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Abstract of the Dissertation

Aspects of the long time evolution in General Relativity and
Geometrizations of Three-Manifolds

by
Martin Reiris
Doctor of Philosophy
in
Mathematics
Stony Brook

2005

We investigate global geometric properties of the ground state of the reduced hamiltonian I in the
CMC phase space in General Relativity, for manifolds with ¢{M) < 0. Precisely, given a bound A for
the Bel-Robinson energy i.e. (Qo < A) there is an ¢(A) such that H-small dota states, i.e. those with
H -~ Hi,p < €(A), are close to a strong geometrization. We provide a new example of small data states
realizing & non pure geometrization which completes the list of the expected geometric hehaviors. As
an application we establish the stability of the pure H ground state (flat cone or Lébell space time)
under no restriction in the three dimensional hyperbolic geometry, providing in general a proof that

had been obtained by L.Andersson and V.Moncrief for rigid hyperbolic manifolds.
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“Toda obra humana es deleznable,

pero su ejecucion no lo es.”

Carlyle.
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Chapter 1

Introduction.

1 Summary.

eneral Relativity! is a diffeomorphism (gauge) invariant lagrangian theory on four manifolds and
'(therefore) a constrained system. As such, position and velocities (q,¢) = (g, = 2K )23 (or briefly
g9, K) states, where g is a three-metric and K is a symmetric two tensor on a three-manifold M) are

ot freely specifiable. Namely, they are constrained to lie in the zero set of the (vacuum) constraint

EeQMations

Energy constraint : R — |K|? + (trgK)* = 0, (1.1)
Momentum constraint :  V.K —d(tryK) =0, (1.2)

the tangent space of the manifold of three-metrics. We will deal with CMC states, i.e. states with
onstant average velocity k = tr K. If the initial state (go, Ko) is CMC, then it is possible to choose
as the time coordinate (at least for short times), a choice that conforms a partial, temporal gauge
1id that restricts the Einstein flow to lie on the subset of CMC states. For manifolds with sigma
onstant (M) < 0, CMC systems can be reduced [FM1] and the flow gets driven by a reduced and
nonotonically decreasing time dependent hamiléonian H whose global infimum Hy,s in the CMC set
{ states is given by —(3a(M))%. We will study the CMC phase space in a particular sector, namely
tates with k = —3 (normalized CMC states) and hounded Bel-Robinson energy Qo < A. We prove
hat there is a €(A) such that if H — Hi,y < €(A) the (g, K) states decompose M (via the thick-

hin decomposition) in a strong geometrization, where a strong geometrization is a subdivision of the

1
2'\?\fe will consider only vaecuum cosmological solutions of General Relativity.
39 £ i8 the normal Lie derivative of g.
In the corresponding hamiltonian theory (g, p) states are given by (gab, TI%b = /(K —kg®?)). From a geometrical

point of view (g, §) variables, or equivalently (g, K} are more natural to work with and is the choice we will prefer.

i
;
i



'hl-ee—mﬂlﬂfdd M into H = UH; and G = UG, parts, with H; a collection of manifolds admitting

‘6mp1ete hyperbolic metr
. pieces are glued together along incompressible T2 tori in M. We prove also that in the limit when

ics of finite volume gy, and G; a collection of graph manifolds. The H and

equence of states (gi, K) has Qo < A and H — Hyny, (9, K:) converges (up to diffeomorphism) to
the unique) fat cone states (g, —gm,;) on the manifolds H; and collapses on the G parts, with the
olume and 7.2 norm of K going to zero on G. Examples of this phenomena. are easy to present in the
ure case where the geometrization consists of a H or G piece. We provide a new example where
oquence of states show the emergence of a strong geometrization containing both G and H parts.

In a different section and as an application wo prove the stability of the flat cone solution {or Lobell
Hace time) for perturbations with small Wg 2 % Wg"z norm of {g— g, K + gu), a result that had been
8 btained in [AM] for rigid hyperbolic manifolds.

Finally, we discuss possible consequences and applications to long time evolution, as well as new

lirections of further study.

Motivation and results

ihe sigma constant, o(M), of a closed manifold M is defined as the supremum of the scalar curvatures
unit volume Yamabe metrics. This important topological invariant divides the set of three-manifolds
%o three classes, those for which either o(M) < 0,0(M} = 0 or o(M) > 0. All through the work
B cume M is a closed and oriented three-manifold with o(AM) < 0. By a CMC state (g, K) {constant
Kican curvature state} we mean a 3-metric g and a second fundamental form K with k = tryK
fistant, satisfying the constraint equations in vacuum. If a cosmological space time (i.e. having
compact oriented Cauchy surface) with a Cauchy surface M with o(M) < 0 admits a CMC slice
th k < 0, then there is a unique connected foliation of CMC slices with k taking all values in a
en interval inside {—oo,0) ([B], [MT], [Re], [AM1]). We will consider here such a scenario. When &
dreases the volume expands, we will call it the future direction. Every 3-manifold {(with (M) <0
“not) s the Cauchy surface for a universe having a slice with k& = —3, thus there are solutions
Ith CMC foliations in any topology. This is due to the fact that every closed manifold admits a
etric g of scalar curvature R = —6 and that it together with K = —g form a state {g, K) with
—3. Inside the foliation there is then a natural choice of time, or a natural 3 + 1 decomposition.
1’1Y trivialization ¢ : Foliation — M x I (preserving the leaves) gives rise to a vector field X, the
hzft vector field, with dk(X) constant along the leaves. Conversely a shift vector field (with that
roperty) together with a particular ¢ from any leaf into M gives rise to a trivialization. The choice
f such & global map makes it possible to define a flow of CMC states (g, K) on a fixed manifold
+ We will call to any of such flows (ie. regardless of the gauge or shift vector being used) the

nstein flow, CMC foliations form a particularly relevant (partial, temporal) gauge in cosmological




times with beautiful geometrical aspects. The equations for the Einstein flow in this particular
e

decompo
ch a reduced hamiltonian {time dependent) drives the evolution. Although of conceptual

sition were presented in [FM1], [FM2] using a contact structure on a reduced phase

on whi

cance in itself, we won’t use explicitly that contact structure, details of which can be found in
The geometric properties of the reduced hamiltonian will be essential however. Precisely, for

te (g, K), the reduced homiltonion is defined as

= —~k3Vol(M). (1.3)

, is strictly monotonically decreasing along the CMC flow to the future except when it is constant
hat happens only when the manifold is of hyperbolic type and the CMC solution is a so called
one i.e. & = —dt2 + t?gyr, where g is a hyperbaolic metric ([FM1]). We will see later that
act has e precise geometric significance. Its infimum in the phase space of CMC states is given
(—8a(M )8 ([FM1]). It is of general relevance to realize whether or not the reduced

P
.ltoilia.n always decays to it along the evolution. We won’t address the question of what may
ait the reduced hamiltonian to decrease in that way, but instead we will investigate the geometric
é:quences of assuming such a decay actually occurs. In [FM2] some compactified Bianchi models
been studied with the purpose of analyzing the behavior of the reduced hamiltonian and it was
d that it decreases to its infimum (or conjectured infimum, see Comment 2 on the determination
& sigma constant for three-manifolds) and more interestingly, as is explained in detail later, such
y of the reduced hamiltonian is observed to be related with the appearance of certain geometric
stures and phenomena. However the approach to the infimum may not be the only reason for
'_ﬂ"o_g‘netric behavior to appear. Indeed, as we will see, to reach such geometric conclusions the
ved hamiltonian is largely insufficient as it weakly controls the geometry, thercfore some stronger
: thesls must be imposed. In particular we will see that such is the case when the Wey! tensor
' q in a certain way with respect to the CMC foliation. The geometric structures that are involved
1st level on the long time evolution when one apriori knows some form of decay of the Weyl

6 or are those of weak and strong geometrizations as first noted in [Al].




d that if the CMC foliatlon exhaust the whole space time. If that were the case, by meaning long

as the prop
he end of the 8

orties of the CMC slices when k — 0, we would unequivocally be referring the results
pace time. However it may not be the case, and therefore by long time we mean
o pl‘OpertieS of CMC slices when k& approaches the end of its range if the results are put in the
MC foliation.

g rspective ofa C
) the normalized CMC slices that, under some hypothesis, sets the weak or strong

t i the metric on

- metrization on the long time by the so called thick-thin decomposition of the manifold. There are

i {vays to define a thick-thin decomposition, each being impoertant depending on which norms on

space of metrics are relevant to the problem. In our case as Sobolev norms are those to be used,

irect interest to us is the thick-thin decomposition that involves the volume radius (instead of the
_'ectiviﬁy radius).
bNITION 2 The volume Tadius v(z) at T is given by

| viz) = sup{r: Kf%’-‘@ > 1, VBy(s) C Bz(m)}, (1.4)

re p is any fized but positive constant.

FINITION 3 Given €, define the € thick-thin decomposition of a manifold M as M = M*UM. where
={zeM:vz)>el, Mc={ze M vz ) < e} (1.5)
Thé domain M€ is colled the e-thick part and M, the e-thin part of M.

We will say that a metric g implements the geometrization if Me H and M, = G (for some €).

