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Abstract of the Dissertation,

Invariants of Real k-planes in R?® under the :
Standard Action of U(n)

by E
Stewart Mandell
Doctor of Philosophy

in

Mathematics

State University of New York
at Stony Brook

2001

In our main result, we describe an explicit set of generators for invariants

of real k-planes in %" under the action of the unitary group U(n).

We build on the seminal work of Herman Weyl where an invariant theory

is developed for the classical groups, SZ(n), O(n), SP(2n), see [Weyl46],

For each irreducible submodule in the GL(n) module, S*(S%(R™)), there

is exactly one SO(n) invariant which we describe explicitly. We call these ;

“primitive” SO(n) invariants of S¥(S%). They are generated by Gram

determinants.

Similarly, for each irreducible of the GL(2n) module S*(A2(R™)), we
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describe its one S P(2n) invariant. These are generated by Pfafian analogs

of the Gram determinant.

Next we translate what we mean by polynomial invariants of k-planes
into the language of representations on vector spaces. They correspond to
homogeneous polynomials associated to certain irreducibles of rectangular

Young diagrams with k rows, q columns.

The standard action of U{n) on R* is the sames as SO(2n) N SP(2n).
Using Capelli’s identity and a geometric argument, we prove that all in-
variants for this action are generated by the orthogenal and symplectic
products, <, > and [, ]. The polynomial algebra of invariants is thus
S*(S?) @ S*(A?%).

Using the Littlewood-Richardson Rule, we prove that given any subdia-
gram S of the rectangular Young diagram Sy on k rows, q columns, then
Sy appears as an irreducible of multiplicity 1, in the module SA®S,, where

Sy 18 the complement of Sy in Sy rotated 180 degrees.

"This leads to an explicit set of generators for the standard action of U(n)

on real k-planes.
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Chapter 1

Introduction

We give an overview of the main facts from invariant theory referring the reader to
(FH91] for details. Our field is the real numbers R although the following holds for
any field of characteristic 0.

Irreducible representations of the symmetric group, Sy, are in 1-1 correspondence
with partitions of the number d. We represent partitions of d by sequences A =
Ao, A) with d = M+ -+ Apand Ay > dg > -+ > A > 0. k is called the
length of the partition. To each partition, we have its associated Young diagram,
with /\@'I boxes in the ith row, counting from top down, rows lined up on the left. We
denote the partition with rectangular diagram consisting of k& rows and ¢ columns by
(¢¥). A Young tableaux is a diagram filled with the numbers 1-- - d in some order. A
standard tableaux is one in which the entries in each row and column form a strictly
increasing sequence. A Young symmetrizer ¢, is the element of the group algebra
R{S;] obtained by symmetrizing the rows and then alternating the columns of a
Young tableaux. Each R[S;] module R[S,] ¢, appears as an irreducible representation
of 54 in its group algebra. The ¢, are the projectors onto irreducible components.

Rearrangements of elements in the tableaux give isomorphic representions which we

denote generically as 5. Both the multiplicity and the dimension of the irreducible




component Sy in R[S,] are equal to the number of standard tableaux of shape \.

If Sy and S, are irreducible representations of Sy, and Sy, respectively, we have a
representation of Sy, 14, which we denote, S) ® 9, induced from the external tensor
product representation Sy B .S, of Sy, X Sg. S) @ S,, decomposes as Sy ® S, =
> N3, 5y where the irreducible component S, of Sp.yn appears in Sy ® S, with
multiplicity Ny,. Ny, can be computed explicitly by the Littlewood-Richardson
rule.

Let V' be any GL(n) module. GL(n) acts on the left on V¥4 by g (v; ® -+ - ®uy) =
g 1 ®: - Qg-vg, while Sy acts on right by (11 ®- - ®vq) 0 = v,11) @+ - Qvy-1y) for
o € Sy, and these actions clearly commute. In particular we have a GL{n) module
V®d. ¢, called the Weyl module V.

When V = R", there is a 1-1 correspondence S < V), between irreducible compo-
nents of the GL(n} module V®¢ and those irreducible components of S; corresponding
to partitions of d with length < n. V, appears in V®? with multiplicity equal to the
number of standard tableaux of shape A. The dimension of V) is the number of semi-
standard tableaux of shape A, e.g. all possible fillings of its diagram with entries from
the set {1, --,n} with rows weakly and columns strictly increasing.

