of the tangent bundle of J* induced by that chart on J is compatible with the

byiously defined isomorphism
T, = Hom (T, T*) 0 Hom(T*,T7).

.3_Ir_;.-'brder to simplify notation, we will assume that the quotients Th and T
ave been identified with the subspaces T8 and T respectively by means of the
:_b:.:vious isomorphisms. (In particular Ty = H om (T4, T?) and the isomorphism
i1 the above formula is the identity.)

Furthermore, the space T8 is clearly a direct complement of tangent spaces
g 1o divections ' € J associated to all s sufficiently close to s*. Thus, all
the corresponding quotient spaces T/ (i.e. fibers of the bundle T/ 5%) are

nonically isomorphic to T# in other words a trivialization of the bundle is

given in a neighbourhood of s*. In order to simpify notation, we will assume
that those fibers are ‘dentified with 7% by means of this trivialization (this is
clearly in agreement with our first notational convention).

Let v* € T and v% € T be arbitrary elements. Let us denote by {v*}s«
e section of T/*S* with parameter v* (we know this section is vanishing at

@), Tts restriction to a sufficiently small neighbourhood of 57 is according to

é_ above notational convention a map into T8, In addition to that the invari-

'I'l.tly defined differential of that section at s® coincides with the differential of
hat map, i.e. with the differential relative to the trivial connection induced
y the trivialization defined above. (Indeed, the horizontal space at a zero
vector relative to any connection on a vector bundle is precisely the tangent

ace to the zero section.) In view of this and our notational conventions, it

s g:_lear that our objective is simply to prove that

((Djge Y05 Yo = =D (0" )gav§ € T,
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But the left-hand side is clearty D((j' — 7 Jv* )sar—savg, where s*' is a point
ufficiently close to s* and 4" is the associated direction in 7. Now it remains
_'o observe that (§' —j, )v® = —v/' where v/’ € T? denotes the vector at the
oint % from the field with parameter v*. (This is a consequence of the fact
| ﬁ_hat v/ is by definition of the map ( s* — 7 ) precisely the image of v* in the
quotient 7' = T'/T, and of the rule used to identify such quotient spaces
“with T%.) QED]

Remark I1.22 We now expound the above mentioned alternative proof of
‘the preceding lemma. (The reason for its inclusion is the insight it offers into
“the interrelationship of various concepts considered in this chapter.) Let us
“ consider the double fibration constructed in I1.20 from the given flat compound
conic structure with possibly non-compact localized integral jet spaces. In view
of I1.19 and I1.20 the differential Dj,« € Hom(Tg,Ts) can in an obvious way be
| expressed in terms of the Frobenius tensor fr of the double fibration (defined in
I1.19). More concretely, this differential is precisely the map (v§ — fr(vs, v®).

Therefore, we simply have to prove that
D( v )avd = fr(v*,v3).

Again according to I1.19 the right-hand side ‘measures the rate of rotation’ of
the jets at s of the sections with parameters in 7,. It remains to apply the

Schwarz theorem and linearity of the evaluation maps (T — T/).

Proposition IL.23 Let a vector space T be equiped with a compound conic
structure with possibly non-compact integral-jet space. In other words, we
again consider the situation from I1.20, i.e. T is a compound-geomelrical
parameter vector space of sections of a fiberwise y-dimensional vector bundle
T/ S,

(i) For any point s* immersivity at s* of the map (s* v j) is equivalenl
to the following condition on the parameter space T of sections: the image of
T under the map (T — Hom(Tg,T")) defined in I1.21 is not contained in
a proper subspace of its codomain of the form Hom(Tg", T, where Tg/ﬂ is

some quotient space of T§.
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( Proof of (i): It suffices to observe that in view of IL.21 a vector vg belongs
 to the kernel of the differential Dj, € H om(T§, H om(T*, T") iff the image

of the map (1% — Hom(Tg,T™)) is contained in the space Hom(Tg, TF),
- where Tg/*’ is the quotient space of Tg by the subspace spanned by v§. ) QED

(ii) In the case when y =1 fie. J = P*) assertion (i) assumes a much
simpler form:

For any point s® immersivity at s* of the map {j}s= of 5% into J is equiv-
alent to the following condition on the parameter space T of sections: the map
(T — Hom(T2, T defined in I1.21 is surjective. Less formally, the condi-
tion is that any fibre-transverse 1-jet through the point s (identified with the
corresponding zero-vector in the total space The S ) be realized by the graph of
some section from T (vanishing at 8%, of course).

( Proof of (ii): In view of (i), it suffices to prove that any subspace of
Hom(Tg,T*)) is of the form Hom(Tg", T#), where Te” is some quotient

space of T'¢. But this is trivial since T/ is by assumption a vector line. QED

IL.3 Geometric Description of the Structure of a Spe-
cial Geometrical Parameter Space of Submani-
folds

I.3.1 Geometric Description of the Structure of a Locally Com-

plete Parameter Space of Geometrical Submanifolds

In view of the results of Section IL.1, and of the fact (proved in the Chapter
I) that a locally complete parameter space of geometrical submanifolds of a
given manifold is geometrical, the objective of this section could be rephrased
as characterization of those integrable preconnections which are essentially

locally complete parameter spaces of geometrical submanifolds.

Proposition I1.24 Consider an admissible integrable preconnection on M (v.
T1.13 for definition of admissibility). In other words (according to Proposition
I1.13), the manifold M is equiped with a structure of a geometrical parameter

space of (a family of) submanifolds 5% of a manifold §. Local completeness
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of the parameter space M is equivalent to completivity of the (expanded) conic
structure underlying the preconnection. (This condition was defined as com-
pletivity of the vectorial conic structures on the tangent spaces at all points
m, i.e. as completivity or ‘normality’ of the embeddings of manifolds J° into
the Grassmanian manifolds J.)

[This is an obvious consequence of the equivalent description in Proposition

I1.13 of the above conic structure (as the conic structure induced by the family)
and of 1.18. QED)]

Proposition I1.25 Suppose we are given an isomorphy class of fiberwise y-
dimensional amenable vector bundles. In other words, we are given an iso-
morphy class of completive vectorial conic structures with y-codimensional
integral jets (v. the assertion (iv) of Proposition 1.18; the way in which these
_two classes correspond to each other has also been precisely described there).
Claim: A locally complete space M of submanifolds S (of an arbitrary
manifold ) such that their normal bundles are all of the given class, can
“equivalently (in the sense of Proposition I1.13) be described as an admissible
“integrable preconnection on M with the following property: The undetlying
‘conic structure is homogeneal, where the (common) isomorphy class of the
“induced localized conic structures coincides with the given class.

_.[In order to prove this, it suffices to invoke L18(iv) and the proof of 11.24.
QED)

"I1.3.2 Geometric Description of the Structure of a Locally Com-
plete Parameter Space of Normally Rigid Geometrical Sub-

manifolds

| Proposition I1.26 A connected locally complete family of normally rigid (v.
- 1.22) geometrical submanifolds can equivalently (in the sense of Proposition
I1.13, v. the next remark for a precise formulation) be described as an ad-
missible (v. 11.13) integrable preconnection on a connected manifold with the
below stated properties (a), (b).

(a) The underlying expanded conic structure is completive.
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(b) The underlying expanded conic structure has any of the following two
sroperties, which are according to 1.21 equivalent for any completive expanded
conic structure on a connected manifold:

(1. All its localized integral-jet spaces J° and localizedintegral-transverse bun-

_d_h_és T/ J* are rigid {manifolds resp. vector bundles).

Remark IL27 Of course, the above proposition could be more rigourously
r.éstated as follows: The invariant bijective correspondence defined in I1.13
etween structures on a manifold M of geometrical parameter manifolds of
submanifolds and admissible integrable preconnections on M, restricts to a bi-
jective correspondence between structures of locally complete parameter spaces
of normally rigid geometrical submanifolds, and of admissible integrable pre-

connections satisfying (a), (b) .

.Corol]ary I1.28 Consider an integrable preconnection on M satisfying the
:pc:inditions (a), (b) from I1.26. Then for any point m there exists an open
n_éighbourhood M’ such that for the restricted {obviously integrable) precon-
nection on M’ is admissible. (Thus the restricted preconnection is according
to I1.26 essentially a structure on M of a locally complete parameter space of

niormally rigid geometrical submanifolds.)

:[This is an obvious consequence of I11.15 and I1.26.QED]

Proposition I1.29 Suppose we are given an isomorphy class of manifolds and
an integer y such that any y-codimensional non-exceptional embedding of a
manifold of that class gives rise to a normally rigid geometrical submanifold
. (Explicitly, manifolds of that class are rigid, and all fiberwise y-dimensional
vector bundles admitting nontrivial sections over manifolds of that class are
amenable and rigid.) Our objective is to give a geometric description of lo-
cally complete families of y-codimensional submanifolds of the given isomorphy

class.
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(1) Such a family can equivalently (in the sense made precise in 11.13) be
described as an admissible (v. 11.13) integrable preconnection on a connected
manifold with the following property: the underlying expanded conic structure
M., has any of the two below stated properties, which are according to 123
from the previous chapter equivalent for any conic structure on a connected
manifold:

(1) The conic structure is completive, its integral jets are y-codimensional and
its localized integral-jet spaces are of the given isomorphy class.

(2) The conic structure is homogeneal and completive, its integral jets are y-
codimensional and its localized integral-jet spaces are of the given isomorphy
class.

[Proof of (i): It suffices to apply 1.23 and IL13. QED]

(ii) Let us consider an admissible integrable preconnection on a connected
manifold with the above property (1). Then for completive localized conic
structures belonging to the isomorphy class defined in (2) the integral-jet
spaces and integral-transverse bundles are obviously rigid and this class can
according to (i), I1.24 and 1.23 alternatively be characterized by the follow-
ing property: the corresponding (relative to the bijective correspondence from
1.22(iv)) isomorphy class of amenable completely rigid vector bundles is pre-
cisely the (common) isomorphy class of the normal bundles of the submanifolds

5o of S belonging to the given space M. QED

Remark I1.30 Let a manifold M be equiped with an admissible integrable
: preconnection with a completive underlying conic structure, i.e. {according to
11.24) with a structure of a locally complete geometrical parameter space of
" submanifolds S of a manifold 5. Furthermore, suppose that for some point
m both the submanifold S% of § with that parameter and its normal bundle
TéaSo‘ are rigid .

Claim: After replacing (if necessary) M by a sufficiently small open neigh-
bourhood of m (again denoted by M) and appropriately restricting the family
of (unchanged) submanifolds S* of the (unchanged) manifold S, the precon-

nection is in fact the structure of a locally complete parameter space of nor-
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mally rigid geometrical submanifolds. In particular, the underlying expanded

onic structure is homogeneal {i.e. the induced localized conic structures are

itually isomorphic for various points m).

[This follows immediately from 1.21 (i.e. essentially from the main proper-

ies of rigid manifolds and rigid vector bundles.) QED]
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Second—Order Invariants of

Conic Structures

_ Tn the second chapter we have already studied the most basic {meaning first-
order) differential invariant of a locally complete parameter space M of ge-
ometrical submanifolds S of a given manifold S. Indeed, in the process of
- determining its equivalent geometric description, we have identified the dif-
ferential invariant which ‘precisely corresponds’ to the normal bundle of a
submanifold S® from the given space M: this invariant turned out to be sim-
ply a localized conic structure at the parameter m of that submanifold (i.e.
a vectorial conic structure on the tangent vector space T at m). We have
also seen that the Frobenius tensor of the double fibration is encoded into this
first-order invariant. The isomorphy class of this localized conic structure, 1Le.
of the normal bundle of the submanifold 5%, was seen to be independent on
the submanifold from the family under reasonably weak rigidity conditions.
E.g. in Chapter V, we shall see that in the case of a locally complete param-
eter space of rational curves in a surface this isomorphy class is completely
determined by the self-intersection number z (of the curves 5% in S) or by
dim M (=z+1).

In the remanining chapters the structure on M of a locally complete param-
eter space of geomesrical submanifolds, 1.e. an admissible integrable preéon—

nection on M, will be investigated in more detail. In fact, the main object of
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study will be the higher-order differential invariants, i.e. invariants of localized
preconnections (which are of second order) and ‘preconnectional jets’” (which
will be higher-order localized geometric structures). Just like in the first chap-
ter, most arguments will for the sake of clarity be carried out in the appropriate
more general (and more natural) context, namely in that of geometrical (v.
.11) parameter spaces of submanifolds. (We will impose additional conditions
nly when they yield results which are either more difficult to prove or with-
ut obvious meaning in the above general context; e.g. an entire chapter will
be devoted to the much more special context of geometrical parameter spaces
‘of hypersurfaces and hypersurface-directional conic structures since the study
of Cartan distributions is greatly simplified in the case of 1-codimensional
distributions.) This level of generality will not only make the proofs more
transparent, but will also lead to results interesting in their own right.
 Let us observe that integrability of the localized preconnections is well-
“defined since they were by definition (v. Remark IL11) special localized gen-
“eralized pseudo-conic structures, and for the latter we define integrability in
“the obvious way, namely as the existence of a local (i.e. defined on a neigh-
' bourhood) integrable expanded structure inducing the given localized struc-
_ture. This definition of integrability will also apply to ‘preconnectional jets’.
~ Generally speaking, our main objective will be to obtain a possibly coarse,
but effective classification of the above mentioned not necessarily integrable
localized geometric structures. More rigourously, we would like to be able to
distinguish between them as finely as possible by means of their ‘effectively
manageable’ invariants; by the latter we mean principally the invariants of
~order two or higher (meaning invariants of geometric structures of that or-
der} which are themselves geometric structures and are of order one when
- considered as such. (Of course, most interesting such invariants will be tensor-
type invariants.) However, we will also be interested in other invariants, e.g.
distinguished connections or classes of connections, since they often generate
tensor-type invariants, e.g. torsions, curvatures and classes thereof). One of
the purposes of this classification will be strengthening the basic result quoted

at the beginning of this chapter, namely reading off the appropriate tensor-type
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invariants of the higher order localized geometric structures from the higher

order infinitesimal neighbourhoods of submanifolds belonging to the given pa-

rameter space. Of course, a more immediate purpose of the classification will

of course be to investigate integrability, i.e. to ‘climinate’ by identifying the

tengor-type obstructions those localized structures which are not integrable

(or, equivalently, which can not actually be realized by localizing the struc-

ture of a geometrical parameter space of submanifolds). In fact, one of these

tensor-type obstructions is clearly the invariant of a localized preconnection

we have already introduced in IL.11, namely the pretorsion, while the other is

the ‘precurvature of a preconnectional 1-jet’ (cf. [13]).

In the above context the purpose of this chapter is the following: Since
the structure of a geometrical parameter space of submanifolds is essentially
an integrable preconnection, and this in turn includes a weaker (i.e. underly-

ing) first-order geometric structure (namely the underlying conic structure),
it is natural to first carry out the classification of the localized conic struc-
ures and of conic-structural jets (since, of course, the differential invariants
of the weaker structure are also differential invariants -in a certain sense the
‘most basic ones- of the stronger structure). In addition to that, since inte-
‘grability of a preconnection is a fairly strong condition and the (expanded!)
‘conic structures themselves have a rich geometry, it is reasonable to expect
that there are few integrable preconnections on a given conic structure. In
fact, we will show even uniqueness of such a preconnection under reasonable
_conditions. (The conditions we impose are less restrictive than those usually
“considered in the sense that we do not require the of ‘1-prolongation’ of the
“conic structure to be nothing more than a preconnection, i.e. we do not as-
“sume ‘sparsity’ of the ‘1-prolongation’ already at the level of jets.) Therefore,
the differential geometry of geometrical parameter spaces of submanifolds can
“often litterally be reduced to the study of conic (1-) structures. In particular,
all the (above mentioned) invariants of the integrable localized preconnections
and integrable ‘preconnectional jets’ are then expressible in terms of the in-
variants of appropriate ‘conic-structural jets’. In accordance with that, this

- chapter will be devoted to an investigation of conic structures on manifolds mn
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hieir own right, in particular of their second-order invariants. More precisely,
e will give a precise definition and a reasonably fine classification of ‘conic-
structural 1-jets’ (i.e. localized second-order geometric structures ‘expanding’
alized conic structures).

As the case of Einstein-Weyl 3-manifolds (i.e. locally complete spaces of
embedded rational curves of self-intersection two, cf. [9]) shows, there do exist
amples where all the information is not stored in a conic structure and we
: uwally need to study the richer geometry of preconnections. Of course, in this
eneral case we will be interested in how relevant tensor-type conic-structural
i_ﬁ_irariants determine the set of isomorphy classes of all possible compatible in-
finitesimal neighbourhoods (meaning those asssociated with various integrable
preconnectlonal jets compatible with the given conic-structural jet). In other
ords, we will measure the extent to which such an isomorphy class is recon-

structible already from the tensor-type conic-structural invariant.

III.1 Obstructions to Conjunctive Integrability

As suggested at the beginning of this chapter, the most obvious purpose of
the classification of ¢ 1-jets’ of expanded conic structures will be elimination of
some of those structural jets which can not be obtained by localization from
he underlying conic structure of some integrable expanded preconnection.
‘Therefore, the starting point will be the following two questions:

(a) Are there any obvious necessary conditions on an expanded conic structure
‘in order for it to admit an integrable preconnection?

(b) Under what circumstances does uniqueness of the integrable preconnec-
tion from (a) hold?

As for the question (a), we are immediately naturally lead to a (still rather
strong, i.e. of high order) necessary condition: there has to be an ‘abundance
of integral submanifolds’ of My, meaning that the expanded conic structure
is integrable (v. 1.3). [Indeed, an integral submanifold through a given integral
jet is furnished for instance by the unique integral submanifold with that

property relative to the integrable preconnection. ]
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- In view of this, it is natural to introduce for the (much stronger) requirement
from (a) on an expanded conic structure the following name: conjunctive
.'__i'ntegrability of an expanded conic structure is defined as the existence of
integrable preconnections (with that underlying conic structure). Similarly,
se define conjunctive integrability at a point as conjunctive integrability
of the restriction of the conic structure to some neighbourhood.

. In the search of a necessary condition for conjunctive integrability (i.e.
‘a- condition as in {a)) which is weaker (more concretely ‘of lower order’ or
“more localized”) and thus more useful than integrability, we are now equally
naturally lead to the classical condition of (first-order) prolongability (or first-
order formal integrability) of a (first-order) generalized conic structure:

- Prolongability of an arbitrary generalized conic structure on M at an
integral jet j through a point m is defined as the following condition (which
“is obviously weaker than integrability): there exists a tangential (relative to
‘the expanded conic structure) 2-jet 7% (of a submanifold of M) tangent to
‘the 1-jet 7, i.e. a tangential symmetric elementary preconnnection at j. (V.
‘the definition of an elementary preconnection in I1.4; recall that 2-jets with
4 given tangent 1-jet are precisely symmetric elementary preconnections at
hat 1-jet and that tangentiality of a 2-jet or, more generally, of an elementary
“preconnection means by definition that as an 1-jet in the contact manifold J.M
t is actually an 1-jet in the expanded integral-jet space of the generalized
_conic structure B C J.M .) Futhermore, prolongability at a point and
_prolongability of an expanded generalized conic structure are defined in the
_ébvious way (cf. the above definitions of various concepts of integrability).
Likewise, the prolongation of a prolongable generalized conic structure is
aeﬁned as generalized conic 2-structure (i.e. symmetric generalized pseudo-
- conic 2-structure) formed by tangential 2-jets.

As indicated above, the prolongability of a conic structure on a manifold
M is an obvious necessary condition as in question (a) and is a priori weaker
than integrability.

Let us observe that there is also a third obvious necessary condition for con-

junctive integrability, which is, like integrability, stronger than prolongability,
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. like prolongability, ‘of a low order’, and therefore of a rather different na-

¢ than integrability. Indeed, we define conjunctive (1-) prolongability

‘a point m of an expanded conic structure as the existence of a tangen-

| symmetric (relative to the conic structure) localized preconnection at m;

formally, we require the existence of tangential 2-jets tangent to various

egral 1-jets through m ‘simultaneously’ (with the implication of holomor-

hicity). The conjunctive prolongability of a conic structure on a manifold,

ich we define as conjunctive prolongability at each point, is according to

he results from the previous chapter a third condition as in question (a).

‘As for the question (b), i.e. the uniqueness of an integrable preconnection
ith a given underlying conic structure, for the time being suffice it to say that
/e will obtain reasonably weak sufficient conditions for uniqueness even of a
a;ﬁgentiai symmetric preconnection. Of course, such results will follow from
he study of conjunctive prolongability, i.e. of the ‘richness’ of the prolongation
the conic structure.

Before proceeding with rigorous exposition, we give an outline of the content
f the rest of this section.

As suggested above, our objective will be to find tensor-type invariants of
he conic structure on the manifold such that some of the above mentioned
nditions as in (a) could be expressed in terms of these invariants. Since
-h@_ase invariants will turn out to be of second order, i.e. {o depend only on
he so called ‘conic-structural 1-jets’, it will follow that in the homogeneal
__éuse they can be expressed explicitly in terms of the intrinsic torsion of
he conic structure. Analogously, in the general case they will be expressible
n_:_.terms of pretorsions. Such second-order invariants will be called ‘intrinsic
etorsions’ (of various kinds) since they, just like the intrinsic torsion, depend
On:ly on the ezpanded geometric I-structure (namely the conic structure), and
t on finer expanded geometric 2-structures of genuinely second order (like
preconnections or connections).

o In fact, it will turn out there are two succesively defined second-order
ointly’ precise second-order obstructions to the conjunciive prolongability

of a conic structure on a manifold (succesiveness means that the second one
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is defined only if the first one vanishes). Vanishing of the first of those invari-
ants at a point will be precisely the condition of prolongability of the conic

structure. We will call this obstruction ‘the intrinsic pretorsion’ of the
| ‘conic-structural jet’. This invariant could roughly be described as the most
obvious ‘common part’ of the pretorsions of tangential localized preconnec-
tions.

In the case of a prolongable (i.e. intrinsic pretorsion-free) conic-structural
_ jet, the second, much finer, invariant is defined at a given point m as an
element of a certain Cech cohomology group, more precisely the ‘class’ of
a geometrically defined affine bundle, which we will call the affine bundle
of spaces of ‘tangential’ symmetric elementary preconnections of the ‘conic-
structural jet’ . Vanishing of this class means (as has already been stated)
precisely the conjunctive prolongability of the conic structure. We will obtain
an explicit relation between this class (i.e. the finer invariant) and intrinsic
torsion, namely the class will be identified with the so called ‘conjunctively
intrinsic pretorsion’. (It could roughly be described as the precise ‘common
part’ of the pretorsions of tangential localized preconnections.)

As has already been mentioned, the investigation of conjunctive prolonga-
bility will also result in very concrete answers to the question (b) . For instance,
in a subsequent chapter we will apply straighforwardly this result to Veronese
conic structures and it will turn out that for most values of the self intersec-
tion number z (more precisely for > 5) uniqueness does hold; globally this
will immediately imply that for those z the structure of a locally complete pa-
rameter set of rational curves in a surface coincides simply with the structure
of a Veronese-expanded conic structure with certain properties (in particu-
lar, it is a first-order geometric structure). In other words, we prove that a
Veronese conic structure in most dimensions arises from at most one structure
of a locally complete parameter set of embedded rational curves. (The anal-
ogous statement is standard in the case of paraconformal structures, but the
proofs are essentially different: instead of consideringing prolongation at (or
‘of’) a single 1-jet, we must apply a cohomological argument to the totality

of all integral jets at a point in order to describe explicitly the ‘affine-bundle
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-cla,ss of the ‘tangential symmetric elementary- preconnnection bundle’). This
result indicates that in the theory of spaces of rational curves in surfaces the
sssociated Veronese conic (1-) structures (on these spaces) play a more promi-
tnent role than, for instance, the underlying projective (2-) structures which
il be defined in a subsequent chapter, or the underlying (1-) structures of
onformal manifolds (euclidean or symplectic, depending on the parity of z).
j:'(Tha,t notwithstanding, the conformal and projective invariants are of course
important for the above mentioned reason, namely they are also invariants
£ the structure of a locally complete parameter set of curves in a surface;
‘the fact that we have a large class of manifolds equiped simultaneously in a
.'na,tural way with conformal and projective structures is an indication of the

-complexity of the theory.)
We now begin the rigorous exposition of the above desribed results.

IIL.1.1 Intrinsic Torsion of a Structural Jet

Remark IIT.1 In order to make the exposition more self-contained and to
“motivate some further constructions and terminology, we review briefly the
‘main poperties of intrinsic torsion of general first-order holomorphic geometric
structures (v. Proposition 115 for precise definitions).

Let us consider a first-order holomorphic geometric structure ‘of type cs’
at a point m of a manifold M. Here the simbol ¢s 1s a marker of an arbitrary
category of vectorial geometric structures. (In our applications the category in
question will consist of vectorial conic structures of a given isomorphy class.)
In other words, a vectorial cs-structure T, is given on the tangent space T.
The automorphism group (resp. its Lie algebra) of ;s will be denoted by G° C
G = AutT { resp. G® C G). The manifold parametrizing cs-structures on
the tangent vector space T' (or localized cs-structures on the localized manifold
(M,m)) is denoted by U, and the parameter of the given localized structure
by u € U. According to Proposition .15 the bundle UM of spaces of localized

cs -structures is well-defined. In this situation we can make the following

observations:
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(a) We have the commutative diagram of affine spaces formed by the upper
two (slanted) rows in Figure [11.1 and the associated diagram of vector spaces
:s indicated in the same figure using the folowing convention: for an affine
space in the diagram the associated vector space in parentheses is indicated
above; if we allow the posssibility that the affine space in question is empty,
that is indicated by the symbol for an empty set next as a left lower index.
The spaces from the diagram which have not been introduced vet are defined
in the folowing way:

(' is the space of (linear) connections on the manifold M at the point m.
Explicitly, such a localized connection ¢ is given in the following way: if the
frame bundle associated to the vector bundle TM and the ‘model’ vector
space T, (= C**1) is denoted by PM, and its structural group (i.e. Aut(1,))
by G, then the (localized) connection could be thought of as a G,-invariant
distribution 7%, P of fiber-transverse spaces in the total space P.M (defined)
along the fiber P.

(% is its subspace consisting of symmetric localized connections.

Juas is the space of structural 1-jets expanding the localized structure u;
these structural jets are by definition just (1-) jets of sections of the bundle
UM at the point w.m, i.e. fiber-transverse jets of submanifolds of the total
space U.M . Since UM is a bundle of spaces of localized (holomorphic) geo-
metric 1-structures, localized es-structures equiped with the above structural
jets are clearly localized geometric 2-structures. We will refer to them as holo-
morphic structural 1-jets expanding the cs -structure on the tangent
vector spaces T with parameter u, or less precigely as cs-structural 1-jets .
Of course, this definition is motivated by the fact that each expansion of the
localized structure, by which we mean an expanded cs-structure defined on
a neighbourhood and inducing the given localized structure, determines the
obvious structural 1-jet (namely the 1-jet of the given field of localized struc-
tures).

¢ is the space of structural (1-) jets expanding the given cs -structure
u through isomorphic cs-structures on tangent vector spaces at nearby

points of M, or, more briefly, homogeneal structural jets. The motiva-
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tion for the latter term is obvious: in order for a structural jet to be realized
by a homogeneal (or ‘infinitesimally homogeneous’) expanded structure (on a i
neighbourhood), it must be homogeneal. (Notice that the concept of a ho- |
mogeneal extended homogeneal cs-structural jet is well-defined.) This is the
quotient affine space of C' (as the notation suggests) relative to the middle ver- |
tical map in this diagram; the latter is defined as the standard association of
structural jets expanding the point u with (localized) connections; the struc- |
tural jet associated to a given connection is said to be horizontal relative to ‘
the connection {or structural jet through ‘covariantly constant’ or ‘parallel’
localized structures).
We will also introduce the following non-standard terminology: a connec-
tion will be said to be tangential to a given structural jet if the latter and
the horizontal structural jet are identical (i.e. tangent to each other). C’leaﬂy,
tangentiality of an expanded connection to an expanded (holomorphic) cs-
structure, which is defined in an analogous way (i.e. as tangency of the given
section of UM to the distribution of horizontal spaces) is equivalent to the re-
quirement that the connection be structure-preserving; therefore, we will for
« general (possibly not holomorphic) ezpanded geometric structure replace the
term structure-preserving connection by the shorter tangential connection.
Incidentally, if all localized ecs-structures are mutually isomorphic, than
both inclusions in this diagram ate in fact equalities.
Cftesar ig the sipace of flat structural jets.
(Incidentally, it is claimed that the above spaces are in an obvious way
affine with the indicated associated vector spaces.)
The second map in the nether row is defined by associating to a localized
connection its torsion. The second map in the upper row is defined by com-

mutativity of the diagram .
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(b) On the level of vector spaces we can enlarge the diagram from (a) by
adding the lowest row, which is precisely one of the sequences appearing
in the Spencer complex for the structural group . Here the upper
resp. lower) abstract indices are replaced by dots (resp. asterisks) and {. . ]
n{eans (as usual) antisymmetrization, while lowered (. . .) suggests tensors
ii_(rhich are symmetric in the indicated indices. Furthermore, in the enlarged di-
agram the middle row is an extension of vector spaces. (This means exactness,
injectivity of the first map and surjectivity of the second.) Furthermore, un-
der the assumption that all s -structures on a vector space are isomorphic the
middle column is also an extension and, consequently, all rows and columns
are extensions.

: (c) Let us assume that a structural jet expanding the given localized struc-
ture u is given. Then the diagram from (a) can be enlarged also on the affine
level, 1.e. we obtain the whole diagram in the Figure 1II.1. Here the new
s.paces are defined as follows:

Ct is the afline space of tangential (or ‘structure-preserving’) localized con-
nections. Therefore the vectors from the associated vector space, namely the
space B = EG® & T*(C F) introduced in (b) will be called tangential-
connection vectors, or simply tangential connectors (v. (a) and Remark
IL9 for the justification of terminology). As we have already observed in (b)
this subspace of E is independent of the structural 1-jet expanding the localized
cs-structure, i.e. determined by that structure alone. Clearly, it occurs in the

-~ position (1,1) in the Spencer diagram for the structural group G%.
(e3¢ is the affine space of tangential symmetric localized connections.

(hasaste ig the affine space consisting of torsions of tangential connections, or,
briefly, the affine space of permissible torsions.

From the diagram it follows in particular that the intrinsic torsion of
the given structural jet, i.e. the element of the space

Cf/'sa.*te — E/sa*te — T & T*®2
GCS®T*+T®T*@2
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of intrinsic torsions of the given localized structure, defined in the usual
way (namely as the parameter of the space of permissible torsions) is the pre-
cise obstruction to the flatness of the structural jet (i.e. to the non-emptiness
of the only possibly empty affine space in the diagram). Indeed, the latter
affine space was defined as the intersection of two affine subspaces of the affine
space C of localized connections, and the obstruction to the non-emptiness
of this intersection is according to the elementary theory of affine spaces an
element of the quotient vector space of F by the vector space obtained as the

span of the vector spaces of the two affine subspaces.

I11.1.2 Conic-Structural Prejets

Remark IIL.2 In the following we will repeatedly need certain concepts re-
- garding affine bundles for which no standard terminology seems to be estab-
..1ished, although they play a prominent role in the Cech cohomology theory.
Therefore, we introduce the following conventions: an isomorphism over base
of two affine bundles with the same vector bundle will be said to be over vec-
tor bundle if the associated automorphism of the vector bundle is the identity
(cf. Remark V.3). Thus, for a given vector bundle VM the space of classes
of affine bundles isomorphic over the vector bundle V.M (more rigourosly the
space of classes of affine bundles with the vector bundle VM and isomorphic
over vector bundle) is precisely the cohomology group H'(V M). The elements
of this space (i.e. parameters of classes of affine bundles isomorphié over the
vector bundle VM) will be called the affine-bundle classes (or classes of
affine bundles) on the vector bundle VM. Furthermore, an affine bundle
with vector bundle VM admits a global section if and only if its class {on the
vector bundle VM) is the zero-element of the vector space H'(VM). If the
affine bundle has this property, it will be said to be vectorial. (In other words,
the class of an affine bundle is the precise obstruction to its vectoriality.)

Of course, the above space of affine-bundle classes on VM is mapped sur-
jectively (but possibly non-injectively!) into the space H HGAM) of classes of

affine bundles isomorphic over the base M; here AM is a trivial affine bundle
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‘and G is the automorphism group of the ‘model” affine space. By means of
“this surjection the space H'(GAM) (of classes of affine bundles isomorphic
over the base M ) can be thought as the space of equivalence classes for the
‘induced equivalence relation on the vector space H'(VM) (of affine-bundle
.. classes on V M). Of course, this is precisely the space of orbits for the obvious
action of the group H°(Gy M) (defined by ‘transferring’ an affine-bundle class

by means of a vector-bundle automorphismy.