]ﬁ general, normalizing the geometric data (g, K') on a CMC slice as (& B “EK) we get a state with
3. The results on the long time evolution on this thesis are about the nermalized states of the
1} foliation. We will study the appearance of geometrizations via thick-thin decompositions and of
(_f,la,ted phenomena. of convergence and collapse along F-structures, on sequences? of Wa'? x VVU1 )3

tes satisfying three conditions (from now on referred as conditions 1,2,3):
tr K =k = -3,

..H = —kVol(M) | (—2co(M))2,

Qo= [, B2 +Bldu, < A,

1ve that H is scale invariant, i.e. invariant under the scaling (Mg,AK) (A > 0}, therefore a
ence of non normalized states in a OMC foliation in a cosmological space time satisfies condition

and only if the corresponding sequence of normalized states satisfies it too. In condition 3, Qo is

e ) ; . .
Quences won’t be indexed unless their lack may cause confusior.




he Bel Robinson energy and E and B are the electric and magnetic components of the Weyl tensor
e Bel-

a definit

jon) with respect to the spatial slice. On non normalized sequences of states in a
< —kA. Under these

: '(See lat.er for

MC foliation, condition 3 translates into the following decay in the bound Qo

ove the following theorem.

:.assumptions we will pr
ound state for the reduced hamiltonian) A sequence of states (g,K) on

1,2 and 3, has o subseguence 1mplementing o unique (up to isotopy) strong

' pheorem 1 (The gr
: M satisfying conditions
geometm'zation in the following way:

There 45 a § > O such that for every x € M, v(z) > §. A suitable choice of

1, Convergence.
K) converge in the weak Wy 2 % Wol 2 topology to the standard initial

diffeornorphisms make (g,

state for a flat cone (9r, —9H

), where grr 18 @ hyperbolic metric.

_ Collapse. For every z € M, v(z) — 0. g collapses in volume, ie. Vol (M) — 0 with the I?

the W2 and L* norms of K uniformly bounded and the L2 norm of K going to

norm of Rice,

Zero.

9. Convergence - Collapse. Say the subsequence g 1S indezed as g;. There is a sequence Ty and

wence y; with vy, (y;) — 0. There is also a mazimal

§ > 0 with v, (2:) = & and there is a seq
domain Q CC M such that a suitable choice of diffeomorphisms make

weak Wg 2 % VVO1 2 topology to a finite set of initial staies for flat cones on complete hyperbolic
ressible tori ot the ends. There is an eo(A)

(g, K) converge in the

manifolds of finite volurne with cusps with incomp

such that for every e < e, Me is @ union of graph
M, collapses in volume in the sense that

of the L? norm of Ricc and

manifolds and has an F-structure whose

orbits are Ces collapsed, i.e. diam(Qz) < Cles.
lim supg, Volg,(Mc) goes to zero as € — 0. Similarly the lim supg,
the W12 and L4 norms of K are uniformly bounded in M. and the lim sup,, of the L* norm of

K in M, goes to zero as e — 0.

Examples showing the behavior of Theorem 1. Tnterestingly, the problem of the determina-

ion of the sigma constant is related with the problem of finding sequences of CMC states satisfying
3 in Theorem 1.

conditions 1, 2 and 3 and showing the behavior explained in the possibilities 1, 2 and
—gy ), where gy are Yamabe metrics of scalar

The reason is due to the fact explained before, that (gy,
strvature R = —6 are CMC states. In [A5] a conjecture for the realization of the sigma const

raised, that (informally) in case o(M) < 0, asserts that for irreducible oriented and closed 3-manifolds
, that implements a strong

ant was

phere is a sequence of Yamabe metrics whose scalar curvatures secl a(M)

geometrization (pretty much in the same way as in the theorem above). From it one extracts the

conjectured value for the sigma constant for irreducible oriented and closed 3-manifolds. Concretely,
If the corresponding strong geometrization is M = (UHy) U (UiGy), then o(M) = 6(3 Vol_1 H;)%.

Assumi ;
, ng the conjectured value, examples can be given. For a sequence showing convergence it is




gh to take any sequence (gv,—gv), where gy is Yamabe converging in Wg 2 to g, the hyperbolic
Hapse instead, take the metric product Lgen X S} of a surface of genus gen > 1 with
B .ic of scalar curvature S = —6 and S} of length L. As [ — 0 the sequence (g, —¢:), (¢ is the

ic), shows the phenomena of collapse along the 81 fibration. A sequence displaying the

. 1« more complicated to present. In section 3.2 we provide in detail one in which two

rbolic manifolds complete and of finite volume with a cusp each are glued together along a neck

-2 gymmetry. The family is parameterized by the length of the neck, and as it goes to infinity

hetrization takes place and the picture of convergence-collapse appears, a representation of that

e seen schematically on Figure 1.

e 1.1: Representation of the metric degeneration for sequences of vacuum states in two hyperbolic

folds joined along their cusps realizing the third kind of behavior in Theorem 1.

"'s likely that the states for which the Bel-Robinson energy is close enough to zero and the
ed hamiltonian close enough to its infimum, i.e. those states that can be thought as small data

ompact universes, decay to their ground states. We state such hope in the following conjecture.

jecture 1 For any 3-manifold M, there exisis an € such that if k = —3, —k3Vol(g) — ("*%O'(M))%
and Qo < € then the flow is defined for k in {—3,0) and it coincides with the maxzimal globally

o qul'ic evolution settles the normalized CMC states into a sirong geomelrization (the ground state).
ument 1.

As stated, whether true or not, the conjecture probably won’t be solved until some sort of
ontinuation principle in W22 x Wh? gets proved, as the control of Qo and H on {g,K) is
nly on W22 x W2 (and therefore nothing would prevent the flow to stop running before &
“complstes the interval (-3,0)). It is possible of course to assume more regularity and state a

conjecture with @y replaced by £ = Qo + Q1.

:' The evolution of the F structures forming on cases 2 and 3 of Theorem 1 is the main obstruction

to understand the conjecture in cases 2 and 3. On one side it was proved by Ringstém [R1]




although in a different gauge than CMC) that the behavior of the F structures could be almost
periodic along slices that approach to be homogeneous. The evolution of such parts is not

therefore generally modeled in the long time by the long time evolution of homogeneous initial

‘gtates.
a numerous amount of references where the behavior of geometric structures had been

There are
and studied, some of them are [FM2], [R1], (R2], [R3], [AM], [CB].

“Identified
o will give a proof of the conjecture for case 1, assuming the extra hypothesis of an initial
o] of the first order Bel-Robinson energy @1, and that the initial manifold is known apriori to be
rholic. This last condition can be relaxed to assume that the manifold is atoroidal, this is enough

olude cases 2 and 3 during the proof.

em 2 (Stability of pure H ground states.) If M is a hyperbolic manifold and (o 1s re-
for £ = Go + Q1 then the conjecture holds.

mment 2. It is essential to remark that in Theorem 2 we make the assumption that the proof
‘Geometrization Conjecture provided by G. Perelman is correct. Assuming that, it is shown in
ha,t, Perelman's work implies the conjecture on the realization of the sigma constant on manifolds

(M) < 0. Such a result is necessary in the proof of Theorem 2.

_éorem 2 implies the stability of the flat cone in general (in the sense of Conjecture 1), ie.
hout any assumption about the hyperbolic manifold. It is possible to give a proof of stability of the
ﬁethat doesn’t make use of Thurston Ceometrization; such is the content of Theorem 3 proved
tion 3.4. Finally, it has been conjectured in [FM2], [AM], that the inclusion of the reduced
{ltonian would provide a general proof of the stability of the flat cone. The present work confirms

xpéctation.

rem 3 (Stability of the flat cone.) There is a neighborhood U of initial stutes around
2gr) in the Wi x W2* topology that under the normalized Finstein flow, every normaulized

'tb'r_y (with o suitable choice of the shift vector) converges in that topology to (gr,—9m).

he results here are closely related to those in [Al] but in the Sobolev setting. In [Al] it is assumed
“decay of the norm of the Weyl tensor and its derivative with respect to the CMC foliation. In

cular it is proposed the following decay in the bound
| R(z)| -+ t(x)| VR(z)| < Ct2(x), (1.6)

? e |R* = |E|2+|B|? and |[VR|? = |VE|?*+|VB)? and £(z) is the proper time of the CMC slices to
d slice. It is proved then that a cosmological space time for which the CMC foliation exhausts

bace time to the future, is future geodesically complete and any diverging sequence of slices has




Lsequence with t~%(z)g decomposing M into a weak geometrization. Technically, to reach such
j'usions it is uged the Cheeger-Gromov theory of convergence and collapse of Riemannian manifolds

) a8 the condit

ol (M) was used in [Al]
e study of hyperbolic equations and as such Anderson’s decay conditions would

ions above control the 3-curvature in L. It is worth mentioning that the quantity

as playing a conceptually gimilar role to H. L° norms are not well

':d however in th

ifficult to deduce in
o fall into a weak or strong geometrization with hypothesis involving technically

eneral relativity, some that could be deduced analytically without imposing

icle we will work with the reduced hamiltonian H and the Bel-Robinson

general situations where such a decay is expected. It would be worth to have

table quantities in g
h regularity. In this art
- of zero and first order. In a Sobolev setting we use an 1.2 analog of Cheeger-Gromov theory of
argence and collapse developed in [Ad]. The lack of reference to any particular spatial gauge (or
iof chift. vector) along the paper is a reflection of the use of that theory in the analysis of metrics
uchy swfaces, a theory that is basically on its grounds diffeomorphism (gauge) invariant. Due
¢ fact, there is some lack of information on the part of the four-metric involving the shift vector,
or the conclusions are enough for purposes of stability or evolution of the CMC states (g, K ).

ament 3. Recently, H. Ringstrdm ([R4]) studied the extent to which the apriori hypothesis on
ion (1.6) arc satisfled on examples. Interestingly he found that on Bianchi VIII models not of
'type, there is & sequence of time slices £ (CMC) for which they don’t hold (although there is
equence for which they do). For us it is of relevance as condition 3 is not satisfied either, i.e.
ormalized Bel-Robinson energy diverges. It is worth to emphasize too that condition 2 holds

he reduced hamiltonian decays to its actual infimum, there is also formation of F structures and

se of the volume radius.

