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Abstract of the Dissertation
A generalization of the Morse complex
by
Janko Latschev
Doctor of Philosophy
in
Mathematics

State University of New York at Stony Brook

1998

Let f: X — R be a Morse-Bott function on a compact man-
ifold, whose gradient-like flow ¢, satisfies a generalization of the
Smale condition and is ‘tame’ near the critical manifolds. We show
that such a flow satisfies the finite volume condition of Harvey and
Lawson (HL97b]. This implies that ¢, gives rise to deformations of
both the de Rham complex of differential forms on X and the com-
plex of smooth singular chains transverse to the unstable manifolds
of critical sets. We describe the structure of lim,__,o ¢, (T) for T
in either of the two complexes. In particular, we show how the

deformation of the singular chains yields an effectively computable
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model of the homology of X in terms of a generalized Morse com-
plex (M, 3r). The chain groups of this complex can be identified
with the (suitably shifted) groups of singular chains in the critical
sets, and the differential is explicitly given in terms of the flow.
Applications include computations of the homology of a fibration
and G-equivariant homology for manifolds with an action of a com-
pact Lie group G. The methods also give partial results about the

ring structure of H*(X).
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Chapter 1

Introduction

It is a classical result of Morse theory that a finite dimensional compact
manifold X has the homotopy type of a CW-complex with one cell for each
critical point p of a Morse function f on X (where the dimension of the cell is
equal to the index of the critical point p). In the late 1950’s Smale introduced
a simple transversality condition on the stable and unstable sets associated
to a gradient-like flow for f, which can be used to substantially enhance this
result. In fact, one can set up an algebraic chain complex (M, 8;) whose
chain groups M, are generated by the critical points of index £ and whose
boundary operétor is given by counting the flow lines between critical points
whose indices differ by one. Then it is a theorem that this chain complex
computes the homology of X. Although this result is implicit in the work of
Thom and Smale, it was only brought to broad attention in the early 1980’s
by Witten's well-known paper [Wit82].

In a recent péper [HL97b], Reese Harvey and Blaine Lawson introduce a

new point of view to the subject. They observe that for Morse-Smale functions



the total graph T in X x X of a ‘canonically flat’ gradient flow ¢, has finite

volume and gives rise to an equation of currents
T=A-P (1.1)

where A C X x X is the diagonal and P = lim,_,.graph(y.). In fact one
proves that

P= 3 [S]x[U] | (1.2)

pECT(f) '

where S, and U, are the stable and unstable sets of the critical point p and [Y]
denotes the current of integration over the locally closed submanifold Y C X.
Now one uses the fact that currents C in the product X x X give rise to
operators C : Q5(X) — D, _(X) mapping differential forms on X to currents

in such a way that the current equation (1.1) translates into a chain homotopy
Tod+doT=I-P. (1.3)

Here T and PP are the operator associated to T and P, respectively, and I is
the inclusion of twisted forms into currents associated to the diagonal A. This
equation (1.3) has several important consequences. First, we see immediately
that P commutes with exterior differentiation d. Also, PP induces a homology
isomorphism, because I does. But since

PB)= Y, ( fu ﬁ) [S5], (1.4)

peECT(S)
we see that the image of P is the finitely generated complex Sy spanned over R

by the stable manifolds of the critical points. The remarkable fact is that the




gradient flow of a Morse-Smale function gives rise to an explicit deformation of
the de Rham complex to the finite-dimensional complex Sy. One easily checks
that the boundary map in S; is given by counting flow lines as mentioned
before, and so it can be thought of as an explicit geometric realization of
the algebraic complex (M, dy). In fact the span of the stable manifolds over
the integers forms an invariant subcomplex S%, which can be viewed as the
deformation of the singular chains transverse to the unstable sets of the critical
points. This complex SZ computes the integer homology of the underlying

manifold X.

It is this explicit deformation which gives rise to interesting applications.
For example, Reese Harvey and Blaine Lawson [HL97a] use an extension of
these techniques to establish and compute canonical universal residue forms
that arise in studying the relation of characteristic classes of two vector bundles

with the singularities of a bundle map between them.

In this work, we extend the methods of Harvey and Lawson to the case of
generalized Morse functions, where the critical set is a finite disjoint union of
embedded submanifolds. These functions were first studied by Bott [Bot54],
who proved the analogue of the classical Morse inequalities in this setting and
applied them to obtain information about the topology of loop spaces. For
certain ‘tame’ gradient-like flows which satisfy an appropriate version of the
Smale transversality condition, we again prove that the total graph T of the
flow has finitc volume. Equation (1.1) holds as before and the products in

(1.2) are now replaced by fibre products over the connected components of the



critical sets:
P= Y SexpUp. (1.5)
Fiem(Cr(f))