' Next we define a ‘formal (1-) jet of an (expanded) conic structure’. In
;:.fa(:t, we will use for this object the somewhat technical name ‘full prejet of
a conic structure’ which will soon turn out to be more suggestive within the
terminological system built on principles from I1.5. For the time being we
" will only work with this rather primitive version of the concept of an ordinary
‘conic-structural 1-jet’ (defined as an actual jet of fields of localized structures,
“v. IIL.1), where no holomorphic structure or even topology on the space of
localized conic structures is introduced. The equivalence of the two definitions
“will be proved later; in fact, we will define conic-structural jets, just like the
3 holomorphic conic structures, only under the assumption of homogeneality (by
means of finite-dimensional Lie groups). (However, this will be satisfactory
“since, firstly, we will also obtain reasonably weak sufficient conditions on a
localized conic structure for the homogeneality of all compatible expanded
conic structures, and, secondly, even when this condition is not fulfilled, the

homogeneal case is still the most interesting one.)

Proposition IIL3 (i) The general concept of a ‘structural 1-jet’ will be de-
" fined for an obvious generalization of the vectorial conic structures, namely
‘ectorial aggregational structures’, which are at the same time more general
" than holomorphic vectorial geometric structures. We now expound their defi-
nition:

Let us consider a holomorphic natural association (v. Proposition L15) of
manifolds denoted by J with vector spaces T" of a given dimension. J will
be called the space of vectorial atomary structures on 7'; thus a vectorial

atomary structure consists of a vector space T' and a point 7 € J. (Here J
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'is not necessarily the Grassmanian space of 7', although this will be the most
‘important case in our applications; in this case the atomary structures will be
called directional structures). Since these are special holomorphic vectorial
‘geometric structures, the (holomorphic) expanded atomary structures
~are well-defined. (E.g. the expanded directional structures are obviously just
~distributions on manifolds.)

Furthermore, let us define a vectorial aggregational structure as a vec-
“tor space T equiped with a submanifold J° of the associated parameter space J
of atomary structures; this submanifold will be called the integral atomary-
structure space. (E.g. in the special case consisered above a vectorial ag-
gregational structure is precisely a vectorial conic structure.)

Similarly, we define expanded aggregational structures as the obvious
generalization of expanded conic structures; explicitly, such a structure consists
of a manifold M and a (holomorphic) subfamily of the bundle J°M (in our
case the bundle of Grassmanians) naturally associated to the tangent bundle.
(Incidentally, all considerations in this proposition could be carried out without
any modifications on the level of the more elementary and obviously defined
“bundles of vectorial aggregational structures’.)

© ((i1)) Intuitively, a ‘full aggregational-structural (1-) prejet’ will consist of
a localized aggregational structure as in (i) and the ‘first-order part’ of an
actual local (i.e. defined on a neighbourhood) expanded aggregational struc-
‘ture inducing the given localized aggregational structure; by this we mean the
estriction of the tangent bundle of the expanded integral atomary-structure
=sf)ace to the localized integral atomary-structure space. However, we will not
‘tequire that this vector bundle actually arise in this way, except for the ob-
ious conditions on its individual fibers. Therefore, the precise definition will
se the following:

Let J*(C J) be the integral space of atomary structures for a localized ag-
regational structure at the point m of a manifold M (i.e. of an aggregational
structure on the tangent space T' at m). A full (aggregational-) structural
}1_"') prejet expanding this localized aggregati'onal structure is by definition a

ocalized geometric 2-structure at m consisting of the localized aggregational
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structure and a vector subbundle (called the tangent distribution of the
full structural prejet) T5hJ¢ of the restricted tangent bundle TypsJ¢ such that
cach of its fibers T3k is relative to the bundle JM a fiber-transverse space
‘modulo T¢ := T5 over T} here by the last condition we mean that it has the
following two properties:
| (a) It intersects the vertical space Ty precisely in the space T75.
(b) Tt projects under the differential of the projection in the bundle of
* Grassmanians onto the space 7.
Furthermore, for a given expanded aggregational structure the induced
- full aggregational-structural prejet at a point m is defined as explained
above.
- {(iii)) Our next objective is to show that tangentiality (or ‘structure-preserving’)
of an expanded connection relative to a given expanded aggregational struc-
- ture (which was defined in Remark I11.1 by means of the parallel transport)
is still expressible as a certain tangency also in this more general context; this
will be a further justification for the term tangential connection.
First we define the above mentioned tangency condition. We say that a
_connection ¢ at the point m (v. Remark II1.1) is tangential relative to a
given conic-structural 1-jet at m if the distribution T7 J¢ of horizontal spaces
in the manifold J.M on the fiber J defined by the given connection (v. the
same remark) is a vector subbundle of the constituent vector bundle 75, J° of
_fhe full structural prejet.
Claim: Let a manifold M be equiped with a conic structure and an arbitrary
‘connection. Then the folowing two conditions are equivalent:
(a) The induced localized connections (at various points of M) are tangential
relative to the conic-structural 1-jets induced by the given expanded conic
“structure.
. (b) The expanded connection is tangential relative to the expanded conic
“structure. ( Recall that this this requirement explicitly means that for each
curve joining two points m, /i the parallel transport T — T induced by the
_connection is an isomorphism. of vectorial aggregational structures; e.g. in

“the case when atomary structures are directional structures and aggregational
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stricbures are conic structures, this means that both the parallel transport and
its inverse map vector subspaces in integral directions into vector susapaces in
integral directions).

[The proof of this proposition is a straightforward ‘tantological’ reasoning and
will thus be omitted. Incidentally, this proposition would also hold for real-
differentiable connections on the tangent bundles viewed as real-differentiable
complex vector bundles, with the proviso that we only allow real curves in the
manifold (in order for the parallel transport to be well-defined).QED]

(iv) The simplest genuinely second-order invariant of an full aggregational-
structural prejet can be constructed in the following way:

As we have already observed in the special case of conic structures, any
expanded aggregational structure on M determines a possibly non-trivial (holo-
morphic) family of manifolds, namely the subfamily J*M (formed by integral
atomary-structure spaces) of the bundle JM. In other words any etension
of a given localized aggregational structure (into a neighbourhood) induces
a deformation of the integral atomary-structure manifold. In particular, the
Kodaira-Spencer map KS € Hom(T, H'(T5J¢) of this deformation is well-
defined. We will call the linear maps belonging to the above space infinites-
imal deformation of the manifold J* (with parameter space ).

Claim: An infinitesimal deformation of the integral atomary-structure man-
ifold can be associated in a canonical way (described in the proof) with each
structural 1-jet expanding a localized aggregational structure. Furthermore,
the infinitesimal deformation of the integral atomary-structure manifold asso-
ciated to the full prejet of a local ezpanded aggregational structure, is precisely
 the Kodaira-Spencer map of the associated deformation. (More succinlty, the
Kodaira-Spencer map of the deformation induced by an expanded structure de-
. pends only on its full prejet and it can be defined for arbitrary full structural
prejets).

[Proof of (iv): Both statements follow easily from the following {not stan-
dard, but obvious) invariant reformulation of the definition of the Kodaira-
Spencer KS map of an arbitrary deformation BM of a manifold B: KS

assigns to a tangent vector v at m precisely the affine-bundle class {v. Remark
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T11.2) of the affine bundle on B whose fiber at the point b is defined as the
verse image of v in the tangent space Tg s at the point (b.m) with respect

to the differential of the projection (in the family BM }.-QED]

‘ Let us observe that the infinitesimal deformation of the integral-jet space
associated to a given full structural prejet vanishes as soon as either of the fol-
lowing reasonably weak conditions is fulfilled: rigidity of the integral-jet space
or existence of (localized) connections tangential relative to the full struc-
tural prejet. Furthermore, the latter of these conditions is clearly weaker tha

homogeneality of the full structural prejet.

In the next proposition we introduce the concept of a ‘conic-structural pre-
jet’, which is related to the concept of a full conic-structural prejet, but of a
more specific character, i.e. not defined for general aggregational structures.
Indeed, a peculiarity of conic structures is that they can be ‘expanded only in

Jarious integral-tangent directions at a point’

Proposition IT1.4 In the situation of the Definition I1L.3 let us denote (as
in previous chapters) by F.J.M. the structural vector bundle of the canonical
contact structure on the manifold J M. In other words, for a jet 7 at m the
:correspondmg fiber F is the structural vector space for the contact manifold
at j.m, which was defined as the inverse ol the vector subspace T of T with
direction j relative to the differential of the projection.

We define an elementary structural prejet expanding the given (localized)
conic structure at an integral jet j as a direction in the contact-distribution
fiber I at j such that the vector subspace ' in that direction is relative to
the bundle of Grasssmanians a fiber-transverse space modulo T5 over T

In other words, if we introduce notation F* := Tj and 77 = Ty, ele-
mentary structural prejets are obviously in bijective correspondence with di-
rect complements Flecs of FFie in FF and thus form an affine space, which
we denote Cf* ¢ Gr(z,FF) C Gr(z + b, F), with associated vector space
Hom(Fh® FEe) je. Fleco @ e,

Let us observe that a structural prejet of this conic structure, which we

define as a (holomorphic) field of elementary structural prejets, i.e. a field
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valued in the above described affine bundle) determines, and is determined by,
a distribution F*°J¢ (in R along J° and contained in the restricted constituent
distribution of the contact structure on J.M), such that each of its fibers F**
‘is relative to the bundle of Grasssmanians a fiber-transverse space modulo 17
over T%. F*eJ* will be called the tangent distribution of the structural
.prejet.
" Claim: Each structural (1-) jet induces a structural prejet by intersecting
“the constituent vector bundle T J¢ with the restricted integral-tangent vector
“bundle FJ° of the contact manifold.

[Indeed, the intersections of fibers of these vector subbundles of the restricted

tangent bundle T asJe are clearly of constant rank.QED)]

Remark ITL.5 When a conic structure is given on a manifold, the concept of
tangentiality of an elementary preconnection at a given jet by its very defini-
“tion depends only on the elementary structural prejet expanding the localized
< conic structure associated to the given conic structure. Furthermore, for ev-
ery localized conic structure and elementary preconnection at an integral jet
there obviously exists precisely one elementary structural prejet expanding
the localized conic structure such that the given elementary preconnection is
tangential to the full structural prejet.

Similarly, tangentiality of a localized preconnection depends only on the
prejet at m of the given {expanded) conic structure. Furthermore, for every
localized preconnection there obviously exists precisely one structural prejet
expanding the underlying localized conic structure such that the given precon-

nection is tangential to the full structural prejet.

Remark 111.6 If a given elementary conic-structural prejet expanding at an
integral 1-jet j a given localizedconic structure can be realized by a local (i.e.
defined on a a neighbourhood) expanded conic structure, then prolongability of
‘the latter at j (which was defined as the existence of tangential 2-jets) accord-
ing to the previous remark depends only on the given elementary structural
prejet. For this reason we define prolongability of an elementary conic-

structural prejet as the existence of tangential 2-jets.
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[IL.1.3 Intrinsic Pretorsion and Prolongability

Proposition TIL.7 Let us consider a localized conic structure, where notation

is as in 1I1.3.

(i) We have the commutative diagram of affine bundles formed by the

‘bundles in the upper two (slanted) rows of Figure IIL7 and the associated

“diagram of vector bundles is indicated in the same figure using the convention

'_from Remark 111.1. The only bundle from the diagram which has not been

ntroduced yet, namely C#¢* J¢ is the affine subbundle of CfJ* defined in

_' the folowing way:

‘At an integral jet j € J° its fiber C'/t#32+ is by definition the space of prolongable
clementary structural prejets ( cf. Proposition 111.4).

The maps in this diagram are defined as follows: The middle vertical map
“is the surjection defined by associating with a given elementary preconnection
" the elementary structural prejet expanding the conic structure for which the
clementary preconnection is tangential (cf. Proposition I11.3). The second
“‘map in the nether row is the surjection defined by associating to an elementary
' preconnectlon its elementary pretorsion (in the way described in Remark 11.10,

i.e. by restricting the Frobenius tensor of the contact manifold). The leftmost
vertical map and the second maping in the first row are defined to be the
“ quotient maps relative to the two structures of a quotient affine bundle (on the
codomain bundle) constructed by means of the second and third isomorphism
theorem . The first map in either row of this diagram is defined to be the
inclusion. The rightmost vertical map is defined by commutativity of the
diagram . (In particular, it is claimed that the above spaces are in an obvious

way affine with the indicated associated vector spaces.)
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(ii) On the level of vector bundles we can enlarge the diagram from (i) by

adding the lowest row. Furthermore, in the enlarged diagram the middle row
and the middle column are extensions of vector spaces. ( Cf . Remark 1IL.1.)
Consequently, all rows and columns are extensions.
[Proof of (i) and (ii): At a given integral jet the affine space CFe of elemen-
tary structural prejets has already been shown to be a quotient affine space
of the affline space C of elementary preconnections. Similarly, according to
the Appendix, the vector space of elementary pretorsions is a quotient afline
space of the afline space of elementary preconnections, where the distinguished
fiber (i.e. the fiber over zero ) is precisely the space of symmetric elementary
preconnections, i.e. of second-order jets with the given associated tangent
first-order jet. All the other statements follow immediately. QED]

(iii) Let us assume that a structural prejet expanding the given (localized)
conic structure is given. Then the diagram from (i) can oviously be enlarged
also on the affine level, i.e. we obtain the whole diagram in the Figure IIL7.
Here the fibers over a fixed integral jet 7 of the affine bundles are defined as
follows:

C* is the space of tangential elementary preconnections. (This is conceivably
not a quotient affine space of the space of tangential connections; in order for
that to be true, it is first of all necessary for the latter space to be non-empty;
this will obviously be the case for a structural prejet realized by a holomorphic
homogeneal expanded conic structure.)

(it is the space of tangential second-order jets in M (or tangential sym-
metric elementary preconnections). {As above, this is possibly not a quotient

affine space of the space of tangential symmetric connections.)

Chates is the space consisting of the elementary pretorsions of tangential ele-
mentary preconnections, or, more briefly, permissible elementary pretor-
sions.
Claim: At the given integral jet j the vector from the space
T for Q) T fo®2
T @ T Tl @ T/e0?

Cq/;sa*te — E’J{Sﬂt*tﬁ — (III].)
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associated to the given elementary structural prejet by the map from the dia-
gram is the precise obstruction to the prolongability of that elementary struc-
tural prejet (which was defined as the existence of tangential second-order
jets), Le. to the non-emptiness of the only possibly empty affine space in the
diagram . For this reason vectors from the space IIL.1 will be called intrinsic
_'elementary pretorsions. The moral here is that the obstruction to
the prolongability is encoded in the space of elementary pretorsions
(as the affine subspace formed by permissible clementary pretorsions, i.c. as
the intrinsic elementary pretorsion which is the parameter of this subspace).

In conclusion, the field of intrinsic elementary pretorsions (L.e. field valued
in the vector bundle in the leftmost uppermost position in the diagram) as-
sociated to the given structural prejet is (as an element of the vector space
of fields) a precise obstruction to its prolongability, 1.e. to the existence -
meaning the non-emptiness of all fibers- of the affine bundle { over J%) in the
rightmost nethermost position in the diagram (or, explicitly, to the existence
of tangential second-order jets tangent with arbitrary integral jets through m).
[Proof: The reasoning from the proof of the analogous statement in Remark

[11.1 obviously applies to this situation as well.QED]

Remark ITL.8 In order to simplify the terminology, we will refer to the fields
valued in (i.e. sections of) affine and vector bundles from the diagram in Figure
1117 as ‘pre-’ elements of corresponding spaces from the diagram in the Figure
I11.1. Clearly, we have already applied this convention to connections, torsions
and structural jets, tangential connections, syrﬁmetric connections etc. Simi-
larly, we define permissible pretorsions (as fields of permissible elementary
pretorsions) and intrinsic pretorsions. Thus, we have obtained in (the pre-
vious) Proposition IIL7 the intrinsic pretorsion associated with a given
structural prejet as a precise obstruction to its prolongability, or, equiva-
lently, to the fiberwise non-emptiness (meaning non-emptiness of all fibers) of
the affine bundle of spaces tangential symmetric elementary preconnections.

(This is the affine bundle in the rightmost nethermost position in the diagram

from Proposition I1L.7.)
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[IL.1.4 Conjunctively Intrinsic Pretorsion and Conjunctive Pro-

longability

Proposition ITL.9 Let us consider a localized conic structure, where notation

is as in Proposition I1L1.3.

(i) Our present objective is to study fields valued in bundles from the
diagram in part (i) of Proposition I111.7. If we consider spaces of fields valued
~in those bundles, we obtain the commutative diagram formed by the affine
spaces (of fields) from the upper two (slanted) rows in Figure IIL.9 and the
associated diagram of vector spaces (of fields) is indicated in the same figure
using the convention from Remark IIL1. (In particular, it is claimed that the
above spaces are in an ohvious way non-empty affine spaces with the indicated
associated vector spaces.)

[Proof of (i): The only delicate point in the proof is the non-emptiness of these
affine spaces of fields, i.e. vectoriality of the corresponding affine bundles. First
let us observe that preconnections always exist, i.e. that the affine bundle of
spaces of elementary preconnections is always a vectorial affine bundle: -
deed, even the affine bundle of spaces of symmetric elementary preconnections
(which is an affine subbundle of the former bundle) is always a vectorial afline
bundle since any symmetric connection (not necessarily tangential) gives rise
to a symmetric preconnection (i.e. a field of second-order jets). Furthermore,
a symmetric preconnection gives rise to a prolongable structural prejet, which
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(ii) On the level of vector spaces we can enlarge the diagram from (i) by
adding the lowest row. However, in the enlarged diagram the middle row and
ihe middle column are not necessarily extensions of vector spaces since the
second maps are not necessarily surjective (their 1mages are kernels of certain
maps from long exact sequences associated to extensions of affine bundles).

QED

(iii) Let a structural prejet expanding the given (localized) conic structure
be given. Then an enlargement of the diagram from (i) is determined also on
the affine level, i.e. one obtains the whole diagram in the Figure II1.7 ( f.
Proposition 1I1.7). Let us observe that the structural prejet is an element of
the affine space in the middle uppermost position in this diagram . In this
situation we can actually claim the existence of a tangential preconnection
(i.e. non-emptiness of the affine space in the middle nethermost position) un-
der a mild additional assumption: clearly, it suffices that the structural prejet
be induced by some (first-order) full structural prejet with trivial associated
infinitesimal deformation (with parameter space M) of the integral-jet space
J%: v. Proposition I11.3 for definitions. (We have already seen in that propo-
sition that this assumption holds as soon as cither of the following conditions
is fulfilled: rigidity of the integral manifold of jets or existence of localized
connections tangential relative to the structural prejet.)

Iet us observe that the intrinsic pretorsion of the given structural prejet was
constructed in Proposition IIL.7 by applying to the structural prejet the second
map in the uppermost row of this diagram. Purthermore, the prolongability of
the given structural prejet is obviously tantamount to the condition that the
structural prejet actually be an element of the affine subspace in the rightmost
uppermost position. (On the other hand, the intrinsic pretorsion was seen in
Proposition IIL7 (iii) to be the precise obstruction to prolongability. This
result could also be deduced from the fact we have just observed and the
exactness in the uppermost row. Of course, this exactness resulted from a

simple ‘fiberwise’ argument, and the proof of Proposition 1117 (iil) essentially
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exploited the same argument.)

If the space of permissible pretorsions (in the leftmost nethermost posi-
tion) is non-empty (e.g. if the above mild assumption is made), the intrinsic
pretorsion can obviously be equivalently obtained by applying to this space the
second map in the leftmost column. Consequently, the prolongability of the
structural prejet is then equivalent to the equality of the space HO(Cf25 J)
(of permissible pretorsion vectors ) and its vector space (of permissible pretor-
sion vectors) as affine subspaces of the vector space of pretorsions. (This is also
an essentially fiberwise argument: we have exploited the fact that prolongabil-
ity means the equality of the affine bundle C fsasaste Je (of spaces of permissible
elementary pretorsions) and its vector bundle Efsasosteje — TS ® T:]’Ia Je (of
spaces of permissible elementary pretorsion vectors.) QED

(iv) Conjunctive prolongability of a structural prejet expanding the
given conic structure is defined as the existence of a field of tangential sym-
metric elementary preconnections (i.e. as existence of tangential symmetric
preconnections, i.e. as non-emptiness of the affine space in the rightmost

nethermost position.) In other words, conjunctive prolongability of a struc-

affine spaces of tangential symmetric elementary preconnections is a vectorial
affine bundle on J° with non-empty fibers. (In particular, prolongability, i.e.
non-emptiness of those fibers, is a weaker condition.} The conjunctively pro-
longable full structural prejets clearly form precisely the image of the second
map in the rightmost column. In particular, they form an affine subspace of
the space of prolongable structural prejets. Furthermore, the vector space of
conjunctively prolongable structural predirectors is the image (i.e. quotient)
of the vector space of symmetric preconnectors.

- Claim: For full structural prejets admitting tangential preconnections (cf.
(#ii)) there is an obvius precise obstruciion to conjunctive prolongability defined
in terms of pretorsions: Let us define the vector space of conjunctively
intrinsic pretorsions determined by the given (localized) conic structure

_as the quotient vector space
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(of the vector space of pretorsions by the vector space of conjunctively permis-

) (I1L.2)

sible pretorsion vectors). The pretorsions of preconnections tangential relative
to a given structural prejet will be said to be conjunctively permissible

(relative to the structural prejet). Furthermore, for a full structural prejet
| admitting tangential pretorsions, the parameter of the affine space of conjunc-
tively permissible pretorsions in the vector space (11L.2) of conjunctively intrin-
 sic pretorsions will be called the conjunctively permissible (relative to the
given structural prejet) conjunctively intrinsic pretorsion, or simply the con-
junctively intrinsic pretorsion associated with the given structural
prejet.
Claim: For a structural prejet admitting tangential preconnections conjunc-
tive prolongability is equivalent lo vanishing of the associated conjunctively
intrinsic pretorsion.

[Proof of this claim is a straightforward application of Proposition III.7.

QED]
The remainder of this proposition will be devoted to a more precise inter-
pretation of the conjunctively intrinsic pretorsion. Such considerations (in a
somewhat more complex setting) will play an important role in the investiga-

tion of the first infinitesimal neighbourhood in the next section.

(v) (Here we do not assume that a fixed structural prejet is given.) Since

the bundle
Cfeso J¢ (= the quotient affine bundle in this context (11L.3)

(of spaces of prolongable elementary structural prejets) is by its definition a
quotient affine bundle of the bundle C sa.J° (of spaces of symmetric elemen-
tary preconnections), we can form the corresponding long exact sequence of
sheaf cohomology spaces. (Indeed, affine-bundle extensions, i.e. surjective
base-preserving mappings of affine bundles, give rise to long exact sequences

just like the vector-bundle extensions; of course, the long exact sequences
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thus obtained differ from the long exact sequences induced by the associated
vector-bundle extensions only in 0-dimensional cohomology.}) This sequence
' obviously begins with the sequence formed by the non-empty affine spaces in
the rightmost column of the diagram. Since the above quotient affine bundle
is according to (i) vectorial, we clearly obtain in the long exact sequence the
. connecting mapping of the (non-empty!) afline space in the rightmost upper-
“most position (i.e. the space of prolongable structural prejets) into (the affine

space underlying) the vector space
HY(EFet ) = H(T5,. @ T J*) (I11.4)

(of affine-bundle classes on the tangential symmetric elementary preconnector
bundle). The explicit description of this map is obvious: it associates with
a prolongable structural prejet the affine-bundle class of the associated affine
bundle of spaces of tangential (relative to that structural prejet) symmetric
-~ elementary preconnections. We will refer to this map as the connecting map-
~ ping of prolongable structural prejets or the connecting association
" of affine-bundle classes with prolongable structural prejets. Let us
observe that the image of this map is naturally identified with the quotient

affine space
HD(C;?BM*JE) _ JHO(O#tesa. J’a)
HO(E;aJs) T HD(T/a @ T*/a®2 Js)

(of the affine space of prolongable structural prejets by the space of conjunc-

tively prolongable structural predirectors). Note that this image (i.e. the
affine space consisting of the canonical affine-bundle classes of prolongable full
structural prejets) would not contain the zero affine-bundle class if the affine
space HO(C3*J¢) (of symmetric preconnections) were empty. However, since
HO(C'52 J%) is (according to (i)) non-empty, the above image coincides with its
vector space as an affine subspace of the space (I11.4) (of affine-bundle classes
on the tangential symmetric elementary-preconnnector bundle). Clearly the
zero affine-bundle class is (as a point of the quotient affine space) precisely the
parameter of the space of conjunctively prolongable structural prejets. Fur-

thermore, the linear map associated to the connecting mapping of prolongable
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structural prejets is clearly the first connecting map in the long exact sequence
induced by the vector-bundle extension in the rightmost column. We will refer
to it as the connective mapping of prolongable structural predirectors.
According to the above consideration its image coincides with the image of the
connecting affine map. Since the vector-bundle exiension is clearly indepen-
dent of the full structural prejet expanding the given localized conic structure,
the same applies to the connective mapping.

With the above terminology we can reformulate the assertion (iv) in the
following way: For any structural prejet the following properties are mutually
eqivalent:

(a) The structural prejet is conjunctively prolongable;

(b) The conjunctively intrinsic pretorsion of the structural prejet (i.e. the
conjunctively permissible one) vanishes;

(c) Both succesively defined obstructions to conjunctive prolongability, namely
the intrinsic pretorsion and the canonical affine-bundle class of the structural
prejet (i.e. the class of the tangential symmetric elementary-preconnnection
bundle), vanish.

In this situation the vectors of tangential symmetric preconnections are
according to the diagram (in Figure II1.9) precisely the tangential symmetric
preconnectors. Let us observe that the vector space of these fields does not

depend on the structural prejet, but only on the (localized) conic structure.

(vi) Our next objective is to interpret the (above defined) connecting map-
ping of prolongable structural prejets in terms of pretorsion. (More precisely,
the objective is to find a method which would enable one to reconstruct the
affine-bundle class of a prolongable structural prejet from the localized conic
structure and some set of pretorsions distinguished by the full structural pre-
jet.)

Suppose an arbitrary structural prejet is given (i.e. we again consider the
situation from (iil)).

(vi.1) Let us apply the argument from (v) to the affine bundle C!*J* (of spaces

of tangential elementary preconnections) and its quotient affine bundle AP J* :
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= (Pasete J¢ (of spaces of permissible elementary pretorsions); thus we obtain
the long exact sequence which begins with the sequence formed by non-empty
affine spaces in the nethermost row. The resulting connecting map, i.e. the
mapping of the (possibly empty) affine space I 0((C/sasaste J2) of permissible
pretorsions into the vector space HY(Ef**J%) = H'(15,,® T:)fa J%) (of
affine-bundle classes on the tangential symmetric elementary-preconnnector
bundle) will be referred o as the connecting mapping of permissible
pretorsions or the connecting association of affine-bundle classes with
permissible torsions. According to the general properties of affine-bundle
extensions (already applied in (v)), this map descends to an affine injection of

the quotient affine space

HD(Cq{‘sasa*ter) B HD(C}]{sasa*teJa‘)
HO(Ete J<) '_ HO(TS ® T fe Je)

(of the affine space of permissible pretorsions by the vector space of conjunc-

(IIL5)

tively permissible pretorsion vectors). This quotient affine space is, on the
other hand, clearly also injectively mapped into the vector space of conjunc-
tively intrinsic pretorsions (defined in (iv)). The latter affine injection will
be thought of as inclusion, and its domain (i.e. the quotient (IIL5) will in
accordance with that be called the space of permisssible conjunctively in-
trinsic pretorsions. Accordingly, the former injection will be referred to as
the canonical (affine) injection of permissible conjunctively intrinsic
pretorsions or canonical injective association of affine-bundle classes
with permissible conjunctively intrinsic pretorsions. (vi.2) The linear
map associated to the afline connecting map from (vi.l), i.e. the connective
map from the long exact sequence for the associated quotient vector space
clearly has analogous properties, and we introduce analogous terminology in
the obvious way. (Explicitly, the connective map descends to a linear injection
of the space of permissible (relative to the given localized conic structure)

conjunctively intrinsic pretorsion vectors

HO(qu"'sasa.teJe) _ HO( j.[* @T:}/QJE)
HO(EET) . HO(TS @ T+ J°)

(LIL6)
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into the vector space HY{(EP*teJ®) = H'(T5,. ® 1 :)/a J?) of affine-bundle
‘clagses on the tangential symmetric elementary-preconnnector bundle). Let
us observe that this ‘vectorial component’ of the construction in (vi.1) is in-
“dependent of the full structural prejet expanding the given localized conic
structure (i.e. completely determined by the localized conic structure alone).
(vi.3) Since the domain of the affine injection from (vi.1) (of permissible con-

" junctively intrinsic pretorsions ) is an affine subspace of a vector space (namely
of the space of conjunctively intrinsic pretorsions ), and the codomain is a vec-
tor space (of affine-bundle classes), a special caution is needed when we identify
- its domain with its image by means of the affine injection. More precisely, if we
do 50, it is often impossible to do the same for the associated linear injection
in a consistent way; in other words, if either the domain and its vector space
(which are parallel affine subspaces of their ambient vector space) coincide,
or the image and its vector space (which are in a similar relation) coincide, 1t
could be impossible to carry out both identifications simultaneously. However,
it is desirable to carry out at least one of them in order to simplify terminology
and notation. Since the linear injection is more canonical {in the sense made
precise in (vi.2)), we will think of it as an inclusion (i.e. carry out the iden-
tification of the vector subspaces by means of the linear injection). In other
words, under this convention, the affine-bundle class (linearly) injectively asso-
ciated to a permissible conjunctively intrinsic pretorsion vector coincides with
it, but the analogous statement 1s conceivably not true of the affine-bundle
class (affinely) injectively associated to a permissible conjunctively intrmsic
pretorsion.

(vi.4 ) In view of (iii), the domain of the affine injection from (vi.l) and
its vector space clearly coincide (as affine subspaces of the vector space of
conjunctively intrinsic pretorsions) iff the structural prejet is prolongable. In
fact, the space of permissible conjunctively intrinsic pretorsions is clearly the
preimage of the intrinsic pretorsion of the structural prejet in the vector space
of conjunctively intrinsic pretorsions, and on the vector level the space of
permissible conjunctively intrinsic pretorsion vectors is precisely the space of

intrinsic-pretorsion-free conjunctively intrinsic pretorsions (by which we mean
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the preimage of the zero intrinsic pretorsion in the vector space of conjunctively
intrinsic pretorsions).

Claim: If we asssume prolongability of the full structural prejet, the canon-
jcal affine-bundle class of the prolongable structural prejet (which was defined
in (v)) coincides with the canonical affine-bundle class of the zero permisssi-
ble intrinsic pretorsion [i.e. it is equal to the image of the zero comjunctively
intrinsic pretorsion via the (affine) canonical injection of permisssible con-
gunctively intrinsic pretorsions (not pretorsion vectors)]. (This image is well-
defined since the zero intrinsic pretorsion is due to prolongability not only a
permissible conjunctively intrinsic pretorsion vector, but also a permisssible
conjunctively intrinsic pretorsion. Notice that the assertion (vi.4) does not
yet accomplish the goal of (vi).)

[Proof of (vi.4): The canonical affine-bundle class of the prolongable structural
prejet is by definition represented by the tangential symmetric elementary-
preconnnection bundle (which has non-empty fibers due to prolongability). It
remains to recall that for a tangential elementary preconnector symmetry is
equivalent to vanishing ol elementary pretorsion, and to apply the definition
of the connecting mapping of permissible pretorsions. QED]

(vi.5) From the general properties of the affine-bundle extensions {already
exploited in (v)) we infer the equivalence of the following two conditions:

(a) Existence of tangential (relative to the given structural prejet) preconnec-
tions, i.e. vectoriality of the tangential-elementary preconnnection bundle, i.e.
existence of conjunctively permissible pretorsions;

{(b) Equality of the image of the affine injection of permissible conjunctively
intrinsic pretorsions and its vector space (as afline subspaces of the vector space
HY(EBste J7) = Hl(Tj.(* ® T:)/a J?) of affine-bundle classes on the tangential
symmetric elementary-preconnnector bundle).

Furthermore, if these conditions are fulfilled, the conjunctively intrinsic
pretorsion (introduced in (iv) as the parameter of the affine space of conjunc-
tively permissible pretorsions in the vector space (T11L.2) of conjunctively intrin-
sic pretorsions ) is a well-defined permissible conjunctively intrinsic pretorsion

(in fact clearly the only one) mapped into zero by the affine injection of
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permissible conjunctively intrinsic pretorsions.

(vi.6) Let us now assume both prolongability and existence of tangential pre-

connections (in other words, we consider a full structural prejet for which the

' conditions of (vi.5) and (vi.6) are simultaneously fulfilled).

