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Abstract of the Dissertation

Deformations of twisted cscK metrics

by

Yu Zeng

Doctor of Philosophy

in

Mathematics

Stony Brook University

2016

In this dissertation, we describe a new continuity path introduced by X.
Chen([10]) aiming to attack the existence problem of constant scalar cur-
vature problem via a direct PDE approach. The path connects the solution
of J-equation to the cscK metric. We will present various openness results
about the continuity path. The openness at t = 0 is in fact a perturba-
tion result from a solution of second order partial differential equation to
a solution of a fourth order partial differential equation.
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1 Introduction

1.1 Kähler manifolds

A Kähler manifold is a smooth manifold that admits three mutually com-
patible structures: Riemannian metric, complex structure and symplectic
form corresponding to three major fields in differential geometry.

We start with a smooth manifold M . Recall that a Riemannian met-
ric g on M is a positive definite symmetric bilinear form on the tangent
bundle TM . In local coordinates x1, · · · , xn, one has a natural local basis
∂
∂x1
, · · · , ∂

∂xn
for TM , then g is locally represented by a smooth matrix-

valued function {gij}, where the matrix with entries gij = g( ∂
∂xi
, ∂
∂xj

) is

positive definite. The pair (M, g) is usually called a Riemannian manifold.

An almost complex structure J onM is an endomorphism of the tangent
bundle TM satisfying J2 = −id. An almost complex structure J is called
integrable if there is a set of charts on M with holomorphic transition
functions such that J corresponds to the induced complex multiplication
on TM ⊗R C. An almost complex structure is not necessarily integrable.
In fact, we have the following theorem due to Newlander-Nirenberg [38].

Theorem 1.1. An almost complex structure is integrable if and only if the
Nijenhuis tensor NJ : TM × TM → TM

NJ(u, v) := [u, v] + J [Ju, v] + J [u, Jv]− [Ju, Jv] (1)

is zero.

We say that J is compatible with a Riemannian metric g if g(u, v) =
g(Ju, Jv) for any tangent vectors u, v. We can then define

ωg(·, ·) = g(J ·, ·). (2)

One can derive easily that ωg is in fact a 2-form on M . Usually we call
such ωg the Kähler form of g. For fixed complex structure, we see that g
and ωg are mutually determined by each other, thus often we also call ωg
the Kähler metric.

We denote by ∇ the Levi-Civita connection of the Riemannian metric
g, which is the unique torsion free connection such that g is parallel.
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Definition 1.2. A Kähler manifold (M, g, J) is a Riemannian manifold
(M, g) together with a compatible almost complex structure J such that
∇J = 0.

Remark 1.3. Note that ∇J = 0 implies that NJ = 0 and thus J of a
Kähler manifold (M, g, J) is automatically integrable.

On a Kähler manifold (M, g, J), we have that ∇ωg = 0 and thus dωg =
0. In other words, M admits a symplectic form ωg such that J is compatible
with ωg. Conversely, we have the following proposition.

Proposition 1.4. If M admits compatible Riemannian metric g and inte-
grable almost complex structure J , then ∇J = 0 if and only if dωg = 0.

The proof of this proposition is pure computational and we refer inter-
ested readers to [43].

On a Kähler manifold (M, g, J) of dimension dimCM = n, it is more
convenient to work in local holomorphic coordinate zi = xi +

√
−1yi for

i = 1, · · · , n. Besides the obvious basis { ∂
∂x1
, · · · , ∂

∂xn
, ∂
∂y1
, · · · , ∂

∂yn
} and

{dx1, · · · , dxn, dy1, · · · , dyn} of the complexified tangent bundle TM ⊗ C
and complexified cotangent bundle T ∗M ⊗ C, we have

∂

∂zi
=

1

2
(
∂

∂xi
−
√
−1

∂

∂yi
),

∂

∂z̄i
=

1

2
(
∂

∂xi
+
√
−1

∂

∂yi
), (3)

for i = 1, · · · , n of TM⊗C corresponding to the ±
√
−1-eigenspaces T 1,0M

and T 0,1M of the complex structure J and similarly dual basis

dzi = dxi +
√
−1dyi, dz̄i = dxi −

√
−1dyi, (4)

of T ∗M ⊗ C.

We extend the metric g C-linearly to TM⊗C and then we have g(u, v) =
0 if u, v ∈ T 1,0M or u, v ∈ T 0,1M . Then in local coordinates

g = gij̄(dz
i ⊗ dz̄j + dz̄j ⊗ dzi), (5)

where gij̄ = g( ∂
∂zi
, ∂
∂z̄j

) and gij̄ = gjī. Thus the Kähler form

ωg =
√
−1gij̄dz

i ∧ dz̄j. (6)

The Kähler condition dωg = 0 is then equivalent to

∂gip̄
∂zj

=
∂gjp̄
∂zi

. (7)
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Furthermore, we extend the Levi-Civita connection ∇ of g in a C-linear
way to Γ(TM ⊗ C). We write the Christoffel symbols as

∇ ∂

∂zj
= (Γkijdz

i + Γkījdz̄
i)⊗ ∂

∂zk
+ (Γk̄ijdz

i + Γk̄ījdz̄
i)⊗ ∂

∂z̄k
,

∇ ∂

∂z̄j
= (Γkij̄dz

i + Γkīj̄dz̄
i)⊗ ∂

∂zk
+ (Γk̄ij̄dz

i + Γk̄īj̄dz̄
i)⊗ ∂

∂z̄k
.

(8)

Using the Kähler condition ∇J = 0, we have that all Christoffel symbols
vanish except Γkij and Γk̄īj̄ = Γkij. In fact, we can compute easily that

∂

∂zi
gjk̄ = g(∇ ∂

∂zi

∂

∂zj
,
∂

∂z̄k
) = Γlijglk̄

and thus Γkij = gkp̄
∂gjp̄
∂zi

. Given the Levi-Civita connection, the Riemannian

curvature tensor Rm ∈ Γ(Λ2T ∗M ⊗ End(TM)) is defined as

Rm(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w.

Similarly we extend Rm C-linearly to Γ(Λ2T ∗M⊗End(TM⊗C)) and under
local holomorphic coordinates

Rm = dzi ∧ dz̄j ⊗ (Rl
ij̄kdz

k ⊗ ∂

∂zl
+Rl̄

ij̄k̄dz̄
k ⊗ ∂

∂z̄l
) (9)

where Rl
ij̄k = − ∂

∂z̄j
Γlik and Rl̄

ij̄k̄
= −Rl

jīk
. The Ricci tensor Ric ∈ Γ(T ∗M ⊗

T ∗M) evaluating on X, Y ∈ Γ(TM) is defined as the trace of Rm(·, X)Y ∈
Γ(End(TM)). Thus in local coordinates, we have

Ric = Rij̄(dz
i ⊗ dz̄j + dz̄j ⊗ dzi), (10)

where Rij̄ = Rl
lj̄i. Define the Ricci form to be ρ(·, ·) = Ric(J ·, ·) and in

local coordinates we have

ρ =
√
−1Rij̄dz

i ∧ dz̄j. (11)

In fact, since

Rij̄ = − ∂

∂z̄j
Γlil = − ∂

∂z̄j
(glp̄

∂glp̄
∂zi

) = − ∂2

∂zi∂z̄j
log det g, (12)

there is a simple global formula for the Ricci form as the following

ρ = −
√
−1∂∂̄ log det g. (13)

Sometimes write as
ρ = −

√
−1∂∂̄ logωng , (14)
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since dVg = ωng = det(gij̄)
√
−1dz1 ∧ dz̄1 ∧ · · · ∧

√
−1dzn ∧ dz̄n.