Important examples are Vigy = S¢(V), the symmetric product, and Viay = A4V),
the wedge product.

More formally V® = Y, V3 ® S, for all partitions A of d where V,, Sy are
irreducible components of GL(n), S; respectively.

All irreducible GL(n) modules are of the form det® Vi, ...\,), for a an integer and
all sequences A = (Aq, -+, Ap} with Ay = -+- > X, > 0.

Each irreducible GL(n) module is generated by a unique highest weight vector, e.g.

an eigenvector for diagonal GL(n) elements, which is annihilated by upper triangular
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gl(n) elements. Here gi(n) acts on V®¢ via the Leibnitz rule. i
UM Quy) =g QN QU+ B 1@ - Quit MRV Qg vy

For V' = R"™ and A, u partitions of d; and dy respectively, of length < n, the ;:é

G'L(n) module V3, ® V, C VOt 1e) decomposes as Vi ® V, = Y3 N %, V., where v are ;

partitions of d; +d, of length < n and NY¥, . are the Littlewood-Richardson coefficients.

| There is another important operation on GL(n} Weyl modules called plethysm, i

VieV,. Since V, is a GL{n) module we can define the GL(n) Weyl module V(V,,) C

®dy
Ve,

When V = R", V, is a GL(n) submodule of ¥®%, and V4(V,) becomes a GL(n) i

submodule of V®44  This will decompose into irreducible components Vy o V,, = i

oM %Yy where v are partitions of didy of length < n. Unfortunately, there is
no general method for computing the coefficients, M7 4o and the plethysm problem is
solved for only special cases. We will be interested in the examples VigyoVigy = 8 k(5%) .
and Vigy o Vir1y) = S*(A?).

For i a group acting on V, a polynomial invariant of & vectors vy,--+,v, in V
is a polynomial P(v1,---,v;) invariant under the action of H: P(h- vy, -+, h-v) =
P(vy,-+-,v,) Yh € H. The H invariant polynomials on V form an algebra. For finite,

compact Lie, and the classical groups, the algebra of invariants is finitely generated,

see [Weyl46]. Describing an explicit set of generators is called a First Fundamental
Theorem (FFT). In [Weyld6], an FF'T is given for the standard representation for all
the classical groups, but in general, this is a difficult problem whose solution is known

in some special cases.

We note that the algebra of polynomial invariants of a compact Lie group acting

on R"™ will distinguish orbits, see [Schwarz75]. An analogous result will hold for p

Grassmannians, where polynomial invariants are homogeneous coordinates.




Chapter 2

SO(n) invariants of S¥(S?)

We show that for each irreducible component of the GL{n) module S*(52R"), there
is exactly one SO(n) invariant, which we describe explicitly in terms of Gram deter-

minants.

2.1 Decomposition of S*(S?) via GL(n)

According to [Howe89], the decomposition of S*(S?) as a G'L{n) module, consists of
irreducible components, each occuring with multiplicity 1, corresponding to Young
diagrams of size 2k with rows of even length. Highest weight vectors for the irreducible

components corresponding to Young diagrams with 2 elements in each row, are given

by

. Zi1 T2 T3
dg=det| my mag @23 |+ 0y On

T31 F32 33

T11 Tz
Ta21 Toz

(51 = Ti1, 52 = det

where 1, -, %, is the canonical basis for R", z;; is z; - z;, an element of S?, and

6k € S*(9?) is the expansion of the determinant with symmetrization replacing mul-

tiplication of elements ;.




These correspond to Young diagrams:

e
S(Z) = o9, S(an) - :: ’ J5(2,2,2) = ee , etc.
.o

Monomials in the §; give highest weight vectors for all irreducible components of
S*($2) corresponding to Young diagrams of size 2k with rows of even length. If
8y = 07*03%..-6™ then 4y is a highest weight vector for V) C S*(S?), where

k = ni-+ 20+ -+ sn, and A is the partition (Ag, Az, -+, A;) of 2k.

A =20 +ng+ - +ny)
Ao = 2(ng + -+ + 1)

Ay = 21,

‘The monomials in dy consist of fully symmetrized monomials in the z;; € 5%, e.g.