Thus the affine space (?2) (of permissible conjunctively intrinsic pretorsions)
' contains two distinguished points, namely the conjunctively intrinsic pretorsion
of the full structural prejet and the zero conjunctively intrinsic pretorsion. In

" order to achieve the objective of (vi}, it suffices to apply (vi.5) and (vi.6):

“indeed, according to these assertions the affine injection of permissible conjun-

tively intrinsic pretorsions maps these distinguished points into respectively
sero affine-bundle class and the canonical affine-bundle class of the prolongable
structural prejet. Therefore the associated linear injection, i.e. the linear in-
jection of permissible conjunctively intrinsic preforsion vectors {(which depends
only on the localized conic structure!), maps the vector joining these points
into the vector joining their images. In other words, it maps the conjunctively
intrinsic pretorsion of the structural prejet into the negative of the canonical
affine-bundle class of the structural prejet. Under the convention from (vi.4)
we obtain the following conclusion:

. The canonical affine-bundle class of the prolongable structural prejet is pre-
cisely the negalive of the conjunctively intrinsic pretorsion of the structurel
prejet.

In summary, the objective of (vi) has been accomplished for the prolongable
‘structural prejets satisfying the above mild additional condition (namely the
existence of tangential preconnections).

(vii) According to (vi.l ) the vector space HO(EFaswie joy = HY (TG, ®
_' T:i/a.]e) (of permissible pretorsion vectors) has a canonical (determined by

the localized conic structure alone) structure of an extension, namely the one

sa sawte
0 !r awte g

‘constructed 1n (vi), where the quotient space is the space i mEE) -

HO(TS, BTy T%) . N . :
I eT T of permissible conjunctively intrinsic pretorsion vectors, and

" the subspace is obviously a quotient of the space HO(E*J?) = HO(TseT* J°)
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(of tangential preconnectors), namely the space
HO(ERJ?)  HY(T5 @1+ J)
HO(EET) " HO(T5,. @ T2 J°)

of conjunctively permissible pretorsion vectors. We will record this fact briefly

in the following way:

HO(E"’treJa) ) HO(E!FSGSE*#EJE)

HO E/sasa*te £y 1LY
( T J) HO(E;E'MJE)+ HO(ETtreJE) ( )
or, more concretely,
A o(Ts & T Jo) . HO(T5u, ® T3 °
Ho(rs,, @1y = T O T ) IO ) g

HO( f.(* ® T:)/Of Je) HO(TS @ Tl Jey
In other words, the right-hand ‘extensional summand’ will be understood
to be a quotient space, not a subspace (at least not in an invariant way relative
to the localized conic structure, i.e. not G -invariantly). However, for specific
conic structures it will often be be possible to realize this quotient invariantly

as a direct complement to the subspace.

QED

Proposition ITI.10 We say that a conic structure on an arbitrary vector
space (e.g. a localized conic structure on a manifold) is of pretype one if it
js ‘free of tangential symmetric preconnectors’ in the sense that the associated
vector space of tangential éymmetric preconnectors is the zero-space.

Suppose a localized conic structure of pretype one is given. Let us observe
that for any structural prejet expanding this conic structure (e.g. a structural
.'prejet induced by any full structural prejet expanding this conic structure)
the quotient mapping of the affine space of tangential preconnections onto the
“affine space of permissible pretorsions is bijective. (This follows immediately
from Proposition I1LY (vi).) The same reasoning shows that there can exist
at most one tangential symmetric preconnection on the given structural pre-
jet. Of course, its existence is even without the above assumption on pretype
“equivalent to vanishing of the conjunctively intrinsic pretorsion (i.e. to van-
“ishing of the intrinsic pretorsion and the affine-bundle class of the tangential

symetric elementary preconnection bundle).
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The global version of this result (for conic structures on manifolds or for
germs thereof) has the following straightforward consequence: a global sym-
metric preconnection (which is a second-order geometric structure), e.g. an
integrable expanded preconnection, such that all the induced localized conic
structires are of pretype one, can be reconstructed from the underlying expanded
conic structure (which is a first-order geometric structure). More precisely, on
a given expanded conic structure with that property there can exist at most
one tangential symmetric (expanded) preconnection. (Of course, in order to re-
construct the preconnection pointwise, it does not suffice to consider localized
conic structures: we had to make an essential use of their structural prejets,

and these are 2-structures).

I11.2 Complementally Intrinsic Pretorsion and 1-Fattennings

We have seen in the previous section that the prolongability properties of
a structural prejet expanding a (localized) conic structure are naturally ex-
pressed m terms of two first-order invariants, namely the intrinsic pretorsion
and the somewhat finer conjunctively intrinsic pretorsion, which were both
defined in terrs of pretorsions. In this section we will construct subtler invari-
ants of a (first-order) full structural prejet expanding a conic structure which
are still expressible in terms of pretorsions. More concretely, our present objec-
tive includes e.g. a translation of the properties of the first-order infinitesimal
neighbourhood of an embedded manifold into localized differential-geometric
invariants of a parameter space of ‘nearby’ submanifolds.

The starting point in this section will be an investigation of the space of
pretorsions from the algebraic viewpoint. (Since every torsion gives rise to
a pretorsion, this space will usually be related to the space of torsions, but
we will postpone the pertinent investigation until a later section devoted to
the applications to ‘homogeneal’ structural prejets). In fact, since we already
have a geometric interpretation of the above mentioned invariants and are
wltimately interested in invariants of integrable preconnections, we will mostly

concenirate our attention on the subspace in the extension (IIL1.7), namely the
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space {associated to a given localized conic structure)

HO(ERJ?)  HY(T5 T J°%)
HO(EE‘_B'SG‘JE) - I{D(Tg.(* ®T:}fﬂ Js)

of conjunctively permissible pretorsion vectors (or pretorsion vectors free of
conjunctively intrinsic pretorsion vector). Our immediate objective is to give
an as explicit as possible straightforward formal description of the above
space (which would enable one to ‘compute’ it for concrete conic structures).
By interpreting geometrically the various entries in this description, we will
later identify an invariant of conjunctively prolongable conic structures ( more
precisely of their first-order full structural prejets) related to tangential (i.e.
structure-preserving) connections with an additional condition of compatibil-
ity. (Just like prolongability properties from the previous section, this condi-
tion on tangential connections does not make sense for more general geometric
structures, i.e. it is peculiar to the theory of conic structures).

Since the above space {of conjunctively permissible pretorsion vectors) is
defined as a quotient of the space HY(EXJ®) = H(T5® TP J%) of tangential
preconnectors, we will actually first investigate the latter space. The most
natural way to obtain its explicit description is the following:

By definition tangential preconnectors are fields valued in the bundle E¥*J® :
= 75 ® T J° of vector spaces of tangential elementary preconnectors. In
order to obtain information on the space of these fields, it is natural to look
for a vector-bundle extension such that the associated long exact sequence
includes this vector space of fields. We have already expressed the above
bundle as a quotient vector bundle, namely as Etelw J¢ . However, this bundle
has additional two obvious simpler and more useful structures of a quotient
bundle since it is by definition the tensor product of two quotient bundles:

Indeed, the first tensor factor T5J° can be thought of as the quotient
GlE=Je = GEfb e = g;JE, where G% denotes the stabilizer of the jet j
relative to the action on the manifold J of the Lie algebra G = T ® T™ of
the general linear group G of T. (In other words, G® is defined as the Lie

algebra of the automorphism group (% of the ‘directional structure’ 7 on the
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vector space T, and G/ is consequently the tangent space T of the space J

of ‘directional structures’.)

Similarly, the second tensor factor is the quotient Tl Je = ;:,; JE.

Of course, in our investigation of the space of tangential preconnectors, we
will use the simpler of the above mentioned structures of the quotient bundle,
namely the one arising from the quotient structure on the second tensor factor.
In this connection, we first introduce some suitable terminology:

The vector space of full elementary preconnectors at a given integral
jet 7 is defined as the quotient vector space E. = T, 9T = G @ T+
of the space E of connectors. According to a convention introduced before,
fields of full elementary preconnectors (defined on the integral-jet space of a
localized conic structure) will be called full preconnectors. ( Roughly speak-
ing, these concepts differ from the corresponding concepts without the term
full in the sense that at a given jet we now consider a larger -meaning ‘finer’,
i.e. with smaller equivalence classes- quotient space than before.) Further-
more, the space of tangential full elementary preconnectors is by definition
the subspace EY = T; @ T" = G/ @ T* of E, . On the other hand, an
elementary-preconnector-free full elementary preconnector, i.e. a full elemen-
tary preconnector belonging to the vector space B =T, 1™ = G @ T,
will be called complementary. (The motivation for this terminology will be
given in the next proposition.) Similarly, a full preconnector is said to be
tangential if it consists of tangential full elementary preconnectors and com-
plementary if it consists of complementary full elementary preconnectors.

The above mentioned simple quotient structure on the bundle FiJe of
vector spaces of tangential elementary preconnectors is now constructed as

follows: Since at a given integral jet j obviously
E.=E* and Elr = Eppiesa

i.e. the space EX =T5 Q@ T*/ of tangential elementary preconnectors is pre-
cisely the image of the space Bl = T5 @ T™ of tangential full elementary

preconnectors, the above bundle is by the second isomorphism theorem obvi-
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ously the quotient

:g-np - Tj ® T*oz

—

Ete fteqnp
1

of the tangential full-elementary preconnnector bundle, by the bundle Eie"? J® :
= TS ®T**J® of the vector spaces of complementary tangential full elementary

preconnectors.

Lemma IIL.11 In conclusion, for a given localized conic structure we have
obtained the above described vector-bundle extension. From the long exact
sequence of sheaf cohomology spaces associated to that vector-bundle exten-
sion we conclude that the vector space of tangential preconnectors is itself

canonically an extension of this form:

HOY(ERJ?) . H(EJ%)

HO(EeJ?) = 119
T = go(ez ey (Bl 77) (L)
or, more concretely,
(TS @ T* J) . HY(T5 @ T/ J*
HYT: @ TP J°) = (et J) (5o T"7 J) (111.10)

THNTE @ T Jo) T HOT5@ T~ J¢)
(Here we again use the notation for extensions introduced in connection with
(II1.7) from the last section.) Let us observe that the quotient space in this ex-
tension is by definition a vector subspace of H'(E%" J¢), and thus consists of
the canonical affine-bundle classes of tangential preconnectors, which
we define as the affine-bundle classes (for which we have not yet found a geo-
metric interpretation in terms of conic structures or preconnections) ‘connect-
ingly associated’ to tangential preconnectors. The subspace in this extension
obviously consists of complementable tangential preconnectors, which we
define as those tangential preconnectors which are associated to tangential
full preconnectors. {The motivation for these terms will also be given in the
next proposition.)

Furthermore, the description of the space of permissible pretorsion vectors

given in the equality (IIL7) from the last section, assumes in view of (I1I1.9)
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the following more explicit form:

HO(Bie J*) HO(E!2J9)
HO(E::;.RPJE) HO (Bt Je) HO(E{:& sa....ter)

HO(Efre.sa.Js) + HO(E;frer)

HO(EReseste o) = (I11.11)

or, more concretely,

HD(T€®T* Je) HO(Te®Tt/cn Js) . Ny

HD(Tjjch*“ 75 T O (’f‘j@T* 7 H(T5.® T*]/ J?)
WL, e T T E TR
- (I11.12)

( Let us observe that due to the above mentioned convention on the mean-

(T3, @ TY"J) =

*

ings of the two summands in a sum, this equality involves two G -invariant
extensions recorded as sums, where the two quotient vector spaces are em-
bedded into certain first Cech cohomology spaces.) In particular, the space of
conjunctively permissible pretorsion vectors has been (rather formally) ‘com-
puted’ to be the first summand on the right hand side of (T11.9). For concrete
conic structures the above ‘computation’ often gives an explicit identification
of the isomorphy classes of the simple (or irreducible) components of this G¥
-module. However, this would not by itself be particularly useful without
the geometric interpretation of the various entries expounded in the following

propositions. QED

Proposition IIL.12 Let us consider a full structural prejet expanding a (localized)
conic structure at the point m of a manifold M (v. Proposition I11.3; the con-
cepts introduced in this Proposition do not make sense if only a structural
prejet is given). Then there exists a naturally defined affine bundle for which
the associated vector bundle is the (above defined) bundle £ J° = T5@T™ J*
of vector spaces of tangential full elementary preconnectors; indeed, such an
affine bundle is obviously the affine bundle of spaces of tangential full ele-
mentary preconnections, which is defined in the following way:

First we introduce the bundle G J® = JjuJ* of the affine spaces of full
elementary preconnections; in other words, such an affine space €, at
an integral jet j is defined simply as the quotient affine space of the space

C' (of localized connections) formed by distributional (1-) jets expanding that
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integral jet (v. Remark I11.1), i.e. by the fiber-transverse jets at that point in
the bundle JM of Grassmanians; the associated vector space is according to
the same remark the space E, J* = T; @ T* = G @ T* of full elementary
preconnectors. A full elementary preconnection ¢, at an integral jet j is called
tangential (relative to the given full structural prejet) if the fiber-transverse
subspace of T in direction c,, is contained in the subspace determined by the
full structural prejet ( of. Proposition HL3). Spaces of tangential elementary
preconnections at various integral jets j clearly form an affine subbundle of
C,,J° which we denote by € Je. The associated vector bundle is clearly the
bundle B J* = T5QT"J° of spaces of tangential full elementary preconnectors
(which in view of that was appropriately termed).

(i) Let us associate with a full elementary preconnection ¢, at the jet j an
elementary preconnection ¢, ‘by intersecting’ with the structural space &' of
ihe contact structure of JM, more precisely by means of the requirement that

the vector subspaces 7™ and FT of Tya in divections respectively ¢, and ¢,

satisfy the equality

FT=TpNF.

In this way we clearly obtain a well-defined surjective map over the base

C, J° = Cpd® (111.13)

of affine bundles with non-empty fibers; what is more, this map obviously

preserves tangentiality in the sense that it restricts to a map
Cle o = CrJe (II1.14)

of affine subbundles. Clearly, for this restriction the associated mapping of
vector budles is precisely the surjective map defined in (previous) Proposition
T11.11. Furthermore, surjectivity on the vector level clearly implies surjectivity
on the affine level, i.e. C#J¢ is (relative to (II1.14) a quotient affine bundle of
Ct J°, or, in other words, (II1.14) is an affine-bundle extension. Therefore

we actually obtain the associated long exact sequence the (which has already
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~ been constructed on the vector level):
HP(CE7) 5 HCET)
— HY(E %) — HY(ESJ?) —» HU(EZJ7) -

(Note that the two affine spaces in that sequence are possibly empty.) Q.E.D.
(ii) Let us now suppose that tangential (relative to the given full struc-

tural prejet) preconnections exist, i.e. that the affine space in the leftrmost
“nethermost position of the long exact sequence from (i) is non-empty. (This
is a reasonably mild condition, as we have already seen in Proposition II1.9:
indeed, it is weaker than vanishing of the associated infinitesimal deformation
with parameter space M of the integral-jet space; the latter condition in turn
is weaker than either rigidity of the integral manifold of jets or the existence of
' tangential localized connections.) The boundary (affine) mapping of tan-
- gential preconnections or the boundary {affine) association of affine-bundle
clagses with tangential preconnections is defined (cf. Proposition I11.9) as the
appropriate connecting map from the above long exact sequence. (A more
explicit description of this map will be given soon.) We wil identify its image,
which is an affine subspace of the vector space H' (%™ J*) = HY(Tj@1™J*
(of affine-bundle classes on the tangential complementary full-elementary pre-
connnector bundle) with the quotient affine space

HO(CE ) HO(CET)

HO(E&J=) ~ HO(T5 © T*J¢)

(of the affine space of tangential preconnections by the vector space of comple-
mentable tangential preconnectors) by means of the canonical isomorphism.
The vector space of this affine subspace is the subspace determined by the
localized conic structure (i.e. independent of its full structural prejet) since
it obviously consists of the canonical affine-bundle classes of tangential pre-
connectors {according to terminology introduced in Proposition I11.11). The
terminology from Proposition 1I1.11 is obviously compatible with the one just
introduced in the following sense: the vector space of the affine space of the

canonical affine-bundle classes of tangential preconnections is precisely the
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vector space of the canonical affine-bundle classes of tangential preconnectors.
In particalar, this vector space is also independent of the full structural pre-
jet expanding the given localized conic structure. It is also obvious from the
exact sequence that the distinguishing property of the affine-bundle classes
from H'(E!%*"? J) which are canonically associated to tangential preconnec-
tions is the following: they induce (by means of the approriate map from the
exact sequence) the infinitesimal deformation with parameter space M of the
integral-jet space J° (i.e. the affine-bundle class from H'(E! J)) associated
to the given full structural prejet (v. Proposition 111.3 for definitions). QED

(iii)} Let us now suppose that tangential (relative to the given full struc-
tural prejet) full preconnections exist, i.e. that both affine spaces in the long
exact sequence from (i) are non-empty. Although this is a slightly stronger
condition on the full structural prejet than the condition from (ii), it is still
reasonably mild. Indeed, as we have seen in Proposition TIL.3, it is equivalent
to vanishing of the associated infinitesimal deformation (with parameter space
M) of the integral-jet space J*, and thus still weaker than either rigidity of the
integral manifold of jets or the existence of tangential localized connections.
In particular, the affine space

HG(C:‘—E:JE)
(B 7°)

(consisting of canonical affine bundle classes of tangential preconnections) is
now a vector subspace of H(Eie,npJ®). (cf. the reasoning in Proposition
111.9).

In other words, that quotient affine space has been organized into a vector
space as the vector quotient vector space

HO(CEJe)  HU(EeJ) _ HYT5 @ TR %)
(Ciede) BB ) | HO(T3 9 1)

of the affine space H°(C%J?) of tangential preconnections by the affine sub-
space consisting of complementable tangential preconnections, which we
define as the 1mage
H(Ck J7) _ HO(C J?)
(e T @ T )

(111.15)
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of the affine space H(C®J%) (of tangential full preconnections).

(In other words, the role of the zero vector in the vector quotient of the
affine space H°(C!J?) of tangential preconnections is by definition played
by the affine subspace consisting of the complementally permissible tangential
preconnections. This quotient vector space is by its very definition canonically
isomorphic -as indicated above- to the vector space of the quotient affine space,
namely the quotient vector space of vector spaces, or the space of the canonical
affine-bundle classes of preconnectors. Furthermore, this isomorphism is due
to our conventions precisely the identity.)

In summary, the image of the connecting mapping of preconnections co-
incides with the image of the connecting mapping of preconnectors, and is
therefore independent on the full structural prejet expanding the localized
conic structure. QED

(iv) In order to describe explicitly the connecting mapping of tangential
preconnections, we first analyse the map (IIL13) on the fiber level. Let us
consider an arbitrary tangential {relative to the given full structural prejet)
elementary preconnection ¢, at some integral jet j. The preimage of this
elementary preconnection in the affine space C,, of full elementary precon-
nections at j (relative to (II1.13) will be called the space of complementary
(relative to ¢} full elementary preconnections and denoted by C77. This is
in view of (i) clearly a (non-empty) affine subspace of C with the associated
vector space K = T; @ T**J ( consisting of complementary full elementary
preconnectors).

Similarly, the space of complementary tangential full elementary preconnec-
tions is denoted by C+"* since this, being a preimage relative to (IIL.14) from
(i), is clearly either an afline subspace of C with the associated vector space
Eien? = T5 @ T** (consisting of complementary tangential full elementary
preconnectors) or empty, depending on whether the elementary preconnection
cr is tangential (relative to the given full structural prejet) or not. QED

(v) Before we give the explicit description of the connecting mapping of tan-
gential preconnections, let us consider an arbitrary (localized) preconnection

on the given (localized) conic structure. The preimage of this preconnection in
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the affine space H%(C,, J¢) of arbitrary full preconnections will be called the
space of complementary (relative to the given preconnection) full preconnec-
tions. This is in view of (iii) clearly the space H°(CP J°) of fields valued in the
(indicated) affine bundle of spaces of complementary full elementary precon-
nections. Thus it is either an affine subspace of H°(C',, J¢) with the associated
vector space H(E™J¢) = H%(T; @ T"*J) { consisting of complementary
preconnectors) or empty.

Similarly, the space of complementary tangential full preconnections is ei-
ther the affine subspace HO(Ct+"?.J¢) of HO(C% J¢) ( consisting of fields in the
indicated well-defined affine bundle of subspaces of complementary tangential
full elementary preconnections) with the associated vector space [ O(ELam? %)
= HO(T5® T**J¢) { consisting of complementary tangential preconnectors) or
empty.

Furthermore, tangentiality of the given preconnection is in view of (iv)
clearly equivalent to the non-emptiness of all spaces of complementary full ele-
mentary preconnections (i.e. to the existence of U 17? J¢ as an affine bundle on
the integral-jet space with non-empty fibers). This is a prior1 only a necessary
condition for the existence of a complementary tangential full preconnection.
QED

(vi) The explicit description of the connecting mapping of tangential pre-
connections is now obvious: Let us consider again the situation from (v) and
suppose that the preconnection is indeed tangential. (Thus it is a point of the
affine space in the second in the above affine exact sequence.) According to
(v) this exact seqence can now be enlarged by inserting a new entry at the
beginning:

(B ) — HO(C'J%) — HO(CE %) —
— HY(E&"? J*) — H'(ESJ°) — HY(ESJ7) —
The canonical affine-bundle class (in HY(E®J®) = H'(Ty @ T*J%) of

the given tangential preconnection is by the very definition of the long ex-
act sequence precisely the affine-bundle class of the (above mentioned) bundle

Cies™ J° (of affine spaces of tangential complementary full elementary precon-
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nections) on the associated vector bundle. In view of exactness (which is proved
by precisely this argument), the (tangential) preconnection is complementable
if and only if this affine-bundle class vanishes, QLD

(vii) Let us again consider the situation from (vi) and suppose that there
exist tangential full preconnections (i.e. that the assumption from (iii) is ful-
filled). (In this case the statement from (vi) to the effect that the canonical
affine-bundle class of the given tangential preconnection is the precise obstruc-
tion to complemental permissibility follows also from its definition as the ‘dis-
tance’ between the tangential preconnection and the space of complementally
permissible tangential preconnections.) In view of (vi), the vector space of
the canonical affine-bundle classes of tangential preconnectors (which is deter-
mined by the localized conic structure alone) is precisely equal to the afline
space (a priori dependent on the ull structural prejet!) of the canonical affine-
bundle classes of tangential preconnections [more explicitly the classes (on the
vector bundle Efe"? J¢ = T5& 1) of the affine bundles (of spaces of comple-
mentary tangential full elementary preconnections) associated to tangential
(relative to the full structural prejet) preconnections]. {As we have already
observed, without the assumption on the existence of tangential full precon-
nections, the latter space of affine-bundle classes would a priori only be affine
and dependent on the full structural prejet.) QED

Proposition IT1.13 Suppose that in the situation of 1IL.12 the given full
structural prejet expanding the localized conic structure is induced by (the
underlying global conic structure of) an admissible integrable global precon-
nection, i.e. by the struciure of a geometrical parameter space of submanifolds
of a manifold $. (In particular, it satisfies the condition from (i1) on the ex-
istence of tangential preconnections). Let S* be the manifold with parameter
m. According to the second chapter, its normal bundle TS{O‘ 5% is canonically
isomorphic to the integral-transverse bundle T/ J¢ on the integral-jet space of
the given localized conic structure.

Let us recall that an 1-fattening of a given manifold is by definition an

extension of its tangent bundle (i.e. a vector bundle containing the tangent
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pundle as a subbundle), and that the quotient bundle is in this context called
the normal bundle of the fattening. (The obvious 1-fattening of a mani-
fold associated to an embedding thereof, namely the restricted tangent bundle
of the ambient manifold, is called the first-order infinitesimal neighbour-
hood.) An isomorphism of two 1-fattenings {i.e. an isomorphism of extensions
whose restriction to the subbundles is precisely the differential of the associ-
ated isomorphism of the bases) of the same manifold with the same normal
bundle wil be said to be over normal bundle if the associated ( ‘descended’)
automorphism of the normal bundle is the identity; in particular the assocl-
ated ('restricted’) automorphism of the subbundle is also the identity since it
has to be the differential of the identity automorphism of the basic manifold
. Tt is easily seen that 1-fattenings under such isomorphisms are ’equivalent’
to affine bundles under isomorphisms over associated vector bundles. More
precisely, by associating with an 1-fattening the affine bundle of spaces of di-
rect complements of the tangent spaces (in their given extensions), we obtain
an equivalence of these categories. [Indeed, 1-fattenings under isomorphisms
over normal bundles are by definition equivalent to vector-bundle extensions
under ‘isomorphisms over embedded and quotient bundles’, and for the latter
such equivalence is well-known. QED] In particular, the space of 1-fattening
classes on a given vector bundle, which we define as the space of classes of
1-fattenings isomorphic over that normal bundle (or ‘classes constituting struc-
tures of a normal bundle of an 1-fatteninng’), is a special case of a (similarly
defined) space of extensional classes on a pair of vector bundles, and the
latter can be identified with the vector space of affine-bundle classes on the
obvious associated vector bundle.

We now apply these definitions to the submanifold 5%. The given embed-
ding determines an 1-fattening class on its normal bundle. It is clear that this
class is the precise obstruction to the realizability of the normal bunlde as a
direct complement of the restricted tangent bundle, and the first-order obstruc-
tion to the existence of a tubular neighbourhood; indeed, this class is precisely
the affine-bundle class (on the appropriate vector bundle) induced by the bun-

dle -which we will denote by J5S* - of afline spaces of direct complements in
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the tangent spaces Ts (of the ambient manifold ) to the tangent spaces T¢
(of the submanifold). More precisely, the above class is an affine-bundle class
on the vector bundle If om(T‘S/‘x, T$)5* (namely the vector bundle associated
to the affine bundle J£S®), i.e. an element of Hl(Hom(Téa,Tg)S“). On the
other hand, this bundle is in view of the above quoted result (on isomorphy of
normal and integral-transverse bundles) canonically isomorphic to the vector
bundle Elemr Jo=T; @ T*J".

Claim: With respect to this canonical isomorphism, the above 1-fattening
class is associated precisely with the canonical affine-bundle class of the given
tangential (localized) preconnection (i.e. with the affine-bundle class induced by
the tangential complementary full-elementary preconnnection bundle). (More
succinctly, the canonical affine-bundle class of a tangential precon-
nection is the precise geometric counterpart -defined even for non-
symmetric (in particular non-integrable) tangential preconnections- of the
first-order infinitesimal neighbourhood). What is more, there exists a
canonical isomorphism (defined explicitly in the proof) between the bundle
JES® (of affine spaces of direct complements of the tangent spaces of the sub-
manifold) and the bundle Ci5*"P J° (of affine spaces of complementary tangen-
tial full elementary preconnections) such that the associated isomorphism of the
associated vector bundles coincides with the above canonical isomorphism.
[Proof: We will use notation from the second chapter pertaining to the double
fibration

S« R—M.
Let j be an arbitrary integral jet at the point m and s the associated point of
the submanifold S* (relative to the canonical biholomorphism of the integral-
jet space J° and S%). By the definition of the dual family the submanifold
M® of M with parameter s is the image relative to the projection (R — M)
(in the fibration S*M = J°M of the preimage M®.s relative to the projection
(R — S) (in the fibration M®S) of the point s. The direction (denoted by ¢, )
of the tangent space {denoted by F'") of this preimage was by definition of the
induced preconnection precisely the elementary preconnection constituent for

the localized preconnection at m.
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Let us observe that the preimage in Ty (relative to the differential of the
projection) of any direct complement of 7§ in Ts is a direct complement in Tx
of the vertical space for the fibration J*M (namely of the space F* = T ~ Tg).
(Indeed, it suffices to notice that for any surjective linear map which is injective
on a subspace, the preimage of a direct complement of the image is a direct
complement.) Furthermore, this preimage clearly contains F". Consequently,
its direction is a complementary (relative to the given tangential elementary
preconnection) tangential full elementary preconnection. But the map J§ —
Cleen? is clearly an affine isomorphism with the associated linear isomorphism
equal to the canonical one. The system of these isomorphisms for various

integral jets clearly constitutes the required affine-bundle isomorphism.QED]

[I1.13 suggests that for an arbitrary full structural prejet the canomnical
affine bundle classes of arbitrary tangential preconnections should be viewed
as special 1-fattening classes (constituting normal-bundle structures) on the
integral-transverse bundle of the localized conic structure. In the next propo-
sition we will carry out the pertinent considerations in more detail. A close
_examination of the degree of dependence of the related constructions on the
full structural prejet expanding the given conic structure (cf. assertion (vii)
of the last proposition) will result in a description of these classes in terms of
_-pretorsion. Crucial in this context will be the observation on the independence
‘of the ‘vectorial component’ of such constructions (just like in assertion (vii)
‘of the last proposition) and the consequent reconstructibility of the isomor-

phy classes of full structural prejets from invariants expressible in terms of

. pretorsion.

.P.'roposition TI1.14 Let us consider a (localized) conic structure at the point
“of a manifold M.

(i) The associated vector space

oo(Ekgs)  HY(T5® T Je)

HO(EEJe)  HYT;® T*Je)

he canonical affine-bundle classes of tangential preconnections is by defini-

1 (cf. Proposition 1112 (ii)) a subspace of the vector space HY (B J5)
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— HY(T5 @ T*) of affine-bundle classes on the vector bundle Eleer? o =
1% ® T**J¢ of spaces of complementary tangential elementary preconnectors.
Since the latter vector bundle has a distinguished structure of a tensor-product
bundle (i.e. of a homohorphism bundle), the affine-bundle classes on it are ac-
tually extensional classes. (V. 11113 for definitions.)

Claim: More specifically, these classes are precisely I-fattening classes (con-
stituting normal-bundle structures) on the inlegral-transverse bundle T/*J* of
the localized conic structure.

[Proof of (i): It suffices to observe that the homomorphisms from the fibers of
the bundle Bl J° =Ts QT J* = H om(TF,T5)J° are defined on integral-
transverse spaces and assume values in the tangent spaces of the base.QED]

(ii) Suppose an arbitrary full structural prejet expanding the conic struc-
ture is given. According to Proposition II1.12 (i) this choice determines a
(possibly empty) affine subspace of the space of 1-fattening classes (constitut-
ing normal-bundle structures) on the integral-transverse bundle, namely the
subspace consisting of the canonical 1-fattening classes of tangential precon-
nections (by means of the full structural prejet); here we have slightly modified
the terminology in accordance with (i)). By the same assertion, if tangential
preconnections exist an equivalent distinguishing property of the 1-fattening
classes belonging to this affine subspace is the compatibility with the same
infinitesimal deformation (with parameter space M) of the integral-jet space
JE.

Claim: A distinguished representative 1-fattening (i.e. vector-bundle exten-
sion) for the canonical 1-fattening class of a given tangential preconnection
can be constructed in the following way: Iis fiber at an integral jet 7 € Je s

by definition the quotient vector space

Tg = %
together with the obvious embedding of the space 17 =: TS into Ts, and wilh
the obvious surjection T — T/ =: T,
(Here Ty is not defined as the tangent space of a manifold, and the notation

of Proposition 1113 is implied.)
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[Proof of (ii): Clearly we -ndeed obtain an extension T'sJ¢ of the tangent bun-
dle T5J¢ (of the integral-jet space) over the integral-transverse bundle T/ J
(of the localized conic structure), L.e. an 1-fattening of J. with normal bundle
T/ Je Tt remains to verify that the associated 1-fattening class coincides with
the canonical 1-fattening class of the given tangential preconnection by means
of the boundary afine mapping of tangential preconnections. According to
Proposition 11112 (vi), the latter 1-fattening class can be characterized in the
following way: as an affine-bundle class {v. Proposition II1.13) it is represented
by the tangential complementary full-elementary preconnnection bundle. Sim-
ilarly, the former 1-fattening class is Tepresented by the affine bundle J§J° of
spaces of direct complements of the tangent spaces T5 in the extended tangent
spaces Tg. However, the argument from the proof of 1T1.13 clearly also applies
in this more general situation and gives a canonical isomorphism of the two
affine bundles (explicitly, with a direct complement we associate a complemen-
tary full elementary preconnection by taking the preimage in Tr.QED]

(ii') Suppose the given localized conic structure is constituent for the under-
lying global conic structure of an admissible integrable global preconnection,
ie. of a structure on M of a geometrical parameter space of submanifolds S¢
of a manifold . From the induced tangential preconnection on the induced
full structural prejet expanding the given localized conic structure we can con-
struct an 1-fattening of J* by the procedure given in (ii). It 1s obvious from
the construction of 11113 that this 1-fattening is canonically isomorphic to
the first-order infinitesimal neighbourhood of the submanifold S* with para-
menter m. (Informally speaking, the construction of (i1) is a generalization of
the construction of 111.13.)

(iv) Consider an arbitrary full structural prejet expanding the given localized
comic structure. Our present objective is to study the complemental pro-
longability of the given full structural prejet, which we define as the existence
of simnltancously complementable and symmetric tangential (localized) pre-
connections. (Of course, a necessary condition is conjunctive prolongability,
i.e. the conjunctively intrinsic pretorsion is a rough obstruction.)