As a consequence, for fixed complex structure J , if given an another
Kähler metric g′, the corresponding Ricci form would be

ρ′ = −
√
−1∂∂̄ log det g′. (15)

and then

ρ′ − ρ = −
√
−1∂∂̄ log

det g′

det g
, (16)

where log det g′

det g
is in fact a global function on M . Thus, ρ, ρ′ necessarily

belongs to the same cohomology class in H1,1(M,C)∩H2(M,R), which is in
fact 2π multiple of the first chern class of (M,J) denoted as 2πc1(M). The
converse question, if any representative in 2πc1(M) arises as the Ricci form
of some Kähler metric on complex manifold (M,J), is indeed much harder.
We’ll come back to this question in the subsection of Calabi conjecture and
Kähler-Einstein problems.

1.2 The space of Kähler metrics

An another advantage of being Kähler is the following lemma.

Lemma 1.5. (∂∂̄-lemma) Let (M, g, J) be a closed Kähler manifold and
φ1, φ2 ∈ H1,1(M,C). Suppose that φ1 is cohomologous to φ2. Then there
exists a function f ∈ C∞(M,C) such that φ1 − φ2 = ∂∂̄f .

Recall that on a complex manifold (M,J), the space of complex valued
k-forms on M naturally splits as Ωk(M) = ⊕p+q=kΩp,q(M), where locally
Ωp,q(M) has basis dzi1∧· · ·∧dzip∧dz̄j1∧· · ·∧dz̄jq , for i1 < i2 < · · · < ip and
j1 < j2 < · · · < jq. We have differential operators ∂̄ : Ωp,q(M)→ Ωp,q+1(M)
and ∂ : Ωp,q(M)→ Ωp+1,q(M) defined as the projection of the exterior dif-
ferential operator d on Ωp,q+1(M) and Ωp+1,q(M) components respectively.
In fact, ∂∂̄-lemma is also valid for (p, q)-forms with appropriate modifica-
tions and the proof requires some ideas from Hodge theory. Since we are
only interested in (1, 1)-forms on M where the Kähler form lies, in this
simple case we provide a quick proof of the ∂∂̄-lemma as below.

Proof. By assumptions, there exists a 1-form α on M such that φ1 − φ2 =
dα. Write α = α1,0 + α0,1, where α1,0 and α0,1 denotes the (1, 0) and (0, 1)
components of α respectively. Since dα = φ1 − φ2 ∈ Ω1,1(M) we have that
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∂α1,0 = 0, ∂̄α0,1 = 0 and dα = ∂̄α1,0 + ∂α0,1. Thus to prove the lemma, it
suffice to look for functions f, g such that ∂α0,1 = ∂∂̄f and ∂̄α1,0 = ∂̄∂g.

It suffices to show that for any ∂̄-closed (0, 1)-form, say α0,1, there exists
a function f ∈ C∞(M,C) such that α0,1 + ∂̄f is ∂-closed. We consider
differential operator ∂̄∗ : Ω0,1(M)→ Ω0(M) defined as for β = βj̄dz̄

j

∂̄∗β = −gij̄βj̄,i (17)

where βj̄,i denotes the (i, j̄) entry of ∇β . We set function f ∈ C∞(M,C)
to be the solution of the equation

− ∂̄∗∂̄f = ∂̄∗α0,1 (18)

Since on Kähler manifold, we have ∂̄∗∂̄f = 1
2
∆gf , where ∆g is the usual

Laplacian operator with respect to metric g on M , we know that (18) is
solvable if and only if ∂̄∗α0,1 has zero integral on M which follows from its
definition by integration by parts directly. Therefore we get that θ0,1 =
α0,1 + ∂̄f satisfies both ∂̄θ0,1 = 0 and ∂̄∗θ0,1 = 0. It is left to show that
∂θ0,1 = 0. Compute for θ0,1 = θj̄dz̄

j

0 = ∂∂̄∗θ0,1 = (−gij̄θj̄,i),kdzk = −gij̄θj̄,ikdzk = −gij̄θj̄,kidzk. (19)

Then consider

0 =

∫
M

〈∂∂̄∗θ0,1, θ0,1〉gdVg =

∫
M

−gij̄gkl̄θj̄,kiθl̄dVg =

∫
M

|∂θ0,1|2gdVg (20)

Thus we get ∂θ0,1 = 0. In fact, such θ0,1 satisfying both ∂̄θ0,1 = 0 and
∂̄∗θ0,1 = 0 is called ∂̄-harmonic form in Hodge theory. On Kähler manifold,
we have that the notion ∂̄-harmonic is equivalent to ∂-harmonic. Thus
∂θ0,1 = 0 follows.

As a corollary to the ∂∂̄-lemma, if ω is a Kähler form on a closed
Kähler manifold, by definition ω ∈ H1,1(M,C) ∩H2(M,R) and moveover
we have that any Kähler form cohomologous to ω will be given by ωϕ :=
ω +
√
−1∂∂̄ϕ for some function ϕ ∈ C∞(M,R) such that ωϕ > 0. We

denote all the Kähler forms cohomologous to ω by Hω. By the discussion
above, we know that equivalently,

Hω = {ωϕ|ϕ ∈ C∞(M,R) such that ωϕ > 0}. (21)

Such functions ϕ’s are called Kähler potentials and ϕ is uniquely deter-
mined by Kähler form the ωϕ up to constants. Very often, we will drop the
subscript “ω” in Hω, and call it the space of Kähler metrics whenever it
doesn’t cause any confusions.
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1.3 Calabi conjecture and Kähler-Einstein problem

Let us go back to the question at the end of section 1.1. In 1950’s, E.
Calabi[4] first raised the question that on a closed Kähler manifold M if
any representative in the cohomology class 2πc1(M) could be realized as
the Ricci form of some Kähler metric, which is the well-known Calabi con-
jecture. In fact, it suffices to look for the desired Kähler metric within Hω,
and the calabi conjecture the can be reformulated as given α ∈ 2πc1(M),
there exists a function ϕ ∈ C∞(M,R) such that ωϕ has Ricci form α.