Further study

is section we informally discuss possible avenues of further research.

: he present work embodies into the broader philosophy of studying the gravitational field through
i i nisic and global quantities. From a rigidity point of view, it is based on the idea of identifying the
al quantities that make a certain geometric configuration (or state) rigid and understanding their
bion near the rigid state. One such example is the pure ground stafe in a hyperbolic manifold
: characterized by the rigidity condition H = Hj,y. Other examples of potential interest are
',_E."_bility of the k = —3 hyperboloid’s causal future in Minkowski space time. This problem in
‘.“13.18.1‘, shares the features of the stability of the pure H ground state where the role (or control)
B ¢ reduced hamiltonian may be played by the Bondi energy. Stability of non pure ground states
ol ccture 1) is another case of great interest. However in this case, new quantities other than the

Robinson energies and the reduced hamiltonian are needed to have an effective control of the




parts. A problem of this kind is the one of the stability of the infinite double cusp solution
d in section 3.2. Related with this is also the stability of the Kasner family in T% as it is

gtructe
: acterized by R =10 and B = 0. The central problem is to prove that in a situation where

ly char

njectivity
he decrease of the injectivity radius. In that way one may perform a systematic unwrap of the

radius is bounded below the decreage in the energles H, Qy and ¢ is at least as fast

keep the injectivity radius bounded below, ultimately having a geometry converging to

ometry; to
] rigid configurations possessing killing fields. Finally in this line of thought is the much more

cult stability of the Kerr family using existent rigidity results. It is a remarkable fact that all

a gystems posses a monotonic quantity, whose critical points always are related with the rigid

B gurations. In the black hole case, one may recall the (a posteriori) entropy § = LA, where A is
. ares of the event horizon.

\nother front line of interest is the study of the long time evolution of solutions where one apriori

NITION 4 A CMC cosmological space time with o(M) < 0 is strongly singularity free if it s
geodesically complete and the zero and first order Bel-Robinson energies, with respect to the

foliation, have & scale invariant bound A to the future, i.e.

< Ak, (1.7)
< AR, (1.8)
n (3,001

he following result (not proved here), is the first step in the understanding of strongly singularity

space times (see [H], [Al] for related results).

“weaker conjecture however is




Figure 1.2: Representation of a strongly singularity free cosmological solution after a sufficiently large

time and persistently (with the graph pieces becoming thinner) since then.

Conjecture 3 Say (M, g) is o strongly singularity free space time whose normalized geometry decays
into a geometrization with n hyperbolic pieces Hy. Then H | 2750, Vol(H,).

Conjecture 2 pictures CMC evolution {on strongly singularity free solutions) as a time dependent
hamiltonian system where the spectrum has one ground level Hy,y, realized by a (degenerate if M
is not hyperbolic) state implementing a strong geometrization with H equal twenty seven times the
sum of the volumes of the hyperbolic pieces, and higher levels of H, realized by (degenerate) states
implementing a weak geometrization, with H equal twenty seven times the volume of the hyperbolic
pieces, Conjecture 1 says that the system always decays to its ground state.

There are no examples so far of strongly singularity free space times decomposing the manifold on
the long time into a non pure geometrization, i.e. displaying a mixed convergence-collapse picture. As
proved in section 3.2.3 the full neck solution is a non compact example of a strongly singularity free
space time undergoing a mixed convergence-collapse picture. The fact that the evolution at the ends
of the neck is compatible with the evolution of flat cone cusps makes possible to construct an almost
solution of the Einstein equation having the same properties of strongly singularity free space times
and displaying the same conclusion ss in Theorem 1. It is likely it could be perturbed to get a true
solution,

It would be interesting too to investigate whether similar results as those presented here hold for

10




the Einstein equations with matter. In particular whether there is a critical density below which the

(normalized OMC) universe evolve into a strong geometrization.

11




Chapter 2

Background

2.1 Topologies and miscellaneous formulae.

Topologies.
Define the strong W§' topology by fixing a ¢ metric go and completing the space of C°° (p, q)-

tensors with respect to the norm
81 = |3 1V3hlfy v )
lil<p .

We will use occasionally I¢ instead of W9 to stress that no derivatives are involved, When a
Sobolev norm of a geometric tensor constructed out of the state (g, K) is taken with respect to the
intrinsic metric ¢ it will be denoted without the subscript 0 i.e. by WP4, We will use sometimes the
weak Wg‘ 2 % Woz’2 topology defined with respect to the inner product induced by equation 2.1. It
must be understood the strong topology unless explicitly stated.

The Riemann tensor.

R, "V = ViV, V" — VY,V (2.2)

ij 8

Differential operators and algebraic operations on symmetric two-tensors.

div(A), = V'Ay=V.A4, (2.3)
curl( Aoy = (€ Vades & 6, V), (2.4)
(AX Blay = eac‘iebcfAceBdf + %(A.B)ga.b - %tr (A)tr(B)gab, (2.5)

(AAB)a = "4 Buc, (2.6)
dV*dY (A) + 2div* div(A) = 2V*VA + R(A), (2.7)
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d¥ (Aygr = Vidj — VA, (2.8)
(dV* M)y = —(ViM'y~ VLMLja:)a (2.9)
(div*M)y = —(ViM;+ VM), (2.10)

Ri{A)i; = Ricg kAk:j + Riocj’“Am — QRMg;ijlm- (2.11)

We will use a hat above 2-tensors to denote its traceless part, i.e. K=K- %(trgK )g.

2.2 The CMC gauge

DEFINITION 5 A CMC (cosmological) space time (M, g) is a globally hyperbolic cosmological solution

having a (compact) Cauchy surface with constant mean curvature k # 0.

We choose the future direction in such a way that & < 0. The Cauchy development (M, g) of an
initial state (g, K} (not necessarily CMC) with Wy 2 x W™ b? (s > 2.5) regularity has Wy 2 yegularity
{[CBY]). All through the work we will consider Wg’ 2 % W2 initial states and therefore W22 space

times.

Foliations and the Cauchy problem in Wg’z x W% for the CMC gauge.

When addressing the problem of existence and unicity of Cauchy developments there are two
approaches possible. The first is based on the existence of CMC foliations. It is proved in [Bal], [Ge]
that a G CMC space time (M, g) has a unique connected maximal foliation of % CMUQ slices with
the range of k an open subinterval I of (—oo,+00). If a(M) < 0 then it must be I C (—c0,0). As a

consequence of these facts we have:

1. CMC gauge. On the range of the foliation the C°° 4-metric can be presented in M x1Ias
g = —N?dk?® + gi; (dat 4+ X*dk)(da? + X7 dk), (2.12)

N is the lapse function and X the shift vector. g(k) is a three-metric on the manifold M.

2. Hamilton (evolution) equations.

§ = —2NK+Lxg, (2.13)
K = —~VVN+ N(Ricct kK —2K oK)+ LxK, (2.14)
k= 1=—AN|K[*N. (2.15)

These equations comprise a strongly well posed (posses existence, unicity and (Wg ? % Wg‘ '2)

short time stability) system on the set of C*° initial states, i.e. the C%° Cauchy developients,
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exist, are unique and short time wa 2 stable with respect to the W§ x W initial conditions but
must be C®. The lapse cquation (2.15) comes as a result of taking the trace of the evolution
equations (2.13, 2.14).

When proving the stability of the flat cone one may take the approach of working with C° initial
conditions and proving long time stability with respect to the ‘VVO3 2 % Wg 2 norms of them. This
approach requires however to work with higher orders of the Bel-Robinson energies to guarantee that
regularity is kept along the flow if the field is controlled in Wg’ 2 % Wa*. There is however a second
approach. It is proved in [AM1] that thought as the equations for a flow of states the Kinstein
equations, in a C'MC-spatially harmonic gauge, are strongly woll posed in C3(H?) i.e. the map, from

initial conditions in a hyperbolic manifold M into solutions
H® — CE(HY), (2.16)

is a continuous map with a time of existence T" which depends continuously on the initial data in H*.
The space C&(H*) is defined as

CE(H®) = Nogjch—1 07 ([0, T H7). (2.17)

The constraint equations.

The constraint equations on CMC states are

Energy constraint : R—|K]®+k =0, ‘ (2.18)

Momentum constraing : V.K =0. (2.19)

One of the adventages of fhe CMC gauge is the fact that the constraint equations decouple in a
conformal sense. The conformal method was developed by Lichnerowicz, Choquet-Bruhat and York
(ICBY)) and was used by Isenberg in [I] to parameterize the set of CMC solutions in a compact
manifold. It is based on the following fact (observe first that the momentum constraint is equivalent

to V.K = 0), if K¥ is a trace free symmetric tensor then
Viptg) (671°K) = ¢ 0(V,.K). (2.20)

Therefore if K% is a solution to the momentum constraint with the covariant derivative of the
metric g, then ¢~1°K% is a solution of the momentum constraint with the covariant derivative of
the conformally related metric ¢g. Once the pair (g, K) solves the momentum constraint the energy

constraint can be solved by conformally deforming g as ¢*g and solving the Lichnerowicz equation

Ap = LRr,p- LR+ gt (2.21)
g8 gl 12

The salution to the constraints is given by (¢%g, K). It was proved in [I] that if K#40ad k#0

then the Lichnerowicz equation 2.21 admits a unique positive solution. We will use this fact in section
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3.2.5.

Scale invariant variables.

We will use scale invariant variables (or normalized states). We will denote them by a tilde above
the variable. For a state (g, K), we define (5 K) = ﬁ;—g, —%K). (7, K) are scale invariant in the
sense that they remain invariant under the scale transformations (Mg, AK) with A > 0. With this
definition k = —3 and N = %EN . The logarithmic time is defined as ¢ = —In(—k). 3, is a scale
invariant derivative.