0109 = X1+ X1y * T — X1y T2 - T12 From the above we clearly have

Theorem 2.1.1 The irreducible component of S¥(S?) corresponding to highest weight

Oy is generated by elements of the form

P+ Y-y - U1 U
_ U Vg Uy -+ Vg U
Op(v1,v1,Va, Ve, <+, Uk, V) = det

VgV VgV - Up Ui

where vy, - - -, v are vectors in R™.




2.2 Primitive SO(n) invariants of S*(S?)

By the First Fundamental Theorem for the standard action of SO(n) on R, see
[Weyl46], invariants are polynomials in the orthogonal produet, {,}, e.g. eclements in

5%(S?). Let Ty be the element of S¥(5?)* defined by
Tge(v1, Vo, V3, Vg, + 5 Va1, Vag) = (U1, V2) (U3, vq) -+ (vak 1, Vax)
Sar acts on Iy by
a- sz(’b’l, Vg, U3, Vs, * * *, Ugk—1, Vok) = (’anl(l), Ua“1(2)> v (’Ua—l(zk—l)., UU‘I(Zk:)>

and all SO(n) invariants of (R")®? must be linear combinations of the & - T'g.

For (e, B) the natural pairing of GL(n) modules §%(52)*, S*(S?) we have

(T, 21) (®1,22) -+ (T1, k)
(ng,(5k) _ (582:931) (5‘32,152) (.332,3%) —1
(T 71)  (Th, T2) (Ths Th)

and (o - Ty, &) for any o € Sy gives either the same result, up to sign, or 0.
It follows that there is only one SO(n) invariant for the GL{n) module generated
by dx. Multiplying invariants we sce that there is one SO(n) invariant for each

irreducible component of S*{S5).

Definition 2.2.1 The unique SO(n) invariants corresponding to irreducible compo-

nents of S*(S?) are called primitive SO(n) invariants of S¥(5?).

Theorem 2.2.2 The primitive SO(n) invariant for the irreducible component of

S*(8?) with highest weight 8, is the Gram determinant. Iis value on the element




6k('U1:'Uil;'U2:'UQ:'"a'Uic:'Uk) 18

Vo,V Vo, D -
7];;('1)1,?)1,’02,1}2,---,nyk"uk) bl <Z} 1> ( 2 2) <U27 o'c)

Proof: This is just 'y acting on §g(vy, v1,ve, ve, -+« , Vg, Ug}
We use the notation, (vi,v1, -, vk, v) = vk(v1,v1, vk, vg), for the Gram

determinant.

Corollary 2.2.3 The primitive SO(n) invariant for the irreducible component of the

GL(n) module S*(S?%), corresponding to the highest weight vector &y = 57+« % is

_oon
A=Y




Chapter 3

SP(2n) invariants of S*(A?)

columns of even length, see [Howe89].

to Young diagrams with 1 column of even length are given by

We show that for each irreducible component of S*(A2R*") as a GL{2n) module, there

is exactly one SP(2n) invariant, which we describe explicitly in terms of Pfaffians.

3.1 Decomposition of S¥(A?) via GIL(2n)

The decomposition of $#(A?) as a GL(2n) module, consists of irreducible components,

each occuring with multiplicity 1, corresponding to Young diagrams of size 2k with

The following theorem, whose proof is similar to the symmetric case, is well known.

Theorem 3.1.1 Highest weight vectors for the érreducible components corresponding

0 %2 %13 Y4
0
o1 = pfaff 0 w2 , 5 = pfaff Ya1 Y23 Yoa , . o
Y1 Ys1 Ys2 0 ysg
Ya1 Yao a3z O
where i, - - -, &y, is the canonical basis for R, y;; is @; A x;, an element of A%, and




pfaff is the analog for tensors in S*(A2%) of the usual Pfaffian on skew symmetric

maftrices. Thus o1 = Y19, 02 == Y12 " Y4 — Y13 * Yoa + Y14 * Y23, etc.

These correspond to Young diagrams

Suy = g ) 5(1,1,1,1) = , etc. i

0 COO0

Monomials in the o; give highest weight vectors for all irreducible components of

SE{A?) corresponding to Young diagrams on 2k with columns of even length. If

g it
&

oy = oploy?0

then o) is a highest weight vector for S*(A?), where & = ny -+ 2ng + - -+ sng and A

is the pELI‘titiOl’l ()\1, )\g, Ty /\23_1, )\25) of 2k. ‘j

)\1, /)\2:ﬂ1+ﬂ2+"'+n3 :
A, M=mng+--+n, !