Suppose ω is a Kähler metric on M and thus its Ricci form is given by

ρω = −
√
−1∂∂̄ logωn ∈ 2πc1(M). (22)

Given any α ∈ 2πc1(M), by the ∂∂̄-lemma, there exists a function F ∈
C∞(M,R) such that α = ρω −

√
−1∂∂̄F . Suppose ϕ ∈ C∞(M,R) such

that ωϕ > 0 and its correpsonding Ricci form is

ρϕ = −
√
−1∂∂̄ logωnϕ. (23)

Then ρϕ = α is equivalent to

∂∂̄(log
ωnϕ
ωn
− F ) = 0, (24)

which is equivalent to

log
ωnϕ
ωn
− F ≡ C, (25)

if M is closed. Taking exponential on both hand sides, we have that

det(gij̄ +
∂2ϕ

∂zi∂z̄j
) = eF+C det(gij̄), (26)

where constant C is obtained by integrating both hand sides on M . With-
out loss of generality, we can always assume that F ∈ C∞(M,R) satisfies∫
M
eFωn = Vol(M). Thus, the Calabi conjecture is equivalent to the solv-

ability of the following equation

det(gij̄ +
∂2ϕ

∂zi∂z̄j
) = eF det(gij̄). (27)

This equation is called the complex Monge-Ampère equation.

In 1976, S.T. Yau([49]) solved the Calabi conjecture using the continu-
ity method to solve the complex Monge-Ampère. The continuity path he
worked on is

det(gij̄ +
∂2ϕ

∂zi∂z̄j
) =

Vol(M)etF∫
M
etFωn

det(gij̄), (28)
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for parameter t ∈ [0, 1]. Set

I = {t ∈ [0, 1]| Equation (28) with parameter t has a smooth solution.}.
(29)

Clearly I is not empty since 0 ∈ I. Then one wants to show that 1 ∈ I
by proving that I is both open and closed. The openness part is relatively
easy. The key ingredient in proving the closedness is the C2-estimate, which
asserts a uniform bound on (n+ ∆ϕ) for all smooth functions ϕ that solve
equation (28) with parameter t ∈ [0, 1]. This estimate reflects a unique
feature of the Monge-Ampère equations on compact manifolds comparing
to the fact that interior C2-estimate of Monge-Ampère equation on bounded
domains is simply not true, see examples by Pogorelov([39]). Once given
the C2-estimate, Yau further showed that ‖ϕ‖C3(M) is uniformly bounded
for all smooth functions ϕ that solve equation (28) with parameter t ∈ [0, 1].
Soon after him, by instead using the apriori interior C2,α estimate of Monge-
Ampère equation on domains known as the Evans-Krylov theorem([26],
[31]), one can skip the C3-estimate which simplifies his original proof. All
the higher order estimates could be obtained via elliptic theory of linear
equations by taking differentiation on equation (28). It is important to
point out at last that the bound on (n+ ∆ϕ) in fact depends on supM |ϕ|,
which can be obtained in this case.

In particular, by the assertion of the Calabi conjecture when c1(M) = 0,
there exists a Ricci-flat metric on M , called the Calabi-Yau metric.

Definition 1.6. Suppose M is a closed Kähler manifold and c1(M) denotes
its first chern class. We say c1(M) > 0(respectively < 0) if there exists an
α ∈ c1(M) such that as a (1, 1)-form on M , α > 0(respectively < 0).

When c1(M) > 0, we consider Kähler metrics in the 2πc1(M) where
the Ricci forms also lie. It is natural to ask among all Kähler metrics in
2πc1(M) if there exists one such that its Ricci form equals to itself, namely
ω ∈ 2πc1(M) such that

ρω = ω. (30)

In the c1(M) < 0 case, similarly ω ∈ −2πc1(M) such that

ρω = −ω. (31)

A metric is called Kähler-Einstein(KE) if it is Kähler and its Ricci
form is proportional to itself. By rescaling, all Kähler-Einstein metrics are
essentially given by one of the following equations: ρω = 0, ρω = −ω and
ρω = ω, corresponding to c1(M) = 0, < 0, > 0 respectively.
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Existence of KE metrics in the case c1(M) = 0 follows directly from the
statement of Calabi conjecture. While for the c1(M) < 0 case, in order to
find KE metrics, equivalently one wants to solve

det(gij̄ + ϕij̄) = eFω+ϕ det(gij̄) (32)

where
√
−1∂∂̄Fω = ρω + ω for ω ∈ −2πc1(M). Yau’s C2-estimate is still

valid for equation above and moreover one can obtain bounds on supM |ϕ|
easily using the maximum principle. Thus, when c1(M) < 0, there always
exists KE metrics in −2πc1(M). This result is independently proved by
Yau([49]) and Aubin([1]) in late 1970s. When c1(M) > 0, the existence
of KE metrics is much more subtle. Equivalently, one wants to solve the
equation

det(gij̄ + ϕij̄) = ehω−ϕ det(gij̄) (33)

where
√
−1∂∂̄hω = ρω − ω for ω ∈ 2πc1(M). While Yau’s C2-estimate is

still valid, the C0-estimate on ϕ doesn’t come for free any more due to the
negative sign in front of ϕ.

In fact, there are various obstructions to the existence of KE metrics
when c1(M) > 0. Denote the group of all biholomorphisms on complex
manifold (M,J) by Aut(M). In 1957, Matsushima([36]) discovered that
if there exists KE metric in 2πc1(M) > 0, then Aut(M) is reductive. It
follows from this result that there are Kähler manifolds with c1(M) > 0
which don’t admit KE metrics. For example, if M is CP2 blow up one or
two points, then one can compute Aut(M) is not reductive and thus M
doesn’t admit KE metrics.

In 1983, Futaki([27]) introduced an another obstruction known as the
Futaki invariant. Choose ω ∈ 2πc1(M) > 0 and set hω ∈ C∞(M,R)
such that

√
−1∂∂̄hω = ρω − ω. Then the Futaki invariant is defined as

fM : η(M)→ C,

fM(X) =

∫
M

X(hω)ωn, (34)

where η(M) is the Lie algebra of Aut(M) that consists of all holomorphic
vector fields on M . Futaki showed that fM is independent of choice of
ω ∈ 2πc1(M). Therefore, if M with c1(M) > 0 admits KE metrics then
necessarily fM ≡ 0. In [27], Futaki also constructed an example of 3-
dimensional manifold M with c1(M) > 0 and Aut(M) reductive but fM 6=
0. Hence such an M doesn’t admit KE metrics.

Note that the obstructions above both come from the holomorphic vec-
tor fields. In 1990, Tian([44]) has proved that on a complex surface M with
c1(M) > 0 it admits KE metrics if and only if Aut(M) is reducitive. In
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particular, when Aut(M) = {1}, then Kähler surface M with c1(M) > 0
automatically admits KE metric. For a while, people believe that this
statement is also true in complex dimension n ≥ 3. However, this forklore
conjecture was disproved by Ding-Tian([25]) on Kähler orbifolds in 1992
where they constructed new obstructions by defining the generalized Futaki
invariant on almost Fano varieties(possibly singular). Later, such obstruc-
tions are refined and used to define the K-stability condition([45], [19]). An
explicit counterexample could be found in [45], which is first contructed in
[37].