The associated operator P no longer has finitely generated image, as it is given
by
P(B)= Y.  Resp(B)[Srl, (L.6)
Fieno(Cr(f))
where the smooth residue form Resp(B) is the pull-back to Sr of the fibre
integral of B over Ur. However, P still acts on sufficiently transverse chains,
and the geometric version of the main theorem (Theorem 4.4) asserts that the
image complex S,Z- in this> case is given by stable bundles of smooth chains
in the critical sets. As before one may interpret these results as giving an
explicit deformation of the de Rham complex (or more generally the complex of
sufficiently transverse chains) to a geometric model S}z’ of a Morse complex. In
this model the boundary map is again explicitly given in terms of the gradient
flow, so that it can be used to effectively compute the homology of X with
Z or at least Z, coefficients. By degenerating diagonals in higher products
X x X x ... x X we obtain some partial information about the ring structure
of H*(X).
The c;lass of functions to which our results are applicable is quite general.
It includes pull-backs of Morse-Smale functions from the base space of a fibra-
tion to the total space, as well as many invariant functions for the action of
a compact Lie group G on X. In fact one can use the later to obtain results

about the G-equivariant homology of X. But although a Morse function can




always be made Morse-Smale by a change of metric, the same is not true for
generalized Morse functions (cf. Example 2.3).

Some of these results for real coefficients were obtained by Austin and
Braam [AB94] using methods from Floer theory. Our approach naturally yields
results over Z and Z,, which are not at all immediate from their frame-work.

We also expect the point of view of deformations to yield new applications.

Here is a brief outline of the body of this work. In Chapter 2 we set up
. the basic notation and definitions and provide examples of generalized Morse
functions to which this theory applies. Chapter 3 contains the statement and
proof of the basic structure theorem about the total graph T of the flow ¢..
In the course of the proof we find that the closure of the stable and unstable
sets Sr and Ur of a critical manifold F' are the image of smooth families of
compact manifolds with corners under smooth maps. This observation allows
us to define the concept of a stable bundle of a smooth chain in F' in Chapter 4.
Here the main theorems about the operator P on forms and on smooth chains
transverse to the unstable bundles are proved. In Section 5.1 we give the
calculation of the integer homology groups of SO(n) as an example of how the
methods work in practice. Section 5.2 explains how to compute G-equivariant
homology from a function invariant under the action of some compact group G
on X. Section 5.3 contains results about cup product. For completeness, the
facts from geometric measure theory which are used throughout are collected
in the Appendix. It also contains a brief section on Whitney stratiﬁcationé,

as well as a proof.of the Morse Lemma for Morse-Bott functions.



Chapter 2

Mathematical Preliminaries

In this chapter we recall some standard definitions, mostly to introduce
notation that will be used throughout the rest of this work. A few new concepts

are also introduced.

In what follows, X will denote a smooth, compact, n-dimensional manifold
without boundary. A Morse function f : X — R is a smooth function on X
whose critical points are non-degenerate in the sense that the Hessian is a
non-degenerate bilinear form. A function f : X — R is called a generalized
Morse-function (or Morse-Bott function) if its critical set Cr(f) is a disjoint
union of finitely many embedded submanifolds, and again the Hessian at a
critical point p in the critical manifold F, which is now defined on T,M/T,F,
is nondegenerate. The index A, of a critical point p is defined to be the
index of the Hessian at p. Since this number only depends on the critical set
F containing p, we will often denote it by Ar. We also define the number
A = n —np — Ap, where ngp is the dimension of the critical manifold F

containing p. A vector field V on X is called a gradient-like vector field for




the function f if its zero set coincides with the set Cr(f) of critical points of
f and df(V') > 0 on the complement of Cr(f). Note that the gradient with
respect to any metric is a gradient-like vector field in this sense. To any vector
field we can associate its flow ¢, and for gradient-like fields the fixed point set

Fiz(¢p;) of the flow will coincide with the critical set Cr(f) of the function.

Definition 2.1 A flow ¢, on X is called tame if the fized point set Fiz(yp,)
consists of a finite union of disjoint smooth submanifolds {F;} and each fized
point p € F has a coordinate neighborhood (u, z,v) :U, — R x R*r x R

such that the flow in these coordinates is given by . (u,z,v) = (e~ "u, 1, €e"v).

In section 4 of the Appendix, we prove the following statement:

Theorem A.8 Let f : X — R be a generalized Morse function , and
let F' be a connected component of its critical set. Then there ezists a normal
bundle with a splitting N = N* @ N~ and e metric such that the function is
given as f(u,z,v) = f(F)+|v|?> - |ul®. In particular, the gradient flow for this

metric is locally of the form

or(u, z,v) = (e "u,z,e"v).

For each p € Cr(f) we can define its stable set S, and its unstable set U,

as usual by
Sp = {z € X :lim,q ¢-(z) = p} and

Up ={z € X :limry_oo.(z) = p}



For tame gradient-like flows of generalized Morse functions these sets are dif-
feomorphically embedded open disks of dimension A, and A, respectively. We
define the stable (resp. unstable) set of a critical manifold F to be the union
of the stable (resp. unstable) sets of its points and denote it by Sr (resp. Ur).
Recall that the gradient flow of a Morse function f on X is said to satisfy the
Smale condition if for all critical points p,q € Cr(f) the stable manifold S,
is transverse to the unstable manifold U,. In order to generalize the results
of [HLI7b] to the case of generalized Morse functions, we need an appropriate

version of the Smale condition.