')\25—1: /\2.9 = Ts

The monomials in oy consist of fully symmetrized monomials in the y;; € A?, e.g. “

0102 = Y2 Y12 " Yse — Y12 Y13 * Yoa + Y12 * Y14 * Y23 \

It follows immediately

Theorem 3.1.2 The irreducible component of S*(A?) corresponding to highest weight




oy 15 generated by elements of the form

Uk(TJI:TJZ:"':UQkL:UQk) = pf(],ff

where vy, -+, Vay are vectors in B,

(AR

Uy A Uog

3.2 Primitive SP(2n) invariants of S¥(A?)

By the First Fundamental Theorem for the standard action of SP(2n) on R, see

[Weyl46], invariants are polynomials in the symplectic product, | , |, hence are ele-

ments in S*(A?). Let Py be the clement of (S*(A?))* defined by

sz(‘Ul,’UQ, Vg, U4, ** y Vak—1; Uzk) = [Uh Uz] [’03, ’04} T PU?k#l; Uzk]

Let Sy acts on Py by

o+ Py (v1, vo, 3,04, -+ , Uak—15 Vgk) = [?Ja—lu)., ’Ua-l(z)] [Url(zk—l):%—l(zkﬂ

and all SP(2n) invariants of (R?*)®? must be linear combinations of the o « Py.

For {e, 8) the natural pairing of GL(2n) modules S*(A?)*, S%(A?) we have

0 [£1,22] -+ [@1, Tak)
(PZk,Jk) — [3’}2,.’131] 0 [$2)m2k}
[Tok, 1) [@ok,z2] - 0

10




and (o - Poy,, o) for any o € Sg gives either the same result, up to sign, or 0.
It follows that there is only one S P(2n) invariant for the GL(2n) module generated
by ox. Multiplying invariants we see that there is one SP(2n) invariant for each

irreducible component of S*(A?).

Definition 3.2.1 The unique SP(2n) invariants corresponding to irreducible com-

ponents of S*(A%) are called primitive SP(2n) invariants of S¥(A2).

Theorem 3.2.2 The primitive SP(2n) invariant for the irreducible component of of
the GL(2n) module, S¥(A?) with highest weight oy, is the Pfaffian inveriant. Iis

value on the element og(vi, Vo, ,Vak) 18

0 [Ulv 'U2] T ['Ula 'UZk]
P (v1,v,, -, vy) = plaff [v2,v1] 0 R (PR
[vog, v1] [va,v2] --- O

Proof: This is just Py acting on o{vi, va, - -, Vek).
We use the notation, [vi,vg, -+, Vo] = ¥{vy,v2, -+, va), for the Plaflian invari-

ant.

Corollary 3.2.3 The primitive SP(2n) invariant for the irreducible component of

T

the GL(n) module S*(A%) corresponding to the highest weight vector oy = o7+ - 0§

is Yo = Yt -

11




Chapter 4

k-planes in R”

Let Gt be the Grassmannian of k-planes in R". Gy, is the orbit space of the action

of GL{k) on k-tuples of linearly independent vectors in R".

with w; = Zj GijV4, ?,,j‘ =1k
Equivalently, k-planes are non-zero, decomposable elements of A*(R™), v A+ A
vk, equivalent up to constant, which we will denote by G{vy A -+ Avy). We have

g (1A Av) = w A Awy = det(g) - (v A Avg).

4.1 H-Invariant Polynomials of k-planes

Let H be a group acting on R™ The action of H on k-tuples of vectors in K",
he(vy,- -, v) = (hev,- -+, h-vg), clearly commutes with the action of GL(k), and
thus gives an action of H on Ggp. Similarly - (vi A~ Avg) = (h-vg A Ahwy),
hence h- G(ug A+ Awvg) = G(h-vi Av b Aug).

Our goal is to describe H-invariant polynomials on G, ;. However, it is well known

12




that G,z is a projective variety, and thus there can be no polynomial functions
in the usual sense of this word on Gpx. Instead, we should consider functions on
the set of k-tuples of vectors wy,..., v which are invariant up to a constant under
the action of GL(k) More precisely, we consider functions m(vq,...,v;) such that
m(g(vy, ..., v)) = (det g)9m{vy,. .., ve); we will call such functions “homogeneous
functions of degree ¢”. They can be viewed as sections of L? where L is a canonical

line bundle on Gy, This leads to the following definition.