It is proved by Donaldson-Uhlenbeck-Yau([46],[17]) that the existence of
Hermitian-Yang-Mills connection is equivalent to the stability of underlying
holomorphic bundle. Inspired by this result, in late 1980’s, Yau proposed
that the existence of KE metrics should correspond to certain stability of
the underlying manifold in the geometric invariant theory. The stability
condition is later defined more precicely by Tian([45]) and Donaldson([19])
as the K-stability, which naturally leads to the following famous conjecture.

Conjecture 1.7 (Yau-Tian-Donaldson, [19]). A Fano manifold M admits
KE metrics if and only if it is K-stable.

This conjecture has only recently settled by Chen-Donaldson-Sun([11],[12]
and [13]) in 2013.

1.4 Extremal and cscK metrics

In the 1980’s, E. Calabi([5]) initiated a broader program aiming to find
“the best” canonical metric in each Hω. To this end, he considered the L2-
norm of the scalar curvature as a functional on metrics called the Calabi
functional, namely we define for any ϕ ∈ Hω,

Ca(ϕ) =

∫
M

R2
ϕω

n
ϕ, (35)

where Rϕ := gij̄ϕRicϕ,ij̄ = −gij̄ϕ
∂2 log det g
∂zi∂z̄j

denotes the scalar curvature of

metric ωϕ. Calabi proposed to seek critical points of the Calabi functional in
each Hω. These metrics are called the extremal metric. By straightforward
computation, we have that

δuCa(ϕ) =

∫
M

(
2(δuRϕ)Rϕω

n
ϕ +R2

ϕ(δuω
n
ϕ)
)
, (36)
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where
δuRϕ = −∆2

ϕu− giq̄ϕ gpj̄ϕ (Ricϕ)ij̄u,pq̄, δuω
n
ϕ = (∆ϕu)ωnϕ. (37)

We have the identity by interchanging the order of differentiations

u,αp̄β = u,αβp̄ −
∑
l

Rl
βp̄αu,l, (38)

where the derivatives are taken in the sense of covariant derivates with re-
spect to the Kähler metric ωϕ and Rl

βp̄α denotes the Riemannian curvature
tensor with respect to metric ωϕ. Thus

∆2
ϕu = gαp̄ϕ g

βq̄
ϕ u,αp̄βq̄ = gαp̄ϕ g

βq̄
ϕ u,αβp̄q̄ − gβq̄ϕ (Ricϕ)lβu,lq̄ − gβq̄ϕ (Ricϕ)lβ,q̄u,l,

= gαp̄ϕ g
βq̄
ϕ u,αβp̄q̄ − gβq̄ϕ (Ricϕ)lβu,lq̄ −R,l

ϕu,l.

(39)

Therefore, we have

δuCa(ϕ) =

∫
M

(
2(−gαp̄ϕ gβq̄ϕ u,αβp̄q̄ +R,l

ϕu,l)Rϕ +R2
ϕ(∆ϕu)

)
ωnϕ,

= −2

∫
M

(gαp̄ϕ g
βq̄
ϕ Rϕ,p̄q̄αβ)uωnϕ.

(40)

Then extremal metrics as the critical points of Calabi functional equiv-
alently are given by the following equation on ϕ ∈ Hω

gαp̄ϕ g
βq̄
ϕ Rϕ,p̄q̄αβ = 0. (41)

Pairing with Rϕ and integrating by parts, we get equivalently ϕ satisfies
that

Rϕ,p̄q̄ = 0, (42)

for any p, q ∈ {1, 2, · · · , n}. We define the (1, 0)-gradient of Rϕ as the

(1, 0)-vector field on M given by ∇1,0
ϕ Rϕ := gij̄ϕ

∂Rϕ
∂z̄j

∂
∂zi

and thus ϕ ∈ Hω

being extremal is equivalent to ∇1,0
ϕ Rϕ being holomorphic. In particular,

when Aut(M) = {1}, namely the only global holomorphic vector field on
M is given by X ≡ 0, ϕ being extremal is equivalent to Rϕ ≡ R where R is
a topological constant given by integral average of the scalar curvature. We
call Kähler metric ωϕ the constant scalar curvature Kähler(cscK) metric if
Rϕ ≡ R.

The existence problem of cscK/extremal metrics can be viewed as the
continuation of the KE problem for a general Kähler class Hω in the fol-
lowing sense. If we work in cohomology class 2πc1(M) > 0, then KE ⇐⇒
cscK. It is easy to see that KE ⇒ cscK. The other direction cscK ⇒ KE
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follows from the fact that ρω is harmonic w.r.t. metric ω ⇐⇒ ω is cscK
and also the uniqueness of harmonic form in 2πc1(M) by Hodge theory.
(Note that ω is also harmonic w.r.t metric ω.)

Similar to the KE problem, there are obstructions to the existence of
cscK/extremal metrics as well. In [6], Calabi proved the obstruction on the
structure of Aut(M) if M admits cscK/extremal metrics as a generalization
to the Matsushima’s result on KE problems. Moreover, Futaki invariant
could be generalized in the cscK/extermal setting as fM : η(M)→ C,

fM(X) =

∫
M

X(θω)ωn, (43)

where θω is the solution to equation ∆ωθω = Rω −R. Again, its definition
only depends on the cohomology class [ω] ∈ H1,1(M,R) and thus if there
exists cscK in Hω then necessarily fM ≡ 0.

In [19], Donaldson presented a precise algebro-geometric condition as
an obstruction to the existence of cscK metrics, called the K-stability.
Tian([45]) first gave an equivalent definition in the particular case of Fano
varieties. Naturally we have the conjecture about the existence of cscK
metrics.

Conjecture 1.8 (Yau-Tian-Donaldson, [19]). A smooth polarized manifold
(V, L) admits a cscK metric in the class c1(L) if and only if it is K-stable.

Besides the Fano case, Donaldson himself proved this conjecture on
toric surfaces([19], [21], [22] and [23]). However, in general, the existence
problem of cscK metrics is very difficult as explained in an expository article
by Donaldson([20]).

11



2 Continuity path via twisted cscK metrics

Recently, Chen proposed a continuity path in [10] aiming to attack the ex-
istence problem of cscK metrics via a direct PDE approach. He considered
the path connecting the solution of J-equation to the cscK metric. More
precisely, he proposed to solve the equation

t(Rϕ −R)− (1− t)(trϕχ− χ) = 0, (44)

with parameter t ∈ [0, 1] using continuity method, where R is a topological
constant given by R = 1∫

M ωn

∫
M
Rϕω

n
ϕ = [c1(M)][ω][n−1]/[ω][n]. Following

the terminology in J. Stoppa([41]), a Kähler metric ωϕ satisfying (44) is
called twisted cscK metric.