The reduced hamiltonian.
DEFINITION 6 The reduced hamiltonian H at the CMC state (g, K) is given by

H = —kE*Vol(M). (2.22)

In terms of the scale invariant variables, H and 8, H are

H = Ol/ d'vg, (2.23)
M
a,H = —C | N|K|*dv;. (2.24)
M .
When 8,H = 0 the second derivative is zero and the third is calculated as
BH = —Cy f | Rice|2du;. (2.25)
M

¢4, C2, Cs are positive constants. Equations (2.24, 2.25) show that H is strictly monotonically de-
creasing unless the solution is a flat cone and in that case H is coustant. The infimum in the space
of CMC states is given by (—3o(M V)& ([FM1}). It was proved in (FM1] that H has a strict local
minimum st (g, —ga) when M is of hyperbolic type, among normalized CMC states (up to diffeo-

morphism) in W2 x W3, It is conjectured that it is a global minimum (see Comment 2).

2.3 The Bel-Robinson energies.
Weyl fields.

DerINITION 7 A Weyl field W = Wagys, is a traceless four tensor with the symmetries of the Riemann

tensor.
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If g is a solution to the Einstein equations in vacuum then Ricc = 0 and Rm = W is a Weyl field.
If T is a vector Held then VW is also a Weyl field.

Hodge duals.

1

Wagns = 5Capm W'y (2.26)
* 1 1

Wagys = m.ﬁ’rw§6.uw5 (2:27)

Electric-magnetic decomposition.

Civen a foliation of M by compact Cauchy gurfaces ¥ denote by T the future unit normal to 2.
Then define

EW)as = chpbﬂuT'uTu (2.28)
B(W)ot,ﬁ = *WauﬁuT“TV (2.29)

Both E and B are trace free with respect to g and g. From now on assume W = Rm. Then the

Gauss-Codazzl equations give

Defining equations for £ and B.
ViKjm—ViKim = € BW)m = ~Wigr ‘ (2.30)
Riceg; — Kq;mK;-n + K,‘jk = E(W)ZJ (2.31)

The component of W can be recovered from those of F and B as

Wirgr = Fy (2.32)
Wijkr = —¢€4" Bmk (2.33)
Wiget = —CimexmE (2.34)

E and B satisfy the following

Divergence equalities.
divE) = KAB (2.35)
div(B) = —~KAE (2.36)
E{VrW) and B(VrW} are given by

BVoW) = curl(B)— (B x K)+ ShE (2.37)

BVIW) — —curl(B)— (B x K)+ —;—kB (2.38)




Bel-Robingon tensor.

The Bel-Robinson tensor @(W)agys associated with W is
QW) aprs = WaupW5's" +" W Wi's"

In terms of E and B the components of 2 are given by

QW)rrer = |E*+|B?
QW)irrr = 2(EAB);
1
QW)yrr = —(EAE);—(BAB)y;+ g(lEl2 +|B1*)g:5
Divergence.
ana,ﬁq‘d =0

The Bel-Robinson energies of zero and first order are defined as

Defining equations for (Jy and Q1.

Qo = /M [EOW)2 + | BOW)[2dv,

fl

@ fM \E(VeW)2 + | B(VoW) Py,

(2.40)

(2.41)
(2.42)
(2.43)

(2.44)

(2.45)

(2.46)

2.4 [2-theory of convergence and collapse of Riemannian met-

rics.

In this section we describe the theory of convergence and collapse of Riemannian manifolds under a

uniform bound on the L? norm of the curvature as developed in [A4]. In basic terms, it describes the

behavior of three-metrics when one controls some metric invariants as the L2 curvature, the volume

or the volume radius. There are three basic behaviors, we describe them below.

Convergence.

Theorem 5 ([A4] Theorem 3.7). For a fized A >0, € >0 and Vo, the space of Riemannian metrics

on M such that

/ |Rice> < A, v 2 €, Vol(M) <V,
M

is precompact in the weak W02 2 topology.

(2.47)




Collapse.

Theorem 6 ([Ad] Corollary 3.10) Suppose g; is o sequence of metrics in M such that

/M \Rice|?dug < A, vy, — 0. (2.48)

Then there is a sequence F; of F-structures such that g; collapses along the F; orbits, i.e.

diamg, Oy < C(Vg‘;)% . (2.49)

Convergence-Collapse.

Theorem 7 {[Ad] Theorem 3.19) Let g; be a scquence of metrics on M satisfying

Vols(M) = 1, f |Rice/*dvg < A (2.50)
M

and there is a sequence of points x; € M such that

ve (@i} Z € (2.51)

for some constant ¢ > O and sequence x;, € M. Then there is o subsequence {i'} of {i} and a mazimal

open set 8 CC M such that the sequence (Q, gi+) converges modulo diffeomorphism, in the weak Wg 2

topology to a countable collection of cusps (connected component of Q). The thin part M. of (M, gs)
contains a neighborhood V of M — M < (for ¢ sufficiently small) for all ' = ig. There is o sequence
of F structures, F; defined on V, which partially collapses under gi:; that is, part of (V, g} converges
to neighborhoods of the boundary, or neighborhoods of infinity, of the collection of cusps Ny, while the

remaining part collapses along the F-structures F;.

Miscellaneous results.
The following results are needed. The first is needed to prove that on the {thick parts) of the

(degenerate) ground state for the reduced hamitonian the metric is hyperbolic. The second is needed

to prove that the tori joining the H with the @ pieces in the ground state are incompressible.

PROPOSITION 1 ([A6] Proposition 3.1) Say M 1s a compact three-manifold with c{M) < 0 then

M= inf Pdug. 2.
o = int [ B, (252

PROPOSITION 2 ([A3] Theorem 2.9} Let M be a complete hyperbolic manifold of finite volume with

cusps. Say that to one of the cusps is glued along a compressible torus to o compact graph manifold.

Then it is possible to find a complete metric with
Volg (M)} / R, < Volg, (M)3 [ R2 dv,, (2.53)
M M

without distorting the metric on the other cusps.

PROPOSITION 3 (jA3] pg 156.) Strong geometrizations are unique up to isotopy, t.e. the tori T; are

unique up to isotopy.




Chapter 3

Results

3.1 The ground state for the reduced hamiltonian.

The proof of Theorem 1 divides into three lemmas. From Lemma 1 we conclude that a sequence of
states satisfying conditions 1, 2, 3 has bounded Ifnormof K = K — % ¢ and from Lemma 2 that the
12 norm of K goes to zero. It is direct then, using the defining equations for F and the constraints
that the L2 norm of Ricc is bounded and that R converges to —%kz in L'. Lemma 3 uses these two

conclusions to prove using the L? theory of convergence and collapse of Riemannian metrics that there

is 8 subsequence having one of the behaviors 1, 2 or 3 in Theorem 1.

DEFINITION 8 We say that a set of quantities X is controlled at zero by a set of quantities Z if X — 0
when Z — 0 and that Z controls X if o bound on Z gives a bound for X.

Lemma 1 (see [Al] for a similar statement in case of L™ bounds of ¥ and B). On normalized states
(k = —3) in W'* x W2, Qo and Vol(M) control the W and I* norms of K = K — £g and in
addition they are controlled at zero by K] z2 and Qo.

Proof: We make use of the formula (2.7) to get
AR? = 2| VR4 <dV*WT, K > + <R(K), K >, (3.1)

where, W%?k = Rm(e;, €j, 5, T').
Denote as 5\1; the eigenvalues of K in an orthonormal oriented basis (e, €2, 3). The Gauss equation
reads for i # 7, Rmyg; = Rimggig — Ay and (in dimension three) Ricey = § — Bmyjkjk. With these

formulas and the energy constraint compute the terms of < ‘R,(ff ), K> as

. e Ags ) o 8 - »
R?"CCin%LKLJ = Z:chinf = ElKlz + Zﬁ:)\g)\j)\k - )\?ijkjk
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1, - 2 A - - .
= §(|K|2 - §’C2)|K|2 + 3 A+ A - ATRmygk, (3.2)
i

Rmijmkikkﬂ = Z iij\ijijij = Z 5\.&:\3 (Rmiﬁj - }\i}\j}

i#F i
= SRS Rmyy — ARG+ 2847 - Xl (3.3)
-y

The two calculations above imply the inequality
(< R(E), K > —IK") < at} K[ + aal KP + aal RPUE? + B (3.4)
Integrating (3.1) gives the inequality

2 E[? + |BI®)  dug + 0aQo, (3.5)

/2\Vﬁ12+|ﬁ|4dvg§_/ 1| R + ag KPP + ag| K
M M

where a; > 0, ¢ = 1,2,3,4 are numerical. Observe that the inequalities

[ RPEP BB, < ([ 1R, (3.
M M
1 [ 1ty < ([ 1RPagi([ 1K1l (3.7
E M M M
transform equation (3.5) into

! . . . PR .
i 2| VR + | B34 — CUR | p2 + QDIKIZe < CUK]E: + Qo) (3.8)
that implies the following bound
,\ ~ n 1
([ 2VKP + Kltdug)t < CUR e + Q) (3.9
? which proves the statement. O

A technical comment is in order. The proof above works say for K smooth. In case (g, K }isin
wg % x Wy*? smooth (g, K) out (even not satisfying the constraints) proceed in the calculations and

then take the limit back to recover equation (3.9).

Lemma 2 If a sequence of W2 x Wy states (g, K) sobisfies 1, 2 and 3, then K| L2 — 0 (ie on
normalized states with bounded Qo, H — Hiny controls |Kl|z2 ot zero).