Any such preconnection can due to complementability be lifted to a tan-
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gential full preconnection. Such a Lift will obviously be a field of tangential full
clementary preconnections with the lollowing additional property: it will actu-
ally consist of symmetric full elementary preconnections, where the latter are
defined as full elementary preconnections map into symmetric elementary pre-
connections. In other words, the above lift will actually be a field in the afline
subbundle C2%*J¢ of the affine bundle Cte J5 (of spaces of full elementary
preconnections) defined as the bundle of spaces of tangential symmetric full
elementary preconnections. (Let us observe that in general the above bundle is
well-defined and fiberwise non-empty precisely when the full structural prejet
is prolongable; some of those fibers would be empty if the full structural prejet
were not prolongable). Incidentally, the tangential symmetric full-elementary
preconnnector bundle (i.e. the vector bundle of the affine subbundle) is clearly
equal to Ei4eJ® =T, » ®T:) J¢, where the parentheses indicate symmetry of
the associated tensors from 1% & The — Tl @ T*e®2 Iy particular, this vec-
tor bundle is independent of the full structural prejet expanding the localized
conic structure,

Conversely, it is clear that in the case of prolongability (i.e. existence and
fiberwise non-emptiness of the above affine subbundle) any field in the that
subbundle gives rise to a complementable tangential symmetric preconnection;
of course, the given field is in this context a concrete complementary full
preconnection. Thus we have proved the following staternent:

The canonical affine-bundle class of a prolongable full structural
prejet, which is by definition the affine-bundle class of the affine bundle of
spaces of tangential symmetric full elementary preconnections, is the precise
obstruction to complemental prolongability of the full structural prejet.

(v) Just like the canonical affine-bundle class of a prolongable structural
prejet {defined in the last section), the just defined invariant (i.e. the canonical
affine-bundle class of a prolongable full structural prejet) is expressible in terms
of pretorsion. Indeed, the whole argument of the Proposition IIL9 can be
carried out in this context with slight modifications. The objective of (v) will
be to accomplish this.

Let us consider an arbitrary full structural prejet.
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(v.1) We first observe that the quotient affine bundle of the affine bundle
Cl J° (= the extended affine bundle in this context) (T11.16)

of spaces of tangential full elementary preconnections by the vector bundle
Bt e = Topr ® T:)J ¢ (of spaces of tangential symmetric full elementary
preconnectors) is precisely the underlying affine bundle of the vector bundle
of spaces of elementary pretorsions. (This follows from the fact that the affine
bundle CJ¢ is a ‘larger’ quotient of CFJ%, and the distinguished vector sub-
bundle of E!*J® is defined as the pre-image of the subbundle E:**J° of the
‘larger’ quotient vector bundle.)

The connecting map from the long exact sequence associated to the affine-
bundle extension (IIL.16), namely the mapping of the space HO(CFasaxte Jo) of
permissible pretorsions into the space A 1( f22+t2 J¢) of affine-bundle classes will
be called the complemental connecting mapping of permissible pre-
torsions or the complemental connecting association of affine-bundle
classes with permissible pretorsions. Similar terminology is introduced
for the associated linear map (cf. Proposition 111.9). Furthermore, since the
vector-bundle extension associated to the affine-bundle extension (1I1.16) is ac-
cording to (v.1) independent of the full structural prejet expanding the given
comic structure, the same is true of the complemental connecting mapping of
permissible pretorsion vectors. In order to relate the images of the comple-
mental connecting and linear map with pretorsions, it is natural to introduce
the following concepts (cf. Proposition 111.9 (vi)):

Let us define the space of complementally intrinsic pretorsions for the

given localized conic structure as the quotient vector space

I{U(E‘]{SCLJE) _ HD(Tcx & T/m/\*z Je)

}ID(E%_E Js} — HO (T£®T¢Jg) (III.].?)
o (E;io np Je‘) Ho (Tj.@T*G Je€ )

of the vector space of pretorsions by the vector space of complementally per-
missible pretorsion vectors (where the latter are, as indicated, by definition
the conjunctively permissible pretorsion vectors belonging to the image of the

space of complementally permissible tangential preconnectors). Furthermore,
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let us define its affine subspace consisting of permissible complementally

intrinsic pretorsions as the quotient affine space

HG( 30[* & T:{a JE)

HO(C’!TSCL tes Jr—:) _ HU(C!rsa tey Ja)

ST ITeT T (with vector space T aT i) )
o ;:ri.n—p 7 (@1 J¢) W (T QT20°)
(I11.18)

(of the vector space of pretorsions by the vector space of complementally per-
missible pretorsion vectors)

With these definitions it is clear that the complemental connecting map-
ping of permissible pretorsions descends to an affine injection of the space of
permissible complementally intrinsic pretarsions into the space HY(E=J°)
(of affine-bundle classes on the tangential symmetric full-elementary preconnnec-
tor bundle). This injection will be referred to as the affine injection of
permissible complementally intrinsic pretorsions or the affine injec-
tive association of affine-bundle classes with permissible comple-
mentally intrinsic pretorsions. lts image obviously consists precisely of
affine-bundle classes compatible with the given infinitesimal deformation of
the integral-jet space.

(v.2) As in Proposition 1119 (vi.2), the linear map associated to the (just
defined) complemental connecting mapping of permissible pretorsions is also a
connecting map and we introduce analogous terminology. Similarly, the com-
plemental connective mapping of permissible pretorsion vectors and the linear
injection of complementally intrinsic pretorsion vectors are obviously indepen-
dent of the full structural prejet expanding the localized conic structure.

(v.3) The reasoning from Proposition IIL9 (vi.3) applies here and conse-
quently we adopt the analogous convention: the linear injection of comple-
mentally intrinsic pretorsions will be thought of as an inclusion.

(v.4) As in Proposition I11.9 (vi.4), we infer that the domain of the affine
injection of complementally intrinsic pretorsions coincides with its vector space
ifF the full structural prejet is prolongable. Similarly, if we assume prolonga-
bility, the canonical affine-bundle class of the given prolongable full structural

prejet {i.e. represented by the affine bundle C3%¥J° of spaces of tangential
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symmetric full elementary preconnections), clearly coincides with the (well-
defined due to prolongability) afline-bundle class (on the tangential symmet-
ric full elementary-preconnector bundle) associated to the zero permissible |

pretorsion. (Notice that the zero permissible torsion will not necessarily be

mapped into zero since the map is only affine; cf. Proposition 111.9.) QED ‘
(v.5) As in Proposition IIL9 (vi.5) we obtain the equivalence of the follow- |
ing two conditions: [
(a) Triviality of the induced infinitesimal deformation of the integral-jet space J
(in other words existence of tangential full preconnections, or vectoriality of ;
the tangential full-elementary preconnnection bundle, or existence of comple- 3
mentally permissible pretorsions); ‘
(b) Equality of the image of the affine injection of permissible complementally
intrinsic pretorsions and its vector space (as affine subspaces of the vector space
HY(EEoste J7) = H’(Tj.(*@)T:) J¢) of affine-bundle classes on the vector bundle
of spaces of tangential symmetric full elementary preconnecotors).
Furthermore, if these conditions are fulfilled, the complementally intrin-
sic pretorsion of the full structural prejet, which we define as the param-

eter of the afline space of comnplementally permissible pretorsions in the vector

space of complementally intrinsic pretorsions ) is a well-defined permissible
complementally intrinsic pretorsion (in fact clearly the only one) mapped into
zero by the affine injection of permissible conjunctively intrinsic pretorsions.
QED

(v.6) Let us now assume both prolongability of the full structural prejet
and triviality of the induced deformation of the integral-jet space (in other
words, we consider a full structural prejet for which the conditions of (v.5)
and (v.6) are simultaneously fulfilled).

Thus the affine space of permissible complementally intrinsic pretorsions
contains two distinguished points, namely the complementally intrinsic pretorsion
of the full structural prejet and the zero complementally intrinsic pretorsion.
In order to achieve the objective of (¥), it suffices to apply (v.5) and {(v.6):
indeed, according to these assertions the afline injection of permissible comple-

mentally intrinsic pretorsions maps these distinguished points into respectively
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sero affine-bundle class and the canonical affine-bundle class of the prolongable
full structural prejet. Therefore the associated linear injection, i.e. the linear
injection of permissible complementally intrinsic pretorsion vectors {which de-
pends only on the localized conic structure!), maps the vector joining these
points into the vector joining their images. In other words, it maps the comn-
plementally intrinsic pretorsion of the fall structural prejes into the negative
of the canonical affine-bundle class of the full structural prejet. Under the
convention from (vi.4) we obtain the following conclusion:

The canonical affine-bundle class of the prolongable full structural prejet
is precisely the negative of the complementally intrinsic pretorsion of the full
structural prejet. In particular, the latter is @ precise obstruction to comple-
mental prolongability.

Tn summary, the objective of (v) has been accomplished for the prolongable
full siructural prejets satisfying the above reasonably mild additional condition
(narely the triviality of the induced deformation of the integral-jet space).

(vi) Let us again consider an arbitrary full structural prejet expanding the
given localized conic structure. For similar teasons as in (v), the vectorial
component of all ‘affine constructions’ in (vi) will depend only on the localized
conic structure and we will be tacitly extending terminology to the vectorial

constructions as before.

Our next goal is to investigate the interaction of the two analogous athne
extensions (with common associated quotient bundle E/se J7) considered in (v),
namely the extensions (111.3) (from Proposition 111.9 (vi)) and (ITL.16). In fact,
since we are given {as we have already observed) a ‘chain’ of two quotients of
the tangential full-elementary preconnnection (affine!) bundle CI¢ J*, we ob-
tain two additional obvious vector-bundle extensions with common associated
vector subbundle E,’:i"te J¢: these four vector-bundle extensions (more precisely
the corresponding sheal cohomology in dimension k) are indicated in Figure
111.14(vi). For the same reason, one of these two additional vector-bundle ex-
tensions is in fact associated to a canonical affine-bundle extension which fits
into an analogous diagram; In our case this is precisely the extension (111.14)
from the last proposition. The same general arguments show that after the
choice of a field valued in the smaller (i.e. coarser) quotient affine bundle of
the tangential elementary preconnection bundle, the same holds for the other
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additional vector-bundle extension (i.e. it is also associated to a canonical
affine extension fitting into an analogous diagram). As we have already seen,
in our case such a choice (namely the zero permissible pretorsion) is canon-
ically given if the full structural prejet is prolongable; in fact, the bundles
occuring in this second additional affine-bundle extension have already been
considered (and named) in (iv),(v.4) and Proposition ITL.9 (vi-4). In accor-
dance with that, we will refer to this extension as the extensional structure
on the tangential symmetric full-elementary preconnnection bundle
(i.e. on the affine bundle C37+*.J*. However, for the time being, we do not

assume prolongability.
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(vi.1) By general cohomological arguments, the connecting maps in the
long exact sequences assoclated to the above extensions also satisfy obvious

commutativity. In particular, the linear mapping
flrl(Efra°teJ6) . Hl(Ez_&'teJe)

(induced by means of the surjective vector-bundle map from the extensional
structure on the tangential symmetric full-elementary preconnnector bundle)
restricts (in the obvious sense) to the canonical affine surjection
HO(GT{SGJE) HO(C:;&G.JE)
fte — Jie
HO(Fr, Je) HO(EZ"J?)

(111.19)

of permissible complementally intrinsic pretorsions onto permissible
conjunctively intrinsic pretorsions, which we define as the canonical sur-
jection of the larger quotient of the space of tangential full elementary precon-
nectors onto the smaller quotient; note that this surjection is a restriction of
the similarly defined and full structural prejel-independent canonical linear
surjection of complementally intrinsic pretorsions onto conjunctively
intrinsic pretorsions.

More precisely, for a given permissible complementally intrinsic pretorsion,
the following associated affine-bundle classes on the tangential symmetric ele-
mentary preconnector bundle coincide:

(a) The affine-bundle class on the tangential symmetric elementary-
preconnnector bundle which is associated to the given permissible
complementally intrinsic pretorsion, where this class is defined as the
affine-bundle class injectively associated to the permissible conjunctive intrinsic
torsion which is associated to the given permissible complementally intrinsic
pretorsion;

(b) The affine-bundle class associated by means of the surjective vector-bundle
map from the extensional structure on the tangential symmetric fuli-elementary
preconnnector bundle with the affine-bundle class which is injectively associ-

ated to the given permissible complementally intrinsic pretorsion.
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(vi.2) Let us observe that the (possibly empty) quotient affine space

(Gt ) HOGEI) HO(TSQT* J*)
HO(E“’.SQJE} HD(T.TTQ(*®T’:)/Q JC) HO(TE.(*{@T:)'IG JE)
il _ .
BRI T BT ) (with vector space — TTRT
H (E:rel. np Je) HO (Tj@T"‘O‘ JE) Ho (T§®T“°‘ Je)
(111.20)

(of the space of conjunctively permissible pretorsions by the vector space
of complementally permissible pretorsion vectors) is contained in the space
of permissible complementally intrinsic pretorsions. The points of this sub-
space will be called conjunctively permissible complementally intrinsic
pretorsions. (Of course, non-emptiness of the affine space formed by these
points is equivalent to the existence of tangential preconnections.)

From (i) we immediately obtain the following criterion in terms of affine-
bundle classes for this conjunctive permissibility:

A permissible complementally intrinsic pretorsion is conjunclively permissi-
ble iff the associated affine-bundle class on the tangential symmetric elementary-
preconnnector bundle (defined in (v.1) (b)) vanishes.

In other words, the affine space of conjunctively permissible complementally
intrinsic pretorsions is precisely the pre-image of the conjunctively intrinsic
pretorsion (of the full structural prejet) relative to the affine map (T11.19).

(vi.3) The canonical linear mapping of 1-fattening classes deter-
mined by the localized conic structure {(independent of the full structural pre-

jet) is defined as the mapping

Hi(E:rti.n'pJ.s) R Hl(E;::.tBJE)
(into affine-bundle classes on the tangential symmetric full-elementary pre-
connnector bundle) defined by means of the obvious vector-bundle mapping,
namely inclusion. (In other words, this map occurs in the long exact se-
quence associated to the extensional structure on the tangential symmetric

full-elementary preconnnection bundle.)

Claim: The above linear map restricts to an affine surjection

HO(C:TBJE) . HO(C;:,S&JE)
BB ) HO(BET)
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of the (possibly emply) affine space of the canonical 1-fattening classes of
tangential preconnections onto the space of conjunctively permissible comple-
mentally intrinsic pretorsions.

(Informally speaking, if we assume existence of tangential preconnections,
the conjunctively permissible complementally intrinsic pretorsions are in a cer-
tain sense ‘rudimentary’ 1-fattening classes compatible with the given defor-
mation of the integral-jet space.) Furthermore, this surjection, which will be
ceferred o as the canonical affine surjection of the canonical 1-fattening
classes of tangential preconnections could equivalently be obtained by de-
scent of the affine association of conjunctively permissible pretorsions with tan-
gential preconnections. In fact, the space (I11.20} (of conjunctively permissible
complementally intrinsic pretorsions ) is the largest (i.e. ‘finest’} quotient of
the space of conjunctively permissible pretorsions such that the quotient map-
ping of the space of tangential preconnections onto the space of conjunctively
permissible pretorsions descends to a mapping of canonical 1-fattening classes
of tangential preconnections into that quotient.

[Proof of (vi.3): The statement folows easily from a commutativity property
of affine connecting maps analogous to (vi.l) and the fact that both distin-

guished subspaces have been defined as images of affine connecting maps.QED]

Theorem IIT.15 We again consider the situation of III.14. (i) Let us now
assume assume prolongability of the full structural prejet. As we have already
observed, we obtain the fourth affine bundle extension, namely the extensional
structure on the tangential symmetric full-elementary preconnnection bundle.
The corresponding connecting map will be called the connecting mapping
of symmetric tangential preconnections or the connecting associa-
tion of 1-fattenings with tangential symmetric preconnections. Note
that non-emptiness of its domain amounts to conjunctive prolongability. This
map coincides with the restriction of the connecting mapping of tangential
preconnections: indeed, the 1-fattening class connecting-associated to a given
tangential symmetric preconnection is (by the very definition of the connecting

maps in general) simply the affine-bundle class of the corresponding tangential
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complementary full-elementary preconnnection bundle.

In conclusion, the affine space of I-fattening classes connecting-associated
to tangential symmetric preconnections (i.e. the affine space formed by classes
of the tangential complementary full-elementary preconnnection affine bundles
of tangential symmetric preconnections) coincides with the space of 1-fattening
classes which are canonically mapped into the canonical affine-bundle class
of the prolongable full structural prejet (i.e. into the class of the tangential
symmetric full-elementary preconnnection affine bundle; recall that this class 1s
according to III.14(iv) the precise obstruction to complemental prolongability).
In addition to that, non-emptiness fo this sapce is equivalent to conjunctive
prolongability of the full structural prejet. “Furthermore, the vector space of the
latter affine space is the space of the canonical 1-fattening classes of tangential
symmetric preconnectors, t.e. (due to exactness) the quotient vector space

HO(Fpsoste J¢
ﬁi—tj—% (TT1.21)
QED

(i1) Let us assume (as in I11.14(v.6)) both prolongability of the full struc-
tural prejet and triviality of the deformation of the integral jet space induced
by the full structural prejet.

In this situation the (above mentioned) affine space of the canonical 1-
fattening classes of tangential symmeiric preconnections is encoded in the
complementally intrinsic pretorsion (associated to the full structural pre-
jet). Indeed, this space can be reconstructed from the localized conic structure
and the complementally intrinsic pretorsion in view of the following fact: it
consists precisely of those I-fallening classes which are canonically mapped
into the negative of the complementally intrinsic pretorsion. (Here we asume
the convention from (v.3); recall that the canonical mapping of 1-fattening
classes is independent of the full structural prejet ezpanding the localized conic
structure). Furthermore, non-emptiness of that space (which according to
(vi) amounts to conjunctive prolongability) is equivalent to vanishing of the
conjunctively intrinsic pretorsion of the full structural prejet (i.e. canon-

ically surjectively associated lo the complementally intrinsic pretorsion, v.
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HI.14(vi.2)).
[Proof of (ii): It suffices to apply (v) and the previous assertions of I11.14(v1).QED]

(iii) Let us consider the situation of (ii) with the additional assumption

that the given (localized) conic structure is of pretype one (i.e. free of tan-

gential symmetric preconnectors, cf. Proposition 111.10). From the exact se-
quence associated to the extensional structure on the tangential symmetric
full-elementary preconnnection bundle (more concretely from vanishing of the | !
kernel (111.21)), we infer that the canonical mapping of 1-fattenings is in this
case injective. In particular, the canonical surjection of the 1-fattennigs associ-
ated to tangential preconnections (i.e. compatible with the given infinitesimal
deformation of the integral-jet space) onto conjunctively permissible comple-
mentally intrinsic torsions (i.e. points from (IT1.20) is now bijective {being a
restriction of the former map). {Incidentally, this could alternatively be seen
from bijectivity (observed in Proposition I11.10) of the canonical surjection
of the space of tangential preconnections onto the space of conjunctively per-
missible pretorsions.) In particular, the canonical affine-bundle class of the
(unique) tangential symmetric preconnection can be reconstructed from the
complementally intrinsic pretorsion of the given conjunctively prolongable full
structural prejet expanding the localized conic structure simply by applying

the inverse mapping to the negative of the latter. QED

IIL.3 Intrinsic Torsion and Twistorial Invariants of Ho- ]

mogeneal Conic Structures

The assumption of homogeneality (or infinitesimal homogeneity, v. 1.15) of
an arbitrary first-order geometric structure (in particular of a conic structure )
implies the existence of tangential (or structure-preserving) connections, and
thus enables one to apply the apparatus of connection theory (cf. Remark
H1.1 from the last chapter) and construct the corresponding ‘Lie equation of

complete flatness’. A peculiar feature of (homogeneal) conic structures is the

relation between on the one hand the Spencer complex associated to this ‘Lie

equation’ [and the resulling sequence of succesively defined obstructions to the
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unlimited finite-order flatness of the geometric structure, i.e. to the unlimited
finite-order prolongability (or formal integrability) of the Lic equation - cf. the
above mentioned remark] and, on the other hand, a peculiar conic-structural
construction, namely the Spencer complez for the conic structure itself (and
the resulting sequences of succesively defined obstructions to the various de-
grees of its prolongabilily of various orders; the latter are well-defined even
without the assumption of homogeneality and usually have a natural twistorial
interpretation).

Of course, besides this amenability to classical differential-geometric meth-
ods and the correspondence between the two generalized conic structures (namely
the Lie equation and the conic structure itself), the importance of homogeneal
conic structures also derives, of course, from the fact that many such struc-
tures (e.g. paraconformal, in particular complewified quaternionc, structures)

naturally arise in different areas of differential geometry.

In this section we will study the obstructions to various degrees of I-prolongability

(to second-order generalized conic structures) of a conic-structural 1-jet. (Such
an obstruction is e.g. the associated complementally intrinsic pretorsion, which
was shown to be precisely -in case of conjunciive prolongability at leasl- the
negative of the parameter of the affine space of 1-fattening classes connecting-
associated to tangential symmetric preconnections; as we have already seen, the
latter invariant is of an explicitly twistorial character.) In purticular, we will
show how such invarianls of a conic-structural 1-jet, which were constructed
in previous sections, can in case of infinitesimal prolongability be explicitly
‘read off’ from the intrinsic torsion, and to what extent they determine the
isomorphy clas of the structural 1-jet.

The former of these goals will be easily achieved since those invariants have
already been encoded in terms of pretorsion; indeed, it only remains to investi-
gate the obvious correspondence between torsions and pretorsions. The latter
goal will be accomplished in this process; this is not unexpected in view of the
already made (in Remark 111.1) observation to the effect that a (holomorphic)
structural 1-jet expanding a homogeneal (holomorphic) geometric structure can

be reconstructed up to isomorphy class from the associated intrinsic torsion;
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more precisely this observation consisted in an interpretation of the intrin-
sic torsion as the structural-jet class on the tangent vector space, by which we
mean the finest structure on the tangent vector space formed by a class of struc-
tural 1-jets. Indeed, an immediate consequence (also observed in that remark)
was that cach tensor-type invariant of the structural 1-jet (i.e. each second-
order tensor-type invariant of the geometric structure) is in fact an invarwant
of the intrinsic torsion (on the tangenl vector space). Notice that the latter
observation was of a rather theoretical character: according to the proof of that
fact, the procedure for recovering this invariant from the intrinsic torsion was
through the construction of a full structural prejet inducing the given intrinsic
torsion. Of course, for concrete invariants this procedure can usually be ac-
complished directly (i.e. without reference lo differential-geometric concepts);
it goes without saying that the first of above mentioned goals (realized in this

section) implies such a direct procedure.

I1L.3.1 Jets of Conic Structures

In this subseclion we will show that (the primitive general version of) the
concept of a conic-structural (or, more generally, aggregational-structural, v.
Proposition 111.3) 1-jet is often equivalent to the concept of a holomorphic
I-7et.

Lemma II1.16 Consider an aggregational structure on a vector space T,
where notation is as in Proposition IIL3. Furthermore, let us suppose that
the submanifold J° (i.e. the integral atomary-structure space) of J is closed
(as a subset of the topological space J). Owing to the latter condition, the
construction we have already carried out in the special case of conic structures
in Proposition L.15 can obviously be repeated in this more general context;
therefore the vectorial specific aggregational structures obtained by this
process are holomorphic in a unique way.

(i) Let us observe that the manifold U of the specific aggregational structures
on T is the parameter space of a canonical (holomorphic) family of subman-

ifolds of .J, where the structure of a complex manifold on the set J.U is
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well-defined as a submanifold of the product J x U.

[Proof of (i): The bundle of aggregational-structural spaces associated to the
trivial vector bundle T x U is clearly the trivial bundle U/ x U and its diagonal
section determines a reduction of the structural group of the (trivial) frame
bundle P x U of T x U to the automorphism group of the aggregational
structure. Clearly, the set theoretical family J°U is associated to this reduction
and consequently inherits the structure of a holomorphic bundle. What is
more, the latier is obviously a subbundle of the trivial bundle J X U. QED]
(i) U is a locally effective parameter space of submanifolds of J in the
folowing sense: At each point u the tangent space Ty 1s an effective parameter
vector space of normal-vector flelds along the integral atomary-structure space
Je C J (i.e. sections of the normal bundle TJ/:EJS or ‘tangent vectors’ in the
space of submanifolds at the submanifold J°) relative to the canonical linear
system of the family from (i).

[Proof of (ii): Otherwise there would exist a non-zero tangent vector vy at
some point v inducing the zero normal-vector field along of the submanifold
J°. However, vy can be realized (relative to the given action of G on U) by
some element from the Lie algebra of &, and its multiples clearly preserve
Je ¢ J relative to the exponential action. This is a contradiction with the
assumption vy £ 0 since the map (J.U — J) could obviously be alternatively
defined by descent of the restriction (J* x G — J) of the action. QED]

Proposition ITI.17 Consider a localized aggregational structure on a man-
ifold (or, more generally, a ‘localized aggregational structure on an arbitrary
bundle TM with a structural group’). Again, notation from Proposition II1.3
will be implied.

(i} The canonical (affine) mapping

che —s e

of holomorphic homogeneal aggregational-structural jets (i.e. holomorphic

specific aggregational-structural jets) into homogeneal full elementary aggregational-

structural prejets is correctly defined by descent of the (affine) mapping of
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connections into their horizontal homogeneal atomary-structural jets. Fur-
thermore, the asociated linear mapping admits the explicit description given
in the proof. In addition to that, the above affine mapping admits an obvious
equivalent description in terms of expanded specific aggregational structures
with the given (aggregational-structural) 1-jet and their bundles of integral
atomary structures.

[Proof of (i): Clearly, it suffices to prove the analogous statement on the vector

level, It remains to observe that the mapping
Bt =Ty @T" =GP QT — Elf =Ty @1 D> G*F a1~

is indeed well-defined since G= - j C T5. QED]
(ii) We define an affine mapping

O — HO(C )

of holomorphic homogeneal aggregational-structural jets into full aggregational-
structural prejets {or formal aggregational-structural jets) formed by homoge-
neal full elementary aggregational-structural prejets by assigning to a holo-
morphic structural jet ¢ ihe field of canonically associated full elementary
structural prejets (defined in (1)) at various atomary-structures; in other words,
for a given holomorphic structural jet ¢’ the affine space of all tangential con-
nections is in view of (i) contained in the affine space of connections tangential
relative to a unique full structural prejet; by definition we associate the latter
with the given holomorphic structural jet.

Claim: For every structural jet as above the two affine spaces of tangen-
tial connections actually coincide, i.e. the above affine mapping is injective.
Therefore, we will identify holomorphic homogeneal aggregational-structural
jets with correspanding aggregational-structural jets by means of this affine
injection.

[Proof of (ii): The assertion follows from the obvious injectivity on the

vector level:

Ehe = Ty @ T* = GF* — HO(Ef J%)
— HO(TF @ T* J*) = HYTf J°) @ T* D (in view of IIL17(ii)) D> Tv @ I".
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(Alternatively, we could use Proposition I3, ie. the characterization of
tangentiality of a connection relative fo an expanded aggregational structure {
in terms of preserving the structure.) QED |
(iii) Suppose the parameter space U7 of submanifolds of J is locally complete, |
i.e. the inclusion U C I O(Tj'5 J¢) is in fact an equality. Then the affine injec-

tion from (i1.2) is clearly bijective, i.e. all full aggregational-structural prejets

consisting of homogeneal full elementary aggregational-structural prejets are

holomorphic homogeneal aggregational-structural jets. QED

di(iv) In the situation of (iii) suppose that all atomary structures are iso- |

morphic (i.e. the action of G upon J 1is transitive). Then obviously all full

aggregational-structural prejets are holomorphic homogeneal aggregational- J
|
|
|

structural jets.

[11.3.2 Intrinsic Torsion and Intrinsic Pretorsion. Space of Complementary

Connectors |

Proposition ITL.18 Our present objective is to investigate a naturally de-
fined mapping of localized connections into elementary preconnections. (This |
will be the first step towards establishing the geometric significance of the ob- !
vious algebraic relation between intrinsic torsions and intrinsic pretorsions on }
a vectorial conic structure.)

Let us consider a (1-) jet j through a point m of a manifold M. (For
the purposes of this proposition we do not need the choice of a localized conic |
structure.) Consider the diagram formed by the spaces from the middle row in
the figure from Remark IIL1, which 1s analogous, as we have already observed,
to the diagram formed by the fibers over j of the bundles from the middle row
in the figure from Proposition ITIL7. This analogy was reflected in the fact that
(localized) connections on M can (after the choice of an 1-frame) be thought
of as special elementary preconnections in the product space M, x M, or as
2-pseudo-jets of biholomorphisms M — M,,, where M, is a manifold furnished

with a distinguished chart (the ‘model” manifold).
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(i) Now we further strenghten this analogy by observing that connections
on M are also related to elementary preconnections on the same manifold M:
the points of affine spaces from the latter of the above diagrams are ‘rudimental
points’ of corresponding affine spaces from the former diagram in the following
sense: Each affine space from the former diagram is (surjectively) mapped in a
canonical way into the corresponding affine space from the latter diagram, and
the combined diagram thus obtained (formed by all six of these affine spaces)
is commutative. (In other words, we obtain a surjective mapping of affine-
space extensions.) More precisely, for one of these maps, namely the mapping
of the extended space, we take the canonical affine mapping of the affine
space (' of (localized) connections onto the space C, of elementary
preconnections (at the given jet), which is defined in the following way:

Suppose a (localized) connection ¢ on the manifold M is given at m (v.
Proposition I11.3). Let us denote the horizontal space {of the given connection)
at the given point j.m of the contact manifold J.M by Tﬂﬁl and the contact-
structural integral-tangent space at the same point by F. The proconnection
¢, canonically associated to the connection is now defined simply by the
following requirement: the space F'" C Tjps in that direction (namely c,) is
given as the intersection T N F.

Clearly, this is indeed a well-defined affine mapping, and the other two affine
maps constituting the mapping of extensions are then uniquely determined by
commutativity of the above combined diagram; they are also surjective and
we introduce analogous terminology for them. (For the proof of their existence
we use the main properties of elementary pretorsions associated fo elementary
preconnections. )

Farthermore, the linear maps associated to these affine maps are invariants
of the vectorial directional structure (7T, j) for obvious category-theoretical
reasons and we introduce analogous terminology for them; what is more, they
are obviously the canonical surjections of tensor products onto tensor products
of quotients. In addition to that, the main properties of elementary pretorsions
associated to elementary preconnections also show that the canonical affine

mapping of torsions into elementary pretorsions is linear (i.e. coincides with
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the canonical surjection onto the product of quotients).

Similarly, we define the symmetric proconnection canonically as-
sociated to the (localized) connection as the symmetric proconnection
associated to the above defined preconnection. QED

(ii) The assertion (i) clearly has an analogue on the level of full ‘preforms’;
more precisely, we can replace the terms "elementary preconnuection’ and 'sym-
metric elementary preconnection’ by resp. ‘full elementary preconnection’ and
'symmetric full elementary preconnection’ (v. Proposition 1I1.12 for defini-
tions), where the diagram from the Proposition IIL7 is also replaced by the
corresponding diagram defined in Proposition 111.12. QED

(iii) The diagrams from (i) and (i) (i.e. the two maps of affine-space exten-
sion % — (' — CFe(= EF* =T @ T*?) together with the canonical map-
ping of the first codomain affine-space extension into the second codomain
affine-space extension defined in Proposition II.12 (i.e. with the canonical
affine surjection of full elementary preconnections onto elementary preconnec-

tions) clearly combine into a commutative diagram. QED

Proposition ITI.19 Let us consider a conic structure at a point m of a mani-
fold M, where notation is as in Chapter 1. The primary objective of this propo-
sition is to obtain information on the relation of the associated space of intrinsic
torsions (v. Remark IIL1) with the associated spaces of resp. intrinsic, con-
junctively intrinsic and complementally intrinsic pretorsions. Since the space
EFa(= T ® T*"?) of torsions (which will of course be identified with the space
E® of connectors anfisymmetric in the last two indices) will in this context
be fundamental, we will denote it more briefly by the symbol A. The space
Efsesaste of permissible torsion vectors will accordingly be denoted by AP or,
in other words, the space E/+*® of intrinsic torsions will be denoted by A
Analogous obvious notation will be introduced on the level of elementary pre-
forsions.
(i) Let us fix an integral jet j.
(i.1) Our immediate aim is to see how arbitrary localized connections and

induced structural jets (of the given localized conic structure) are relafed to
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elementary preconnections and elementary structural prejets. Obviously we
can now carry out the reasoning from the Proposition II1.18 (i) for suitably
enlarged diagrams; indeed, now we can include also the uppermost rows of
the two figures, i.e. the rows corresponding to resp. the space of homogeneal
structural jets and the space of elementary structural prejets expanding the
localized conic structure. We also introduce the analogous terminology. E.g.
we obtain the canonical affine mapping of homogeneal structural jets
into elementary structural prejets and the canonical affine mapping of
intrinsic torsions into intrinsic elementary pretorsions, where the latter
mappng is actually linear. (More explicitly, we have the following statement:
Consider the diagram formed by the spaces from the upper two rows in the
figure from Remark II1.1 (i.e. the diagram from Remark IIL1 (a)), which is
analogous, as we have already observed, to the diagram formed by the fibers
over j of the bundles from the upper two rows in the figure from Proposition
I11.7 (i.e. the bundles from the diagram from Proposition I11.7 (i)). Just like in
the previous proposition, the analogy between, on the one hand, connections
and homogeneal structural jets, and, on the other, elementary preconnections
and elementary structural prejets (in the sense that the former are a special
case of the latter) can be strenghtened. Indeed, the points of affine spaces
from the latter diagram are ‘rudimental points’ of corresponding affine spaces
from the former diagram in the following sense:

Each affine space from the former diagram is mapped in a canonical way
into the fiber over j of the corresponding affine bundle from the latter diagram,
and the combined diagram thus obtained (formed by all twelve of these afline
spaces) is commutative; in particular, for each of the two rows we obtain a
mapping of an affine-space extension. More precisely, the mapping of the ex-
tension in the middle row is taken to be the one from the previous proposition,
i.e. essentially the canonical affine mapping of the affine space ' of connec-
tions onto the space C_ of elementary preconnections at the given integral jet;
clearly, all the other maps are then uniquely determined by commutativity of
the above combined diagram.) QED
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(i.2) The present aim is to see how arbitrary connections and induced struc-
tural jets are related to full elementary preconnections and full elementary
structural prejets. Clearly Proposition IIL.18 (ii) can now also be modified in
the same way in which Proposition 111.18 (i) has been modified in (i.1); more
explicitly, we obtain a similar diagram (formed by twelve spaces) which con-
tains a surjective mapping of affine-space extensions in each of the two rows.
Fuarthermore, thus obtained canonical affine mapping of connections into full
elementary preconnections is by its very definition the canonical affine map-
ping of connections into atomary-structural jets. Therefore, thus obtained
canonical mapping of homogeneal structural jets into full elementary struc-
tural prejets is a special case of the canonical affine mapping (introduced in
the Proposition II1.17) of aggregational-structural homogeneal structural jets
into full elementary aggregational-structural prejets.