2.1 The J-equation

On a closed Kähler manifold M with Kähler form ω, given a closed positive
(1, 1)-form χ on M, we define a 1-form on the space of Kähler metrics Hω

as

δuJχ(ϕ) =

∫
M

u(χ ∧
ωn−1
ϕ

(n− 1)!
− χ

ωnϕ
n!

) (45)

for u ∈ TϕHω = C∞(M) where χ is a topological constant given by χ =
1∫

M ωn

∫
M

trϕ χω
n
ϕ = [χ] · [ω][n−1]/[ω][n]. Note that δJχ is a closed 1-form on

Hω since

δvδuJχ(ϕ) =

∫
M

u
√
−1∂∂̄v ∧ (χ ∧

ωn−2
ϕ

(n− 2)!
− χ

ωn−1
ϕ

(n− 1!)
)

= −
∫
M

√
−1∂u ∧ ∂̄v ∧ (χ ∧

ωn−2
ϕ

(n− 2)!
− χ

ωn−1
ϕ

(n− 1)!
),

(46)

is symmetric in u, v ∈ TϕHω. Thus by integration on simply connected
space Hω, we can define functional Jχ on Hω such that its derivative is
given by the 1-form δJχ. The functional Jχ on Hω is called J-functional,
its critical points by definition satisfies equation

trϕ χ = χ ⇐⇒ χ ∧
ωn−1
ϕ

(n− 1)!
= χ

ωnϕ
n!

(47)

which is the so called J-equation. J-equation was first defined by Donald-
son [24] in the setting of moment maps and by Chen[8] in his formula of
Mabuchi functional.
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Donaldson([24]) first observed that if there exists a smooth solution to
J-equation in Hω, then necessarily

[χω − χ] > 0.

Locally, one can choose holomorphic coordinate such that χij̄ = δij̄ and
ωij̄ = δij̄λi at point p. Thus at p the J-equation trω χ = χ can be written
as ∑ 1

λi
= χ. (48)

Then necessarily we have χλi > 1 which implies χω > χ. Donaldson
conjectured that condition [χω−χ] > 0 is also sufficient to the existence of
solution to the J-equation. This conjecture was confirmed by Chen([8]) in
complex dimension 2 when J-equation is equivalent to a complex Monge-
Ampère equation that could be solved by Yau’s method.

In higher dimension, Weinkove([47], [48]) found a sufficient condition
to the existence of solution to J-equation. His condition is

[χω − (n− 1)χ] > 0. (49)

where n is the complex dimension. In particular, when n = 2, it solves
Donaldson’s conjecture. In [42], Weinkove-Song has found a necessary and
sufficient condition: There exists a metric ω′ ∈ [ω] such that

(χω′ − (n− 1)χ) ∧ ω′n−2
> 0. (50)

Until now, Donaldson’s original conjecture about J-equation is still open
in dimension n ≥ 3.

2.2 Twisted Mabuchi energy and its convexity

As described above solution to J-equation is the critical point of J-functional,
while the cscK metric is critical point of the so called Mabuchi functional
or K-energy. In 1986, Mabuchi([34]) introduced the Mabuchi functional
which has cscK metrics as its critical point. It is defined using its deriva-
tive, namely we define a 1-form on Hω as

δuM(ϕ) = −
∫
M

(Rϕ −R)uωnϕ (51)
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for u ∈ TϕHω. In fact, δM is a closed on Hω since by direct computation,

δvδuM(ϕ) =

∫
M

(
(δvRϕ)u− (Rϕ −R)u∆ϕv

)
ωnϕ

=

∫
M

(∆ϕv)(∆ϕu)ωnϕ + (v,ᾱβRicϕ,αβ̄ − v,αᾱRicϕ,ββ̄)uωnϕ +Ru∆ϕvω
n
ϕ

=

∫
M

(∆ϕv)(∆ϕu)ωnϕ −
√
−1∂u ∧ ∂̄v ∧ (Ricϕ −Rωϕ) ∧ ωn−2

ϕ ,

(52)

is symmetric in u, v ∈ TϕHω. Thus by integrating, we can define the
Mabuchi functional M on Hω where by definition its critical points are
cscK metrics.

Mabuchi([35]) in 1987 introduced a Riemannian metric on the infinite
dimensional space Hω. At point ϕ ∈ Hω, the inner product on the tangent
space TϕHω is given by

〈u, v〉 =

∫
M

uvωnϕ (53)

for u, v ∈ C∞(M) ∼= TϕHω. Under this Riemannian metric, it becomes an
infinite dimensional symmetric space of nonpositive curvature. Apparently
unaware of Mabuchi’s work, Semmes-Donaldson [40] re-discover this same
metric again from different angles. For a curve ϕ(t) ∈ Hω (0 ≤ t ≤ 1), we
define its length by

L(ϕ) =

∫ 1

0

√∫
M

(
∂ϕ

∂t
)2ωnϕ(t)dt. (54)

Then geodesic equation is given by

ϕ̈(t)− gij̄ϕ(t)ϕ̇(t),iϕ̇(t),j̄ = 0 (55)

As shown by Mabuchi([34], [35]) the functional M is convex along
smooth geodesics ϕ(t) in Hω. In fact one can compute directly that

d2

dt2
M(ϕ(t))

=

∫
M

|ϕ̇(t),αβ|2ϕ(t)ω
n
ϕ(t) −

∫
M

(Rϕ(t) −R)(ϕ̈(t)− gij̄ϕ(t)ϕ̇(t),iϕ̇(t),j̄)ω
n
ϕ(t).

(56)

Unfortunately, given two end points ϕ1, ϕ2 ∈ Hω, there may be no smooth
geodesic ϕ(t) connecting them. In 2000, Chen([9]) showed that there ex-
ists a C1,1 geodesic(may not be smooth) connecting any given end points
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ϕ1, ϕ2 ∈ Hω. Moreover, even if the original definition of the Mabuchi func-
tional requires that ωϕ be positive and C2-smooth (and in particular that
ϕ be C4-smooth) Chen went on to show([8]) that the Mabuchi functional
admits an explicit formula which is well-defined along any C1,1-geodesic.
It has been conjectured by Chen ([8]) that M is (weakly) convex along
C1,1 geodesics. This conjecture has been proved in 2015 by Berndtsson-
Berman([2]) and Chen-Li-Păun ([14]). It was shown in [7] by Chen that
J-functional is strictly convex along C1,1 geodesics.

Let’s go back to the continuity path (44). By our discussion above, if
ϕ ∈ Hω solves (44) for t ∈ [0, 1] then ϕ is the critical point of functional
tM + (1 − t)Jχ which is strictly convex along C1,1 geodesics. We call
tM + (1 − t)Jχ the twisted Mabuchi energy. Together with the existence
of C1,1 geodesic connecting any given ϕ1, ϕ2 ∈ Hω by Chen([9]), one can
see that twisted cscK metric(t < 1) is unique if it exists.