Proof: } .

1. ¢(M) = 0. In this case —k*Vol(M) — 0, with k = —3, so Vol(M) — 0. Then Jog 1K |2, <
Vol(M)F(f |KYdug)? — 0.




conformal class of g. If g = ¢gy then ¢ is determined by

_ Ry 1 spp Lo
Ad+ 8¢ 59 |Kly -l 12k¢ =0,

where A = V2. The maximum principle implies {placing the correct values of Ry

k = -3} that
6($Enin — Bmin) > Sl K[¥ 20,
which makes ¢ > 1. Then observe that
—o(M) < #Ry(fM 1 dvy)?,

where dvy = dvg,. This gives

0 < 6%(fM ¢ - 1 dvy) < 6% fM #dvy — (—a(M))3

Crvoani) - (-o(n)F.

Therefore

| @iy < COT ~ Hin)
M

for k = 1,...,6. Integrating equation (3.10}), we get
o [ (¢ -y = [ 47K dor,
M M

To prove that || K||2. = [y, ¢~2|K|% duy — 0 observe that

[ ¢k d = [ o872kl dvy

M M

= [ ARG doy [ (@ o~k oy,
M M

9. o(M) < 0. Let gy be the unique Vamabe metric of constant scalar eurvature Ry = —6 in the

(3.10)

6 and

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)




fM@b _1)¢ YR dvy = /Mw— 125K doy
([ (=174t anyt(| 47OIKE don)}. (3.18)

Lemma 1 implies that |K|%. = [y, ¢ '°|K1} dvy is uniformly bounded. On the other hand
note that

[ @1t vy <( [ @1 ani [ ¢ an?
~ / (6 — 1)° doy)3Vol(M)} < CUH — Hing)$Vol(M)E. (3.19)
All together gives the following bound
VRl < CU(H — Hing) + (T — Hin) Vol B 130 (320)

0

A technical comment is in order. To avoid issues of existence of Yamabe metrics in the conformal
class of a metric in Wg ' observe that by smoothing (g, K) out, and deforming & to satisfy the energy
constraint, we can proceed on the proof and take the limit back to recover equation (3.20).

Comment 4. As said on the background section, in case M is of hyperbolic type R reaches a strict
local maximum at Volg, (M)~ 3gx among the Yamabe metrics of volume one restricted to a local
slice transversal to the orbits of the diffeomorphism group. That maximum coincides with o(M) if
the conjectured value of the sigma constant, as is explained in comment 2 is correct. Lemma 2 and
Theorem 1 still hold therefore if we restrict the states to lie inside a suitable ball in WO x Wy
around (gg,—gn) and change Hiny by Hiryperbolic- we will assume this observation when proving
Theorem 3.

Lemma 3 A sequence of metrics g in W§=2 of volume 1 hoving the following asymptotics
/ |Rico2dv, < A, f IR — o (M)|dvy — 0, (3.21)
M M

where in case o(M) < 0, A is a bound and in case o(M) =0, Ag) — 0, has a subsequence g with one

of the following behaviors:

1. Convergence. There is a & > 0 such that for every z, v(z) = 0, and suitable choice of

diffeomorphisms make g converge in the weak Wg’2 topology to a metric of constant curvature

a(M}
g
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2. Collapse. For every =, v(z) — 0, (M, g) collapses along a sequence of F-structures, Misao
graph manifold and o(M) = 0.

3. Convergence - Collapse. Say the subsequence g is indezed as g;. There is a sequence T; and
& > 0 with vy, (2;) > 6 and there is o sequence Y; with vy, (3;) — 0. There is also a mazimal
domain 0 CC M such that a suitable choice of diffeomorphisms maoke g converge in the weak
W02 2% W&'z topology to a finite set of complete hyperbolic manifolds of finite volume with cusps
with unique up to isotopy incompressible tori at the ends. There is an eg(A) such that for every
¢ < ey, M, is a union of graph manifolds and has an F-structure whose orbits are Ced collapsed,
te diam(Oy) < Ces. M. collapses in volume in the sense that lim supy, Volg, (M) goes to zero

as € — 0.

Proof: Let’s divide the proof into three parts:

1. ¥(z) > 8, Yo € M, then (Theorem 5) after a suitable choice of diffeomorphisms a subsequence
converges weakly into a metric go, of volume one and scalar curvature o{M) in W’O2 ’2, therefore
fog R2odvg,, = |o(M)[*. goo is then a metric minimizing the functional [,, R*dvg; on metrics
of volume one, therefore is a critical metric for it. In case o(M) < 0, R < 0 and so (by the
Euler Lagrange equation for the square of the scalar curvature functional) has constant sectional

curvature 91(3%). If o(M) = 0 then Ricc = 0 and is therefore of constant sectional curvature

ﬂ_ﬁ@_ too.

2. v{z) — 0, V& € M. Then (Theorem 6) g collapses along a sequence of F-structures, o{M} = 0

and the manifold is a graph manifold.

3. There is a 8 > 0 and sequences z; and y; such that v(z;) > § and v(y;) — 0, then (Theorem 7)

there is & maximal domain @ CC M such that a subsequence g; converges weakly in W§'2 to a
non necessarily complete metric geo with a countable number of cusps. Suppose Volg (M) =1,
ie. there is no loss of volume on the thin parts. Then necessarily goo 18 a critical metric
(of constant scalar curvature o(M) < 0) for the functional f R?*dv, on variations of compact
support, for otherwise for ¢ big enough it would be possible to deform g; with volume one to
have [, R?dvy < |o(M)|*. Again, it must be of constant sectional curvature 244, As proved
below a hyperbolic cusp 1s necessarily complete, and bacause the volume is bounded above, the
limit metric in every cusp is a complete hyperbolic metric of finite volume. There are therefore
a finite number of them. To prove that lime .o limsupg, Vol (M) = 0 observe that if not there
must be a sequence e; — 0 and g; such that Volg, (M) >y and \Volg, (M%) —Volg,, ()] — 0.
Tor ¢; small enough M,; admits an JF structure which is ce;E collapsed, therefore each g; can
be deformed to collapse the volume of M., with bounded L curvature without changing much
g; in M ([A4]). That would imply there are metrics with Vol(M)3 | 4 B2dug as much close
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to fo, R2_dug,, < |o(M)[* as we like. Proposition 2 shows the tori on the cusps must be

incompressible and Proposition 3 that they are unique up to isotopy.

Hyperbolic cusps are complete. Let s be an incomplete geodesic in §2. Fix p € 5. Let 52
be a transversal geodesic 2-simplex in ) having p in its interior. For x € s (in the incomplete
direction and close to p) consider the 3-simplex S3(z) formed by all gecdesics joining x with a
point in 2. Observe that because (€2, goo) is hyperbolic and s has finite length (in the incomplete
direction) every y € 053(x) has a cone C3(y) inside of size bounded below!. Now as = approaches
the end of s, there is a sequence of ¢ — 0, a sequence of points Z. € 893(x) and a sequence
Gi(e) With vy zy =€ and having a cone of size bounded below inside M.. The blow up limit of
the polnted space (M, x, Eig gc) has v(z) = 1 and is complete, flat, having a cone of size (o, 00)

inside, therefore must be R® which is a contradiction.

0

Proof of Theorem 1.

Proof: By lemma 1, one has | &} jwr2 — 0 and | &+ bounded. Writing the defining equation for
E in terms of K and subtracting from it the energy constraint times £, we geb
AU DU P
Ricc— KoK + §M(+§|Kl2g = B, (3.22)
where Rice = Ricc — ER ¢. Squaring and integrating gives
/ RicelPdug < A, (3.23)
M
and integrating the energy constraint

f |R %k2\dvg - 0. (3.24)
Y, 3

Normalizing the state (g, K) to have volume one, i.e. looking ab the new metric § = Volg (M )*%g

and new second fundamental form K = Volg(M) 3 K we get

|Rice*dug = Voly(M)¥ [ |Rice2dv, < Volg(M)¥A, (3.25)
M g g M q g

/Mm—gkzuug - /M |R—§VOEQ(M)§k2|dU§

- vOag(M)-%f IR — 242\ dv,. (3.26)
M 3

1Given a point = in & Riemannian manifold (M, g} a cone of size (o, D) (I < injsg) in M is the image under the
exponential map ol a cone of size (¢, ) (segments from  in T M having length ! and forming an angle o with a given

segment)
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If (M) < 0 then [, |R — 5E?|dv; — 0. If a(M) = 0 then Voly(M) — 0 and

1
p

Vol, (M)~ /M R — %kztdvg < Vol (MY fM R |du,)E 0. (3.27)

‘Therefore in this case too, [, |R — $k?|dv, — 0. Finally, note that 2V olg(M )3k2 —~ —o(M) and

therefore

/ |R - o{M)|dvg — 0. (3.28)
M

Applying Lemma 3, for the volume normalized states we obtain the geometric conclusions. The
laims for the second fundamental form follow easily because {informally) on the thin part,
3V ol(Myppin) — 0, and |K|? = |K|? + "“—32, when integrated (on the thin parts), shows that || K| s
(on the thin parts) approaches zero. 0

Observe that if A — 0, as would be the case if Qy — 0 then the convergence on the thick parts is

strong.

" 3.2 Non pure ground states.