Definition 2.2 A flow ¢, is said to satisfy the generalized Smale condi-
tion if its fized point set Fiz(yp,) consists of a finite disjoint union of embedded
submanifolds and for any two fized points p,q € Fiz(yp,) we have that U, is
transverse to S, ana S, is transverse to Ug,, where F; denotes the connected

component of Fiz(p,) containing .

A generalized Morse function f is said to be generalized Morse-Smale if

there is a gradient flow for f satisfying the generalized Smale condition.

We say p < ¢ if there is a (possibly piecewise) flow line from p to gq.
Similarly we have a relation F' < F' between critical manifolds.

For a generalized Morse-Smale function F < F', F # F' implies the
inequalities

Ar < Apr and Ap > A%,

These are of course equivalent in the case np = ng = 0.



Remark 2.3 Even though it is true that a (regular) Morse function can be
made Morse-Smale by a change of metric, the same is not true for generalized

~ Morse functions.

For example, take the torus in R® as pictured below with the height func-
tion. In coordinates (¢, %) € [0,2x) x [0, 27) on the torus one could take it to

be h(p, V) = (2 + cos2p)(1 + cosy).

Figure 2.1: A certain embedding of the torus in R3

It has the 'bottom circle’ {¢ = 7} as absolute minimum and on the ’top
circle’ it has two saddle points, (¥,0) and (3£,0), and two maxima, (0,0) and
(m,0) . Notice that the fibres of the unstable bundle of the bottom circle have
dimension 1, as do the stable manifolds of the saddle points. However, for any
metric, there will be some fibre(s) that intersect(s) these stable manifolds in

flow lines, i.c. with dimension 1, which contradicts transversality.

On the other hand, we do have the following important examples.

Example 2.4 If f is a Morse-Smale function on X and Y is any compact
manifold, then the pull-back of f to the product X xY is a generalized Morse-
Smale function in this sense. More generally, if P — X is a fibre bundle (and
a Riemannian submersion) with compact fibre Y, and f is a Morse-Smale

function on X, its pull-back to P is generalized Morse-Smale in our sense.



To see that, e.g., U, is transverse to Sr just note that they project to
transverse objects on X and the tangent space to the fibre is contained in
TSF.

As an illustration one can take the function f : S — R given by
f(20,21) = |z1]* — |2/?. Here the function is pulled back from S$2 via the
Hopf fibration.

The same argument as for Example 2.4 shows that the set of generalized
Morse-Smale functions is closed under pull-backs to the total space of a sub-
mersion. It is also not hard to see that if f : X - Rand g : Y — R are

generalized Morse-Smale, thensois f+g: X xY 2 R

Example 2.5 Another family of ezamples where the generalized Morse-Smale
condition can often be easily verified arises in the context of compact Kéhler
manifolds with a C*-action with fized points. Here one can construct an asso-
ciated Morse function with critical set precisely the fized point set of the action

[Fra59].
As an illustration, take the action of C* on P" given by

T-[20: o tzn) =[20: 7211 .. 1 T24]
The fixed point set consists of the point {1 : 0 : ... : 0] and the hyperplane
{20 = 0} and the associated function is

1 n
f(l2) = 2F S lal?

=1 .
One of the central concepts of [HL97b], which will also play an important

role here, is a finite volume flow.

10



Definition 2.6 A flow @, on X is called a finite volume flow if the pull-
back by the total flow map ®(z,7) = ¢,(z) of any (and therefore every) metric
on X to (X \ Fiz(p,;)) x (0,00) has finite volume.

For gradient-like flows this condition is equivalent to the requirement that

the total graph of the flow
T={(z,0:(z)) : 0<T<00}CXxX

has finite volume. Both conditions are independent of the choice of metric on

X.

11



Chapter 3

The Geometry of the Gradient Flow

In this chapter f will be a generalized Morse function with tame gradient-
like flow ,. We will investigate the geometry of ¢, assuming that it satisfies
the generalized Smale condition. In particular, we want to prove that the sets
Sr and Ur are images of certain families of compact manifolds with corners
over F' under well-behaved maps. This will enable us to prove an important

structure theorem.

Theorem 3.1 Let f be a generalized Morse function on X and let ¢, be a
tame gradient-like flow for f satisfying the generalized Smale condition. Then

there is an equation of currents
or=A-P (3.1)

where T = {(z,p-(z)) € X x X | 7 € (0,00)} is the total graph of the flow, A
is the diagonal and P = lim,_,o graph(p.). The current P is given by

. P= ) [SixpUl,
Fiema(Cr([))

12



where S; xp, U; C X x X denotes the fibre product of the stable and unstable
bundles of F;.