(i.3) Our next objective is to study the relation between the diagrams from
(i.1) and (i.2). Again, the reasoning from the Proposition I11.18 can be carried
out for an enlarged diagram. More precisely, by combining these two diagrams
with the diagram from Proposition I11.12 we clearly obtain a commutative di-
agram. E.g., the canonical affine map (defined in (i.1)) of homogeneal struc-
tural jets into elementary structural prejets is precisely the composition of the
canonical affine map (defined in (i.2)) of homogeneal structural jets into full
elementary structural prejets and the canonical affine map (defined in that
proposition) of full elementary structural prejets into elementary structural
prejets.

(ii) By applying the three assertions of (i) simultaneously at all integral
jets, we get three corresponding assertions concerning preconnections, struc-
tural prejets, full preconnections and full structural prejets (i.e. structural
jets); these assertions are completely analogous, except for the absence of the
statements on surjectivity. E.g. we obtain the canonical affine mapping of
structural jets into structural prejets and the canonical affine map-
ping of intrinsic torsions into intrinsic pretorsions, where the latter
mapping is actually linear. Also, we have proved that thus defined canonical

affine mapping of homogeneal structural jets into structural jets (i.e. full struc-
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tural prejets) is precisely the iclusion (which was defined as a special case of the
affine inclusion of homogeneal aggregational-structural jets into aggregational-
structural jets i.e. fields of full elementary aggregational-structural prejets).
In particular, according to that proposition, it is actually the identily mapping
under fairly weak conditions.

[Proof of (ii): The only slightly less trivial point involves holomorphicity of
the ‘set-theoretical preconnections’ (resp. structural prejets) thus obtained.
Suppose a connection ¢ at m is given; explicitly, in the notation of Proposition
1113 the connection is determined by a (7, -invariant distribution Tpy P of
fiber-transverse spaces on the total space P.M along the fiber P. Let us de-
note the distribution of horizontal spaces in the contact manifold J.M on the
fiber J of the given connection by T7%J and the restriction of the structural
distribution of the contact manifold by FJ (as in Proposition ITL4). in the
statement of (i.2) we have defined the a priori ‘set-theoretical’ (localized)
preconnection canonically (with respect to the given localized conic struc-
ture) associated to the connection (by means of the following requirement:
the integral-tangent set-theoretical distribution £7.J° (on the contact manifold
along the integral-jet space) of the set-theoretical preconnection (which is well-
defined since the latter was defined as a special field of directions in the contact

manifold) has to satisfy the equality

FTJe = (ThinH)J®.

It is immediate that the above intersection of vector bundles is indeed a vector
bundle and that it indeed gives a preconnection - the intersections £ of fibers
T}”A“',} and F have constant rank since they are obviously fiber-transverse over
the space T* in direction j. The statement involving the symetric precon-
nection associated to the conic structure and the connection is now
obvious.QED]

(iii) Let us call a preconnection (resp. pretorsion, structural prejet, intrin-
sic pretorsion) homogeneal, if it belongs to the image of the canonical map-
ping of connections (resp. torsions etc.). Similarly, we define homogeneally

symmetric preconnections and homogeneally prolongable structural
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prejets. We introduce similar terminology on the vector level, and also for
full ‘preforms’; notice that for full (conic-) structural prejets (i.e. structural
jets) the notions of homogeneality and homogeneal prolongability coincide by
definition with resp. homogeneality and 1-flatnessof the structural jet.

(iii.1) In the same spirit, when a structural jet expanding the given localized
conic structure is given, we define homogeneally tangential preconnec-
tions (resp. homogeneally permissible pretorsions, homogeneally sym-
metrically tangential preconnections) as points in the image of the ob-
vious affine mapping with possibly empty domain. The obviously defined
counterparts of these concepts on the vector level are clearly independent of
the structural jet, and they form non-empty (vector) spaces. It is easy to see
that homogeneally permissible pretorsion vectors are necessarily complemen-
tally permissible. The quotient of the space of pretorsions by this subspace
will be called the vector space of homogeneally intrinsic pretorsions. I'or
a given homogeneal structural jet the (necessarily homogeneal) vector in that
space parametrizing the (non-empty due to homogeneality) affine space of ho-
mogeneally permissible pretorsions will be called the homogeneally intrinsic
pretorsion of the homogeneal structural jet.

This invariant of the homogeneal structural jet is cleatly finer than the
complementally intrinsic pretorsion of the structural jet in the sense that it is
mapped precisely into the latter invariant via the obvious linear map (of the
‘larger’ quotient into the ‘smaller’ quotient). (In a less formal language, for
a homogeneal structural jet the associated homogeneally intrinsic pretorsion
constitutes an invariant which contains more information than the comple-
mentally intrinsic pretorsion; e.g. complemental prolongability does not nec-
essarily imply vanishing of homogeneally intrinsic pretorsion.) Intuitively, the
homogeneally intrinsic pretorsion is the invariant which contains as much mn-
formation on the intrinsic torsion as can possibly be stored in a pretorsion.
Notice, however that this invariant has not been inferpreted as an affine-bundle
class. Instead, it can obviously be interpreted as a precise obstruction to the
weak homogeneal prolongability of the structural jet, which we define as

the existence of symmetric homogeneally tangential preconnections (or, ex-
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plicitly, existence of tangential pre-symmetric connections, where the latter
property by definition means symmetry of the canonically associated pre-
connection. (Notice that according to the above definitions the concept of a
‘weakly homogeneally prolongable structural jet’ is more special than that of
a ‘homogeneal (and) prolongable structural jet’, but more general than that
of a ‘homogeneally prolongable (i.e. 1-flat) structural jet’; the latter concept
was defined as existence of tangential symmetric connections.)

(iii.2) The vector space of homogeneal conjunctively intrinsic pretorsions
(resp. homogeneal complementally intrinsic pretorsions) is defined as
the image of the vector space of homogeneal pretorsions in the space of con-
junctively intrinsic preforsions (resp. complementally intrinsic pretorsions)
relative to the quotient (linear!) mapping. Let us observe that homogeneal
intrinsic (resp. homogeneal conjunciively intrinsic, homogeneal complemen-
tally intrinsic) pretorsions are obviously precisely those which are associated
to homogeneal structural I-jets. (This is yet another justification for the use
of the term homogeneal.)

(iii.3) Furthermore, we introduce the following concepts and notation:

E™ is the vector space of connectors which are complementary; this by
definition means vanishing of the canonically associated preconnector.

For a fixed preconnection we denote by C™7 the affine space of connections
which are complementary; this by definition means belonging to the pre-
image of the given preconnection relative to the canonical affine mapping of
connections into preconnections. Clearly, the associated vector space is pre-
cisely the above space and non-emptiness of this affine space is equivalent to
the homogeneality of the fixed preconnection.

A™ is the vector space of complementary torsion vectors; this space is de-
fined as the kernel of the canonical linear mapping of torsions into pretorsions.
For a fixed pretorsion we denote by AZ”}’ the affine space of complementary
torsions; this is by definition the subspace of the underlying affine space Aqs
of A defined as the preimage of the given pretorsion relative to the canonical
linear maping of torsions into pretorsions. Clearly, the associated vector space

is precisely the above space and non-emptiness of this affine space is equivalent
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to the homogeneality of the fixed pretorsion.
Let us observe that the space E™ of complementary connectors is clearly
symmelric with respect to the permutation of the second and the third indez,

i.e. the direct sum of its symmetric-tensor and antisymmetric-tensor parts:

Enp _ Enp.sn. D Enp,as;

in particular A™ = E"P*® = E e seanp

(iii.4) Let us now introduce the following vector subspaces of the space A
(of torsions), which clearly all contain the spaces AP (of permissible torsion
vectors) and A™ (of complementary torsion vectors), and form a decreasing
chain of subspaces:

AP or the space of pre-permissible torsion vectors is (defined to be) the
pre-image of the space of permissible pretorsions (relative to the canonical
linear mapping of torsions into pretorsions);

AP or the space of conjunctively pre-permissible torsion vectors is the
pre-image of the space of conjunctively permissible pretorsos;

APir or the space of complementally pre-permissible torsion vectors is
the pre-image of the space of complementally permissible pretorsion vectors;
APin or the space of homogeneally pre-permissible torsion vectors is the
pre-image of the space of homogeneally permissible pretorsion vectors, in other
words the sum AP»"P = AP! + A",

For intrinsic torsions we introduce the analogous terminology (e.g. APr i
is the space of complementally pre-permissible intrinsic forsion vectors). For
a given structural jet, we define similarly affine spaces with these associated
vector spaces.

It is immediately obvious that the quotient AP0 fw (resp AP e Apiv o
AP PP) can canonically be identified with the vector space of homogeneal per-
missible (resp. homogeneal conjunctively permissible, homogeneal complemen-
tally permissible, homogeneally permissible) pretorsions. Observe that almost
by definition all homogeneally permissible pretorsions are homogeneal; in ad-
ddtion to that the vector space AP (of homogeneally pre-permissible intrin-

sic torsions) can by the second isomorphism theorem be canonically identified
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with the quotient A"™#"" (of the space of complementary torsion vectors by
the space of complementary permissible torsion vectors).

Therefore, the space A of torsions admits a canonical (relative to the
localized conic structure) structure of a succesive vector space extension (with

the convention from (II1.7) on the meaning of the summation sign +)

L APin  APIs | AP AP0 A

— AD
A=A+ Art _l_Apih +Am'p +AP*}' +Am’o
or, more compactly,
A= AP} Apih/pi_i_ APinloin . APiifip + Aviolrti | A/F"‘"’, (111.22)

where the ‘extensional summands’ are precisely the spaces of respectively
permissible torsions, homogenally ?pre-permissible intrinsic torsions, homo-
geneal complementally permissible homogeneally intrinsic pretorsions, homo-
geneal conjunctively permissible complementally intrinsic pretorsions, homo-
geneal permissible conjunctively intrinsic pretorsions and homogeneal intrinsic

pretorsions.

Theorem IT1.20 Let us a again cosider the situation of II1.19. The invari-
ants of a structural jet defined under mild conditions (homogeneality being
the strongest) in terms of pretorsion and interpreted as succesive obstructions
to various degrees of prolongability, namely the intrinsic torsion, conjunctively
intrinsic pretorsion, complementally intrinsic pretorsion and homogeneally in-
trinsic pretorsion, are in the case of homogeneality of the structural jet nec-
essarily homogeneal, i.e. vectors from the spaces resp. Al Al A and
Alrin

Thus they are explicitly expressible as images of the intrinsic torsion via
the canonical linear maps into intrinsic pretorsions of various types ; these
maps are defined by descent of the canonical linear mapping of torsions into
pretorsions. A close examination of these canonical maps, in particular the
explicit determination of their kernels (i.e. essentially the ‘denominators’ in
(I11.22)), for specific conic structures enables one to identify the invariant
components of the space of intrinsic torsions which carry the information on

the obstructions to the various degrees of prolongability.
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In particular, for a homogeneal conjuntively prolongable structural jet the
problem of explicit determination of the (affine space of) 1-fattening classes
associated to tangential symmetric preconnections from the {(conjunctively pre-
permissible} intrinsic torsion of the structural jet alone (without reference to
the structural jet, v. the introduction to this section) is solvable by means of

the (surjective) canonical linear map
APiifoi ., APiifoip

(of conjuntively pre-permissible intrinsic torsions into homogeneal conjunc-
tively permissible complementally intrinsic pretorsions). More precisely, the
above problem is thus reducible to the explicit procedure of Proposition I11.15
(for which the initial information is the conjunctively permissible complemen-
tally intrinsic pretorsion). For this reason the above linear map will play an
important role in the study of general geometrical parameter spaces of sub-
manifolds.

Furthermore, the vector space of complementally pre-permissible intrinsic
torsions, which is obviously of particular importance in the study of geomet-
rical parameter spaces of submanifolds with vanishing associated 1-fattening

classes, has the structure of an extension of the following form:

APielpi . APinlri L APin/oin

(where the subspace consists of homogeneally permissible infrinsic torsions,
and the quotient of homogeneal complementally permissible homogeneally in-
trinsic pretorsions).

Although this quotient vanishes in many important cases {as we will see in
(iv.ii)), the subspace does not. (What is more, we will construct (in Chapter V)
examples of conjunctively integrable, weakly homogeneally -thus all the more
complementally- prolongable, and simultaneously non-1-flat expanded conic
structures. In particular, this will show that the first infinitesimal neighbour-
hood of a submanifold from a given geometrical parameter space is not always
sufficient to reconstruct the isomorphy class of the structural 1-jet expanding

the localized conic structure).
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Proposition II1.21 We again cosider the situation of I11.20. (i) Our next
objective is to study the canonical linear mapping of torsions into pretorsions.
Since this is a restriction of the canonical linear mapping of connectors into
preconnectors, and we are also interested in homogeneally pre-permissible
torsions, our investigation will actually be more comprehensive in the sense
that it will include the whole of the latter mapping. By exploiting its factoriza-
tion introduced in (ii) (i.e. the factorization via complete preconnections) the
problem is obviously reduced to the study of the two factor maps. Therefore,
let us consider the obvious diagram including all these three maps, namely
the diagram from the Figure II1.21 (associated to the given localized conic
structure), where the heretofore not introduced spaces are defined as follows
(and the maps other than the ones just mentioned are defined in the obvious

canonical way):

Eui = pradod — pd'y Brd” g the sum of spaces of first trace-part and second
trace-part connectors e € K = 7' ® 1782, (The motivation for our notational
conventions has been explained precisely on this example in the Appendix.)
Notice that these spaces are independent of the given conic structure on the
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(i.i) B* is clearly contained in the space E™ (of complementary connec-
tors) and will therefore be said to consist of universal complementary
connectors. (This term is meant to suggest the obvious fact that these
complementary connectors are common to all conic structures on T'. In fact, if
dim T > 3, universal complementary connectors could be characterized by this
property in view of the following result proved in [13]: For an omnidirectional
vectorial conic structure with at least 2-dimensional integral directions there
are no complementary connectors other than the universal ones. However, we
will not use this fact.) Similarly, the vectors from the quotient Err it will be
called inherent complementary connectors (since they are peculiar to the
conic structure in question).

Furthermore, the space of universal complementary connectors is, just like
the space of all complementary connectors (v. (iii.3)), obviously symmet-
ric relative to the permutation of the last two indices. Hence it follows
(by the same argument as in (iii.3)) that its antisymmetric part can be ex-
pressed as AY := Evieed = F/esasvi T other words, the space of universal
complementary torsions, which we define as the space A% (of antisym-
metric universal complementary preconnectors) is equal to its ambient space
consisting of antisymmetrized universal complementary preconnectors. Fur-
thermore, the latter space is clearly equal to its subspace consisting of an-
tisymmetrized first trace-part connectors. As above, the vectors from the
quotient A"/ will be called inherent complementary torsions.

On the other hand, we have the obvious inclusion EYY ¢ E'e ie. first
trace-part connectors are tangential relative to the localized conic structure.
In view of these facts the following inclusion holds: A% C AP*"P. In conclu-
sion, the space AP»F' (of homogeneally ?pre-permissible intrinsic torsions),
which has already been identified with the quotient Areleevi (of the space of
complementary torsion vectors by the space of complementary permissible tor-
sion vectors) is @ smaller quotient of the space A™ (of complementary torsions)
than the space A™#% (of inherent complementary torsions; in particular, the

ormer quotient is also a quolient of the latter guotient, i.e. we have de-
¢ q
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fined @ map which will be called the canonical surjection of the inherent
complementary torsions onto homogeneally ?pre-permissible intrin-
sic torsions.

We introduce analogous terminology on the level of full preconnectors:
the vectors in the image HO(E™J*)* (resp. HO(E™ je)“* ) of the map (2)
(resp. (2)’) from the diagram, i.e. the vectors which are in the obvious sense
(uniquely) precovector-induced (resp. covector-induced), will be called uni-
versal complementary full preconnectors (resp. homogeneally univer-
sal complementary full preconnectors}), while the quotient H O(E;"f.f‘s)/“i
(resp. H U(qu’f:ff)/m'h ) will be said to consist of inherent complementary
full preconnectors (resp. homogenally inherent complementary full
preconnectors). It is obvious from the diagram that the canonical linear
mapping of inherent complementary connectors into universal ho-
mogeneally inherent complementary full preconnectors 18 well-defined
(and its image consists precisely of the homogeneal vectors).

QED
(i.ii) Suppose every full preconnector is homogeneal (i.e. associated to some
connector); in other words the map (1) in the diagram below is surjective.
(Tt is obvious from the diagram that this condition is fulfilled as soon as the
integral-transverse bundle is a direct sum of line bundies, the conic structure is
completive, amd its integral-jet space is (biholomorphic to) a projective space.
These assumptions are clearly fulfilled in the case of quaternionic paraconfor-
mal conic structures and Veronese conic structures.)

Claim: Complemental prolongability of a homogeneal structural jet expand-
ing the given localized conic structure implies weak homogeneal prolongability.
What is more, for the given localized conic structure the space Aviebin (of
homogeneal complementally permissible homogeneally intrinsic pretorsions )
vanishes.

[Proof of (i.ii): The first statement follows easily from the fact (proved in
Proposition II1.3) that a connection inducing tangential full preconnection is

itself tangential (i.e. structure-preserving).
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As for the second statement, consider a complementally pre-permissible
torsion
a{€ A??). The canonically associated pretorsion a®? is therefore complemen-
tally permissible, i.e. it is associated (via antisymmetrization) with some tan-
gential full preconnector. By assumption the latter is canonically associated
to some connector e, which is (according to the above mentioned fact from
Proposition 111.3) also tangential. (This is the only step in the proof which
does not follow directly from definitions.) The (permissible) torsion aPt asso-
ciated (via antisymmetrization) with the tangential connector e differs from a
by a complementary torsion o™ (since they both induce the same pretorsion
a/?). Tt remains to recall that Arir = AP L A" QED]
(i.iii) Suppose the conic structure is hypersurface-directional and completive,
and its integral-jet space is (biholomorphic o) a projective space. (In other
words, the assumption on the integral-transverse bundle in the remark from
(iv.ii) has been replaced by the stronger assumption that the conic structure
be hypersurface-directional.) In this situation the map (1) in the diagram is
casily seen to be not only surjective, but also bijective. In other words, under
those circumstances the vector space of full preconnectors is (by means of this
mapping) a quotient space of the space £ =T ® T*%% (of connectors) canon-
ically isomorphic to (and will therefore be identified with) the quotient space
Efd (= E®") formed by first-trace-free connectors. In particular, the map
(2) in the diagram is injective, i.e. the surjection of covectors onto homoge-
neally universal complementary full preconnectors is bijective. (Incidentally,
let us observe that the following related statement with weaker assumptions
and conclusion can be easily proved by a completely different method: If the
conic structure is hyperplane-directional and the integral-jet space is not 0-
dimensional, the map (2)" is injective.) QED
(i.iv) If the conic structure is hyperplane-directional, the injection (2) in the
diagram is bijective. In other words, every complementary full preconnector
is universal (i.e. uniquely precovector-induced). (Here we imply the corre-
spondence between precovectors and complementary full preconnectors which

is defined fiberwise in the way indicated in the diagram .)

147




[Proof: It suffices to note that any complementary Iull elementary preconnec-
tor is universal in the sense that it is elementary precovector-induced (i.e. a
second-trace-part full elementary preconnector) due to the fact that T/ are
vector lines.QED]

(i.v) If the conic structure has all the properties assumed in (i.iii), an explicit
description of the space E™ of complementary connectors is possible owing
to the statement on injectivity therefrom. More precisely, the canonical linear
mapping of inherent complementary connectors into homogeneally inherent
complementary full preconnectors is bijective, and its codomain is canonically
isomorphic (in a way explicitly described in the proof) to the vector space of
the affine bundle classes on the integral-tangent covector line bundle:

£ Em™

[udawd” T ped | ped”

—

Enp/m(; Enp/vd”wd’ — - E/vd’np/m') P HO(E;.\::JJE)/uih o Hl(T*aJs)_
(1I1.23)
In particular, the subspace Amrhi of EmPl (consisting of inherent comple-
mentary torsions and according to (iv.i) related to the space of homogeneally
permisssible intrinsic torsions) is also embedded into the above space of affine-
bundle classes.
[Proof: The bijectivity follows from the obvious fact that the space of com-
plemetary connectors is precisely the preimage of the space of full comple-
mentary preconnectors and the assertions (iv.i), (iv.iii) and (iv.iv), while the
second isomorphism is obtained from the long exact sequence associated to
the vector-bundle extension T*.J¢ (: = the trivial bundle) with the subbundle
T*xJ¢ (formed by the vector spaces of integral-tangent or ‘complementary’
covectors) and the quotient bundle T*# J* (formed by the vector spaces of
integral-transverse covectors, i.e. elementary precovectors).QED]
(i.vi) If every full preconnector is homogeneal (as in (iv.ii)) and the integral-
jet space is (biholomorphic to) a projective line (e.g. if the assumptions of
the remark in (iv.ii) are fulfilled), then every preconnector is (111.20) also
homogeneal (i.e. connector-induced). [This assertion easily follows from the

diagram. QED]
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(it) Suppose the given localized conic structure is of pretype one {v. Proposi-
tion 111.10). Then the conic structure is also of type one (ie. the space E***
of tangential symmetric connectors vanishes) as soon as the conic structure
is hypersurface directional and the space of inherent complementary symmet-
ric preconnectors vanishes (i.e. there are no other complementary symmetric
connectors other than universal ones).

[Proof of (ii): Let us observe that the canonical linear mapping of connectors

into preconnectors restricts to a map
Esa.te s HO(E;a.teJ‘s)’

which we call canonical linear mapping of tangential symmetric con-
nectors into tangential symmetric preconnectors. Clearly, it suffices to
prove the injectivity of this map under the above assumptions.

The kernel of the above map obviously consists precisely of complementary
elements. By the last of the above assumptions these must also be universal.
In other words, it suffices to show that the connectors from the space Fuien? (=
E:’{d,:*) 1= 6@ Ty, (of symmetric universal complementary connectors) can not
be tangential. This is easily seen since the 1-jets in the Grassmanian tangent
to the integral-jet space are according to the Remark II1.22 below ‘axially

decomposable’ (in the sense made precise therein). QED]

Remark IT1.22 Consider an integral jet j of a hypersurface-directional vectorial

conic structure, where notation is as in Definition 1.2. Since the integral-
transverse space T/ is a vector line, the tangent space T5 to the integral-jet

space J° at j must be a subspace of
Ty = Hom(T*,TF) = Tl @ T*F

of the form
Hom(Ta/a’, T/a) — T/a ® T*/acr"

where T is the subspace of T uniquely determined by the space T and called
the axis thereof. (Of course, an alternative characterization of the axis is the

following: the ‘linearly’ embedded projective space of the perpendicular to the
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axis is tangent to the integral-jet space. On the other hand, the projective
space of the axis is by elementary projective-geometric arguments precisely
the intersection of projective hyperplanes parametrized by points of the for-
mer projective space. This justifies the term “axis’ and gives it an intuitive
interpretation.)

Thus the tangent 1-jet j, of the integral-jet space 1s a decomposable 1-
jet in the Grassmanian J, where the latter concept is defined (for arbitrary
Crassmanians, not necessarily projective spaces) by the following requirement:
the subspace of the tangent space T in direction j, decomposes into a tensor
product of subspaces relative to the canonical structure of a tensor product on
T;. What is more, we have seen that j, is an axially decomposable 1-jet in
the Grassmanian, meaning that in the above tensor product of subspaces the

left factor is not a proper subspace.
Remark IT1.23 Let us observe that in case y = 1, dim T = 2 the space
teas _ ppud"evdias vd’ ! - vd’ vd”
Et =# - (E + E ).[**] - (E + I )0[**]

(of antisymmetric or, equivalently, antisymmetrized sums of first-trace-part
and second trace-part connectors) is equal to the whole of the vector line
E* — T ® T2 of (antisymmetric connectors). (On the other hand, it 1s clear
that for any curve-directional conic structure all antisymmetric connectors are

complementary.)
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Chapter IV

Hypersurface-Directional Conic

Structures

When the general theory of the previous chapters is applied to conic structures
and preconnections with integral directions of codimension one (i.e. to the case
y = 1), the invariants introduced in the general case assume a more concrete
form. Such consideratons will actually ezploit only the already observed (in
Remark I11.22) fact that in the case y = 1 (but not only then) the tangent
spaces to the integral-jet spaces J° have a very simple description (more pre-
cisely, their directions are azially decomposable jets in the Grassmanian, v.
the above cited remark).

However, a more important feature of the case y = 1 is that some new
peculiar constructions arise naturally. More precisely, the theory of integrable
conic structures, which is clearly more basic (since no 2-structure has been cho-
sen) and more general (since the conic structure is possibly not conjunctively
integrable) than the theory of integrable preconnections (i.e. structures of ge-
ometrical parameter manifolds of submanifolds), turns out to have by itself in
this case a twistorial counterpart. In fact, the generality of this construction is
enhanced by the well-known fact that integrability of a hypersurface-directional
generalized conic structure follows already from I-prolongability. (However, in
our exposition this fact will not be taken for granted - its proof will be given in

the process of the construction of the twistorial equivalent of the I-prolongable
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conic structure. ]

For these reasons, as well as for the fact that e.g. conformal and Veronese
structures on manifolds can be thought of as hypersurface-directional conic
structures, this chapter will be devoted to the case of codimension y = 1.
In accordance with that, the terms ‘conic structure’ and ‘preconnection’ will
in this chapter mean the more special notions ‘hypersurface-directional conic
structure’ and ‘hypersurface-directional preconnection’, unless otherwise spec-
ified. The objective of this chapter will be to carry out the above mentioned
twistorial constructions and obtain in this fashion the twistorial counterpart of
(1-) prolongable conic structures. It will turn out that the latter is simply an
‘seometrical’ parameter space of Legendrian submanifolds of a contact mani-
fold. As in the case of inlegrable dispersions, reversiblility of this construction
will enable us to build a structure with rich differential geometry from relatively
simple holomorphic data, more precisely from a single compact Legendrian
submanifold of a (complex) contact manifold (satisfying certain mild
conditions). This could be considered as a generalization and simplification
of the results obtained by S. Merkulov in [14] (with slronger restrictions on
the geometric structures in question and a more abstract description thereof)
and R. Bryant (in e very special case of the situation studied by Merkulov,
but with a concrete description of the geometric structure; v. Secltion 2 for
more details.) Our construction in part relies on results from these articles:
we construct a family of Legendrian submanifolds from a single submanifold
by means of the ‘Legendrian analogoue’ of ‘Kodaira’s main theorem’ proved in
[14] (in full generality) and [3] (in a special case). However, our translation
of the holomorphic data into geometric language is accomplished by completely
different and more general methods of Manin’s theory of conic structures.

Our investigation in Section 1, which is of the most general character, will
proceed through an application of invariantly formulated general principles of
the theory of first-order PDEs (i.e. essentially generalized conie structures).
More precisely, we will first reduce in a standard (elegant) way the integrabil-
ity problem for a possibly not hypersurface-directional conic structure to the

investigation of the Cartan distribution on the lotal integral manifold of jets
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(i.e. on the submanifold R of the contact manifold J M determined by the
conic structure). Then we introduce the assumption y = 1. As a result of
that, we will be naturally led to reformulate (in a somewhat less standard way)
prolongability and, more importantly, to deduce a twistorial interpretation of
a prolongable (hypersurface-directional!) conic structure on a manifold. I
will turn out that the lafter is essentially the structure of ‘a geometrical
parameter space of (compact) Legendrian submanifolds’ of ¢ “twistor
space’ Z (which will be defined as the quotient contact manifold of the above
mentioned total integral manifold of jets R, where the fibers are the character-
isties). B

As a result of that, the structure of a parameter space of Legendrian subman-
ifolds is more elementary than the structure of ¢ parameter space of arbitrary
hypersurfaces. Indeed, a prolongable conic structure (wnich, as asserted above,
is essentially the structure of a parameter space of Legendrian submanifolds)
can under the much stronger assumption of conjunctive integrability be real-
ized, perhaps tn many different ways, as a constituent part of an integrable pre-
connection (which, according to Chapter 1 is essentially the structure of a pa-
rameler space of arbitrary hypersurfaces). The twistorial manifestation of that
realization will turn out to be the following: the original family of Legendrian
manifolds is simply the family of canonical lifts to the jet conlact manifold of
of the hypersurfaces from the subsequently chosen family. More succinctly,
prolongable conic structure can often be identified with the structure of an ‘ge-
ometrical’ parameter space of canonical lifts of hypersurfaces ‘given
up to contact equivalence’. Of course, this fact has been long known (cf.
[10], [9]) in the case of the structure of a 3-dimensional conformal manifold
(which can in principle be realized as a constituent part of the structure of an
Finstein- Weyl manifold, i.e. of a locally complete parameter set of embedded
rational curves of self-intersection x = 2), in the case of the structure of an ar-
bitrary conformal manifold (v. [11], [12]), and (a relatively recent result from
[3] in the case of the structure of an 1-flat (or, equivalently - as we will see
in Chapter V, prolongable) Veronese conic structure on a 4-manifold (which

can in principle be realized as a constituent part of the structure of a locally
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complete parameter set of embedded rational curves of self-intersection = 3). ‘é

IV.1l Prolongable Hypersurface-Directional Conic Struc-

tures and Geometrical Parameter Spaces of Leg-

endrian Submanifolds

In this section the starting point will be two questions which arise quite natu-

rally from the results of previous sections, more concretely from the fact that

the structure of a geometrical parameter space of submanifolds is essentially the
same as an integrable preconnection (not necessarily a hypersurface-directional
preconnection), and from the fact that the conic structure (nol necessarily
hypersurface-directional) underlying an integrable preconnection is prolongable.
The questions, which make sense for conic structures of arbitrary codimension
y, but are most interesting in the case y =1, are as follows:

(a) Is there a “twistorial equivalent’ of a manifold equiped with a (not neces-
sarily hypersurface-directional) prolongable manifold?

(b) If the answer to question (a) is positive, how does this twistorial equivalent
in the situation when an integrable preconnection on the expanded conic struc-
ture 15 chosen relate to the twistorial equivalent of the integrable preconnection-
equiped manifold (namely to the geometrical family of submanifolds) ? { More
p‘recz'sely, what additional structure on the twistorial counterpart of lhe pro-
longable expanded conic structure is needed in order to construct the geomet-
rical family of submanifolds? )

The most important result of this section, namely Theorem IV.5, will com- |
pletely resolve question (a) in the case of hypersurface-directional conic struc- i‘
tures: it asserts that prolongability of a ( hypersurface-directional) conic struc- |
ture is equivalent to an equally natural, although slightly more complex, condi- }
tion on the associated Cartan distribution, and that a prolongable ( hypersurface- }
directional) conic structure on a given manifold is equivalent to the structure |
of an ‘geometrical parameter space of Legendrian submanifolds ¢ (of |

a contact manifold), which is to be defined precisely shortly. The question (b)
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will be addressed later on in this section - it will turn out that the additional
structure is an open embedding of the contacl manifold into the ‘standard’ jet
contact manifold JsS(= P(T%)S) and that the geometrical family of Legen-

drian submanifolds is obtained from the geometrical family of hypersurfaces of

S simply by lifting the hypersurfaces to the contact mantfold . .

Our immediate objective is a rigourous statement of Theorem IV.5. How-
ever, before this we will have to define the above mentioned concepls, as well
as some concepts pertaining to the apparatus necessary for the proof of the i

theorem .