Say Hi and Hj are complete hyperbolic manifolds of finite volume, with cusps Cy and O3 (say for
concreteness there are only two). We will glue the flat cone states on the hyperbolic pieces through a
state in a torus neck G. See figure 1.1 for a clear picture. The procedure consists in finding & CMC
initial state in the torus neck, being, up to a given error, compatible to the initial flat cone states at
the place on the cusps where the gluing is going to take place. Secondly the metrics are glued and a
transverse traceless tensor with respect to the new metric is found. We will follow a direct construction
of it, although a more general construction is possible using the method of Lichnerowicz-Choquet
Bruhat-York, this way is simpler to control. Finally a conformal perturbation of the metric gives the
desired initial state. We will use a theorem of Isenberg (see the background section) that gusrantees
that in our situation the Lichnerowicz equation has a solution, and make use of the equation itself
together with the pointwise estimates for the transverse traccless tensor to get pointwise estimates
on the solution. The CMC state in the torus neck depends on a parameter that basically measures
the length of the neck (between standard parts). The gluing can be realized the same way to any
state in the family. The result is the family of initial states that displays the third kind of behavior
in Theorem 1.

The construction is organized as follows. In sections 3.2.1, 3.2.2, 3.2.3 we analyze a polarized torus
neck and its maln features. The non polarized case follows along similar lines. In section 3.2.1 we
find a solution to the Einstein equations in B X R 72, from which in sections 3.2.2 and 3.2.3 we

construct slices on which the evolution shows a convergence-collapse picture and the emergence of
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hyperbolic cusps (on the normalized geometry). We repeat the same procedure in section 3.2.4 for the
non polarized case. In section 3.2.5 we find a CMC foliation and perform the gluing with estimates

for the solution.

3.2.1 The geometry on a torus’s neck, the polarized case.

In this section we find a particular solution to the Einstein equations on R x R x T2, In section 3.2.5
we find a CMC foliation whose normalized states are the ones needed on G to join Hy and Hy. Flat

cone states in a hyperbolic cusp are (g, —grr) with gg the metric on the cusp B x T
g = da® + e*gr, (3.29)

with gr a flat metric in the 2-torus.

On R x B x T? we look for the (polarized) T2 symmetric metric in the gauge where it looks like
g = e (-df® + da®) + Re?™ do? + Re™*" db;. (3.30)

The functions @, R, W depend on (£, z). Define the coordinates (—, +) = {t—uz,t+z). Derivatives

 with respect to — and + will be denoted with a subscript + or —. The Einstein equations for such a

metric are
%1,_13 _ %itzfi 0, (3.31)
2 (rgm) - 2 (W) =0, (3.32)
QER‘E% = %—i - ;—(%)2 +2W3i. (3.33)

As we want flat cone states at the end of R x T? we make the ansatz RB(z,1) = Ro(e?(t+a) 1. g2(t=a))
that solves the wave equation (3.31). The equation for W (3.32) is the Euler-Lagrange equation for

the lagrangian
L(t,8,W,8,W) = / R(B,W)? — R(8,W)*d. (3.34)

We make the choice W{z,t) = W; + Wparctan ¢ which is the general form for the W stable
solutions, i.e. those W that with fixed values at the boundary (infinity in this case) minimize the
potential V = [ R(z,0)(8,W)*dz. All what is missing is to find out ¢ and then understand the
geometry. Observing that

W2
IWy)? = ——— 3.35
(We) 2 cosh® 2z ( )
equations (3.33) are
Ry Rir 1,Ri, W2
gitd,, —FE  S(ZEy gy O 3.36
2=~ ® 2 mR) T emm (8.36)
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Dividing by Ry /R and then adding and subtracting both equations we get

1 2
B0~ (3 + V_ZQ) tanh 22, (3.37)
da = 3 + E/QZ— (3.38)
e 2 '
which after integration give
1 2
a(z,t) = a(0) — ( WO ) In cosh 2z + (3 + %-)t. (3.39)

2 2

3.2.2 States’s evolution in a torus neck,

We will see that it depends on who looks at the geometry the different descriptions of the evolution
they tell. First for those observers who forcedly move keeping their z-coordinate cons’ua.nt and moving
uniformly forward in time t, the normalized three geometry, normalized by el2 +*§n“) , collapses along

the tori fibers into a one dimensional geometry on the real line and of finite length

5 .
goo _ GG(G)_(%_*_V_‘;Q_}IHG‘:;I'A 2 da’;z_ (3.40)

However for those observers who freely fall in space along time like geodesics the normalized three

geometry will be seen to evolve into a hyperbolic cusp:
Goo = da? + Roe®WE= 2407 + Roe™ Wikeo g2 g2, ' (3.41)

" Actually there are two sets of free falling observers, those for positive # and those for hegative x.
Both will observe the normalized three geometry, exponentially in time becoming hyperbolic cusps,
and as it turns out then, there are two different cusps one on the left and one on the right and in

between the geometry is collapsing, as will be made precise in what follows.
Free falling observers.

We will assume an insignificant approximation that in no way will change the global picture, nor
the precise statements that follow on the evolution of the exact geometry.

Say z > 10, there the metric along the radius is almost like
2 2
AT GH TR (L g? 4 da?). (3.42)

If we make s denote the geodesic’s parameter, or proper time, then it can be calculated that,

independently of the initial velocity, the coordinates (t(s), z(s)) of the geodesics behave according to

1 W 3 ws, _ 1, 3+W5 1
G+t Gt e = gy o) (349)
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1 w§ 1. B+WH{1+Wg) +

—(5 ) +( + )—lns+—2—ln 5 (;). (3.44)
What this formulae tells us is that the coordinates
w2
= ( )+( + O)t (3.45)
W3 3 W3
—_( + 0t (5 4+ 2, (3.46}

2 2

are the natural coordinate system constructed by a free falling set of observers. In these new coordi-

nates and after choosing a(0) = 2 In(-—(5 + E;‘i)z + 3+ _,11;3_)2)

9 e
g= th' (_dt.rz + dmz) + RUeZ(%WQ+W1)(82(t'+$’) + e2tWi W= ))d,ﬂf 4. (347)
4 Roe~ HEWot W) (o2(E+a) TV “'_””’))dag. (3.48)

After making Wyo = ZWo+ Wy and normalizing by e2t' we see that the observers observe a local
+ 2

three geometry exponentially falling to the hyperbolic three cusp

g = da? + Roe?Wree22d0? | Roe™ W+ dl} (3.49)

3.2.3 A convergence-collapse picture

Let us describe now a foliation of Cauchy hypersurfaces (labeled by s 2 1) in where to see the picture

of convergence—collapse For any s the hypersurface will be (ﬁrst zone) {(t,z), —(& + -fﬂ-) Ins+ (3 +
)t =8, | 2 |<Int}, (second zone) {{t,x), s=t'=—~(3 + —Q)x + &+ E‘i}t x > In s} and (third

zone} {(t,z), s=t"= (3 + —zl)sc +(2+ —»ﬁ—)t x < —Ins}. After normalizing the three metrics by

the common factor e 2* the limit of the three metrics are: i) on the first zone

oo = diE*, (3.50)
the infinite-length one dimensional geometry on the real line, and ii) on the second zone

oo = dz? + Roe?+= 22} + Roe ™"+ db}, (3.51)

on the whole R x T2, and similarly for the third zone. A schematic picture is given in figure 3.1.

3.2.4 Geometry in a torus’s Neck, the non-polarized case.

In this section we follow the same procedure as in section 3.2.1. We find first a solution to the Einstein

equations with non polarized T? symmetry and then make a necessary change of variables at the ends.
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Figure 3.1: Schematic figure for the evolution of the normalized geometry.

On R x R x T2 we look for a non polarized T2 gymmetric metric in the gauge where it looks like
g = ¥ (—dt? + da?) + R(eW +qPe*W)db} - Rae~*W 246, db, + Re™ W db3, (3.52)

where a, R, W depend on (t,z) or {u,v) = (—,+) = {{—z, ¢+ ). The Einstein equations reduce

to
R.. =0,
2R—};i —~ (%)2 - AWE 4 gle W — 4a+-%+ =0, (3.54)
2R—}‘%‘— - (%-)2+4WE 4+ q2e W —40,,% =0, (8.55)
(RW_)s + (BWy)- + Rayg-e*" =0, (3.56)
(Re™Wqy)- + (Re " q-)4 =0,

(3.53)

(3.57)

We first make the ansatz R(z,t) = Roe? cosh(2z). Then we solve for time independent W and g

which realize arbitrary flat metrics
Joos U—o0r Wooy Weoo- Finally solve for o and make a necessary change of variables at the ends.

Solving for time independent W and g.

on the two tori at the ends, i.e. which have prescribed asymptotics



The equation 3.57 forces ¢ to satisfy

AW
¢ = Eg{(z_mi (3.58)
and together with equation 3.56 forces W to be
W 1 2tanh(20)W' = —2e (3.59)
cosh”(2x)

where ¢ is any constant. The strategy to £nd solutions for W and ¢ having arbitrary values at the
ends is fix ¢ frst and find W having the arbitrary ending values W(o0) = Weo and W(—00) = W_co
Then make ¢ vary keeping fixed the end conditions for W and prove that we can reach at some c the
prescribed asymptotic values for ¢, g(oo) = oo and q(—00) = ¢ co- That will be accomplished by
proving that varying ¢ from some value of ¢ toward zero the integral of equation 3.58 that defines ¢
gives (having g—co as the lower limit of integration) all possible asymptotic values for goo.