2.3 Uniqueness of cscK/extremal metrics

The uniqueness problem of the cscK/extremal metrics has a long history
going back to E. Calabi. We refer to [3], [9], [16], [18], [33] and [2] for
the important works generated by this question. In [15], joint with Chen
and Păun we gave a new proof of this classical result by studying the
deformation of the cscK/extremal metrics. The new deformation results
that we will present below are based on the bifurcation technique first intro-
duced by S. Bando and T. Mabuchi in their celebrated work([3]) concerning
the uniqueness of Kähler-Einstein metrics modulo holomorphic automor-
phisms.

Before introducing our work, let us briefly review Bando-Mabuchi’s
work first. When c1(M) > 0, Aut(M) is likely nontrivial. Thus in this
case, we shouldn’t expect that the KE metric is genuinely unique but rather
unique up to holomorphic automorphisms. In fact, if ω is KE, then for any
σ ∈ Aut(M), σ∗ω ∈ [ω] and it is KE as well. The main idea in Bando-
Mabuchi’s paper is to solve the Aubin-Yau path backwards from t = 1,
namely they want to deform a KE metric at t = 1 via

ρωϕ = tωϕ + (1− t)ω (57)

backwardly to t = 0. If ωϕ varies within the orbit of KE metrics by the
group action of Aut(M), then ωϕ will still be KE. Thus it implies that the
linearization of the path equation at t = 1 would have nontrivial kernel
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which locally parametrizes the orbit of KE metrics under Aut(M) actions.
In this case, one can’t apply the implicit function theory directly.

To address this difficulty coming from the nontrivial kernel, Bando-
Mabuchi introduced a clever trick, called the bifurcation technique based
on the geometry of the orbit of KE metrics. They are able to show that on
each KE orbit, there exists a unique KE metric from which one can solve
the Aubin-Yau path backwardly.

As an analog to their result in the cscK case. we have

Theorem 2.1 (Chen-Păun-Zeng, [15]). Given an n-dimensional closed
Kähler manifold (M,ω) that admits a cscK metric ωϕ0 ∈ [ω], there ex-
ist a constant δ > 0 and a smooth function φ : (1 − δ, 1] ×M → R such
that ϕt = φ(t, ·) ∈ H∞ verifies the equation

t(Rϕt −R)− (1− t)(trϕtω − n) = 0. (58)

Moreover, there exists a holomorphic automorphism f of M such that ωϕ1 =
f ∗ωϕ0.

We also proved an analog in the extremal case as below.

Theorem 2.2 (Chen-Păun-Zeng, [15]). Given an n-dimensional closed
Kähler manifold (M,ω) that admits an extremal metric ωϕ0 ∈ [ω], there
exist a constant δ > 0 and a smooth function φ : (1− δ, 1]×M → R such
that

∇1,0
ϕt

(
tRϕt − (1− t)trϕtω

)
(59)

is a holomorphic vector field on M , where ϕt = φ(t, ·) ∈ H∞. Moreover,
there exists a holomorphic automorphism f of M such that ωϕ1 = f ∗ωϕ0.

As a consequence of Theorem 2.2, we gave a new proof of the following
statement.

Corollary 2.3 ([16], [33], [2] and [15]). Given an n-dimensional closed
Kähler manifold (M,ω) that admits two extremal metrics {ωj}j=1,2 ⊂ [ω],
there exists a holomorphic automorphism f of M such that f ∗ω1 = ω2.

Our new proof of Corollary 2.3 consists of two main ingredients: the
deformation of extremal metrics(Theorem 2.2) and the convexity of twisted
Mabuchi funtional introduced above. For simplicity, we will briefly explain
how to derive Corollary 2.3 in the cscK case. We add a small strictly
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convex perturbation Jω to the Mabuchi functional such that the perturbed
functional tM + (1 − t)Jω is strictly convex and then its critical point is
unique. Thus, if we can deform a given cscK metric via a smooth family
of the critical points of the perturbed functionals, then such deformation
must be unique. Fortunately, by our Theorem 2.1, one can always find such
unique deformation by apriori applying a holomorphic transformation to
the given cscK metric. The extremal case follows a similar scheme but with
more delicate settings. In [2], they also proved Corollary 2.3, but instead
of deriving the deformation theorem above they alternatively deformed the
cscK/extremal metric via “approximately critical points”.

2.4 Openness results

Set

Iχ = {t ∈ [0, 1]| Equation (44) with parameter t has a smooth solution.}

In [10], X. Chen proved the openness of Iχ for t ∈ (0, 1)∩ Iχ by directly
applying the implicit function theorem. However, the openness at t = 0
is quite different from the case at t ∈ (0, 1), because equation (44) is a
fourth order PDE for all positive t while it reduces to a second order PDE
at t = 0. In this dissertation, we will first present the proof of Openness
of Iχ for 0 < t < 1 from [10] and then mainly prove the openness of Iχ at
t = 0 assuming that 0 ∈ Iχ.

Theorem 2.4 ([10]). Given an n-dimensional closed Kähler manifold (M,ω),
if t0 ∈ Iχ∩(0, 1) then there exists a constant δ > 0 such that (t0−δ, t0+δ) ⊂
Iχ.

Theorem 2.5 (Main Theorem). Given an n-dimensional closed Kähler
manifold (M,ω), if 0 ∈ Iχ then there exists a constant δ > 0 such that
[0, δ) ⊂ Iχ.

Similar results to Theorem 2.5 were first proved in [50] for χ ∈ [ω] in
which case one automatically has that 0 ∈ Iχ. Later, Hashimoto[30] proved
that Iχ is open at t = 0 for all smooth (1, 1) form χ > 0 with 0 ∈ Iχ. In
this dissertation, we will give a proof of the openness of Iχ at t = 0 for all
all smooth (1, 1) form χ > 0 with 0 ∈ Iχ using the ideas developed in [50].
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3 Analytic preparations

We fix a background smooth Kähler metric g on M . For k ∈ N and α ∈
(0, 1), we define the function space Ck,α(M) to be all functions on M which
are continuously differentiable up to kth order with the kth derivatives α-
hölder continuous on M . In each local chart ψ : U ⊂ M → R2n, we can
define norm

‖u‖Ck,α(U,ψ) =
k∑
|β|=0

‖Dβ(u ◦ ψ−1)‖L∞(ψ(U))

+ sup
x 6=y∈ψ(U),|β|=k

|Dβ(u ◦ ψ−1)(x)−Dβ(u ◦ ψ−1)(y)|
|x− y|α

.

Then by a choice of finite open covers M =
⋃N
i=1 Ui together with local

coordinates ψi : Ui → R2n, we can introduce norm ‖ · ‖Ck,α(M) = supi ‖ ·
‖Ck,α(Ui,ψi) on Ck,α(M). Note that different choices of finite covers and local
coordinates may result in different but equivalent norms. In this paper, we
fix a finite cover M =

⋃N
i=1 Ui with local coordinates ψi : Ui → R2n.