Definition 4.1.1 Multilinear H-Invariants of ¢ k-planes, are H-invariant, mul-

tilinear functions of kq vectors in R*, (vi, - vp), -+, (0¥, -+ -, o)

mh-vi, g, he ol chevd) = mlup, g, 0, 0f)
compatable with the GL(k) action on k-tuples of vectors.
m(gl'(vll: " ':1")};): T ,gq-(’Uf- ) ’Ug)) = det(gl) " 'det(gt,‘) m(lullﬂ e :'UIlc: " 'a{Uf' ' Ug)

for g1, g, in GL(k).

It is clear that up to a constant, these invariants are functions on the g k-planes

G A Aug), - GI A AU

Since the transpose of 2 vectors within a k-tuple is an element of GL(k) of deter-

minant —1, we have

Moty o0l u) = Fl A AV S @ U A ALY

13
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with f € ((A*RP)®7)*
FlhoolA AR UL@ @B vIA-Ahvl) = FRIA- - AvL® - @UTA- AU

and
Fla(vi A Au) @ @ gy(uf Ao Af)) =
det(gy) - -det(gy) fFIA - AUL® - @V]A-- AU])
We are interested in the case where we have ¢ copies of 1 k-plane, G'(vy A+ -+ Awg).
From the familiar processes of restitution and polarization, see [Weyl46, ProcessiT6],

the following lemma follows.

Lemma 4.1.2 There is a 1-1 correspondence between H-invariant multilinear forms

in kg vectors in R, m(v}, -+, uf,vf, -, 08, -, 0, - 0]), symmetric in each set of

‘the q vectors {vi, 3, v}, - {vi,vE, -+, vf} and H-invariant polynomials of 1

k-plane of degree g in k vectors,

p('Ul,""Uk;) = m(&’l:"‘;”k,"‘,vly"',l’k)

wp
g times

with

p(h"vl:"':h"vk) — p(’Uh"',Uk)

and

p(g (UI:"')'?)/G)) = dEt(g)qp(Ul:"'avk)

From the above considerations we have

Theorem 4.1.3 H-invariant polynomials of 1 k-plane of degree q constitute the H-

invariant vector subspace of the Weyl submodule of ((R™)®%)* corresponding to the

14




rectongular Young diagram Sy, with k rows and ¢ columns.
W = (V(qk)(Rn)*)H C (((Rn)®kq)*)ff

The number of linearly independent H-invariant polynomials of 1 k-plane of degree

g is the dimension of W.

4.2 Examples

The following examples are well known to experts but difficult to find in the literature.

421 H=1d

The following result is classical.

Theorem 4.2.1 [d-invariant polynomials of 1 k-plane in R™ are generated by the
(:) Pliicker coordinates of the k-plane G{vi A+ - Awy), e.g. the k X k minors of the

matrix

These are polynomial invariants of 1 k-plane of degree 1 corresponding to the Young
diagram with k rows and 1 column. They give homogeneous coordinates that distin-

quish k-planes in R".

4.2.2 H=0(n)

Theorem 4.2.2 O(n)-invariant polynomiols of 1 k-plane in R® are generated by the

Gram determinant, yi(vy,v1,-+*, Uk, Ug), corresponding to the Young diagram with k

15



rows and 2 columns. This is a polynomial invariant of 1 k-plane of degree 2.

Proof: Follows from Theorem 2.2.2. In particular q must be even.
The above result is in agreement with the obvious geometric fact that the orbit

space of k-planes in 2", under O(n) is a point.

4.2.3 H =SP(2n)

Theorem 4.2.3 SP(2n)-invariant polynomiols of 2k-planes in R™ are generated by
the Pfaffian invariant, V¥g(v1, va, - ,Var), corresponding to the Young diagram with

9k rows and 1 column. This is o polynomial invariont of 1 2k-plane of degree 1.

Proof: Follows from Theorem 3.2.2.
SP(2n) is not compact and polynomial invariants of k-planes will not distinguish
orbits. Even on 2k planes, the above invariant will be 0 if the restriction of the

symplectic form has nullity.