Remark IV.1 Consider the situation of Remark VI.1 from the last chapter, i
but with the additional assumption that y¥ = 1; in other words, we assume that

M, is a { hypersurface-directional-) expanded conic structure. (In particular !
J = P(T*).) Let us observe that now the general facts dimJ = zy and l
b,h < zy from that remark imply that dim J = z and b,h < 2. According

to the same remark, the Cartan distribution F*°R on R is now ( fiberwise) |
one-codimensional . Thus its Frobenius tensor fr, € Hom(( F** )" TF) at |
a point r is a line valued alternate bilinear map on F*°, i.e. the structure on
F@s of a conformal possibly degenerate symplectic vector space. Similarly,
is in this situation a conformal symplectic vector space with respect to the |
Frobenius tensor fr € Hom(F"2, T#) of the structural distribution in the

contact manifold JM at the point ». In particular, F is canonically its own

conformal dual (i.e. dual modulo a choice of a base vector of the line ()
For this reason the symbol F* will be reserved for this conformal dual {thus
F* = F). According to (the above cited) Remark VL1, the subspace £ of I
is h -codimensional and consequently its perpendicular F**° in the conformal |
dual F* (which is of course well-defined, i.e. independent of a base vector of :

the line T/) is h -dimensional .

In the statement of Theorem IV.5 we will also need some concepts occuring
in the standard structural theorem of ‘constant rank’ distributions of tangent
hyperplanes. Thercfore we next recall the statement of this theorem (the proof
of which is long, but as straightforward as the proof of the Frobenius theorem;
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in fact both proofs are most naturally carried out together):

Remark TV.2 i ) Suppose a manifold R is equiped with a fiberwise one-
codimensional distribution FR. The Frobenius tensor fr,, € Hom(F"* Tr/F)
of this distribution at a point r is a line valued alternate bilinear map on F,
i.e. the structure on F of a conformal possibly degenerate symplectic vector
space. The rank of the given distribution at the point r is defined as the rank
p of this conformal possibly degenerate symplectic vector space, i.e. the rank
of the Frobenius tensor {of course. this is an even number). Recall that the
defining property of the rank is the following: if the kernel (or ‘radical’} of the
Frobenins tensor is denoted by F¢, then the quotient F4? = F/F® which is
endowed with the structure of a symplectic vector space defined by descent of
#r, has dimension p (in particular dimF = § + p, where § denotes the ‘defect’,
i.e. the dimension of the kernel).

(i1) In the situation of (i) suppose that the distribution is of a constant rank
p. Therefore the kernels (or ‘radicals’) #%¢ of the Frobenius tensor for various
points 7 form a vector subbundle F ér B of F'R, which is called the charac-
teristic distribution on R for the given distribution. This distribution is
always integrable. Its leaves are called characteristics of the distribution
FR. When the foliation by characteristics is a fibration (which is always true
locally, of course), the quotient manifold Z (i.e. the base of the fibration) has
a unique structure of a contact manifold such that the original distribution
F'R is precisely the pull back of the structural distribution TZZ of tangent
hyperplanes in the contact manifold Z. Furthermore, the Frobenius tensors of
FR and T%Z are related as described in (i).

Nezt we proceed with the definitions of other concepts which will occur wn the
statemaent of Theorem IV.5:

Definition IV.3 The submersed normal bundle of ¢ Legendrian immersed
manifold Z7 in a ( general possibly not hypersurface-) contact manifold Z s
by definition the restriction TéaZ1r to Z* of the contact-structural integral-
transverse bundle TéaZ (i.e. the quotient of the tangent bundle by the conlact-

structural integral-tangent bundle TSZ). Let us observe that the submersed
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normal bundle is in a canonical way a quotient of the normal bundle (since it
is a coarser quoltient of the restricted tangent bundle of 7 ), where the kernel
of the projection to the quotient bundle is precisely the distinguished subbundle
Tg afr

YA A

Tz z

of the normal bundle.

Definition IV.4 A geometrically amenable (or geometrical) family of
Legendrian immersed manifolds Z7 in a y -codimensional- contact
manifold Z with parameter space M is a family of immersed manifolds with
the following two properties:

(a) The immersed manifolds in Z from the family are Legendrian.

(b) For each point m we first consiruct the canonical representation of
the tangent space T at m as a parameter vector space of sections for
the submersed normal bundle TéQZT of the manifold Z7 with param-
eter m from the canonical representation of T' as a parameler vector space of
sections for the normal bunlde of Z7 in the obvious way (i.c. using the fact
that the submersed normal bundle is o quotient of the normal bundle); the re-
quirement is that for each m the tangent space T be a geometrical parameter
vector space of sections for the submersed normal bundle; thus the vector space
T inherits a conic structure.

These vectorial conic structures (with y -codimensional integral directions)
on the tangent spaces at various points of M, obviously form a conic structure
on M. (The fact that we indeed obtain an embedding of the incidence-relation
manifold R = Z°"M =: ( by def ) J°M into JM is proved like Proposition I.11,
using compaciness of the manifolds J°.) We say this structure is induced by

the given geometrical family of Legendrian submanifolds.

Now we are at last in position to state Theorem IV.5 pigourously:

Theorem IV.5

(i) Let us recall the following fact proved in Chapter 3: For any point m C

M., of @ manifold equiped with a possibly not hypersurface-directional conic
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structure, whose underlying manifold is denoted by M and (global) integral-jet
space by R, the ( below stated) conditions (b) and (c) are mutually equivalent,
and they are weaker than the (below stated) condition (a).

(a) Integrability at m (in the sense defined in previous chapters, i.e. as
‘abundance of integral submantfolds through m’;)

(b) Prolongability at m (this means by definition that arbitrary integral jet j is
associated as the tangent first-order jet with some tangential second-order jet;
ezplicitly, for each pointr = jom € J°m C J°M = R (i.e. each integral jet in
M, al the point m) there exists a second oder jel & 4t m of a hypersurface
of M such that as a jet in the contact manifold JM, 7@ s in fact a jet in
the submanifold R at the point r);

¢) Intrinsic-pretorsion freedom af m.
P

(ii) For any (hypersurface-directional) conic structure on a manifold the
following conditions are equivalent:

(a) Integrability (at each point of M)
(b) Prolongability (at each point of M)

(ii1) For any prolongable ( hypersurface-directional) conic structure on a
manifold the Cartan distribution on the integral-jet space has constant rank
(according to Remark IV.2 this implies that the foliation of the integral-jet
space by characteristics is well-defned). More precisely, the value of the rank
equals 2m, where b is the dimension of the integral-jet space (i.e. of the space

of all integral jets at an arbilrary point).

(iv) Let M be an arbitrary manifold . There is an invariant bijective cor-

respondence between

(a) Structures on M of a prolongable ( hypersurface-directional-) expanded
conic structure M, such that the foliation (which is well-defined according to
(iii)) of the total integral manifold of jets R by the characteristics of the Cartan
distribution is in fact a fibration and its projection maps the submanifolds J*.m

of B injectively into its base (i.e. the space of characteristics)

and
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(b) Structures on M of a geometrical parameter space of Legendrian subman-

ifolds (of an arbitrary contact manifold).

More precisely, this correspondence will be described in Proposition IV.10,
while the inverse correspondence ts precisely the one introduced immediately in
the definition of Legendre geometric amenability (namely Definition IV.4).

[The proof of this theorem is postponed - essentially it will be given as a

sequence of simpler propositions. QED)|

The above theorem could be less rigourously restated as follows: a geometrical
parameter space of Legendrian submanifolds is essentially the same as a pro-
longable expanded conic structure My, with a certain global property, namely
the space of characteristics has to be a well-defined (Hausdorffee50z) manifold
and the jel space at an arbitrary point is mapped injectively into that mani-

"fold. We will soon see thal any prolongable expanded conic structure is locally
of that form.

Remark 1V.6 Just like Proposition 11.13 from Chapter 2 (on twistorial in-
terpretation of integrable preconnections), the above theorem could be for-
mulated (and proved in exactly the same way) in a somewhat more general
version. More precisely, we could consider a larger class of prolongable man-
ifolds, namely, we do not have to require that the spaces J*.m be mapped
injectively into the space of characteristics. The twistorial description of this
geometric structure turns out to be the following: the underlying manifold
18 equiped with the structure of a geometrical parameter space of Legendrian
immersed manifolds in an arbitrary contact manifold S.

However, from the point of view of local differential geometry, this version
is in fact not more general: as we have already observed in Chapter 2, any
prolongable conic structure locally satisfies even the stronger conditions from

the previous theorem .

Proposition IV.7 Let us consider the situation of Remark VI.1. (In other
words, we are given a y-codimensional conic structure on a manifold, where y
is arbitrary.) The Frobenius tensor fr, € Hom(( F* )2 T/*) of the Cartan
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distribution in the manifold R at a given point v is the restriction of the Frobe-
nius tensor fr € Hom(F2, TP of the structural distribution in the contact
mantfold JM at the same point R.

Proof: We first observe that the inclusion map R — JM is in fact a mapping
of distribution-equiped manifolds { meaning that at each point of the domain
the differential maps the fibre of the distribution on the domain into the fibre
of the distribution on the codomain; in our case this is simply the obvious fact
Foe C F). It remains to apply this general fact:

If f - (M, ToM) — (M, T3 My) is a mapping of distribution-equiped man-
tfolds, then the Frobenius tensors fr; € Hom(TfM,ﬂ/a) at pointsm; (1=1,2)

such that f(mi) = my are related in the following way:

f*ﬁl(”l:vrl) = fr2(f*'01:f*vr1):

where both the differential Ty — Ty and its action Tl/a — Tz/a are denoted by f..
(Of course, this fact is an easy consequence of the definition of the Frobenius
tensor and the standard fact about the Lie bracket of vector fields which are f

-related to some fields in the domain.)
QED

Definition IV.8 A ( hypersurface-directional) conic structure on a manifold
M is said to be coisotropically prolongable at a point m if al each integral
jet § in M through m (i.e. for eachr = jom € J*m C JM in notation of
Remark IV.1) the corresponding fibre of the Cartan distribulion is coisolropic
as a subspace of the contact-structural integral-tangent conformal symplectic
vector space. In notation of Remark IV.1 this condition explicitly means that
for all such v, F< is coisotropic in F, i.e. ils perpendicular F**° is a (
totally) isotropic space or, equivalently (in view of finite-dimensionality), F°
contains its perpendicular F**>. We will soon see that the term ‘coisotropically
prolongable’ is justified [ meaning suggestive) in the sense that this is actually a
property of the first-order structural jel expanding the localized conic structure
(to a second-order localized geometric structure), and it is weaker than flatness

of this structural jet.
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Proposition IV.9 Let us consider the siluation of Remark 1V.1; in olher
words, we are given a ( hypersurface-directional) conic structure on a man-
ifold . We will also use notation and facts exzpounded in the more general
Remark [V.2.

(i) At each point r € R the corresponding space Fee (which was defined as
the fiber of the Cartan distribution), F**° (which was defined as its perpendic-
wlar in the standard conformal symplectic dual F* = F) and the kernel oo
of the conformal possibly degenerate symplectic vector space Foeo (defined in

Remark 1V.2) are related in the following way:
Fir = [ ) Froe,

In particular, we have the following upper bound of the defect 6 (which, jusl
like the rank p, in general depends on the point ) of the Frobenius tensor fra

at r:
§ < h < (according to Remark IV.1) <ay=z < b+ .

(In other words, the defect has a finer upper bound -namely b - than b+ z.
This bound is clearly ‘universal’ in the sense that it does actually not depend
on the concrete expanded conic structure, but only on the dimensions of M
and J°.)
[Proof of (i): The assertion follows almost immediately from (previous) Propo-
sition IV.7: indeed, according to that proposition, the conformal possibly
degenerate symplectic product fr, of F*° is simply the restriction of the con-
formal symplectic product fr of F'; it remains to recall that the kernel of fr is
by definition the perpendicular of the whole of IF*e with respect to fr,. QED]
(i} In order to obtain an estimate of the genre §+2% of the Frobenius tensor

fr, at some point r let us consider the following sequence of trivial equalities:
dim F = zytz = 22 = bta+h = 5+p+h = S +pt+6+(d—6) = 2(6+g)+(d-6).
(IV.1)

Hence we conclude thal the non-negative (according to (i) integer d — § is

even. Therefore we have

1
u:a(d—6)+6+g and $25+§- (IV.2)
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(In particular the genre § + & has a finer upper bound -namely = - than b+ z.
Clearly, this bound is also ‘universal’ in the sense described in (3i).) Hence and
from the equality b+« = & + p we infer
c< (IV.3)
2
[The proof of (ii) has already been carried out.QED]

(iii) Let us recall from the Remark IV.2 that for any one-codimensional
distribution the rank p of the Frobenius tensor at o point is lower than at
another (i.e. the defect § is higher) iff the genre 6+ £ is higher. In view of
this fact and assertions (i), (i), it is clear that for a pownir € R the following
four properties are equivalent:

(a) The genre 6 + & at r precisely equals its ( ‘universal’) upper bound .
(b) The defect § at v precisely equals ils ( ‘universal’) upper bound h.
(c) The fiber F= of the Cartan distribution ot v is coisotropic in the confor-
mal symplectic vector space IV, i.e. F*¥e C I'%,
(d) The rank p at v precisely equals its ( ‘wniversal’) lower bound 2m.
[(iii) has already been proved .QED]

(iv) The perpendicular F*>° of the fiber F'*> of the Cartan distribution at a
point v (in the standard conformal dual F* = F of F' C Tya) is transverse to
the tangent space Ty at v of the corresponding fiber J& hookrightarrowR =
JeM . Ezplicitly

FreenT; =0.

Proof of (iv): Is is a standard fact that J.m is a Legendrian submanifold of the
contact manifold JM. Therefore Ty = F’% is a Lagrangian subspace of the
conformal symplectic vector space F, i . e it coincides with its perpendicular
F*®_ In particular, the conformal duality of F* = F and F' descends to a
conformal duality of the subspace T; and the quotient space fiz — -1% =
(obviously) = 7. Thus no vector from 775 different from zero annihilates the
whole of T. Tt remains to observe that the image of F** in the quotient space
T< is the whole of T (since Tr C Tspr projects onto the whole of T').

(v) For a point m and a point r € J°m C J:M = R, coisotropy of the

corresponding fiber Fo° of the Cartan distribution (or any of the other three
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equivalent properties of r from (iit), of course) is equivalent to the existence of
a tangential symmetric elementary preconnection j5Y at m in contact with r
(explicitly, this tangentiality means that as a jet at v in the contact manifold
JM, 7 is in fact a jet in the submanifold R).

[Proof of (v): First we recall the fundamental fact which relates the sym-
metric elementary preconnections and the canonical structure of a conformal
symplectic vector space on the contact-strucural hyperplane F' C Tyas at r (v.
Appendix):

A subspace F7 of F' whose direction is an elementary preconnection j &1
(ie. a z -dimensional subspace transverse to the fiber J ) is isotropic in F iff
71 is a symmetric elementary preconnection .

Therefore our present objective is to investigate when there exists such a
space F7 which is also contained in T (or, equivalently, in F'*). With this
purpose we recall the assertion (i) from Remark IV.2, namely the interpre-
tation of the genre § + £ as the dimension of the maximal isotropic spaces in
Freo,

From this and assertion (iii) it obviously follows that coisotropy of F® is
a necessary condition for existence of a symmetric elementary preconnection
with prescribed properties.

In order to prove sufficiency, we assume F*° is coisotropic . We only have
to prove that among maximal { clearly z -dimensional) isotropic spaces of £
there exists at least one transverse to the fiber J, or, equivalently, transverse
to J¢ C J. To see this, we will need some additional facts from Remark IV.2
{i):

The conformal possibly degenerate symplectic product fr, on F*° descends
to a symplectic vector product on the quotient '@ [H**> =: T (which clearly
has dimension 2m in our case) and the maximal isotropic spaces F7 in F'*° are
precisely the preimages of the Lagrangians (which are obviously 4 -dimensional
in our case).

In view of these facts, the proof of existence of F" with required properties
has clearly been reduced to the proof of existence of a Lagrangian subspace

Tgke (of the quotient symplectic space T ) whose preimage F7 in [ is trans-
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verse to Ty-. In order to find a Lagrangian T3 7 satisying this condition, we
first observe that such a space should necessarily be transverse to the im-
age of Ty.. We claim that this necessary condition on a Lagrangian 7%
(namely transversity to the image of T ) is in fact also sufficient: indeed, if
this necessary condition is fulfilled, the preimage of T$* obviously intersects
Te precisely in T N F**° which according to (iv) is zero . Thus, it remains to
prove existence of a Lagrangian T * satisfying the above necessary condition
(i.e. transversity to the image of T)y.).

In order to accomplish that we first observe that as a consequence of (iv)
(i.e. of transversity of T and F**) the space T projects bijectively onto its
image which we denote by 727 in the quotient symplectic space F¢. Since Ty is
Legendrian in #' (v. Appendix), 1. is isotropic in F'*2 and consequently 75"
is isotropic in T%; moreover, it is Lagrangian because of its dimension (or, more
conceptually, since it obviously coincides with its perpendicular). Therefore
there indeed exists at least one Lagrangian 7% in T2 (actually a whole affine
space of them, as we shall see later on} transverse to the Lagrangian 1'57.
QED

(vi) For a point m and a point r € J°.m C J°M = R, the below stated
condition (a) implies (as we have already observed at the beginning of this
section) the below stated condition (b) . Claim: the converse is true under
the additional assumption of constancy of rank of the Cartan distribution in a
neighbourhood of r in R.

(a) There exists an integral submanifold of the expanded conic structure
through the point m in contact with r.

(b) Coisotropy of the fiber F'*° at r of the Cartan distribution or, equivalently
(according to (v)), existence of a tangential symmetric elementary preconnec-
tion §*Y at m in contact with r.

[Proof of (vi): Suppose the rank of the Cartan distribution F*°R (i.e. the
rank of the Frobenius tensor { fr, ),/) is constant in some neighbourhood of
r € R and the condition (b) is fulfilled. We recall that according to the
Remark IV.2, constancy of the rank implies the following:

A sufficiently small open neighbourhood R* of R is fibrated by charac-
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teristics, i.e. leaves of the characteristic distribution (which is by definition
formed by kernels of the Frobenius tensor at various points). The base Z of
this fibration has dimension equal to the rank and carries a unique structure
of a contact manifold such that the Cartan distribution F* R is the pull-back
of the structural distribution 7¢Z (of hyperplanes) in the contact manifold
. This implies that the conformal symplectic vector space T defined as the
structural hyperplane of the contact manifold at the image z of r equiped
with the Frobenius tensor, is precisely the quotient conformal symplectic vec-
tor space of the conformal possibly degenerate symplectic vector space F*°
(whose structure is by definition the Frobenius tensor of the Cartan distribu-
tion). The highest-dimensional integral manifolds of the Cartan distribution
on R have dimension equal to the genre and they are precisely open subsets
of the preimages in R of Legendrian submanifolds of Z.

As a result of the condition (b) and constancy of the rank, the characteristic
distribution coincides with the distribution F**¢R* of perpendiculars of the
fibers of the Cartan distribution. (This follows easily from the inclusion of
the kernels of the Frobenius tensor in those perpendiculars -v. assertion (i) -
and the obvious fact that the characteristic distribution on RB“ is fiberwise h
-dimensional.) In addition to that, it is obvious that Legendrian submanifolds
of 7 are b -dimensional and their preimages in B are z -dimensional . In
view of this and Remark IV.1, it remains to prove existence of a Legendrian
submanifold Z¢ through the image z of r in Z such that its preimage admits an
open in B containing r and projecting biholomorphically onto a submanifold
M of M. (Indeed, M* will then be an integral submanifold of the expanded
conic structure with required properties.)

Obviously, the above condition on a Legendrian submanifold Z¢ through
z can be formulated more simply like this: its preimage in R has to be
transverse to the fiber J¢ inR at the point r. By definition, i.e. on the level of
tangent spaces , this condition precisely means that the tangent space T " (uc)
of Z% at z (which is clearly a Lagrangian in the quotient symplectic vector
space TS of F°) has the following property: its preimage 7 in F'* has to

be transverse to Ty.. However, in the proof of (v) we saw that this condition
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on the Lagrangian Tg*¢ is equivalent to its transversity to the Lagrangian
Tg™ (which was defined there as the image of T in Tz and proven to be
Lagrangian).

Therefore, it remains to prove existence of a Legendrian submanifold Z¢
through z whose tangent space T%® at 2z is transverse to the Lagrangian
TST C Fhee < Tz. But this folows easily from the fundamental Darboux
theorem on the local structure of a contact manifold .

(Incidentally, in this situation Z7 :== J*N R¥ is immersed into Z ( because
of (iv)) and thus it is a Legendrian  immersed manifold in Z through =z
with tangent space T5". Therefore the above condition on the Legendrian

submanifold Z% is precisely transversity at z to the Legendrian immersed
manifold Z7 in Z.) QED

Proof of Theorem IV.5 (i), (ii), (14):

To prove assertion (i) (i.e. equivalence of existence of compatible symmel-
ric elementary preconnections at a given point in all integral directions and
of inirinsic-intrinsic-pretorsion freedom at that point) it suffices to apply as-
sertion (v) of the previous proposition to each integral direction al the given
point.

Assertion (Wi}, namely the fact that in the case of a prolongable expanded
conic structure the rank of the Frobenius tensor of the Cartan distribution has
the constant value 2m, follows immediately from assertion (iii) of the previous
proposition.

In order to prove assertion (i), namely equivalence (globally) of integrability
and prolongability, we first notice that in view of (i) inlegrability is (even on
the local level) a stronger condition. Therefore, let us suppose prolongability of
the ezpanded conic structure M, (at each point). According to (iii) the rank
of the Frobenius form of the Cartan distribution is constant. In particular, for
any point r € R, it is locally constant at r, and thus we may apply assertion

(vi) of the previous proposition to r. QLD

Now we are at last in position to construct a geometrical family of Leg-

endrian submanifolds from e prolongable expanded conic structure satisfying
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certain global conditions (i.e. to define the correspondence from (the main)
Theorem [V.5). In fact, the results proved so far make it possible to prove with
relatively little effort a weaker version (namely assertion (v) of the following
proposition) of the main and the only not yet proved assertion in Theorem
IV.5 (namely assertion (w) of that theorem):

Proposition 1V.10

(i) Let us consider the situation of Remark IV.1 with the additional as-
sumption of prolongability. In other words, we are given a prolongable (
hypersurface-directional-) expanded conic structure, where notation is as in
that remark .

Since the rank of the Frobenius tensor equals 2rn al each point (by the as-
sertion (iii) of the theorem), Remark IV.2 implies existence of the foliation of
R by characteristics. According to the assertion (iv) from the previous proposi-
tion, the characteristics are transverse to the fibers of J°M = R. Consequently,
they are (with respect to the restricted projection into M) immersed topolog-
ically possibly non-countable h -dimensional manifolds in M. In accordance
with that, the foliation (or ‘set-theoretical fibration’) of R by characteristics
will be denoted by M?Z(= R). Ezplicitly, such a characteristic will be denoted
by MY, while the ‘set-theoretical space’ of characteristics will be denoled by Z.
[Proof of assertion (i) has already been given.QED]

(ii) Let us consider the situation of (i) with this additional assumption:
the foliation M9Z of R is in fact a fibration. (Thus, Z has the structure of
@ quotient manifold of R, while M? are  immersed manifolds in M.) The
above quoted assertion on transversity ( from the previous proposition) pre-
cisely means that the fibrations J°M and M?Z of R form an  immersional
double fibration. In other words, the family (with parameter space Z) of pos-
sibly non-compact immersed manifolds M? in M can alternatively be inter-

preted as a family (with parameter space M) of immersed manifolds Z7 in
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7, where Z7 is defined to be J° (i.e. the fibration J°M has been denoted more
suggestively by Z7M ).

Let us recall that (according to Remark IV.2) Z also has a unique structure
of a contact manifold such that the Cartan distribution F*°R on R is the pull-
back of the structural distribution T$Z in the contact manifold Z.

Claim: The above family (with parameter space M) of immersed manifolds

77 in Z is Legendre-geometrical and the conic structure on M induced in this
way (v. Definition IV.[) coincides with the given conic structure. Ezplicitly, if
m is an arbitrary point and T denotes the tangent space at m, then the compact
wmmersed manifold Z7 in 7 with parameter m is Legendrian, the parameler
vector space T of sections of the integral-transverse (line) bundle Téc”Z'r of
77 is geometrical (with respect to the canonical representation introduced in
Definition IV.4 of that space as a parameter vector space of sections), and the
vectorial conic structure on T induced by this representation ts precisely the
one constituent for the given structure of an odered manifold .
[Proof of (ii): The fact that Z7 is Legendrian in Z has already been observed
at the end of the proof of the assertion (vi) of Proposition IV.9: indeed, this
stuation is a special case (namely the case when R” = R) of the situation
considered there. The remaining statements to be proved can clearly be for-
mulated still more explicitly like this: for any given r € J%m = Z7.m the
inverse in Tx {with respect to the differential of the projection) of the contact-
strucural hyperplane 7% C Ty is mapped by the differential of the projection
R — M precisely onto the hyperplane 7™ C T in direction r. But this is
indeed the case since that inverse is clearly F'* = FFNTgr. QED

(iii) Let us now further specialize the situation of (i): in addition to the
assumption from (ii) we make the following assumption: the immersions of
manifolds 2 are injective ( for all m), i.e. ( because of their compactness)
embeddings. In other words (according to . ..), we suppose that the immer-
sional double fibration of R defined above (i.e. formed by the fibrations R'Z
and Z"M ) is in fact a double fibration. In particular, it can be thought of as a
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family of of possibly non-compact (y -+ d) -codimensional manifolds M in M
or as a family of (y +d) -codimensional manifolds Z7 in Z. The latter family
is by assertion (1i) in fact a geometrical family of Legendrian manifolds in the
contact manifold 2.

[Proof of (iii) has already been given.QED)]

(iv) Let M be an arbitrary manifold .
In (iii) we have clearly defined an invariant corespondence between

(a) Structures on M of a prolongable ( hypersurface-directional-) expanded
conic structure M, such that the foliation of the total integral manifold of
jets R by the characteristics of the Cartan distribution is in facl a fibration
and its projection maps the submanifolds J°.m of R injectively inlo ils base

(i.e. the space of characteristics)
and

(b) Structures on M of a geomelrical parameter space of Legendrian subman-

ifolds (of an arbitrary contact manifold).

On the other hand, immediately in the definition of Legendre geometric
amenability (namely Definition IV.5) we had introduced an invariant corre-
spondence between structures on M of a geometrical parameter space of Leg-
endrian submanifolds and structures of an expanded conic structure. Clearly,
in (i) it is in fact claimed that the latter correspondence is a left inverse of the

former correspondence. In particular, the former correspondence s injective.
{As indicated above, (iv) has already been proved .QED]

(v) (A weaker version of Theorem IV.5 (iii))
When we restrict the codomain of the invariant injective correspondence
from (iv) to its image, we obtain a ( clearly) bijective invariant correspondence

between
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(a) Structures on M of a prolongable ( hypersurface-directional-) expanded
conic structure My, such that the foliation (which is well-defined according
to Theorem IV.5 (iii)) of the total integral manifold of jets R by the char-
acteristics of the Cartan distribution is in fact a fibration and ils projection
maps the submanifolds J°.m of R injectively into ils base (i.e. the space of

characteristics)
and

(b) Structures on M of a geometrical parameter space of Legendrian manifolds
Z7 in an arbitrary contact manifold 7 satisfying the below stated condition
(b1), which is stronger than the below stated condition (b2)

(b1) The given family of manifolds in Z is compound-geometrical (clearly,
this condition does not involve the given structure of a contact manifold on
zZ).

(62) The induced conic structure on M is prolongable.

Furthermore, the inverse correspondence is the appropriate restriction of the
correspondence introduced in the definition of Legendre geometric amenability
(namely Definition 1V.4).

[Proof of (v): Clearly, the only new assertion in (v) is the characterization of
those structures of geometrical parameter spaces of Legendrian submanifolds
which belong to the image of the correspondence from (iii) by the condition
( bl). In fact, we know already that this condition is necessary. Therefore 1t
remains to prove its sufficiency.

Let us assume that (bl) holds. Define on the total integral manifold of
jets R = Z"™M a distribution F* R by pulling back from Z the structural
hyperplane distribution T¢Z in the contact manifold (this is a well-defined
distribution on R of indicated fiber dimension since the projection B — Z 1s
submersive and the dimension of R = Z"M is b+ dim M =b +z +y). The
structure on M of an expanded conic structure induced by the given family
of Legendrian submanifolds has been defined essentially by the requirement
(v. Definition 1V.4) that this distribution F°°R be its Cartan distribution,
more precisely that the space T* C T' parametrized by a point ~ be the image
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of F*o (relative to the differential of the projection). Since the quotient Z ‘
of the distribution-equiped manifold R is a contact manifold, we conclude (v. |
Remark IV.2) that the Cartan distribution has constant rank and its charac- “
teristics are precisely the fibers M.z of M7Z = R. According to the same
remark, the tangent spaces to these caracteristics are precisely the kernels of

the Frobenius tensor. Since their dimension A (i.e. the defect of the Frobenius

tensor) equals the ‘universal upper bound for the defect’ (v. Proposition IV.9),
we conclude that the expanded conic structure M, is indeed prolongable and
that the corresponding structure on M of a geometrical parameter space of

Legendrian submanifolds is precisely the original one. QED

Clearly, the only difference between Theorem IV.5 and its above weaker
version (i.e. assertion (v) of the last proposition) consists in the following:
while in the theorem it is claimed that structures of prolongable expanded conic
structures are in a bijective correspondence with structures of arbitrary geo-
metrical parameter spaces of Legendrian submanifolds, according to the weaker
wersion they are in a bijective correspondence with structures of those geomet-
rical parameter spaces of Legendrian submanifolds, which are also compound-
geometrical. Therefore, the proof of the theorem will be completed when we
prove Proposition IV.12 (which is to follow soon), namely the fact that compound-
geometric amenability is a consequence of Legendre geometric amenability.
However, for the proof of this proposition we will need a rather non-trivial
lemma, although its proof is intuitively clear. Informally speaking, its pur-
pose will be to investigate how infinitesimal variations (i.e. certain sections
of the normal bundle) of a Legendrian submanifold within the space of { ‘un-
parametrized’) Legendrian submanifolds (or, briefly, the Legendrian infinites-
imal variations) are distinguished among infinitesimal variations within the
space of all submanifolds, and how the Legendrian infinitesimal variations are
related to the induced sections of the submersed normal bundle. It turns out
that these two problems are related: the Legendrian infinitesimal variations
are characterized by their ‘reconstructibility’ from the induced sections of the

submersed normal bundle. This ‘reconstructibility’ is precisely defined in terms
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of the invariant isomorphism (constructed in [11]) of the normal bundle and
the jet vector bundle of the submersed normal bundle: the condition is simply
that the section of the normal bundle be ‘holonomic’, i.e. that its graph be
the canonical lift (to the appropriate jet contact manifold) of the graph of the
induced section, of the submersed normal bundle. In the process of proving
these facts one also oblains an intuitive (but less invariant’) interpretation
of the above mentioned completely invariant isomorphism: When the ambient
contact manifold is locally represented as the jet contact manifold of some ‘base
manifold’, then to a jet of (a section which is) an infinitesimal variation of
the distinguished hypersurfaoce in the base manifold this isomorphism assigns
the normal vector (at the approprate point) belonging to the (plausibly defined)
‘canonically lifted infinitesimal variation’.

In fact, since we will be interested only in jets of sections al the points
of their zero-loci (or, equivalently, in normal vectors belonging to the disiin-
guished subspace), we will only partially prove the above stated facts (i.e. we
will only prove results related to this particular type of jets). However, the

proofs of the stronger versions could be carried outl in a very similar fashion.

Lemma IV.11 Let Z7 be a Legendrian submanifold of ¢ contact manifold Z.
Notation from Definition [V.3 will be implied.

(1) Let us denote the (first-order) jet vector bundle of the submersed normal
bundle TR Z7 of Z7 by ( Y LN 77 In other words, P{,y is the open subman-
ifold of P, =

point of the total space TéaZT which are transverse to the fibers, t.e. of jels

Tz consisting of those hypersurface directions at a generic
of sections through that generic point.) We recall that its integral subbundle
(nZ" defined as the restriction of the bundle P, ( TéaZT) to the zero section
4T C TéaZT (i.e. the subbundle whose total space consists of the jets of sec-
tions at the points of their zero-loci ) is invariantly isomorphic to the bundle
Hom(Tg,Téa)ZT, where the isomorphism is given bythe (invariantly defined,
cf. 11.21) covariant differential of such a jel.
Claim: This subbundle P, 727 = Hom(Tg,Téa)Z” is invariantly isomor-
phic to the distinguished subbundle ii’g’rTZ'T of the normal bundle Té—a (recall
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that here h = b and Tgk was defined as TS [TST, where TS7 is an alternative
notation for the tangent space T; of Z7). More precisely, this isomorphism is
defined in the way described in the proof . Informally speaking, to a normal
vector from the domain we assign the ‘conformal linear covector’ determined
by that normal vector by means of the Frobenius tensor,

[Proof of (i): We recall that at a given point z € Z7 the Frobenius tensor fre €
Hom(T% “Q,Téa) is a structure on 7% of a conformal symplectic vector space
(1.e. it is non-degenerate in a certain sense). Of course, the conformal duality
between T'2* = T% and TZ (i.e. the Frobenius tensor) descends to a conformal
duality between some quotient T ™" of T¢* and the subspace F* of F' tangent
to Z7, where the kernel of the quotient map is precisely the perpendicular of the
subspace F°*. However, this perpendicular coincides with the subspace since
the subspace, being tangent to the Legendrian submanifold Z7, is Lagrangian.