This theorem generalizes Theorem 6.2 of [HL97b), and some elements of
the proof are very similar. The main technical tool is a lemma that describes
what happens to the image of a smooth manifold with corners transverse to the
stable manifolds as it ‘flows through’ a critical level (for precise statements see
Lemma 3.3). Using this information we will deduce that ¢, is a finite-volume
flow, which then allows us to obtain the current equation (3.1). The final step

is the identification of the current P.

We will often make statements about both stable and unstable sets of
critical manifolds and points in them. Since the generalized Smale condition
is symmetric with respect to time reversal, it is enough to prove the assertion

Jjust for one of them, which we choose to be the stable sets.

Without loss of generality we will assume that different connected critical
manifolds correspond to different critical values. This is easy to achieve: if
F} and F;, happened to be two critical manifolds with the same value of f,
we could add a tiny bump function to f which is supported in some small
neighborhood of F), is constant in a smaller neighborhood of F}, and has
sufficiently small derivative so as to not create new critical points. In any
case, this will change none of the essential features of f and is only done to
simplify the language in the following presentation.

Our first aim is to prove that the closure of the stable bundle Sg over a

critical set F is the image of a smooth manifold with corners Sy which again

13



fibers over F, such that each fiber is>also a smooth manifold with comers.
Recall that a manifold with corners of dimension & is a Hausdorff topological
space Y such that every point has a neighborhood homeomorphic to an open
subset of R = {z € R* : z; > 0foralli = 1,...,k}. It is called smooth if
for any two such charts ¥, : Uy — R% and 4, : U, — RX the composition
Yroys ! : Yo (U NUR) — (U NU,) extends to a smooth map between open
sets of R*. Y is naturally stratified by the sets {Y:}o<r<k, where p belongs to
Y; if for some (and hence every) chart exactly r coordinates of p are 0. It is
clear that the set Y; is a smooth manifold of dimension k — r. Y} is the open
and dense set of interior points of Y, Y is the set of regular boundary points
and the union of the other Y; is the set of corners. A map o from a manifold
with corners Y to a manifold X is called smooth if for any (and hence every)
coordinate chart ¢ : U — R the composition o o %~! extends to a smooth
map of some neighborhood of ¥(U) in R*. Such a map is called completely
transverse to a submanifold L of the range if its restriction to all the sets Y;
is transverse in the usual sense that o,(T,Y;) + To(y) L = To(y) X

Let p: Y — X be a smooth map from a smooth manifold with corners
Y to a smooth manifold X which is completely transverse to the submanifold
L C X. We define the oriented blow-up Y of the manifold with corners Y
along o~!(L) as follows: First, for any smooth vector bundle E — B we
define the oriented blow-up of the zero section as E := S(E) x [0,00) with
the smooth projection map w(b,0,r) = (b,r8), where b is a point in B and
@ is a point in the fibre of the sphere bundle S(E) of E over b. The sphere

bundle S(E) is defined using any metric on E, but it is easily seen that two

14



different choices of metric give smoothly equivalent bundles. Then to obtain
Y, we construct the normal bundle to p~Y(L) in Y in such a way that its fibre
at y € Y, is tangent to ¥;. The oriented blow-up Y of Y along p~'(L)
is then defined to be the oriented blow-up of the zero section in this normal
bundle.

More generally, given a smooth manifold with corners Y and a smooth
manifold Z, consider a smooth projection 7 : Y — Z which is completely

transverse to all points z € Z. We will call such a creature a smooth family

of manifolds with corners over Z. With this notation we have

Lemma 3.2 Let 7 : Y — Z be a smooth family of compact manifolds with
corners over Z, and let p : Y — X be a smooth map whose restriction to
7~ (z) is completely transverse to L C X for all z € Z. Then we can construct
an oriented blow-up Y along p~'(L) which again is a smooth family of compact

manifolds with corners over Z.

Proof: First assume 7 : Y — Z is actually a smooth fibration such that
p is transverse to L when restricted to any fibre. Then the codimension of
L' = p~1(L) in each fibre of 7 is the same as the codimension of L’ in Y.
Let V C TY be the vertical tangent bundle, whose fibre at the point y €
771(z) is T,(r~1(2)). Let Vo C V| be the subbundle whose fibre at y €
7~Y(z) is T,(r~'(z) N L'). Choosing a metric on Y, we define a normal bundle
structure for L' as v = Vi C V|... By construction it has the property that
its restriction to any L, = 7~!(z) N L' gives a normal bundle structure for L/

as a submanifold of 7~1(z).

15



In general, this procedure can be applied inductively to the strata Y, of
Y to obtain a normal bundle which is tangent to the fibres of 7. Again this
has the effect that the normal bundle of p~!(L) in each fibre is t.htua restriction
of the normal bundle of p~!(L) in Y. Now it is easy to see that the blow-up
Y of Y is fibered by the blow-ups of the fibres of 7. O

Denote by Sg(e) the e-sphere bundle in Sr. Then there exists a smooth
projection ¢ from Sr(g) x [f(F) — ¢, f(F)] onto the e-disk bundle of Sp. In
fact o can be extended to Sr(g) x [c + &, f(F)], where ¢ < f(F) is the next
critical value and § > 0 is arbitrary.