Although equation 3.59 is highly non linear it can be integrated exactly. We note that it is

equivalent (unless W'is constant in which case ¢ = 0 and g is constant) to

((cosh(2z)W")?Y = —(c2e*Y, (3.60)
which gives

cosh?(2z)W'? = — 2! + A%, . (3.61)

for A > 0 an arbitrary constent. Taking the square root we get a separable variables ODE. After
integration we get
1 l c l 2z
W= — 5 In e cosh{—2A arctan e + B), (3.62)
for B and arbitrary constant. We need to find A and B thas solves the end conditions for W i.e.

|—;~—| cosh B = e~ 2W-e, (3.63)

le—‘ cosh(—wA+ B) = e Wee, (3.64)
Making the change of variables A = B—;Q we geb the equations

B—D+r|c|e¥ecoshD, ' (3.65)

D=B-x|c|e™-=coshB. (3.66)
Now the problem is to understand the solutions B and D. Graphing equations 3.65, 3.66 on a

B, D coordinate axis, we see {observe the factor |¢| in front of cosh [ and cosh B) that there is some
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Figure 3.2: The graphs of equations 3.65 3.66

positive ¢p above which there are no solutions, at which there is only one and below which there are
two solutions. See figure 3.2.
Tn the following we will analyze the solutions A and B as ¢ — 0. We will see that given a prescribed

value g_oo we get any asymptotic value for geo by varying ¢ from ¢q to zero. The equation
¢*W—os cosh B = 2= cosh D, (3.67)
gives for the two branches the following behaviors:

1. For the first branch, either W = W_co for which we get, observing that A= B — D=0

B=-D—0,

o e, (3.68)
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or Wee # W_uo for which we get

B oo if We > Wy (or — 00 if Weo < W_wo),
B D —2(We —W_go) (0r —2(Woo = Wesa))s (3.69)
Ao 2(Weo —W o) (or — 2 (Woo — W-so))-

2. For the second branch, for any Weo, W_oo

B — o0, D — —00,

Bt D — 2AWeo — Weoo), (3.70)
A ~ ZB—2!WDG“W—QD)
p .

With this behavior of A and B as ¢ — 0 we get:
1. In the first branch the formula for ¢’

' / c

h (cosh(zac))(]ﬁi cosh(—2A arctan e® + B))"",

(3.71)
shows that starting at an arbitrary ¢...o, ¢ approaches uniformly to the constant function ¢ =
d—co-

2. In the second branch the formula for ¢ approximates to

4o 2Wooo (2B — A Woo — W_oo))

f ol
T ™ 1 cosh B cosh(2a) (e=2W - (cosh B) " cosh(--2A arctan e2e | RB))?’ (372)
and rearranged reads
, £ (2B — AW — W_oo)) cosh B (3.73)
4 ™ S cosh(2) cosh(—2A arctan e?® + B))?’ ’
The factor in the denumerator
cosh(—2A arctan e®” - B) = cosh(B(—Z% arctan e?® + 1)), (3.74)
gets bounded above in the interval —1 <z <1 by
cosh 2Bz, (3.75)
as —24 —» = (linearize and get a bound). The integral
1 —oW._w(om _ _
f € (2B - 2(We W_;o)) COSthm, (3.76)
1 cosh 2z(cosh(—2A arctan e*® | B))?
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i3 equal after the change of variables Bx = u to

B ,2W_ — -
if e (2B —2(Wx W‘O"))COSthu, (3.77)

_B B cosh —25” cosh” 2u
that, clearly goes to + infinity as B goes to infinity.

Solving for ¢ and the analysis of the solution.
To find out the expression for ¢ we follow the same procedure as in the polarized case. We find &
and o from equations (3.54, 3.55) and then integrate in time (t) and space (). The fact that W and

g are time independent gives

2
AW3 tgieV = W2 4+ %l—e_‘lw. (3.78)

Equation (3.61) gives for the right hand side

12 AQ
w2 - 4w _ i 3.79
+ 1° cosh? 2z ( )

which make equations (3.54)(3.55) to have the same form as equations (3.36) but with W§ replaced
by %2 This gives for a

1 A%l 3 A

The change of variables and the convergence-collapse follows exactly as in the polarized case.

3.2.5 The gluing.

CMC states in a torus neck.
For simplicity we will work with the polarized solution in a torus neck, but the computations carry

over to the non polarized case as well. We will find a CMO slice, ¢t = s(z), of the solution

g = 2 (—df? + dz?) + Re®™ df} + Re W db3, (3.81)
with
1 W1 3 WE
a{z,t) = a(0)— (5 + T)—j In cosh 2z + (—2- I —2—)15, (3.82)
R(z,t) = Ro(2®t® 4 2o, (3.83)
W(z,t) = Wi+ Woarctane®, (3.84)

that we found above, with k = —3 and asymptotically ¢ = s{z) ~ tg £ %%m,_ so guaranteeing

almost flat cone initial states at the ends compatible with the flat cone states at the cusps where the
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by finding appropriate harriers.

o way to find such o OMC slice is
f » general section t = s(x). We

solution is going to be glued. Th
f the mean curvature O

eral expression 0

The first task is 10 get & gen
keep the discussion brief. (liven a slice t = g(w) inkroduce & coordinate system
: = F+5@% (3.85)
¢ = 8@+t (3.86)
9, = 01, (3.87)
(3.88)

gy = 0o

The metric is written (&1 directions)
(3.89)

g = —-N2df* +gldz + X db)(dz + Xdb),

where
g = {1+ #M)2 —) (3.90)
§ o= eM(1—87). (3.91)
Trom them K i8 calculated as
1 5" OfR
P @ty ™ R (3.92)
where
) 1 Wé. 3 WS
fa = Ot dz0 = ;(5 + —2——)5 tanh 2z -+ (5 + —5—), (3.93)
— !
Ot _ 9, RS + Ok _ o4 tanh 22 + 2, (3.94)
R 2
which gives
1 s 1 W 3 Wi
I — Froo (= MARYY el Yo !
k(z) = 1fsl2e (1__3,2 (2+ 5 )s ta.nh2:c+(2+ 5 )+ 28 tanh 2z -+ 2), (3.95)
with
(8.96)

1, We,l 3 W3
f= —{a(0) — (a + 5 )—ilncosth + (§ + )s).
2
Jbservation. Note that k(s(x)+7) = e 8y (s(z)), and 50 that once having & MG slice
by shifting it in the

¢ a OMC foliation is obtained (t) time direction.

with the degired propertie
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2
Now, to construct the barriers, note that for the subsection ¢ = s(x) =to+ {;j’_—vwv%)x has asymp-
1]
totically (ie. as z — +oo) constant k& = kg. Now, a direct calculation shows that for the pair of
sections (on the right end)

L+ Wg ok~ 1 (3.97)

tiS(D’J):tQ+3+W2

the asymptotics to leading terms is
a m?_ 1 1
ko~ ke TR (1 4 O(EED' (3.98)

The last formula shows that —k(sy) < —ko < —k(s_) asymptotically. The extension of those
sections to the center of the neck can be carried as follows. Take two sections symmetric with respect
to the t-axis, that (say on the right) are i) any smooth section (54) from 0 to 10 with s” > 0 and
s4+.{10) + éi—gﬁ;(m — 10) — In(z — 9) thereafter i) any smooth section (s—) from 0 to 10 with g >0
and s..(10) -+ g—"w"i(m — 10} + In(z — 9) thereafter. It is easy to see using the observation above that
by shifting the (-} section up at some shift the sections have disjoint range of their mean curvature
(between the points of intersection) and that at the point of intersection their tangents are éi—t‘v,% up
to ~ 1/z. Due to that, it is easy to continue the sections as was said above, starting from an x sligtly
less than the x where they intersect, having disjoint range of their mean curvatures and asymptotically
approaching to s{z) =ty + -é—i—%f;

Note that given a CMC slice as described above, the same slice is CMC with the same mean
curvature if on the metric we replace Ro by Rge~2%. Also note that on the (z',1") coordinates, for

large @' the metric is written approximately

2 r_
g= ez*’(—dt’z + dz?) + Roez(%WoJrWl)(e?(t‘Jm’) 4 e2tWE Woe ))dﬁf . (3.99)
..+ Rpe MEWor W) (20747 4 TP ) ag2. (3.100)

So by changing Ro by Roe~?° and changing the 2’ coordinate by 't = ' —§ the metric approximates

to any given desired order to the flat cone initial state,
g = & (—dt’? + da'™) + Roe®FWotWO 2+ g2 (3.101)
.. 4 Roe~MEWot W) 26" +2") gg2 (3.102)

However note that the distance between standard parts on the cusps get increased by ~ 28. ¢

therefore parameterizes the family of CMC initial states displaying a convergence-collapse picture.

A traceless transverse tensor.
The gluing of the metric described above {(depending on 4} and the flat cone on H; and Hy is

going to take place on an interval of length one on one end of the neck and on an interval of length
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one on the cusp, so the metric on the rest of neck and on the rest of the hyperbolic manifold remains

unchanged.
We are going to find a transverse traceless K by keeping the values on the neck and the hyperbolic

manifold except on the gluing region where it is going to be defined.

S0 we want to solve for V; K% = 0. The 8; components are,

v B0 =1 KR 4 TR KR, (3.103)
which are automatically zero, because for a T2 symmetric metric, I‘g; o, = 04,5 = 1,2 and ¥ —
0, i = 1,2. The z-component gives

B R+ (20%, + T — 15,0, )K" + (T5,0, — T5,0,) K™% =0, (3.104)

On the neck and right before the gluing K ~ 0 (in C3). We need to find a solution to equation
(3.104}, being, after an'interval of length one, exactly zero, To do that we choose the glued metric
in such a way that I'§ o +# I'g,g, slightly on an interval of length one half inside the gluing interval.
Then choose K% such that the solution to (3.104) is exactly zero right alter the gluing region. Such

a thing can always be done due to the explicit expression of the solution to a first order ODE.