Chapter 5

U(n) invariants for R*"

The standard action of U(n) is on C™. We are interested in the standard action
of U(n) on R?. We develop the invariant theory for this case, along the lines of i

[Weyld6].

5.1 First Fundamental Theorem for U(n) on R**

Lemma 5.1.1 U(n) = O(2n, R) N SP(2n, R) acting on R*".

A B ;
Proof: Let C = A+1B in U(n). On R* this is the matrix Cg =
-B A i;
Then CC* = I — Cp is in O(2n) N SP(2n). Similarly, D in O(2n)NSP(2n) — D = ;
A B |
with A + B in U(n). 1

-B A |

Theorem 5.1.2 (First Fundamental Theorem for U(n) on R*") All polynomial

invariants of O(2n) N SP(2n) depending on an arbitrary number of vectors in R*

are expressable in terms of the orthogonal and symplectic product

{(u,v), [u,v]

17




Proof: This follows from Weyl's, [Weyl46], formal algebraic argument via Capelli’s
identity plus the following geometric lemma. Capelli’s identity for the case at hand
says that if (u,v), [u,v] generate a complete set of O{2n) N SP(2n) polynomial
invariants for all 2n vectors (vy, -« -, vay) in R2", then they will generate a complete

set of polynomial invariants for all m vectors (v, -+, vm) in B*", for all m > 2n.

Lemma 5.1.3 Given 2n-1 vectors vy, ,Von_1 in R, one can find a coordinate
system. in R®™ both symplectic and orthogonal, such that the first coordinate of each

vector vy, - - - Uap_1 vanishes.

Proof: The proof is exactly the same as that for U(2n) N SP(2n,C) acting on
C?, see [Weyld6, page 172]. As in Weyl’s proof, we can assume that our 2n-1 vectors
span a 2n-1 dimensional hyperplane P, in R**. We remind the reader.

Define the linear operator ~ by [z,] = (%, y). Explicitly, if
T =Ty, Ty, *TnsEny, then & = —xy, %1, -+, —Tpw,Tn. The operation ~ has the

following properties:

B.% = —¢
C. (j:y> = —<CE,§)
Let &1 be a unit vector perpendicular to P. Let ey = €;. Then

{er,er) = (e1,e1) = 1by A.
{er,err) = [e1,e1] = 0 by definition, hence ey is in P,

le1,ex] = —{é,e1) = {er,er) =1byB.

18




Let P, be the subspace of P where [u,e;] = 0, [u,ep] = 0. This is equivalent
to (u,eyr) = 0, {u,e;) = 0. Hence by C., P, is closed under “and we can continue
our inductive construction of a basis both orthogonal and symplectic.

From the results of sections 2.2 and 3.3 it follows that
Poi{vi, va, -+, vg) Paj(wy, wa, -« v We;) =
(v1,v2) + -+ (Vgi1,V2) [W1,wa] -+ ['wzjfl;'uhj}
is a U(n) invariant of (R?)®%* for 2i+25 = 2k, with I'y; Pa; € (5*(5%))* @ (S(A?))*.

Linear combinations of the action of Sy on I'y; Ph; generate all such invariants.

5.2 First Fundamental Theorem for real k-planes
under U(n)

We will start with examples which are clearly U(n) polynomial invariants of k-planes

in . We will soon see that these examples give a complete set of generators.

5.2.1 Examples

We use the notation A(- - -) for alternation along the columns of Young diagrams with

entries labeled by vectors vy, -+, vg.
U1 U
V2 or Y2 U2
Uk Up Ui

In the examples, solid dots in Young diagrams correspond to Gram determinants,

while open dots correspond to Pfaffians.
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[Ula Uz, U3, U4]

2
A(< vy, U1, V2, V2 > [UE‘J’U‘L] )
< U1, V1, Vg, Vg, U3, Vs, V4, Vs >

corresponding to diagrams

o .o oo
o oe oo
o 00 '
o) 00 '

k=5

2
A< vy, 01 > [v2, V3, V4, Us)’)
2
A(< U1, V1, Vg, Vo, V3, Us > ['1)4,'!)5] )
< ’Ul,’Ul,’Ug,UZ,U_3,1)3,U4?’U4,‘U5,U5 >

corresponding to diagrams

L L L 1] L 1]
[8]w] a0 [ 1]
[ale} o8 L 1 ]
je]o) o0 0
[a]@] QO L ] ]