I I

Therefore the quotient 7% /" coincides with the quotient 7", In other words,

the descended conformal duality is a bilinear map belonging to the space
Hom(Ty" @ T57, T/) =~ Hom(TS", Hom(TS", TL)).

Thus it gives rise to a map T‘;/T e Hom(TgT,Téa). The latter is an iso-
morphism due to non-degeneracy of the bilinear map . It is clear that such
1somorphisms for various points z € Z7 give rise to an isomorphism of bun-
dles.QED]

(i1) Suppose thal Z is represented as the jet contact manifold P%S of some
manifold S such that Z7 projects biholomorhically ontoe a hypersurface S* in S
(tn particular Z7 is the canonical lift of S* by the main property of Legendrian
manifolds in jet contact manifolds). Let us observe that in this situation the
submersed normal bundle of Z7 is canonically isomorphic to (and thus will be
identified with ) the normal bundle Té“SO‘ of 8%, (It should also be pointed out
that the contact manifold P;Téo‘ZT from (i) is a special -namely ‘flat’- case of

55, indeed this is the case when S = TéaZ" )

Furthermore, suppose we are given a parameter space M of possibly non-

compact hypersurfaces in S such that 5% belongs to that space. Let m € M be

a parameter of 5%. The canonical lifts of hypersurfaces from the given family
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obviously form a family of possibly non-compact Legendrian submanifolds of
7. It is also clear from the very definitions that the canonical (with respect to
the family of possibly non-compact submanifolds of Z) representation of the
tangent space T at m as a parameter vector space of sections for the submersed
normal bundle of Z7 coincides with the canonical (with respect to the family of
possibly non-compact hypersurfaces of S) representation of T as a parameter
vector space of sections for the normal bundle of §° (i.e. o parameter vector
space of infinitesimal variations of 5¢).

Claim: Let v be a tangent vector at m and s* a point at which the infinites-
imal variation of S* with parameter v (i.e. the section {vf’ga}sa with parameter
v of the normal bundle TéaS“) vanishes. According to the last observation the
normal vector véa at the corresponding point z* belonging to the infinitesimal
variation of Z7 with parameler v, is contained in the distinguished subspace
T;/T of the normal space Téa. The assertion is that its image under the [
‘completely’) invariant isomorphism from (i) is precisely the jet at s of the
infinttesimal variation of 5.

(Thus the isomorphism from (i) has been given an alternative interpretation
in the presence of a generic at least local identification of the contact manifold
with a jet contact manifold . It is remarkable that this isomorphism does not
depend on this identification.)

The proof of assertion (ii) will be postponed until after the staternnt of the
proposition. QED]

(iii) Let {U{;}ZT be an infinitesimal variation of Z7. Claim: In order for
it to be Legendrian (i.e. to be an infinitesimal variation within the space of
Legedrian submanifolds), the following necessary condition must be fulfilled:

Let {U?}ZT be the corresponding section of the submersed normal bundle
(obtained by applying the quotient map from the normal bundle onto the sub-
mersed normal bundle). Furthermore, let z € Z7 be a point at which the
section of the submersed normal bundle vanishes, i.e. for which the normal
vector v? belongs to the subspace Tgh of the normal space Téa. The condi-
tion is thal the image of that normal vector under the invariant isomorphism
Tgﬁ — Hom(FCk,Téu) { from (1)) be precisely the jet at z of the section of
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the submersed normal bundle.

[Proof of (iii): Let us consider a family of Legendrian manifolds in Z such
that there exists a parameter m of the given Legendrian submanifold Z7 for
which the given infinitesimal variation belongs to the induced parameter vector
space 1" of infinitesimal variations of Z7. Furhermore, let v € T" be a parameter
of that infinitesimal variation.

Since the above condition on the given infinitesimal variation is of a local
nature, we may assume without loss of generality that Z is the jet contact
manifold of some manifold S such that Z7 projects biholomorhically onto a
hypersurface §* in S. For the same reason, the above introduced family of
submanifolds may be assumed to coincide with the family of canonical lifts of

hypersurfaces of S from some ( clearly unique) family. Now it suffices to apply
assertion (i1).QED]

[Proof of (ii): Since the assertion to be proved is of a local nature (with
respect to the point s € 5), we may without loss of generality assume that the
‘structure’ on 5 of a product manifold ¥ x B can be chosen; in fact, a certain
condition { to be specified soon) can be imposed on this ‘structure’ .

We will adopt the following conventions in order to simplify notation: The
dimension of Y will be %, but will henceforth in this proof be denoted by y
since the symbol y will be reserved for the points of Y. (In other words, when
a manifold Y of dimension y is given, the symbol y will replace the symbol y
with the meaning dimY.) Of course, the same conventions will hold for other
symbols.

The above mentioned condition {which can clearly be fulfilled) on the prod-
uct ‘structure’ is the following: If the points y and b are defined by the re-
quirement, s* = (y, b), the slice y X B coincides (locally) with the submanifold
S%. In order to simplify the notation, we will in this way identify B with 5%
in the obvious way (in particular the given point s* coincides with b).

Since we have chosen on S the ‘structure’ of the total space of a fibration
YC =Y x B over B, we can define an affine bundle P{g)S = Pigy(YC)

embedded as an open subbundle (of manifolds) into the projective bundle
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P%S = Z; this affine bundle consists by definition of directions transverse
to the fibers. The vector bundle associated to this affine bundle is clearly
Hom(Tg,Ty)S. In fact, since we have chosen a transverse fibration as well,
this afline bundle has a distinguished section, and will thus be identified with
the associated vector bundle. For instance, the direction of $ at any of its
points s§ = {y,b,) is clearly (p’("S)l.(y,bl), where p{g), is the zero mapping.

Let us also observe that the possibly not submersive projection (defined
by the given family of hypersurfaces) (R = S*M — S) of the integral-jet
space, when composed with the given coordinate projection (S — C) of S
gives rise to a submersion (R — C'); indeed; the submanifolds Z7.m of R are
mapped biholomorphically onto B {again, we have restricted S if necessary).
What is more, this same argument clearly shows that this submersion B — 5)
and the projection (R = S*M — M) form a pair of coordinate projections
on the manifold B (i.e. they define on R a ‘structure’ of the product of the
manifolds B and M). For this reason, R will also be denoted by B x M.
Farthermore, we will denote the Y -component of the projection (R — S)
by (R = B x M — Y); of course, this will imply that it is alternatively (on
the element level) denoted by (r = (b,m) — y). It is clear that in view of
these conventions (in particular of the definition of (R — (7)), the coordinate
description of the projection (R — S) is given by the following equality of
maps:

(B —=5)=((b,m) — (y,0))

Now we describe in coordinates the first of the two objects for which the
stated relationship is to be proved: The infinitesimal variation of S with
parameter v is a section {v/*}s« of the normal bundle T*$*. This bundle
has obviously been trivialized, i.e. expressed as the product 7y x B. Thus,
this infinitesimal variation will also be denoted by (B — Ty). Its coordinate
description in terms of the projection (R - §) is obviously given by the
equality

(B—-Ty)=(b— Duypmv)
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where D, denotes the partial differential with respect to the m -coordinate
on K. (This follows from the very definition of the canonical representation
of T as a parameter vector space of infinitesimal variations). The covariant
differential D( v/ )« € Hom(Tg,TL) (which is invariantly defined since the
mnfinitesimal variation vanishes at s% = b), i.e. the jet at b of this infinitesimal

variation, is in this situation simply the differential
D(vy )s = D(Dnypmyv))s € Hom(Tp, Ty)

of that map (i.e. section) B — Ty (since we have a trivialization of the normal
bundle of 5¢).

QOur objective is to relate that jet with the ‘second object’, namely the
normal vector v? at z” ( belonging to the infinitesimal variation of Z7 with
parameter v). In order to describe explicitly that normal vector in terms of
the projection ({b,m) — (y, b)), we will first do the same for the map
((b,m) = pPlsy.(y,0)) == (r — P{s)-s) = (r — z) := the projection
R — Hom(Tp,1y)S = P45 C P35 = Z defined by the family of canonical
lifts of hypersurfaces. According to this definition, for any fixed m’ the image
of the composite map (b — (b,m') — p{s).(v,)) of B into Hom(Tp, Ty)S is
the canonical lift of the image of the composition (6 — (b, m') — (y,5)). But
the latter image is obviously the graph of the composition (b — (b,m’) — y).
Therefore (b — (b,m") — P{g)-(y,0)) = (b = Dyy,mn-(y.0) € Hom(1p, Ty ).(y,b)).
More succinctly, the above projection of the integral-jet space into the contact

manifold has in coordinates the folowing description:

((b,mm) = p{s)-(y, 8)) = ((b,m) = Dyyy,m)-(y, ) € Hom(Ts, Ty ).(y,b)).

As a result of the assumption that the normal vector v/Za at s* vanishes, the

normal vector v/Za at z* belongs to the distinguished subspace T4 " of the
normal space Téa. When we identify this subspace with the distinguished
direct complement Ty = Py = Hom(Tg,Ty) of T7 in T%, the normal vector
'ng at z% is clearly ( by definition of the representation of 7" as a parameter
space of infinitestmal variations of Z7) the differential at m evaluated on v of

the composite map (m — (b,m) — p{g).(y.b)) of M into Z. In conclusion
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05 = Do Dyy(s,m)-(4:5) Yp.myv € Hom(Ti5, Ty) C T

In order to obtain more information on these second-order differentials, we
will introduce suitable charts. More precisely, we choose an arbitrary product
chart on Y and B at the point s = (y,b). In fact, again due to the local
nature of the problem, we may assume that global charts (i.e. ‘structures’
of open subsets of affine spaces) can be chosen on manifolds Y and 5. The
vector spaces associated to these affine spaces will be denoted by Ty and Ty
respectively. Clearly, since a chart on S is given, we also have a trivialization of
the bundle P%S = Z. What is more, since it is a product chart we actually have
a trivialization of the above defined affine bundle Py S = Hom(Tp,Ty)S C
P%Z. In other words, this afline bundle is simply the product Hom(Tg, Ty ) x
Y x B.

Now the differential D(vy )o = Dy(( Dinlpm)? )Y Joumy € Hom(Ts, Ty)
can obviously be expressed more simply as Dy(( Dy Yo )(b,m).

Similarly, the normal vector v_/Z“ = Do Dsyis,my-(y-5) Jo.m)v € Hom(T,Ty)
Tz has a simplified interpretation, namely it is equal to D ( Dyy(sm) ) (h.m) -

Now let us observe that by the ‘invariant version’ of the Schwarz Theorem

we obtain the equality

Db( (Dmy )U )(b,m) = Dm( Dby(b,m) )(b.m)v

which is clearly tantamout to assertion (iii}. (In the preceding argument no
charts on M or R have been used . If we had applied the classical version

of the Schwarz theorem, we would have had to choose a chart at m as well.)

QED

Proposition IV.12 Any geometrical family of Legendrian submanifolds is a
compound-geometrical family of submanifolds (i.e. a double fibration).

[Proof: Let us introduce notation as in Definition IV.4. Our objective is
to prove that for a fixed point m the canonical representation of the tangent
space 1 at m as a parameter vector space of infinitesimal variations of the

Legendrian submanifold Z7 with parameter m (i.e. a parameter vector space
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of sections for the normal bundle of Z7) is compound-geometrical (i.e. ‘base-
point-free’). Explicitly, this means ( by definition) that for any point z € 27
the evaluation mapping of T into the normal space Téﬂ at z is surjective.

Let us observe that the canonical representation of 7' as a parameter vector
space of sections for the submersed normal bundle is geometrical as a result
of the assumption of Legendre geometric amenability ( by the very definition
of that property). In particular, this representation is compound-geometrical.
Thus, we know that the evaluation map of 7" into the submersed normal space
Téﬂ is surjective. Since the submersed normal space is the quotient of the
normal space by the subspace T% r (and the two evaluation maps are related
in the obvious way), it is clear that it suflices to prove that the image of the
former evaluation map (of 7' into the normal space) contains that subspace of
the normal space.

In other words, it suffices to prove surjectivity of the restriction of the for-
mer evaluation map to a map of the preimage of the space T " into that
space. But this preimage is precisely the hyperplane T in direction z ( here
it is implied that Z™ =: J° has been embedded in J by means of the geo-
metrical representation of 7" as a parameter vector space of sections for the
submersed normal bundle; thus T* consists of parameters of sections of the
submersed normal bundle which vanish at z). In accordance with that, the
above mentioned restricted evaluation map will be denoted by (I'* — T /T).

Since the manifolds from the given family are by assumption Legendrian, T
is a parameter space of Legendrian infinitesimal variations of the Legendrian
submanifold Z”. According to assertion (i) of Lernma IV.11, this implies that
the mapping (7% — Hom(T5", Téa)) constructed from (7% — T /T) by means
the canonical isomorphism (v. Lemma IV.11 (1)) of their codomains could
alternatively be characterized in the following way: it assigns to a tangent
vector v precisely the jet at z of the section of the submersed normal bundle
with parameter v.

Therefore, it remains to prove that each jet at z of a section vanising at
z of the submersed normal bundle (i.e. each direction in the total space at

the zero vector which is transverse to the fiber) can be realized as the jet of
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a section from the parameter vector space 7% (of sections). But this follows
immediately from the assumption that the parameter vector space of sections
for the submersed normal bundle (which means that the induced mapping

(Z7 — J*) is an embedding) and the characterization of imersiveness of (Z7 —

J*) given in 11.21. QED]

Remark IV.13 In the proof of the last proposition we have only used the
assumption of immersiveness of the maps (27 — J*), and not of their injectiv-
ity. Furthermore, the assumption that the contact manifold is not of a more
general type (i.e. locally isomorphic to a z -dimesional-jet contact manifold

with arbitrary =) was essential .

Proof of Theorem IV.5: As has already been remarked, in order to com-
plete the proof ot the theorem, it suffices to observe that its weak version (i.e.

assertion (v) of Proposition IV.10) in view of the last proposition implies the
theorem . QED]

IV.2 Special Prolongable Hypersurface-Directional Conic
Structures and Special Geometrical Parameter

Spaces of Legendrian Submanifolds

In this section we wnll specialize the general results from section 1 by intro-
ducing ideas of uniform geometric amenability and completeness. More con-
eretely, we specialize to the cases of ‘uniformly geometrical parameter space
of Legendrian submanifolds’ (Subsection 1), or ‘complete parameter space of
geometrical Legendrian submanifolds’ (Subsection 2), or ‘locally complete pa-
rameter space of normally rigid geometrical Legendrian submanifolds’ (Subsec-
tion 3). These additional assumptions will be shown to be tantamount to the
requirements that the associated prolongable conic structure on the parameter
space be respectively homogeneal (Subsection 1), or completive (Subsection 2),
or homogeneal completive of a very special type (Subsection 8). (In particular,
the additional assumptions of Subsection 3 turn out to imply the conjunction

of the additional assumptions of Subsections I and 2.)
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IV.2.1 Homogeneal Prolongable Hypersurface-Directional Conic Struc-

tures and Uniformly Geometrical Parameter Spaces of Leg-

endrian Submanifolds

The importance of the situation studied in this subsection stems from the fol-
lowing simple observation: since the prolongable (expanded) conic struclure is
then a homogeneal first-order (expanded) geometric structure, the affine space
of tangential (i.e. conic structure-preserving) connections is well-defned (and
non-emply, at least locally); moreover, it essentially even encodes the conic

structure on the manifold.

IV.2.2 Completive Prolongable Hypersurface-Directional Conic Struc-

tures and Locally Complete Parameter Spaces of Geometrical

Legendrian Submanifolds

The considerations of this subsection form perhaps the most interesting part
of the general theory developed in this chapter. Namely, the present subject
is in a sense at the confluence of, on the one hand, simple classic ideas from
the completely invariantly formulated theory of first-order PDEs (as devel-
oped in Section 1 in a rather less classic way), and, on the other hand, the
main twistor-theoretical idea of encoding (by means of Kodaira’s theory) a
differential geometric object by specifying a single compact submanifold in a
given (complex!) manifold. Indeed, according to the result (the ‘Legendrian
analogue’ of the ‘Kodaira’s main theorem’) proved in different ways in [14] and
(in a somewhat more special situation) in [3] , any compact Legendrian sub-
manifold (of a contact manifold) which is ‘Kodaira-regular’ (as a Legendrian
submanifold) in a certain sense (v. Subsection 2 ) belongs to a ( unique, of
course) locally complete parameter space of Legendrian submanifolds. When
the mild additional condition of geometric amenability of the Legendrian man-
ifold is imposed, a completely equivalent differential geometric desription of

this situation follows from our result from Section I .
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1IvV.2.3 Homogeneal Completive Prolongable Hypersurface-Directional

Conic Strucures and Locally Complete Parameter Spaces of

Normally Rigid Geometrical Legendrian Submanifolds

In this subsection the assumptions from Subsections 1 and 2 are considered
simultaneously (as already stated). (An important simplification will be that,
due to normal rigidity, geometric amenabilily of one of the Legendrian sub-
manifolds tmplies geometric amenability of all.) This is essentially the sit-
uation studied in [1/], except for the following differences: there is no as-
sumplion of geometric amenability of the Legendrian submanifolds in that ar-
ticle, but a condition on the Legendrian submanifolds equivalent essentially
to I-flatness of the conic structure (and thus stronger than prolongability) is
imposed . However, our situation ( considered in Subsection 4) seems to be
a more appropriate context for the study of geometry of paramater spaces of
Legendrian submanifolds for the following reason: under the assumption of
1-flatness the above mentioned affine space of tangential (i.e. comnic-structure-
preserving) connections has a distinguished (non-empty) subspace, namely the
subspace conststing of symmetric connections: this is precisely the affine space
of symmetric connections construcled in a completely different way in [14]; a
salient difference between the two contexts is that we are able to reverse this
construction (i.e. to recover the structure of the parameter space of Leg-
endrian submanifolds from the geometric structure) owing to our additional
condition of geometric amenability (even -as we already stated- under more
general circumstances of section 1, when completeness does not necessarilly
hold and no connections are distinguished). [t would not be difficult to see that
without that crucial additional condition (which is in a certain sense equiva-
lent to geometric amenability from the prevoius chapters), the structure of a
parameter space of Legendrian submanifolds still has a first-order geometric
structure as a constituent part (that is why a class of connections, namely the
one investigated in [14], is distinguished), but it also has another ‘component’,
which is ‘non-geometric’ in the sense of Remark II.16 (that is why the con-

struction can not be reversed). It should be emphasized that our approach (and
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proofs) is substantially different from the one in [14]: our starting point is not
a contact manifold 7 with a distinguished space of Legendrian submanifolds,
but the manifold M equiped with a geometric structure and Z is constructed
naturally as the quotient contact manifold of a distribution-equiped manifold .
There seem to be some further obvious advantages with this approach: in our
interpretation the geometric structure is manifestly of first-order (i.e. each
tangent space is simply o equiped with a conic structure), the distinguished con-
nections are more easily constructed - they are simply those which preserve this
structure, and, most importantly, we do not impose the too restrictive
condition of 1-flatness, but just the natural weaker condition of prolongabil-
ity ( similarly, the connections for which the ‘characteristic’ submanifolds of
the paramaler space are totally geodesic do not have to be symmeiric as in [14],
‘but only ‘partially symmetric’). This last freedom will play an important role
in the theory of Veronese conic structures {or G, -structures in terminology of
R . Bryant):

In [3] it is proven that a locally complete parameter space of Legendrian
rational curves (in a contact 3-manifold) such that their ‘submersed normal
bundles’ (which will be defined as the distinguished gquotient line bundles of
their normal bundles) have Chern class x = 3, is essentially the same as a
1-flat 4 -dimensional Veronese (expanded) conic structure. On the other hand
an application (v. [3] ) of Berger’s criteria for holonomy groups shows that
an 1-flat Veronese conic structure is necessarily completely flat as soon as the
dimension is > 5 (i.e. ¢ > 4). Therefore, for such z there are no nontrivial
complele spaces of Legendrian rational curves whose induced Veronese conic
structures are 1-flat. However, by specializing ( Chapter V) our general resulls
to Veronese conic structures we prove that a locally complete parameter space
of Legendrian rational curves (in a contact 3-manifold) is always (regardless
of the type of the normal bundles) essentially the same as a prolongable (i.e.
‘ partially 1-flat’) Veronese-expanded conic structure. ( Such manifolds are
not of no interest - for instance despite their possible first-order non-flainess
in the case of even self-intersection number z there is an underlying non-trivial

conformal structure (which is 1-flat, of course). We will also reprove the above
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quoted Bryant’s resull in a rather different way, namely by showing that for

x = 3 prolongability implies 1-flatness.
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Chapter V

Veronese Conic Structures

V.1 Veronese Conic Structures on Locally Complete

Parameter Spaces of Rational Curves in Surfaces

.

Remark V.1 In view of the well-known classification of line bundles over a
projective line and standard facts concerning the Veronese embedding, it is
immediate that a non-exceptional rational curve in a surface is a geometrical
submanifold, i.e. that the space of sections of the normal bundle inherits
a conic structure {which has to be hypersurface-directional since the normal
bundle is a line bundle): indeed, the integral-direction space will be precisely
the image of a certain Veronese embedding of the projective line into the
projectivized dual space J = P(T™). TFurthermore, the complete rigidity of
a line bundle on a rational curve (which is a well-known fact) implies (by

definition) normal rigidity of a rational curve in a surface.

Remark V.2 The objective of this section will be to give an explicit charac-
terization of the inherent localized first-order geometric structures at a point
of a locally complete parameter set of non-exceptional rational curves in a
surface. From the previous remark it follows that the isomorphy class of ra-
tional curves and the integer 1 satify the hypothesis of the Proposition 1.23.
Hence we infer that such a space of embedded curves is geometrical and thus

comes equiped with a hypersurface-directional conic structure. Therefore, the
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objective of this section could be rephrased more rigourously as an explicit
description of localized conic structures constituent for the conic structures
R C JM = P(T*).M canonically induced on complete spaces M of rational
curves in surfaces.

From the Proposition 1.23 it also folows that this objective amounts to a clas-

sification (i.e. an explicit description of the isomorphy classes) of vectorial

Veronese conic structures, which we define as vectorial completive hypersurface-

directional conic structures T, for which the integral-direction spaces J* C J :
= (since y = 1) = J are rational curves.

Another application of Proposition 1.23 shows that this classification is equiva-
lent to a classification of line bundles over rational curves admitiing nontrivial
sections. More precisely, the isomorphy classes considered above correspond
bijectively to the isomorphy classes of line bundles over rational curves which
admit nontrivial sections. (For a concrete locally complete parameter space of
rational curves in a surface the above mentioned isomorphy class of completive
vectorial conic structures corresponds according to Proposition 1.23 precisely
to the common isomorphy class of the normal line bundles of those rational
curves.}

These in turn are well-known to correspond bijectively to nonnegative integers,
where the correspondence is defined by Chern classes of line bundles. ( For
a rational curve in a surface the Chern class of the normal line bundle was
proved to coincide with the self-intersection number  of the curve.)

The explicit description of the isomorphy class of vectorial Veronese conic
structures determined by a given z > 0 is very simple: it consists of the struc-
tures 1. such that the underlying vector space T is (z + 1)-dimensional. (In
other words, such a structure consists of the (z+1)-dimensional vector space T’
and a rational curve J¢ in J = P(7™) embedded completively; incidentally, for
a rational curve in J completivity of the embedding is known to be equivalent
to the maximality of its degree.)

On the other hand, we observe that for a given (z + 1)-dimensional vector
space T’ the (vectorial) Veronese conic structures on 1" correspond naturally

and bijectively to the (vectorial) Veronese structures on 7', which are
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defined in the following way: Let us denote the ‘model’ vector space C"t! by
T, and its automorphism group (i.e. GL{z+1)) by G,,. Veronese structures on
Tare defined as G -structures, where G?L is the subgroup of G, obtained by
effectivization of the action of GL(2) on C*®% where the latter is identified
with T, (v. [3]). (Intuitively, a Veronese structure on a vector space 7' 1s
given by ‘a class (on T) of an z-th ymmetric tensor power of a vector plane’;
v. the next remark for a rigorous definition.) The above mentioned natural
correspondence is defined by associating to a vectorial Veronese structure 7y
the vectorial Veronese conic structure 7Ty whose integral hyperplanes are by
definition precisely the perpendiculars of ‘simple covectors’ in 7™ - meaning
covectors which are tensor powers of a single covector.

(Of course, bijectivity of the above natural correspondence amounts to equal-
ity G = G, where the left-hand side is by definition the automorphism
group of the Veronese conic structure on T, assoctated to the ‘model’ Veronese
structure. Thus, Veronese conic structures on T can also be thought of as G-
structures on T}

In conclusion, the conic structure induced on a locally complete parameter
space M of rational curves of self-intersection number z in a surface has been
seen to be a Veronese (hypersurface-directional) conic structure on an (z+1)-
dimensional manifold, which can be identified (in the way described precisely

above) with an expanded Veronese structure Mg, (i-e. with a GP -manifold).

Remark V.3 Although we will not need the above mentioned more intuitive
definition of a Veronese structure (or a Gf—structure) as a ‘vector space equiped
with a class of symmetric tensor powers of planes’, we give 1t here in a precise
form for the sake of completeness. An isomorphism between two (symmetric)
tensor powers with the same tensor-power vector space will be said to be over
tensor-power vector space if the associated automorphism of the tensor-
power vector space is the identity. A class of symmetric tensor powers on
a vector space T is defined as a class of symmetric tensor powers isomorphic
over the space T'. These are indeed structures on vector spaces since they can

be transferred by means of isomorphisms of vector spaces in an obvious way.
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Moreover, the automorphism group of the canonical such structure on the

‘model’ space T, = C**! is obviously the above defined group G§. Therefore

these structures may be thought of as G -structures. Let us observe that for |

such a structure the ‘tensor-root’ vector plane is given only up to isomorphism

inducing indentity in the tensor power. f

V.2 Geometric Description of the Structure of a Lo-
cally Complete Parameter Space of Rational Curves

in a Surface

In view of the observation (made in the previous section) that a non-exceptional
rational curve in a surface is @ normally rigid geometrical submanifold, and
of Proposition 11.29 (which can according to the above observation be applied
to complete spaces of rational curves in surfaces), it is clear that the objec-
tive of this section will be accomplished as soon as we obtain a classification
(i.e. an explicit description of the isomorphy classes) of completive hyperplane-
directional conie structures on vector spaces Ty, for which the integral-dirvection
spaces J¢ C J = (since y = 1) = J are rational curves. But that classification

has already been given in section 1.

Proposition V.4 For a given (z + 1) -dimensional manifold M there is a

bijective correspondence between

(a) Structures on M of a locally complete parameter space of non-exceptional
rational curves 5% in a surface S (i.e. equivalence classes defined in an obvious

way of complete families with parameter space M of such submanifolds)

and

{b) Integrable preconnections on M with the following two properties:
(b1) Admissibility; {Explicitly, in notation of Definition IL6 the foliation of

R by the leaves of the distribution F7 R is in fact a fibration and its projection

maps the submanifolds Jé.m of R injectively into its base.)
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{b2) The preconnection on M is a Veronese preconnection, which is defined
as a hypersurface-directional preconnection such that the underlying conic

structure on M is a Veronese conic structure, i.e. a Veronese structure on the

manifold M.

More precisely, this correspondence is obtained by restricting the correspon-

dence defined in Proposition 11.13.

[As remarked earlier in this section, this proposition is an obvious conse-
quence of Proposition I1.29 and Remark V.2.QED]

Remark V.5 In the following we will see that a locally complete param-
eter space of rational curves on a surface admits a different geometric de-
scription: instead of a hypersurface-directional preconnection on a Veronese-
expanded conic structure, we could take a projective structure (i.e. a curve-
omnidirectional preconnection) which is in a certain way compatible with the

Verouese conic structure.

V.3 Prolongable Veronese Conic Structures and Ge-
ometric Description of the Structure of Locally
Complete Parameter Spaces of Legendrian Ratio-

nal Curves

Proposition V.6 (i) In view of the general facts from the chapters on second-
order invariants and hypersurface-directional conic structures, a locally com-
plete parameter space M of Legendrian rational curves in a (3-dimensional}
contact manifold comes equiped with a prolongable Veronese conic struc-
ture, or, equivalently, a Veronese conic structure with pre-permissible intrinsic
torsion. QED

(i) According to the same general resulis the construction from (i) is re-
versible: the structure of a parameter space can be reconstructed from the
conic structure. What is more, the converse of (i) is true for a sufficiently

small neighbourhood of any given point of the underlying manifold M of the

139




conic structure. (In other words, an arbitrary ‘germ of a prolongable Veronese
conic structure’ is obtained by the construction from (i)).

(ii1) Suppose a single Legendrian rational curve in a contact 3-manifold is
given. Since it 1s a geometrical normally rigid Legendrian submanifold with
extendable (infinitesimal) 1-variations, we obtain by the general method of
Chapter 4 (on hypersurface-directional conic structures) a locally complete
parameter space of Legendrian manifolds as in (i). Thus simple holomor-
phic dala encode a solution of an (a priori non-trivial) first-order quasiaffine
invariant PDE (of the type considered by Bryant in [{]) on natural bundles
over manifolds, more precisely an integral of the quasiaffine PDE of pro-
longable Veronese conic structures on a manifold M. (Recall that this
equation is naturally associated to the manifold M, i.e. that the above men-
tioned invariance is implied to be under the biholomorphism group Aut M.
What is more, these equations are, as we have already noted, geometrically
invariant, i.e. their construction was completely local.) (We will soon see
that the condition we have imposed on the structural 1-jets of the localized
conic structures is quite severe, although weaker than 1-flatness; indeed, while
the space of pre-permissible intrinsic torsions will turn out to have at most six
irreducible components, the number of the irreducible components of the space
of all intrinsic pretorsions increases rapidly with the degree z of the Veronese

conic structure.)

V.4 Vectorial Structures and Invariant Spaces of Ten-

S0Ors

V.4.1 Elementary Pretype and Intrinsic Pretorsions

Proposition V.7 Consider a Veronese conic structure on a vector space T,
where notation is as in Definition 1.2 (in particular dimm T' =z + 1).

(i) Let 5 be an integral jet. As we have already observed in Remark II1.22
for general hypersurface-directional conic structures, the tangent 1-jet of the

integral-jet space J° (at j) must be axially decomposable (v. the above
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quoted remark; explicitly, the tangent space 7T to the integral-jet space J° at

j must be a subspace of
Ty = Hom(T*, T = T+ @ T*F

of the form
Hom(T*" Tk = Tl g Tk’

where T% is the subspace of T uniquely determined by the space T§ and
called the axis thereof. (V. Remark IIL.22 for its intuitive interpretation and
justification for this terminology.) Furthermore, since the integral-jet space is
in our case a curve (i.e. one-dimensional), the quotient 7¢#" must be a vector
line as well. (In fact, by explicit differentiation of the natural parametrization
of the integral-jet space - i.e. of the rational normal curve in J:= P(T™*), we
could easily prove that the axis consists precisely of all the symmetric tensor
products which have at least two factors from the distinguished vector line in
the tensor root vector plane; however, we will not use this fact.)

(ii) Veronese conic structures are of infinite elementary pretype. [Indeed,
this is true of general axially decomposable conic structures since the space of
tangential symmetric £-elementary preconnnectors can obviously be expressed

in the following way:

EX — Hom(T*F'®F Th) = T/ g Tria'®k,
QED

(ii1) Let us fix a compatible structure on 7' of a symmetric tensor power
of a vector plane T, (which will be referred to as the ‘tensor-root plane’).
{Compatibility of this structure and the Veronese conic structure has been
defined in Proposition V.2.) Furthermore, let us choose a symplectic product
(i.e. a volume form) on the tensor-root plane.

Claim: The tangential symmetric elementary-preconnnector bundle
E;a.tEJs — Tj ® T*/a

is canonically isomorphic to the power T,/¥®4=# Je (less precisely denoted by
(4 — z)) of the transversal line bundle {1) on the projectivized dual space J,

of the tensor root plane T,.
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[Proof of (ii): Since the transversal spaces T/ are one-dimensional, the
equality
Tj _ Tfoz ® T*/ozoz’

(from (1)) implies
TR T = T (V.1)

On the other hand, we can express fibers of the tangential symmetric elementary-

preconnnector bundle as follows:
B+ = (according to (i) = Hom(T*/' 02 Tk = Tl g pra’®? _

= (due to one — dimensionality of T**}) = T/ g T '®2 — (by (V1)) =
— T/a ® T§®2 ® T*a®2 — Tj@? @ T* oy Tr/a @473:.