We will show how to alter Sg(g) by a finite sequence of oriented blow-ups
(one for each critical value ¢ < f(F)) such that at the final stage we can extend

o to a map of §;~ = Sr(€) x [min f, f(F)] onto the closure of Sr.

In general, let us make the following

Inductive Assumption: There exist a manifold with corners Y and a critical

value ¢ < f(F) with the following properties:

(1) 7 : Y — F is a smooth family of compact manifolds with corners over

F, i.e. w is completely transverse to all p € F.

(2) For any 6 > 0 there exists a surjective smooth map ¢ : Y x [c +
8, f(F)] — Senf~Y([c+9, f(F)]) !, whose restriction to 7~!(p) x {c+d}

for any p € F' is completely transverse to all unstable bundles of critical

'We will see below that the smooth structure on Y x [c + 4, f(F)] has to be

adjusted slightly to make this map smooth.

16



manifolds. Furthermore, the restriction of the map o to the subset Yj of

interior points of its domain is a diffeomorphism onto its image.

This assumption is clearly satisfied by Y = Sg(e) for the first critical
value ¢ < f(F). _

Let us denote the restriction of o to Y x {c + &} by gc4s. If F' is the
critical manifold with critical value c, the intersection of Uz with f~1(c + )
is a smoothly embedded sphere bundle over F", so in particular it is a smboth
submanifold of X. By part (2) of the assumption the oriented blow-up Y of
Y along o, +1,,(Up:) exists, and by Lemma 3.2 we may assume that it satisfies

part (1) of the assumption.

We want to prove that ¥ satisfies part (2) of the assumption for the next

critical value ¢’ < c. In particular, we want to show how to map Y x [c—8,c+46]
onto the closure of Sp N f~'([c ~ 6, c + 8]). The further extension of the map
as required by (2) is then easily constructed by using the product structure
on f~}([¢ + 8,c — d]) given by the flow. Thus the main technical assertion is

contained in

Lemma 3.3 Let p: W — Z be a smooth femily of compact k-dimensional
manifolds with corners over some smooth manifold Z and let 0.5 : W —
f~Y(c+8) be a smooth map whose restriction to each fibre p~}(z) is completely
transverse to all unstable bundles of critical manifolds. Let F' be the critical
manifold with critical value c and let 7 : W — W be the oriented blow-up
of W along 0-}(Up). Then there ezists a family of maps &, of W into X,

parametrized by t € [c — 6, c + &] and having the following properties:

17



(1) Geys(W) = Ters(m(@)) for dll @ € W, i.e. Ocis 15 just the lift of .45 to

w.

(2) The image of G parametrizes the closure of the backward time image of
dc+5(W) under the flow ¢, in X by the value of f, i.e. E’,(W)) C f1(¢)
and T € E(W X [c — &,¢+4]) if and only if z € Sg N f~([c — 6,¢c + &]).
In particular, ,(w) € f~'(c —d) if and only if t =c — 6.

(3) The restriction of the map Go—s5 : W —» f~Yc — &) to each fibre of
p: W — Zis completely transverse to all unstable bundles of critical

manifolds.

(4) There is a canonical smooth structure on W x [c—6, c+4] with respect to
which the family 6, becomes a smooth map S It agrees with the product
structure W x [c — 6,¢ + 8] away from W x {0} and has the effect of

introducing new corners in the domain along the preimage of F'.

Before proving Lemma 3.3 we observe that, starting from Sr(€), we can
perform a sequence of blow-ups, one for each critical level ¢ < f(F), to con-
struct the promised set Sk ~ g;(_s/) x [min f, f(F)] which fibres over F and
parametrizes the closure of Sr in the sense that the map is injective on an
open dense subset. Here we write ~ to remind the reader of the fact that the
smoothness structure has been altered at the pre-images of the various critical
set F' < F. We summarize this result in the following theorem, which will

play a central part in this and the following chapter.

18



Theorem 3.4 The closure Sk of the stable manifold of any critical manifold F
is the image of a smooth family of compact manifolds with corners §;~ — F
under a smooth map ‘{5,. whose restriction to the interior points of Sk is a
diffeomorphism onto an open dense set of Sr. .

Similarly, the closure Ug of the unstable manifold of any critical manifold
F is the image of a smooth family of compact manifolds with corners (71; — F
under a smooth map ?U,,. whose restriction to the interior points of Ur is a

diffeomorphism onto an open dense set of Ur.

Note that the second assertion simply follows from the observation that
the generalized Smale condition is invariant under time-reversal, which inter-

changes the réles of stable and unstable manifolds.’

Later in this chapter we will have occasion to make use of the following

observation.

Remark 3.5 Let K be a smooth compact submanifold of dimension k, con-
tained in some level set of f, which is transverse to all stable (resp. unstable)
manifolds of critical sets. Our inductive argument shows that its forward (resp.
backward) time image under the flow is the image of a smooth compact mani-

fold with corners of dimension k + 1, and so in particular has finite volume.