5.2.2 First Fundamental Theorem (FFT)

Theorem 5.2.1 (FFT for real k-planes under U(n)) U(n) invariant polynomi-
als of k-planes in R agre generated by

k even

[vg, -+, vk]

A({vy, vy, V2, v2) Vs, -+ V&))

A(<'U1y U1, Vo, Vo, Vs, U3, V4, 'U4> [1)57 Ty Uk]z)

.......................................
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k odd
A({v1, v1) o, -+ -, o))

A((Uu Uy, Vg, V2, Us, ’03> [’U4: Tty Ufc]z)

..................................

(rU'l,'Ul;'Uz-, e 1{Uk::'Uk)

These are primitive U(n) invariants of k-planes corresponding to irreductble com-
ponents of the GL(2n) module, $*(S?) ® S*(A?), generated by
k even
ox(vy, -, Uk)
A (62(v1, vy, v2, V2) k(s - -+ vi))

A (64:(’013 M, Vo, U, V3, V3, U4, 'U4)UI%~—4 (Ufn tt, T)k))

.......................................

k odd
A (81 vz, v1)0F_g(va, -+ -, v8))

' A ((53(%’1; U1, U, UQ:’US;'U:})GJ%—g('UAI: e :Uk))

.................................

Proof: See section 5.4. 1“

5.3 A Rectangular Lemma i

The proof of the FFT for real k-planes under U(n) will be based on the following h

lemma.
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Lemma 5.3.1 (Rectangular Lemma) Given a subdiagram S of the rectangulor
Young diagram Sy with k rows, q columns, there is only one p such that Sy @5,
contains Sye, and for this j1, Sge appears in Sy ® S, with multiplicity 1. The diagram

S, is obtained by rotating the skew diagram Sy — Sy 180 degrees.

Proof: See section 5.5.

5.4 Proof of FFT for Real k-planes in U(n)

From Theorems 4.1.3 and 5.1.1 U(n)-invariant polynomials of 1 k-plane in R of

degree ¢ constitute

Vv(qk)((RZﬂ,)*)U(n) C (((R2n)®kq)*)U(n} — Z S“'(Sz)@Sj(Ag)
2i4-2j=kq

Let V,+ be an irreducible component of S7(5%) @ ST(A%), 2i+2j =kq SY(S*)®
S1(A?) = 3, , Va @ V, where Vj is an irreducible of SS%) corresponding to a dia-
gram on 2i with rows of even length, and V}, is an irreducible component of S7(A?)
corresponding to a Young diagram of size 2j with columns of even length.

Vs is thus an irreducible component of some Vy ®V, and hence Sy is an irreducible
component of Sy ® S,. S, is obtained by appending elements of S, to Sy by the
Littlewood—Richardson rule, see [FH91].

By the Lemma, this can be done in only one way, and S, is Sigry — Sx rotated 180
degrees.

We will explicitly exhibit heighest weight vectors for the irreducible component,
Vye of Vi ® V. One should refer to the examples below in what follows. Since Sy
has rows of even length, its entries in column 1 and column 2, if they exist, must be

the same length I, reading from top down. Entries of 5, in columns 1 and 2 of S,
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reading from bottom up, are of even length k& — [, which may be zero. A(d02_) is
thus a highest weight vector for the first two columns corresponding to the invariant
A (v, 01, v ) [veer, -, ve]?). This is a primitive U(n)-invariant of 1 k-planes

of degree 2. We continue column by column in this manner. If entries of Sy appear,

we get highest weight vectors and invariants, similar to the above, on two columns.

If, however, no entries of Sy appear, all remaining columns will have highest weight

vector oy, corresponding to the invariant [v1, -+, v], a primitive U(n)-invariant of 1
k-planes of degree 1. Multiplying these highest weight vectors, and primitive nvari-
ants, will give us a highest weight vector and a corresponding primitive U{n)-invariant
of 1 k-plane of degree «. ig
Examples: |

k=4, =5 A=(4,4,2,2), p=(3,3,1,1)

seeeeC 13
se 090 |
e8000
e®00C

k=5 g=4 A=(4,2,2), p=(4,4,2,2)

o0 0 |
® 800
e 8 00
00 00
0000

5.5 Proof of the Rectangular Lemma

To decompose, S%(S?) ® S7(A?) one must decompose the ”outer” product of their

irreducible components, sce [FH91]. This is done via the Littlewood-Richard rule. If
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A is a partition of m and p a partition of n, then
SA ® Sf-"‘ = ZN;\}MSV
v

where v is a partition of m + n and the integer N, is the number of ways to
construct the diagram of S, from the diagra,ms of S, and S, via the Littlewood-
Richardson rules which we recapitulate.