We introduce the Schauder estimate of Laplacian operator in the fol-
lowing lemma.

Lemma 3.1. Given a smooth Riemannian metric g on compact manifold
M , if u ∈ C∞(M) with

∫
M
udVg = 0 satisfies ∆gu = f , then for any integer

k ≥ 0 we have
‖u‖Ck+2,α(M) ≤ C‖f‖Ck,α(M). (60)

Proof. It suffices to show the case when k = 0. One can obtain higher
order estimate via taking differentiations on equation ∆gu = f .

Using the standard interior schauder estimate on domains, one can ob-
tain that

‖u‖C2,α(M) ≤ C(‖f‖Cα(M) + ‖u‖L2(M)). (61)

To estimate ‖u‖L2(M), we consider∫
M

fudVg =

∫
M

(∆gu)udVg = −
∫
M

|∇u|2gdVg (62)

By Porncare inequality, we have∫
M

u2dVg ≤ C

∫
M

|∇u|2gdVg (63)
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Thus, we have estimate

‖u‖L2(M) ≤ C‖f‖L2(M) ≤ C‖f‖Cα(M) (64)

Then it ends the proof of the lemma.

Next, we introduce an interpolation equality that we will use in later
sections.

Lemma 3.2. Suppose u ∈ C∞(M) and α ∈ (0, 1). Then for any ε � 1,
we have

‖u‖C2,α(M) ≤ ε‖u‖C4,α(M) + Cε−γ(n,α)‖u‖L2(M), (65)

where γ(n, α) = −2+α
2
− 4+α

2
2n+1

6
.

Proof. By Corollary 1.2.19 in [32], we have that

‖u‖C2,α(M) ≤ C(‖u‖L∞(M))
2

4+α (‖u‖C4,α(M))
2+α
4+α ,

≤ 1

2
ε‖u‖C4,α(M) + Cε−

2+α
2 ‖u‖L∞(M).

(66)

For any p ∈ (2n,∞), by Sobolev embedding and Theorem 7.28 in [28],
we have for η � 1

‖u‖L∞(M) ≤ Cp‖u‖W 1,p(M),

≤ η‖u‖W 4,p(M) + Cpη
− 1

3‖u‖Lp(M),

≤ η‖u‖W 4,p(M) + Cpη
− 1

3‖u‖
2
p

L2(M)‖u‖
1− 2

p

L∞(M),

≤ Cη‖u‖C4,α(M) +
1

2
‖u‖L∞(M) + Cpη

− p
6‖u‖L2(M).

(67)

Thus,
‖u‖L∞(M) ≤ Cη‖u‖C4,α(M) + Cpη

− p
6‖u‖L2(M). (68)

Combine inequalities (66) and (68), we get

‖u‖C2,α(M) ≤
1

2
ε‖u‖C4,α(M) + Cε−

2+α
2 η‖u‖C4,α(M) + Cpε

− 2+α
2 η−

p
6‖u‖L2(M).

(69)

We can choose η � 1 sufficiently small such that Cε−
2+α

2 η = 1
2
ε and thus,

‖u‖C2,α(M) ≤ ε‖u‖C4,α(M) + Cpε
− 2+α

2
− 4+α

2
p
6‖u‖L2(M). (70)

Here the constant Cp →∞ as p→ 2n. We could simply fix p = 2n+ 1 at
the beginning and therefore we have

‖u‖C2,α(M) ≤ ε‖u‖C4,α(M) + Cε−
2+α

2
− 4+α

2
2n+1

6 ‖u‖L2(M). (71)
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Next we quote a fredholm theorem for elliptic operators without proof.

Theorem 3.3 ([29]). If M is compact and P : C∞(M) → C∞(M) is
an elliptic operator on M, then the kernel of P is finite dimensional and
f ∈ C∞(M) is in the range of P if and only if

〈f, v〉 = 0 (72)

for all v in the kernel of the adjoint operator of P, denoted as P t.
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4 Openness for 0 < t < 1

The proof presented in this section literally follows from [10]. We denote

H4,α(M) = {ϕ ∈ C4,α(M)|ωϕ = ω +
√
−1∂∂̄ϕ > 0}.

Define for a closed postive (1, 1)-form χ,

Fχ : H4,α(M)× [0, 1]→ Cα(M)

(ϕ, t) 7→ t(Rϕ −R)− (1− t)(trϕχ− χ)

Theorem 4.1. Suppose (M,ω) is a closed Kähler manifold and χ is a
smooth, closed and positive (1, 1)-form on M . If there exist t0 ∈ (0, 1) and
ϕ0 ∈ H4,α(M) such that Fχ(ϕ0, t0) = 0, then there exists an ε = ε(t0) > 0
such that for any t ∈ (t0 − ε, t0 + ε), there exists ϕt ∈ H4,α(M) such that
Fχ(ϕt, t) = 0.

We’ll apply the implicit function theorem on Banach spaces to prove
this theorem. First let’s consider the linearization of Fχ.

Lemma 4.2. The linearization of Fχ at (ϕ, t) ∈ H4,α(M) × [0, 1] is given
by

DFχ|(ϕ,t)(u, s) =− t∆2
ϕu− t〈

√
−1∂∂̄u,Ricϕ〉ϕ + (1− t)〈

√
−1∂∂̄u, χ〉ϕ

+ s
(
(Rϕ −R) + (trϕ χ− χ)

)
,

(73)

where (u, s) ∈ C4,α(M) × R. Thus it’s obvious that DFµ|(ϕ,t) : C4,α(M) ×
R→ Cα(M) is continuous in (ϕ, t) ∈ H4,α(M)× [0, 1].

Lemma 4.2 above follows from straightforward computations, so we
omit its proof.

Lemma 4.3. Given any closed (1, 1)-form µ and function f ∈ C2(M), we
have the identity

〈
√
−1∂∂̄f, µ〉ω = (f,pµαβ̄),q̄g

αq̄gpβ̄ − f,p(trω µ),β̄g
pβ̄. (74)

Proof. By direct computation, we have

〈
√
−1∂∂̄f, µ〉ω = f,pq̄µαβ̄g

αq̄gpβ̄ = (f,pµαβ̄),q̄g
αq̄gpβ̄ − f,pµαβ̄,q̄gαq̄gpβ̄. (75)
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Since µ is closed, we have µαβ̄,q̄ = µαq̄,β̄. Thus

〈
√
−1∂∂̄f, µ〉ω = (f,pµαβ̄),q̄g

αq̄gpβ̄ − f,pµαq̄,β̄gαq̄gpβ̄

= (f,pµαβ̄),q̄g
αq̄gpβ̄ − f,p(trω µ),β̄g

pβ̄
(76)

Lemma 4.4. For (ϕ0, t0) ∈ H4,α(M)× (0, 1) satisfying Fχ(ϕ0, t0) = 0, we
have that for any u, v ∈ C4,α(M)∫