Let us now complete the proof of Theorem 3.4 by giving the proof for the
key technical assertion that was post-poned before.
Proof: (of Lemma 3.3) We will first reduce the proof to more local consid-

crations. As an initial step, observe that outside any neighborhood of the
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blow-up locus the extension can be constructed from the gradient flow, since
on the complement of the critical set F’ the gradiént-like flow provides us with
a canonical product structure.

Now let us covér F' with a finite number of coordinate charts U,, such
that a neighborhood of F' is a given as a union UV, where each V is of the

form
V. = D' x U, x D¥ (3.2)
and on it the gradient-like flow has the special form
er(u,z,v) = (e "u, z,e"v)

For some § > 0 sufficiently small, the union of these coordinate blocks contains
the sphere bundles Up:N f~1(c+4) and SN f~1(c—4). In fact without loss of
generality we may assume that these spheres bound the disks {0} x U, x D*#
and D*# x U, x {0} in (3.2).

We will construct the family of maps 6, on the blow-up of the piece of W
that gets mapped into one of the V] under ¢ = o.45. Since the construction
uses the flow in a natural way, it will be easy to check that the pieces fit
together to form a globally defined family &, : W x [c=dc+d — X.
Abusing notation, we will continue to refer to the piece we are considering as
w. |

For simplicity of language, we will also assume that ¢ = 0 and that the
function f is given on V] by f(u,z,v) = |[v|?> — |[u[%. Inside V. consider the

region V, determined by the equations

|f(u,z,v)| < § and |ul|v] < ¢
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for some small &' > 0 (the size of this cut-off is not really essential, since we
are only interested in what happens near F'). Note that V, has ‘incoming’ and
‘outgoing’ boundaries with respect to the forward time flow, which we denote

by A and B respectively. Formally, these are given by
A= {(u.z,v): f(u,z,v) = =0} and B = {(u,z,v) : f(u,z,v) =5}

The special subsets Si»N A and Ug»N B are denoted by Ag and By respectively

and are given in our coordinates by

Ao = {(u,7,0) : [u| =6} and By = {(0,z,v) : [v| = 4}

Figure 3.1: A slice of V, for fixed z, drawn in the (Ju|, |v|)-plane

Now we will give a proof of the assertions in the case where Z is just a
point.

First let us define a map ¥ : [0, '] x [—4,5] — R? as

(q,t)h»(r(q,t),s<q,t))=(\/ t”’;"z“,\/ V‘”;"z“) (33

Observe that ¥ is continuous everywhere and smooth except at (0,0). It

also has the property that r(q,t)s(q,t) = q and r*(q,t) — s%(q,t) = t. That
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means one can think of ¥ as a parametrization of the gradient flow lines of

the function 72 — s? on R? (characterized by q being constant) by the value ¢

of the function f.

it

Figure 3.2: Coordinate lines for q and ¢ in the domain and range of ¥

Now consider the oriented blow-up V,, := S*# -1 x[0, 1]xUsxS*+~1 %[0, 1]
of V, along the set D C V, defined by |z|lu]| = 0. We have an obvious

projection from 170 to V, given by
(&, 8,z,9,7) = (is, , 9r).
Notice that the lift of the gradient-like flow to V, is given as
o-(T, 8, z,9,7) = (@,se”",z,9,re").

Inside ‘7; we have the lifts A and B of A and B characterized by r2—s?= -4
and r2? — s2 = § respectively. Within them, we have A, and B, given by r =0
and s = 0, respectively.

Recall that by the assumption of the lemma, we are given 6.5 = 0;

mapping (a piece of ) W into B. Clearly, we can lift o5 to a map 65 that
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makes the following diagram commute:
W%, BcV,
wl | l,r
W —=3BcCV,
Since o5 is completely transverse to By, the lift 65 will be completely
transverse to By. Now we extend &5 to W x [—4, 8] by using ¥ in the s and r

coordinates, i.e.

&:(w) = (&(w), s(q(w), ), z, 5(w), r(g(@), £)) ,

where ¢(w) = r(65(w))s(65(w)) and we think of i@, z and ¥ as the components
of 65. Finally, let o,(w) := 7(6:(@)). Then (1) is satisfied by definition, and
(2) follows from the fact that the lift of f to V, looks like 72— s. It remains to
explain (3) and (4). Notice first that o_s(w) € Ay if and only if o5(w) € By.
Since on the complement of any neighborhood of B, the flow provides a smooth
product structure for the backward image under the flow, and transversality to
the unstable manifolds is preserved under the flow, we see that for all points in
the image of G_; contained in A\ Ay the transversality assertion still holds. So
us let fix wg € W, C W such that o5(wq) = (0, zg, vg) € By. Here recall that
W, is the stratum of ‘corners of order r’ in W. Then its preimage 7~!(w) in
I/T/: consists of a whole sphere S*~~! mapping diffeomorphically onto the set
{(2,0,70,%.6) : i€ S} C B under 5. Now observe that this sets gets
mapped onto {(2,9,zq,%,0) : 4 € S**-1} C A under 6_5. Since the kernel
of the differential of the projection from A to A is transverse to this set, we

arrive at the conclusion that for any point in W—, mapping into Ay under o_;,
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the image of TzW, under the differential of 0 contains the tangent space to
the sphere in the stable set of the critical point z € F' corresponding to it.
Since this sphere is transverse to all unstable bundles by the assumption that

the flow satisfies the generalized Smale condition, we have proven (3).