Estimates.
Once having (g, K) with divK = 0 and trgK = k we invoke a theorem of Isenberg [I] (sec the

background section), which guarantees the existence of a solution to the Lichnerowicz equation in any

manifold if K # 0 and & # 0 as is our case. To estimate the solution to the Lichnerowicz equation
1 Lion, o B
A¢ = gRed — K]y~ + 1547 (3.105)

we use the maximum principle and the standard local elliptic regularity. The maximum principle tells
that
ir12 7 K 5
Ry¢(zmaz) — | K| ¢(Tmaz) ™" -+ ﬁ¢(mmam) <0, (3.106)
Now note that R, = |K|> — 2k? + e(x) where ¢(z) is nonzere only on the gluing region. Using that

|R|2(¢'(ﬂ3maw) - ‘;f’_?(mmam)) + %kz(d)(mmm)s - (b(mma.m)) + 5($ma,m)¢(ﬂ7mam) <0. (3.107)

From it we see that with a bound in ||K]| e, |||l ze controls ||¢—1] L. Standard elliptic regularity

gives the control in C** at zero.




3.3 Stability of pure H ground states.

The proof is based on the following ideas. First we prove a lemma, which guarantees that where
the local geometry doesn’t degenerate, then the reduced energy minus its infimum together with the
zero and first order Bel-Robinson energies control at zero the Wfo’f {local) norm of K and the VV;;C2
(local) norm of Rice and thus € and H — Hiy,; (assuming Comment 2) control {up to diffeomorphism)
the states around (gm, —gm) in Wg 2 W3 2 Then we recall a formula in [AM] showing that as
long as the CMC flow remains (with any shift) inside a ball B w —gs)(€) with € sufficiently small in
Wg 2 I/’V,:]2 2 then the energy of the normalized states decreases at least exponentially in logarithmic
time ¢ = — In —k. Due to the existence of a uniform (around k = —3) CMC foliation for solutions with
initial states in By, —gg)(€) with ¢ sufficiently small, we deduce long time existence in logarithmic
time. Finally we prove a proposition showing that if the volume stays bounded and the volume radius
stays away from zero, then ||I§’ |2 and & control H — Hpryperbotic &b zero. We use that and the formula

for the derivative of the reduced hamiltonian to show that in the long logarithmic time the normalized

CMC states converge (after a suitable choice of the shift vector) to (gzr, —g) in Wo* x W,

Lemma 4 Let (g, K) be o sequence of states salisfying conditions 1 and 2 and & — 0. Let Q be the
sequence of e-thick (¢ fized) domains according to Theorem 1. Then on 1, ”I%”Wf’*‘ and |\R§m|[W11.z

are controlled ot zero by & and || K||1s.

Proof: The proof is based on studying the equation (2.7). We observe that divK = 0 and since
&% (B)ijp = ViKjm = ViKim

dV(K) = - W7 = ¢;;' B, (3.108)
Also
AV (—WT) = ~€;""ViByn — € ViBy = —2curl(B). (3.109)

According to equation (2.37) we can express curl(B) as

curl(B) = B(VW) + 5 (B x K) - SHE, (3.110)
Equations (3.108), (3.109), (3.110) give the elliptic equation

IVFVR = —R(K) — 2AB(VTW) + g(E x K) — %kﬂ). (3.111)

The coefficients of R involve only Rice, and therefore are bounded in I?. On the other hand E
and E{VyWY) are controlled at zero in L? by €. Let’s restate the equation as the elliptic equation

V*VE =aK +b, (3.112)

where o is bounded in L? and b is controlled at zero by &.

To prove the lemma, first we observe that




1. if K is in L(D) with a > 2 then
laK llzo(oy < llall 2@y K ey, (3.113)

with = _T(Z%fla .

2, lff% is in LQ(D) then ||R|Iwz,ﬁ(Df) S C(“CLK”L,B(D) + “K”Lﬁ(p) + Hb”Lﬁ(D)) for ﬁ = (2%‘_—“0!) and
D' ccD.

3. Sobolev embeddings give:

: > ” 3
(a) if 26 <8 then | K| ag, < OWKllwzoop ¢ = 757

(b) if 3+ 0> 26 > 3 then “R”O”'”‘%(n) < ONK \was )-

To prove that |K ”le,z is controlled at zero by £ and ||K||zz, we note first that &l s and
& s are controlled at zero by £ and |K|r» by Lemma 1. Now iterate the control following
observations 1,2,3 in that order, starting with & = 4. With this we get § = % and g = 12, In the

second iteration of control & = ¢ =12, i = % and 2 = 274 > 3. Then HR’ ”CP is controlled at zero

~ 1
too. After we guarantee that K is controlled in O'ZO ey elliptic regularity on equation (3.112) gives the

desired control on ||K w22
To prove that \|R€ccnwf,z is controlled at zero by [ K|| rz and € observe that by the proved control

on || K lez,z, it is enough by taking the covariant derivative of the defining equation of £
» 2 > 1.5 1 s 2
Rice—~ Ko K + 5kK+~§|K| g=F, (3.114)

to prove that F is controlled at zero in Wég . For this observe that the system (dV, dév) is uniformly

elliptic and that
1.
d¥ (B)ige = (curl(B)y + Edw(E)meﬂh)ef it (3.115)
div(E)m = (K A B)m. (3.116)
On the other hand
3 1
curl(E) = —B(VrW) — E(B x K)+ EkB. (3.117)

Using the C2  control of K, standard elliptic regularity gives the result. O

loc

Given the state (g, K') (with any k) in a CMC foliation, denote the normalized states as (5,K) =

2 .
(kg 2 K).
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PROPOSITION 4 (Inequality for the evolution of the normalized energy, [AM] Lemma 5.6). For ¢

sufficiently small, while the solution remains on By, _g.)(¢) in W2 x W2 one has
8,€ < —(2 — CEDE, (3.118)
where t = —In —k is the logarithmic time.

PROPOSITION 5 For normalized states with v(z) > § and bounded volume, |E| 52 and Qo control

H -~ -H—H'yperboiic at zero.

Proof: Tt is enough to prove that any such sequence with ||K lzz2 — 0 and {J¢ — O has a subse-

quence converging in Wg 2 (up to diffeomorphisms) to gr. By Lemma 1, ||R r2 and (Qp control
||K |2+ at mero. Using that, the defining equation for E (equation (2.31)) and the energy constraint
give || Rice||z2 — 0 and R+ 6]jz2 — 0. As the volume is bounded and the volume radius bounded

from below, there is a subsequence converging after a suitable choice of diffeomorphism to gy in Wg’Q .0

Proof of the stability of pure H ground states.

Proof: Let S be a local transversal subsection through {gz, —gs) to the orbits of the action of the
diffeomorphism group in W2 x W2, Assume ¢ is small enough such that § intersects 3(Big, g, (€))
transversely and Proposition 4 holds on By, _..y(€). Assuming Comment 2, Theorem 1 and Lemma

£ < ¢ intersects By, _q,)(e) NS inside By _g,)(5) N S. This fact together with the fact that H

3 imply that for ¢ sufficiently small the set of normalized states for which H — Hyyperbotic < e and

is monotonically decreasing makes it possible to find (differentiably along the flow) spatial diffeomor-
phisms (or a trivialization) that keep {while the flow is defined) the normalized states of a solution
that starts at By, —g,)(€) inside By, g,y (5) N S. In fact, to achieve that trivialization, take any
trivialization and project that flow along the orbits of the diffeomorphism group into By, ¢ (51N 8
(see Figure 3.3). This proves long time existence in logarithmic time for the solutions with initial
states inside a ball of radius small enough around (g, —gm )} in Wg’ 2 % WO2 2

It is clear too from equation (3.118}, that £ —» 0 as the logarithmic time diverges. It remains
to prove that H — Hiyperbotic — 0. By Proposition 2 if A — Hy,p 2 v > 0 (observe that H is
monotonically decreasing) it must be ||I~§' |lz2 = & > 0 necessarily after some time.

For e small enough ||N — g < 1, thus equation 2.24

ai ﬁ34f WK dv;, (3.119)
dt v

shows that H — Hir must go below zero at some time, giving a contradiction.
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Figure 3.3: .
Schematic view of the construction in Theorem 2. The set of vertical lines represents the set
H~Hyp<¢and & <€

3.4 Stability of the flat cone.

As explained in the background section, H has a strict local minimum at (g, —gp) on a local slice of
normalized states S through (g, —¢r ) and transversal to the orbits of the diffeomorphism group. Take
then a ball By, _qx)(€) in WS x W22 with e sufficiently small where: 1) H takes the value Hpyperbolic
only at {gs, —gs) on Bigy —gim) NS, i) H — Heyperbolic 2 § > 0 on 3 B(gy,~gm) N 5), ili) Comment
4 holds. Finally, set U = By, —g)(€) N {(g, K) € Wi x W3 /H — Hiryperbotic < 3,k = =3} N 8.

Theorem 8 (Stability of the flat cone.) (under a suitable choice of the shift vector) U is stable
under the normalized Einstein flow and every normalized trajectory converges in Wg % Wg ? to the

flat cone state (gr, —gm).

Proof: Suppose the initial state (for k = —3) is at U. As in the proof of Theorem 2, take any
trivialization (starting with ¢_s = Id : M — M) and project the resulting flow through the orbits of
the action of the diffeomorphism group into By, —g,)(€) N 8. Observe that because H is monoton-
ically decreasing the projection can never escape U {at the boundary of U (which doesn’t intersect
HBlgy,—gmryNS)) it is H — Huypearbotic = %), thus the projection extends to the full orbit, and realizes

a trivialization (or a choice of spatial gauge) for which U is invariant under the flow. The proof finighes
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exactly along the same lines as in Theorem 2. O

Comment 5. It is proved in {AM] (Theorem 6.7) that these space times are future geodesically

complete, therefore coincide with the maximally globally hyperbolic solutions (to the future).
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