Finally, in order to prove the statement on canonicity, it suffices to observe
that the last isomorphism of fibers is canonical since a symplectic product
on the tensor root vector plane 7, is fixed; indeed, 75 = T./%®2 canonically

(relative to the symplectic structure). QED]

V.4.2 Pretype and Permissible Conjunctively Intrinsic Pretorsions

Proposition V.8 Consider a vectorial Veronese conic structure on a vector
space T', where notation is as in Proposition II.9.

(i) The G®-module H°(E***J¢) (of tangential symmetric preconnectors)
is isomorphic to TT(@4_°’), where the latter symbol denotes T,O*% if4 > = and 0
otherwise. (More conceptually, this symbol denotes the space HO(TT/‘” O4=z Jey
of sections of the indicated power (less precisely denoted by (4 — z)) of the
transversal line bundle (1) on the projectivized dual space J, of the tensor
root vector plane 7T,.) In particular, the Veronese conic structure is of pretype
one iff £ > 5. Furthermore, according to the well known general properties of
(®-modules, the indicated isomorphism of irreducible modules is unique up
to a scalar factor. In addition to that, this isomorphism becomes canonical
(i.e. its ‘scale is chosen’) as soon as a symplectic structure onthe tensor-root

vector plane is chosen.
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[In order to prove (ii), it suffices to apply the explicit description of the tan-
gential symmetric elementary preconnnection bundle obtained in Proposition
V.2, QED]

(i1) By examining in this case one of the long exact sequences from Propo-
sition 111.9, namely the sequence beginning with the nethermost row of the
diagram, we conclude that the (®-module of permissible conjunctively in-
trinsic pretorsions either vanishes or is isomorphic to T,(®*~%. (Indeed, we
know from Proposition IIL1.9 that this module is embedded into the module
HY(E2et 2} of afline-bundle classes on the tangetial symmetric elementary-
preconnnector bundle; on the other hand the latter module is in view of the
exphicit description of that bundle in Proposition V.7 clearly isomorphic to
the irreducible module TT(G“"’_S).) However, by means of an appropriate exact

sequence and one-dimensionality of the integral-jet space, the space
HY(ERJ5) = HYT: @ T J°)

is easily seen to be vanishing (the exact sequence in question is the one obtained
by viewing the second tensor factor as a quotient). Therefore, the latter of the
above alternatives in fact always occurs, i.e. we obtain
HD(E#saJs) _ HD(T& ® T/*o:.v‘\2 Je)
HO(Ete ey = HYTS @ T*/ J¢)

~s T, (079, (V.2)

In summary, the GG*-module of permissible conjunctively intrinsic pretorsions

is isomorphic to 7,(92=6) where T. denotes a tensor-root symplectic plane,
and the meaning of the parentheses is the same as in (i). Furthermore, the
conclusions from (i) regarding canonicity of the isomorphism of irreducible

modules are obviously also valid in this case. QED
V.4.3 Conjunctively Permissible Complementally Intrinsic Pretor-
sions

Proposition V.9 Consider a vectorial Veronese conic structure on a vector
space T', where notation is as in Proposition [11.14. For the sake of convenience,

the diagram pertaining to that proposition has been reproduced here.
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(i) The space HO(E/F*22<%¢ J¢) (of permissible pretorsion vectors), which was

expressed in (I1.11) in terms of extensions as

HO(EL J) o HY(EeJ)
BT ey T OB ) L HO(BRe st J¢)

V.3
HO(E!eesa J7) HO(Ete J¢) (V-3)
has a decomposition into irreducible G®-modules of the following form:
Tr®$—2®Tr®m@Tr®I+2 - (@11-'—4)
Z—z —I_T-':‘ .
(%) }7;,(©6), (V.4)

TT(®4—w)

Furthermore, these decompositions are compatible in the sense of equality
of entries of (V.3) and (V.4) in analogous positions. Of course, this module
is completely reducible, and consequently the quotients in the indicated ex-
tensions can be realized in @ unique way as (invariant!) direct summands.
(Uniqueness follows from their irreducibility and non-existence of isomorphic
irreducible modules contained in the submodules.) Furthermore, the conclu-
sions from Proposition V.8 regarding canonicity of the isomorphism of irre-
ducible modules can also be drawn in this case. (Explicitly, the indicated iso-
morphisms of irreducible modules are unique up to a scalar factor, and they
become canonical if a symplectic structure on the tensor-root vector plane is
chosen.)

[Proof of (i) will be carried out gradually through the proofs of other assertions
of this proposition; the latter are more elementary than (i) and together imply
(i), but also contain more detailed information on effective construction of the
isomorphisms whose existence is asserted in (i). QED]

(ii) The investigation of the tangential symmetric elementary-preconnnector
bundle in Propositions V.7 and V.8 has already resulted in the determination
of the isomorphy classes of the quotient (i.e. the space of permissible conjunc-
tively intrinsic pretorsions) from the extension (V.3) and of the ‘denominator’
in the subspace (namely the space of tangential symmetric preconnectors).
Likewise, the issue of how canonical the isomorphisms are has already been
addressed in those propositions. Let us now observe that their proofs also give

explicit procedures for the construction of canonical isomorphisms. QED
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(iii) Now we focus our attention on the space of tangential preconnectors,
ie. the ‘numerator’ in the subspace from the extension (V.3). The proof
of the corresponding statements from (i} easily follows by application of the
method used in (ii) to the long exact sequence defined in Proposition 11112,
computation of the first two cohomology groups pertaining to the tangential
compiementary—elémenta,ry preconnnector bundle and observation of the dis-

tinguished decomposition of the space of tangential preconnectors:
Frte — Eud' D Fltee — TTG)JT ® Tr®$—2 ) TTG)x D Tr®$+2-

Here the spaces E*% and E'= consist by definition of resp. the first-trace-
part connectors and tangential connectors for the associated obviously defined
scaled conic structure, while the (unique due to distinctness of the irre-

ducible components) decomposition of the latter space into irreducible com-
ponents has been obtained from Clebsch-Gordon formula. (CL. [3]). QED

V.4.4 Complementally Permissible Homogeneally Intrinsic Pretor-
sions, Homogenally Permissible Intrinsic Torsions and Com-

plementary Connectors

In order to oblain information on the relation of the space of full precon-
nectors and the space of preconnectors with the space of connectors, we wil
apply straightforwardly the relevant assertions of Theorem II1.20 to the case

of Veronese conic structures.

Proposition V.10 Let us consider a Veronese conic structure on a vector
space T', where notation is as in Theorem I11.20. The diagram pertaining to
that theorem has for the sake of convenience been reproduced here.

(i) Since a vectorial Veronese conic structure on a is hypersurface-directional,
completive and its integral-jet space is a projective space (being a rational
curve), the map (1) in the diagram is according to II1.21 {i.iii) bijective. In
other words, the vector space of full preconnectors is (by means of this map-
ping) a quotient space of the space E = T @ T*®% (of connectors) canoni-

cally isomorphic to (and will therefore be identified with } the quotient space
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EP (= E'Y of first-trace-free connectors. In particular, all full preconnec-
tors are homogeneal (i.e. connector-induced). According to IIL21 (i.ii}, this
implies vanishing of the space of complementally permissible homogeneally in-
trinsic pretorsions.

Furthermore, according to 111.21 (i.iii), the map (2)’ is also injective, i.e. the
surjection of the space of covectors onto the space of homogeneally universal
complementary full preconnectors is bijective. QED

(ii) Since a Veronese conic structure on a vector space is hyperplane-
directional, the map (2) in the diagram is according to III.21 bijective. In
other words, every complementary full preconnector is universal, i.e. uniquely
precovector-induced. (Here we imply the correspondence between precovec-
tors and complementary full preconnectors which was defined fiberwise in the
way indicated in the diagram.)

(iii) Since a Veronese conic structure has all the properties enumerated in
(1), the space of inherent complementary full preconnectors (which was defined
as the quotient of the space of precovector-induced complementary full pre-
connectors by the space of the universal ones) admits according to [11.21 the
following description: The canonical linear mapping of inherent complemen-
tary connectors into homogeneally inherent complementary full preconnectors
1s bijective, and its codomain is canonically isomorphic to the vector space of
the affine bundle classes on the vector bundle of the lines of integral-tangent
(or ‘complementary’) covectors:

np np
EPP /u‘i(: e Jud eud’ £ — 1
} T opwdeed! T vd! wd!
E Ev' 4+ F

. E/vd’ np/uz) s HO(E::;UJE)/H”I
(V.5)

QED
(iv) The vector space H(T**J%) (on the right-hand side of (V.5)) of affine-
bundle classes on the vector bundle of spaces of integral-tangent (i.e. ‘comple-
mentary’) covectors is irreducible as a G* -module; more precisely, it becomes

*(Dz—2) (

canonically isomorphic to the module 7, of degree z — 2 or zero) when

a root symplectic plane T, is chosen (v. Proposition V.4).
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Proof of (v): According to Proposition V.4, the (above mentioned) line bundle
T**J¢ is after such a choice canonically isomorphic to the bundle 7,**®" J =
(—2), where T,/ J, = (1) is the hyperplane-divisor line bundle on the projec-
tive line J,. QED

(v) Since the irreducible module from (vi} is according to (iv) (canoni-
cally isomorphic to) the quotient module (V.5) (of inherent complementary
connectors) and it is clearly not isomorphic to the two components of the
submodule F* = Ev' 4 Fvd" of Ere (which are both isomorphic to T~
and thus irreducible), the ( clearly completely reducible) module E™ (of
complementary connectors) has a unique submodule forming a direct com-
plement to E* = EY"-v?  We will identify the quotient module with this
submodule and denote the latter by F*™. It will also be identified with its
image E*? Y (in the module B »P), which is clearly the unique submod-
ule forming a direct complement of the submodule E#¥* (of homogeneally
universal complementary full preconnectors). QED

(vi) Our present objective is to investigate the symmetry of the space
Enp/uz' — Enpiu (V6)

(of inherent complementary connectors) as a subspace of the space E™ (of
complementary connectors). According to I11.21, the latter space is symmetric
{with respect to the permutation of the second and the third index ), i.e. the

direct sum of its symmetric-tensor and antisymmetric-tensor parts:
JnP . fnpese & Jpeas

Furthermore, it was already noticed there that the symmetry automorphism of
that space (obtained by restriction) descends to the above quotient space (V.6).
Claim: The space (V.6) is also symmetric as a subspace of E™. [Indeed, it
suffices to observe that its image under the symmetry automorphism is an iso-
morphic G -module and that there is only one submodule of that isomorphy
class in E™. QED]| In particular, it splits into a sum of its symmetric-tensor
and antisymmetric-tensor parts. Since these are again G -invariant and their

sum 1s an irreducible module, we infer that one of them has to vanish . In con-
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clusion, the space (V.6) either consists of symmetric or antisymmetric tensors
(with respect to the permutation of the last two indices). QED]

(viii) Since the jet space of a Veronese conic structure is (biholomorphic
to) a projective line and every full preconnector is homogeneal (i.e. connector-
induced), every preconnector is according to Theorem I11.21 also homogeneal

(i.e. associated to some connector). QED

Lemma V.11 The space E** from Proposition V.10 (i.e. the space of inherent
complementary connectors for a localized Veronese conic structure) consists of
antisymmetric connectors. (In particular, the only symmetric complementary
connectors are the universal ones, while the space A™ /7% of inherent com-
plementary torsions is non-vanishing.)

Prool: We will give only au outline of the (rather long but natural) alge-
braic proof since we will later show independently by a somewhat circuitous
differential-geometric construction that A™ /7% {5 non-vanishing; this will in
view of Proposition V.10 amount to an alternative proof.

For an arbitrary hypersurface-directional completive conic structure it is
possible to give an explicit canonical construction (and thereby prove the ex-
istence) of a connector in the preimage of a given universal (i.e. pre-covector
induced) full preconnector. By its very construction this connector turns out
to be antisymmetric (in the last two indices) and to depend linnearly (and G-
invariantly) on the given full-preconnector. (Antisymmetry follows easily from
the following formula for the component v* in an arbirary integral-transverse

space T/* of the value v € T of the connector on a pair (vy,v2):
v =< Py — —wV1 > v

Here v*/ denotes the procovector from the given precovector at the integral jet
7, and v{a is the image of v; in the integral-transverse space; furthermore, we
consider only those j for which the denominator is non vanishing; corectness
of the definition follows from the completivity assumption.)

In the case of Veronese conic structures the image of this invariant map must

be precisely £ by invariance and uniqueness of such an irreducible module
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in E™. (What is more, one could prove in this manner that E'™ consists of

first-trace-free connectors.)
QED

Proposition V.12 (i) For a Veronese vectorial conic structure the space A

(of torsions ), which was expressed in Theorem I11.20 as the succesive extension
AW AP APl L AP i | APl | APiofois | pfpio (V.7)

ot the succesive extension
Aua+Anp/uz+( Ap‘ih/np_i_AP‘ipfpfh _i_AP’.j/p‘ip )_i_AP"O/P"‘j _i_A/PiO’ (VS)

has a decomposition into (irreducible except for the last entry) G*-modules of

the following form:

Trem—Q Tr@m TTGm—fZ . . —4
A A

T, {©4-z)

70 L (©0=2) 1 7, (©2=6) | fgfrio, (V.9)

Furthermore, the latter two expressions are compatible in the sense of equal-
ity of entries of (V.7) and (V.9) in analogous positions. (It is implied that
the expression within the brackets corresponds to the ‘total fraction’). Of
course, this module is completely reducible, and consequently the quotients in
the indicated extensions of (V.7) can be realized as {invariant!) direct sum-
mands; in addition to that, such a realization is unique except for the case of
homogeneally permissible pretorsion vectors. (Unigueness follows from their
irreducibility and non-existence of isomorphic irreducible modules contained in
the submodules.) Furthermore, the conclusions from Proposition V.8 regard-
ing canonicity of the isomorphism of irreducible modules can also be drawn in
this case. {Explicitly, the indicated isomorphisms of irreducible modules are
unique up to a scalar factor, and they become canonical if a symplectic struc-
ture on the tensor-root vector plane is chosen.) [Proof of (i): All these facts
follow immediately from previous propositions in this sections and 111.21.QED]

(ii) In the case = > 4 the assertion (i) implies equality of the space A™P?!
(of complementary permissible torsions ) and its subspace A* (consisting of

universal complementary torsions): Indeed, it suflices to observe that the space
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A= (consisting of tangential connectors of the scalar conic structure) is then
mapped injectively into the space of pretorsions since 1t does not contain com-

(©2-2)  Consequently, the canonical

ponents isomorphic to either T.(®4=2) or T
surjection of inherent complementary torsions (which have been canonically
identified with inherent complementary torsions a™) into homogeneally per-
missible intrinsic torsions (defined in I11.21) is then bijective.

(1ii) The {*-lnvariant) canonical linear map
Esa.te s HO(E;a..tBJE)

{of tangential symmetric connectors into tangential symmetric preconnectors)
is injective. In view of Proposition V.8 (on the pretype of Veronese conic
structures), this assertion has the following consequences:

If > 5, the Veronese conic structure is also of type one (i.e. the space
Feeste of tangential symmetric connectors vanishes). Furthermore, if x = 2
(resp. 3,4) the latter space has dimension at most 3 (resp. 2,1). In fact,
in the case z = 2 it is 3-dimensional (since the Veronese conic structure is
then clearly equivalent to the conformal structure, cf. [9]}; in particular, the
structure is not of type one and the above map is bijective. Furthermore, by a
straightforward tedious algebraic computation it could be shown that in cases
x = 3,4 the conic structure is actually of type one; however, we will not use
this fact.

{Proof of (i): The above injectivity follows from the II1.21 {ii) since the conic
structure is hypersurface-directional and the space of inherent complementary
symmelric connectors vanishes according to Lemma V.11. (Alternatively, we
could exploit the fact that an either euclidean or symplectic conformal struc-
ture underlies the given conic structure and use the well-known explicit de-

scriptions of the space of tangential symmetric connectors for this underlying

structure.) QED] QED

V.5 Differential-Geometric Implications

V.5.1 Prolongability of Veronese Conic Structures
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Proposition V.13 (i) The PDE from Proposition V.6 (on the geometric de-
scription. of a locally complete parameter space M of Legendrian rational
curves in a contact manifold), i.e. the PDE of prolongable Veronese conic
structures, (or, equivalently, Veronese conic structures with pre-permissible
intrinsic torsions) can now be formulated in a more explicit way. Indeed, the
space AP of pre-permissible torsions has been explicitly described in the last
section as the ‘extensional sum’ of the entries of (V.9) with the last one ex-
cluded. In other words, a decomposition of the space AP® 7 of pre-permissible
intrinsic torsions into irreducible components is given by

1O 2 g7, O gy Oot?

T‘i"@E“i“Tr(@m_?)-i- T (57=2)

T (Ot —x)

IO T O 29T, 92 g7, 0ot
Ieaete

FOT.(G2—1)
+0+1% _%_TT(@I#G)

(V.10)

(Cf. the decomposition of the space E* of tangential connectors given in
Proposition V.9.) In particular, this space indeed has at most seven irre-
ducible components, as we had already announced. As a consequence of this
relative ‘sparseness’ of the pre-permissible intrinsic torsions (among arbitary
intrinsic torsions), i.e. of the ‘richness’ of the space of (necessarily homoge-
neal) intrinsic pretorsions, the above PDE is overdetermined: Indeed, on the
one hand it is defined on the Veronese conic-structural bundle UM , whose
fibers U = G/ :! = G/G® are clearly of dimension (z + 1)2 — 4 (‘the number
of dependent variables’); on the other hand the ‘number of equations’ equals
the dimension of the space A%% of homogeneal intrinsic pretorsions, or, ex-
plicitly, the dimension (z + 1)® of the space A of torsions decreased by the
dimension of (V.10), i.e. by at most 4(z + 1) — 12. (Cf. Proposition V.12).
QED

(i1) Let us consider the case ¢ = 3. Claim: The space of pre-permissible
torsions is now equal to its subspace consisting of permissible torsion. (In other
words, the space of pre-permissible intrinsic torsions vanishes.) In particular,
1-prolongability of a conic structure is in this case equivalent to I-flainess.
Therefore the method of Proposition V.6(iii) produces in this case I-flat conic
structures, i.e. solutions of an a priori even more restrictive PDE. (This

fact has been proved by a somewhat different method by R. Bryant in [3])
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In summary, the present proposition is the proper generalization of the just
quoted result in the following sense: while for Veronese conic structures of
higher degrees x the PDE of 1-flatness has -as proved in the same article-
only trivial integrals, the same is not true of the PDE of (1-) prolongability:
according to Proposition V.6, its integrals are precisely given by the same
twistorial construction.) QED

[Proof of (ii): Direct computation easily shows that no other component of
(V.10) is non-zero.QED)]

V.5.2 Conjunctive Prolongability of Prolongable Veronese Conic

Structures

Proposition V.14 Consider an expanded Veronese conic structure with un-
derlying manifold M.

(1) Suppose the conic structure is of degree z > 5. Since this conic structure
is of type one (according to Proposition V.8), the assumptions of Proposition
IT1.10 are fulfilled in this sitvation. In particular, all the conclusions therefrom
apply to the case of Veronese conic structures of degree at least five.
(Explicitly, there exists at most one conjunctively 1-prolongable -in partic-
ular at most one conjunctively integrable- preconnection on the given conic
structure. Therefore, the structure of a locally complete parameter space of
rational curves of self-intersection z(> 5) is a first-order geometric structure.
However, recall that these conic structures are not of elementary pretype one, as
opposed to e.g. paraconformal structures, and consequently conjunctive pro-
longability is possibly not equivalent to ordinary prolongability. Similarly, the
argument we have used included the consideration of the tangential symmetric
elementary-preconnnection bundle {defined on the whole integral-jet space J°
at a point, not only the tangential symmetric elementary preconnnections at
one integral jet.) QED

(ii) Let us suppose the given conic structure is I-prolongable, i.e. a solution
of the PDE from the previous subsection. The conjunctively intrinsic pretor-
sion is then an element of the module T.(®*=% from (V.10). (Notice that this
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module is by definition a smaller quotient of the ‘numerator’ in (V.10) then
the quotient {V.10)).

Incidentally, we know this invariant can be interpreted as the negative of the
affine-bundle class associated to (fiberwise non-empty due to prolongability)
tangential symetric-elementary preconnnector bundle and is thus the precise
obstruction to conjunctive 1-prolongahility (i.e. the second-order obstruction
to conjunctive integrability).

In particular, if we specialize to the case x < 5, this invariant always
vanishes, i.e. tangential symmetric preconnections (on the given prolongable
expanded conic structure) always exist.

The further specialization to the case z = 5, which is at the confluence
with the case from (1), enables one to claim both existence and uniqueness of
a tangential symmetric preconnection. QED

(ii1) Suppose the structure is conjunctively prolongable. Our next objective
is an investigation of the conjunctive-integrability PDE of the given conic
structure, which is defined as the first-order quasiaffine PDE on the tangential
symmetric preconnection bundle H°{(C**** J*}M (over the manifold M) whose
integrals are precisely the integrable preconnections on the given conic struc-
ture. In this context conjunctive 2-prolongability of the conic structure,
i.e. vanishing of the conjunctively intrinsic precurvature, is a necessary
condition for conjunciive integrability, more precisely a necessary condition
for the existence of a PDE-integral jet through every point of the above affine
bundle.

In the case z > 5 the fibers of the above affine bundle consist of single points
(since the pretype is zero according to Proposition V.8). Thus it has only one
section {namely the unique tangential symmetric expanded preconnection),
and conjunctive integrability of the conic structure is clearly equivalent to
conjunctive 2-prolongability, i.e. to the vanishing of the conjunctive intrin-
sic precurvature.(Recall that the latter is by its very definition a third-order
invariant of the conic structure.)

In the cases resp. z = 2, 3,4 the fibers of the above affine bundle have al-

ready been seen in Proposition V.12 to be of dimensions resp. 3,2,1. Therefore
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the study of conjunctive integrability of the conic structure in these cases in-

volves the study of various properties (e.g. prolongability) of the above PDE.
Notice that the conjunctive 3-pr olongability of the conic structure is a priori

only a necessary condition for the I-prolongability of the PDE.

V.5.3 Complemental Prolongability of Conjunctively Prolongable

Veronese Conic Structures

Proposition V.15 Consider a conjunctively (1-) prolongable expanded Veronese
conic structure.

(i) According to Proposition V.9 at any given point m the associated com-
plementally intrinsic pretorsion belongs (being conjunctively permissible) to
the quotient of the module 7,®*~% from (V.9).

Incidentally, we know from Proposition 11112 (vi.4) that this invariant can
be interpreted as the negative of the affine-bundle class associated to (fiber-
wise non-empty due to prolongability) tangential symmetric full-elementary
preconnnection bundle and is thus the precise obstruction to complemental
prolongability. In addition to that, we saw in that proposition that its preim-
age relative to the canonical mapping of 1-fattening classes (determined by the
localized conic structure) consists precisely of the 1-fattening classes associated
to tangential symmetric preconnections.

(ii) Suppose the degree x of the Veronese conic structure is at least five.
In accordance with Proposition V.8 the pretype is one, and thus the above
preimage consists of a single 1-fattening class, namely the one associated wiht
the (unique) tangential symmetric preconnection; in other words, the canon-
ical mapping of affine-bundle classes is bijective. The explicit description of
this mapping is in this case facilitated by the {already observed) fact that iso-
morphism of two irreduccible G*-modules is unique up to a constant factor.

(iii) Suppose z = 4. It is clear from (V.9) that the space of conjunctively
permissible complementally intrinsic pretorsions vanishes. (Indeed, it suffices
to observe that in the ‘total denominator’ in (V.9) the only two 1-dimensional

modules must be ‘cancelled’.) Therefore the conic structure is always com-
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plementally prolongable and all 1-fattening classes (which form a vector line) ;

can be obtained from tangential symmetric preconnections (which also form
a line). More succinctly, the canonical mapping of tangential symmetric pre-
connections into I-fattening classes is a bijection of vector lines. (iv) Suppose
z < 3. Then both the space of I-fattening classes and conjunctively permissi-

ble complementallyintrinsic pretorsions vansih.
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Chapter VI

Appendix

V1.1 Generic Notation

(a) EM = A bundle (or the total space thereof ) over M whose fibers will be
denoted by E, or, more precisely, E,,. Pull-backs (in particular restrictions)
of that bundle will most often have fibers denoted by E as well; in other words,
such a pull-back relative to a map My, — M will usually be denoted by EM,.
However, this always has to be stated in the definition of F M, (which is thought
of as a single -although ‘composite’- symbol whose meaning is not completely
determined by the meanings of £ and M,; thus, the bundle denoted by EM,
does not have to be a pull-back even if the bundle EM and a map My — M

are given.

(b) When the distinction between a bundle EM and its total space has Lo be
made in notation, the latter will be denoted by E.M. A section of that bundle
(which will also be called ‘a field valued in that bundle’) will be denoted by {e}p
(this symbol could be thought of as an abbreviation for the system {em }menr ),

and its values by e, or simply e.

(¢) If a point m in the base of a bundle EM and a point e of the fiber E over
m are given, the corresponding point of the total space is denoted by e.m or
(if the fibers E already are disjoint) it is taken to be e. Similarly, the ‘disjoint
copy’ (a submanifold of the total space) of the fiber E over m is denoted by
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E.m(C E.M).

(d) M* will usually denote a subspace of the space (meaning manifold or

vector space etc.) M.
(e) A quotient space of M will usually be denoted by M*.

(f) If T, T* is a pair of dual vector spaces and = 4y = dimT, we will often
tdentify the Grassmanian spaces Gr(z,T) and Gr(y,T™) (by requiring that
two perpendicular subspaces have the same parameter) and denote this space
by J(z,y) of just J. In this context the two pairs of dual spaces determined by
o direction j € J will usually be denoted by T, T* and T*, T*. (Explicitly,
T** is the perpendicular of T* and T is the complemenary quotient T /T™ to
the given subspace etc.). Furthermore, the subspace T* NT* (resp. T | T*)
- will be denoted by T (resp. T°*). (Consequently, T** N T** is denoted by
T etc.)

(g) The tangent space at a point s of a manifold S will be denoted by Ts or,
more precisely, by (Ts ),. Usually the manifold of a central importance will be

denoted by M and its tangent spaces Ty simply by T.

(h) If @ submanifold M™ of M is given, its tangent, normal, cotangent and
conormal bundles will usually in accordance with (d), (e), (f) and (g) be briefly
(but still suggestively) denoted by resp. TM®, TP M*, T**M* gnd T** M,
Similarly, if 5% is a submanifold of S, its normal bundle will be usually denoted
by TéaSa.

(i) In certain situations the upper indices (usually Greek letters) described in
(d) - (f) will be double, i.e. they will be formed by two Latin letters, where the
two parts will serve as markers of the two mutually complementary pairs of
dual spaces from (f) as illustrated in the following example: Let G denotes the
Lie algebra of the automorphism group G of a vector space T'. In the Jollowing
this Lie algebra will be the ‘main’ ambient space. We will usually denote by
G*? the vector subspace consisting of trace-free linear endomorphisms. Here
the letters v’ and ‘d’ suggest ‘volume forms’ and ‘directions’ in the following

sense: With respect to the main ambient space (not with respect to its dual!)
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the second part of the double index will be the marker of the quotient space,

namely of the space G of infinitesimal automorphisms of the Grassmanian
space; the letter 'd’ has been chosen for this purpose in order to suggest that
the elements of the quotient space ‘act on directions’. In accordance with the
above connection, the first part of the double index will be the marker of the
sttbspace, which in this case ‘acls on volume forms’. Of course, for the dual
ambient space G* the conventions will be opposite. In other words, it is implied
that for a subspace of G (resp. G*), the first part (resp. the second part) of the
double indez is indicative of the pair of dual spaces consisting of the subspace
and its dual.

Stnce in this case there is o distinguished complementary subspace to G¥*,
namely the space C - vd of ‘trace-part elements’, we will denote it by G™.
(However, such a convention will not always be applicable.)

(7) For a parameter space of objects with a certain property the parametriza-
tion does not have to be bijective. If it is injective (resp. bijective), such a
parameter space is said to be effective or simply a space of objects with that
property (resp. complete or simply space of all objects with that property).
For instance, a transformation group is a parameter transformation group such
that the corresponding action (which is a homomorphism of that group and the

group consisting of all transformations) is injective.

V1.2 Cartan Distribution

In this section we will expound the standard reduction (‘by lifting to the contact
manifold’) of the problem of integrating generalized conic structures (or ‘sub-
stratal PDEs’) to the problem of finding certain possibly non-equidimensional
integral submanifolds of the associated ‘Cartan distribution’ on the integral-
Jet space. Although this construction can be carried out in a succesive way
for generalized conic structures of arbitrary order, we will concentrate our at-
tention on first-order generalized conic structures. (The second-order conic
structures of the greatest importance in the geometriztion of double fibrations

are general preconnections, i.e. those which are already distributions on the
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structural global 1-jet space. The associated Cartan distribution on the total
integral 2-jet space essentially coincides with that distribution, i.e. lifting to
the second-order contact manifold produces nothing new.)

We begin by reviewing the relevant facts and outlining their (conceptual and

intuitively very clear) proofs.

Remark VI.1 Suppose M, is a z -dimensional and y -codimensional-expanded

conic structure, where y is not necessarily 1 . Let us introduce notation as
in Chapter 1 . In particular, the total integral manifold of jets is denoted
by R = J°M C JM, while T*R denotes the restriction of the { tautologi-
cal) integral-tangent bundle TJ.M, and T/ R denotes the restriction of the
integral-transverse bundle T/ J.M = %J.M . Furthermore, as in Chapter 1,
the ( fiberwise) y -codimensional structural distribution of the contact mani-
fold JM ( consisiting of all y -codimensional jets) is denoted by #'J.M.

Let us observe that the total integral manifold of jets K is span-transverse
to this distribution (since at each point r already the spaces Ty and T span
Ta). For this reason the problem of solving the first-order generalized conic
structure determined by M., is reducible ( just like in the case of more general
generalized conic structures with that property) to the investigation of possibly
non-equidimensional integral submanifolds of a certain distribution-equiped
manifold . More precisely, we define the Cartan distribution for M, as
the distribution formed by induced elementary structural prejets (of localized
conic structures) at various jets j.om ( cf. Proposition 1I1.4); explicitly, it is
defined as the distribution £'®°R on R formed by intersections F*° of the
subspaces F' and T of Tps; these intersections indeed form a ( holomorphic }
distribution because of transversity, i.e. since the set-theoretical distribution

Fe° R is the kernel of the surjective mapping of vector bundles

T
TprR — TJ?M = ﬁR::T/O‘R

What is more, this argument also shows that the Cartan distribution is fiber-

wise y -codimensional . Similarly, if we introduce notation
b:=dim J° and d:=dim J — b (= the codimension of manifolds J* in J),
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the obvious fact

T . : .
dimTLM (= ‘the number of equations’ in classical language) = h
R

and an argument analogous to the one just pursued shows that the fibers
Feo of that distribution are h -codimensional in the (dim J 4 &) -dimensional
spaces F; in particular, the Cartan distribution F*°R is ( fiberwise) (b + z)
-dimensional (since by definition of »  dim J = b + k) and thus

btaz=dim R—y=dimF —h.

Let us also observe that here b, h < zy since dim J = zy.

The above mentioned reduction of the problem of solving the first-order
generalized conic structure consists in the following standard and almost evi-
dent fact: the = -dimensional submanifolds M* of M which solve the equation
correspond bijectively to those @ -dimensional integral submanifolds R* of the
Cartan distribution-equiped manifold R which project biholomorphically onto
submanifolds of M. More precisely, for a given R* the corresponding M is
simply its image under the projection, while for a given M* the corresponding
(relative to the inverse correspondence) RB* is precisely its canonical lift to
the contact manifold JM. For the sake of completeness we sketch the ( simple
and intuitively very clear) proof:

By the very definition of a generalized conic structure an integral submani-
fold is characterized by the requirement that its jets in M (at all of its points)
be integral, i.e. that its lift be contained in R. Thus we only have to char-
acterize those submanifolds of B which are lifts. Now we recall that by the
main property of the (general possibly not hypersurface-) contact manifold
JM (v. Appendix ) the submanifolds of JM which are lifts are precisely those
& -dimensional integral (relative to the contact structure) submanifolds which
project biholomorphically onto submanifolds of M. There remains only to

take into account the definition of the Cartan distribution.

In addition to this, the integral submanifolds of the Cartan distribution- -

equiped manifold R which are only transverse to the fibers J® of J°M = R | e

clearly give rise locally to integral submanifolds of M, and ate therefore Ca_‘He.'d_:'_:._. .

‘multi-valued’ integral submanifolds of M,,.
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Finally let us recall that the Frobenius tensor fr,, of the Cartan distribution T o

at a point r is an alternate bilinear map on F° with values in %fg = T;’f = T,
More succinctly, fr, € Hom(( Foe /2, T/).
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