The only problem for smoothness of the family &, stems from the fact that
the map ¥ defined in (3.3) is not smooth at the origin. The trick to fix this is to
change the domain of the map to be the graph I" C [0, &"] x [-4, 6] x [0, 1] x [0, 1]
of ¥, formally given as

[:={(g.t,5,7) : P -’ =t,rs=q,0<¢< ¥, -6 <t<6b}

Notice that I is a smooth manifold with a corner at (0, 0,0, 0), because it is
also the graph of ¥~!, which is a well-defined and smooth map on the part of
the first quadrant in R? which is the image of ¥. In this smooth structure on
the domain, the map V¥ is trivially smooth, since it is just projection on the
last two coordinates. Thus we have replaced the singularity of the map by a
corner in the domain. We claim that the same idea works in our slightly more

general situation. Namely, consider the set G C W x [—6,9] x l7, defined by
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the conditions

-

rs = r(6(w))s(65(w)) }
Here we recall that (i, 7, z, 9, s) are coordinates on V, = S*-1 x [0,1] x
U, x S*~1 x [0,1], and 65 : W — B C V, is the lift of our original map
05 : W — B. This set G is homeomorphic to W x [—4, 4], because it is
the graph of the family &, that extends &5 to W x [—4.48]. If we can prove
that it aquires the structure of a smooth manifold with corners from this
embedding, then &, will be a smooth map in this setting, because it is just
the projection onto V, followed by projection to V,. The only points where
there is a question about smoothness are points p = (w, t, 1, s, T, ¥,7) where
the component w € W of p is contained in the blow-up locus.
If wy € Wisa point in the blow-up locus, then it is mapped under 65 into
B,. We claim that the function q = r(65(w))s(65(w)) is smooth with non-zero
derivative in some neighborhood of g in W. The smoothness is clear from
the smoothness of 5. The derivative of q at wy is D(r o 65 - s o G5)(We) =
D(r o 65)(wo) - s(65(wo)) + 7(65(Wo)) - D(s o 6;) (i), where the first term is 0
because s(65(wp)) = 0 and the second term is non-zero because g; is transverse

to By. Therefore we can use q as one component of a local coordinate system
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(w',q) : D! x [0,6) — W'(i5ip) for a neighborhood W’ of i, in W. Over
W' x [—6,8] we can now consider two sets. The first one is the graph of the

three smooth functions %, z and 9, namely
X := {(v',q,t.%,z,9) C D*"'x[0,€) x [-4,8] x S** ! x U, x §*~! :
i=io,g)
b = i(g5(w', q))
£=i(6s(w',q) }
The second set is just the smooth manifold with corners
IM:={(w,qtsr)eDF'xI : 0<g<e}.

With all this notation, the part G' of G that projects onto the neighbor-
hood W' & D*=! x[0,€) C W is the fibre product of X and I over W"’. Hence
G is a smooth manifold with corners as claimed.

This completes the proof of Lemma 3.3 in the case when Z is a point. The
definition of the map &, in the general case works exactly as in this special case.
The proof of (3) also goes through as before, because both the hypothesis and
the conclusion involve only one fibre of p anyway. The proof of (4) requires a
little more care, and here we have to make use of the fact that the blow-up 77
of W is fibered by the blow-ups of the fibres 7~!(z), where z € Z. O

Let us make another observation, which will become useful in the next

chapter.

Remark 3.6 [t is not strictly necessary for this argument that the image of

the initial map o0 : W — X be contained in one level set f~'(c + 4).



Instead of being defined on all of W x [c = d,c + 4], in this case the map

o is defined on the smaller closed subset of the form
{(@,t) : WeW,t< flo(r(®))} C W x [c - & c+4d]

Notice that this is just the region below the graph of foo o : W — R,
which is essentially a smooth submanifold with corners in W x [c—d,c+ 4]

(even with the new differential structure).

Let us give an example to illustrate the sets Sr that arise in the construc-

tion described in Lemma 3.3.