Fill in the diagram of S, with 1’s in the first row, 2’s in the second row, etc.

We enumerate all possible ways of appending all the 1’s to the diagram of Sy,

next all the 2’s, etc. such that the following rules are obeyed.

LR 1 At each step we maintain the shape of a young diagram (weakly decreasing

rows).
LR 2 No two 1's, 2’s, etc can appear in the same column.

LR 3 For each diagram constructed via [LR 1, LR 2] construct the sequence obtained

by reading the appended numbers from right to left, up to down.

LR 4 We keep only those diagrams that form a strict p expansion. This means the
first element must be a 1, the second element a 1 or 2. At each step as we march
across the sequence the number of 1’s encountered must be > the number of 2’s

encountered must be > the number of 3’s encountered, etc. Example: 123112344

Ny, is the number of Young diagrams of shape v, constructed in this manner. It is
the multiplicity in which the irreducible component S, appears in the representation
of 5\ ® S,..

Given a subdiagram Sy of the rectangular young diagram Sge, we prove there

is only one diagram S, which can be appended to Sy in only one way, via the
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Littlewood Richardson rule, to make Spu. This will be the skew diagram Sy — Si

rotated 180 degrees.

11 o111
11
221 21
| 33 32| 31
Figure 1 Figure 2 Figure 3
1111 111 1
22 2 2 222 2
1333 3 11 333 3
14 4 4 4 4 4 4 4
5 5 5 & 555 5]
6§ 666 21 le 6 5 6
7777 777 7
8 B 8 8 31 : ) 8 8 8 8| - :
Figure 4 Figure 5 Figure 6

Rectangular Lemma Illustration

We refer to the illustration.

1. Figure 1: We have S(q’“) with k = 8, q = 12, and 5), is the shaded young diagram

8(84 ,62 ,22) .

2. Figure 2: By extending the edges of S, , we partition the skew diagram Sigky— 5
into blocks which we enumerate top to bottom, right to left. By [LR 4] the top
right corner of By must be a 1 and by [LR 1, LR 4], a 1 must have been placed
in the top left corner of By, and filled out to complete B ;s entire top TOW.
See Figure 3. By [LR 2], any remaining 1’s of S, must appear in blocks to the

left of B1,.

3. By [LR 4] the right edge of the second row of By 1 must be a 2 and again by [LR
1, LR 4] 2’s must fill out the entire second row of By;. By [LR 2], remaining

2’s of S, appear in blocks to the left of By
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. Continuing, we fill out the rows of D1 with 1’s, 2’s, etc., up to ny1 (4 in Figure

4). All additional 1’s, 2’s, ni1’s, of Sy, appear in blocks to the left of By . See

Figure 4.

. By [LR 4] the number on the right edge of the first row of By must be ny; +1

(5 in Figure 4). By [LR 1] we must have appended this number at some starting
point on this row, and continued consecutively. This starting point can only be
the left edge of Ba, for if it began right of the edge, the edge to this position
would contain numbers in the set 1,2,--+,n1; by [LR 1], contradicting [LR 2].
If it began left of the edge, there would appear a string of ny1 + 1 greater than
the row length of By contradicting [LR 4]. In this manner we continue filling
the rows of the first column of blocks, By 1, Ba,1, ete. with consecutive integers.

See Figure 4.

 We turn our attention to the second column of blocks. By [LR 4] the top row,

right edge of Bys must be a 1. By [LR 1] and since all 1's are appended first,
we must have started with a 1 at the left edge of Bj s top row and continued

consecutively. Figure 4.

. We continue this procedure until each column of blocks consists of rows filled

with 1's, 2's, ete.

. In Figure 5 we rearrange the blocks so they're enumerated from top to bottom,

left to right, and anchored at the top left corner of S;». Figure 6 shows that Sy

is indeed Sy — Sy rotated 180 degrees.
{q*)
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