Example 3.7 We will consider the function on the sphere S® C R* given by
f(z1, 22,23, 24) = 22 + 3 + 323

It has five critical manifolds, namely FF = +(1,0,0,0), F§¥ = £(0,0,0,1)
as well as F| = {22 + z2 = 1}. Notice that the function is self-indexing in
the sense that Ar, = f(F;) = ¢. Let us study the various stable sets S; and
their ‘blow-ups’ S;. Of course at the minimum points, we have S = Fj.
The stable set S, for a point p € F} is an open segment connecting Fy~ and
Fy (ahd not containing the end points). S is an open cylinder, and S is
the 2-sphere of points whose last coordinate are 0. Since there are no critical
manifolds between F, and the minimum, nd blow-up is necessary, and §1' is
the union of two closed cylinders (S} U S!) x [0, 1)

Next, we look at Fy (1_;he case of F; is completely analogous). Here

S N f71(2) is a 2-sphere, and its intersection with U; is a circle S' € S2.
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The blow-up yields a disjoint union of two closed disks D+ LI D™, so that after
the blow-up process we have a map from §§' = (Dt u D7) x [0, 3] onto Ef,
which is a closed 3-ball. Notice that part of the boundary of 5‘} consists of
the disjoint union of two cylinders ((S*)* u (S')~) x [0, 3], and in the altered
smoothness structure two circles of corners appear at ((S')* U (S')™) x {1},
which is precisely the set mapped onto F}. Also, the interior of D¥ x [0, 3]
is mapped onto the set of points whose forward time limit is F; and whose
backward time limit is Fg°, respectively.

Notice that in this example the stable manifolds form a Whitney strati-
fication of the underlying manifold (for the definition, see the third secticn of

the appendix). This is a completely general phenomenon.

Proposition 3.8 Let f be a generalized Morse function with tame gradient-
like flow ¢, satisfying the generalized Smale condition. Then the stable sets
{S:} form a Whitney stratification of X.

Proof: This follows more or less immediately from our description of the
closure of a stable manifold Sr as the image of a smooth manifold with corners
under a smooth map. To verify the Whitney conditions, we lift the sequence
of points p, € Sr approaching some point p € Sr to a sequence of points g,
in Sp. By compactness of Sr, we can extract a subsequence converging to gq.
In Sr the Whitney conditions are trivially satisfied for any such sequence, and
so the result follows if we can prove that the differential 75,.. at points q in the
boundary that get mapped to S \ Sr is sufficiently non-degencrate. This is

done in essentially the same way as the proof of Lemma 3.3, part (3). O
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Recall that one of the goals in this chapter was to prove Theorem 3.1. As

a next step towards this goal, we prove

Proposition 3.9 Let ¢, be a teame gradient-like flow for some generalized
Morse function f. If ¢, satisfies the generalized Smale condition, then it is a

finite volume flow.

Proof: This argument, adapted from §11 of [HL97b], is included here for
completeness. The idea is to find a new Morse function g on R x X x X and
a set 7" whose projection onto X x X is equal to the total graph T of the
flow ¢, and show that 77 is a set of the form described in Remark 3.5. More

precisely, we consider the generalized Morse function
1,
g(s,z.y) = 35" = f(y)

defined on R x X x X with the standard product metric, so that the gradient

flow is given by
¥r(5,2,y) = (€75, 2, 0-,(y)).

The critical sets of g are of the form
Pr = {0} x X x {F}

where F' ranges over the critical manifolds of f. The stable and unstable

manifolds are given by

S[:"—‘OX.\'XUF and UF=RXXXSF.
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The first thing to notice is that g is a generalized Morse-Smale function, be-

cause f is. Now define the set
T={(e"z,0:(z)) ERX X xX| —0c0o<T<o0and € X}

and notice that it is just the union of all the flow lines of v, passing through
A ={(l,z,z) | z € X} CRx X x X. Next observe that T is contained
in the image of 7' = T N g~'((—b + 1, b]) under projection onto the last two
factors, where b = max|f| + }. Therefore it is enough to show that 7" has
finite (n+1);volume. In order to use Remark 3.5 we need to know first that
T is transverse to all the Ug, where F ranges over the critical manifolds of
f. Clearly T N Up is invariant under the flow, so it is enough to check the
transversality at all intersection points contained in A. But here TUr contains
the tangent spaces to both R and the first X-factor, which together with the
tangent space to the diagonal TA C T7 span T(R x X x X )..

Finally we observe that the intersection T(b) = 7 N g~'(b) is compact.

For otherwise there would exist a sequence {(s;, z;)} satisfying

gle™, z;, vs:(:)) = %6—23,- = flpsi(zi)) =0

and having no convergent subsequence. Clearly in such a sequence we would
have s; — oo, and so f(@;s (z:)) — b, which is impossible by the definition
of b. Thus Remark 3.5, together with the fact that ¢ has only finitely many
critical values in the interval (-b + 1,b), proves that 77 is the image of a
smooth compact manifold with corners under a smooth map. In particular, it

has finite volume, and so the same is true for T as well. O
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Now we can start to prove Theorem 3.1. Notice that the total graph T of

the flow is the mass limit as ¢ — oo of the pieces
T, :={(z,p-(z)) € X x X | t € (0,c]}.

Since we now know that the volume of these is bounded (by the volume of T'),
the equation of currents 8T = A — P in Theorem 3.1 follows from the fact
that 3T, = A — graph(y.) and the continuity of the boundary operator. It
remains to prove the claim about the structure of P. For a critical point p,
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