M

(
DFχ|(ϕ0,t0)(u, 0)

)
(v)ωnϕ0

=− t0
∫
M

u,ᾱβ̄v,αβω
n
ϕ0
− (1− t0)

∫
M

u,ᾱv,βχαβ̄ω
n
ϕ0
,

(77)

Proof. Proof of Lemma 4.4. By calculations, we have that

DFχ|(ϕ0,t0)(u, 0) =− t0(u,αβp̄q̄g
αp̄
ϕ0
gβq̄ϕ0
−Rϕ0,p̄u,αg

αp̄
ϕ0

)

+ (1− t0)
(
(u,pχαβ̄),q̄g

αq̄
ϕ0
gpβ̄ϕ0
− u,p(trϕ0 χ),β̄g

pβ̄
ϕ0

)
=− t0u,αβp̄q̄gαp̄ϕ0

gβq̄ϕ0
+ (1− t0)(u,pχαβ̄),q̄g

αq̄
ϕ0
gpβ̄ϕ0

+ (t0Rϕ0 − (1− t0) trϕ0 χ),p̄u,αg
αp̄
ϕ0

=− t0u,αβp̄q̄gαp̄ϕ0
gβq̄ϕ0

+ (1− t0)(u,pχαβ̄),q̄g
αq̄
ϕ0
gpβ̄ϕ0

.

Last step is because Fχ(ϕ0, t0) = 0. Thus, by integration by parts∫
M

(
DFχ|(ϕ0,t0)(u, 0)

)
(v)ωnϕ0

=− t0
∫
M

u,αβv,p̄q̄g
αp̄
ϕ0
gβq̄ϕ0

ωnϕ0
− (1− t0)

∫
M

u,pχαβ̄v,q̄g
pβ̄
ϕ0
gαq̄ϕ0

ωnϕ0
.

(78)

Now with the help of Lemma 4.2 and Lemma 4.4, we are ready to prove
Theorem 4.1.

Proof. At given point ϕ0 ∈ H s.t. Fχ(ϕ0, t0) = 0, define

H4,α
0 = {ϕ ∈ H4,α|

∫
M

ϕωnϕ0
= 0.},

Ck,α
0 = {f ∈ Ck,α(M)|

∫
M

fωnϕ0
= 0.},

C∞0 = {f ∈ C∞(M)|
∫
M

fωnϕ0
= 0.}.

(79)
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Denote π the projection from Cα(M) to its subspace Cα
0 . Without loss

of generality, we can assume ϕ0 ∈ C4,α
0 . So we can define

F̃χ : H4,α
0 × [0, 1]→ Cα

0

(ϕ, t) 7→ πFχ(ϕ, t) := Fχ(ϕ, t)−
∫
M

Fχ(ϕ, t)ωnϕ0
.

(80)

with F̃χ(ϕ0, t0) = 0. By Lemma 4.2, we get that the linearization of F̃χ at
(ϕ, t) is continuous for (ϕ, t) in a small neighborhood of (ϕ0, t0) in C4,α

0 ×
[0, 1].

By Lemma 4.4, DFχ|(ϕ0,t0)(·, 0) : C∞(M) → C∞(M) is a self-adjoint
elliptic differential operator with kernel and cokernel both equal to subspace
of constant functions on M . Thus by the fredholm theorem, we have that
DFχ|(ϕ0,t0)(·, 0) : C∞0 → C∞0 is a bijection. In fact, we can further prove that

DFχ|(ϕ0,t0)(·, 0) : C4,α
0 → Cα

0 is an isomorphism between Banach spaces. It
suffice to show an apriori estimate of schauder type, namely we will show
that ‖u‖C4,α(M) ≤ C‖DFχ|(ϕ0,t0)(u, 0)‖Cα(M) for any u ∈ C4,α

0 .

Set

f = DFχ|(ϕ0,t0)(u, 0)

= −t0∆2
ϕ0
u− 〈t0Ricϕ0 − (1− t0)χ,

√
−1∂∂̄u〉ϕ0 .

(81)

Thus by the standard Schauder estimate for Laplacian equations,

‖u‖C4,α(M) ≤ C‖∆ϕ0u‖C2,α(M) ≤ C ′(‖f‖Cα(M) + ‖u‖C2,α(M)). (82)

By interpolation lemma 3.2, we have

‖u‖C4,α(M) ≤ C(‖f‖Cα(M) + ‖u‖L2(M)). (83)

By Lemma 4.4, we have that

−
∫
M

fuωnϕ0
= (1− t0)

∫
M

u,ᾱu,βχαβ̄ω
n
ϕ0

≥ C−1

∫
M

|∇u|2ϕ0
ωnϕ0
≥ C ′−1

∫
M

u2ωnϕ0

(84)

Last step is because of Porncare lemma and
∫
M
uωnϕ0

= 0. Thus we get
that

‖u‖L2(M) ≤ C‖f‖L2(M) ≤ C‖f‖Cα(M). (85)

Therefore we have
‖u‖C4,α(M) ≤ C‖f‖Cα(M). (86)
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Using this apriori estimate together with an approximation argument, we
can conclude that DFχ|(ϕ0,t0)(·, 0) : C4,α

0 → Cα
0 is an isomorphism between

Banach spaces.

Note that DF̃χ|(ϕ0,t0)(·, 0) = DFχ|(ϕ0,t0)(·, 0). Thus, by the implicit func-
tion theorem, there exists ε = ε(t0) > 0 such that for any |t − t0| < ε, we
could solve ϕt ∈ H4,α

0 such that

F̃χ(ϕt, t) = 0. (87)

From the definition of π, we could write

0 = F̃χ(ϕt, t) = Fχ(ϕt, t)−
∫
M

Fχ(ϕt, t)ω
n
ϕ0
. (88)

Thus we get that Fχ(ϕt, t) ≡ C. Notice∫
M

Fχ(ϕt, t)ω
n
ϕt = 0. (89)

So C = 0 and
Fχ(ϕt, t) = 0.

Moreover, by the regularity of solutions to the elliptic equations, it
follows that ϕt → ϕ0 as t→ t0 in any Ck norms.
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5 Openness at t = 0

The main ingredient of the proof is to build an approximated twisted cscK
metric for small t > 0 via taylor polynomials

ϕt = ϕ0 + tu1 +
t2

2
u2 + · · ·+ tk

k!
uk, (90)

where ϕ0 ∈ H satisfies trϕ0χ = χ and u′is are smooth functions to be
determined. By a appropriate choice of u′is we can eliminated the first kth
coefficients in the taylor series about t of t(Rϕt − R) − (trϕtχ − χ). The
other ingredient is a quantitative inverse function theorem near ϕt so that
we can perturb from the approximated twisted cscK metric to a twisted
cscK metric.

Without further notice, the ”C” in each estimate means a constant de-
pending on the complex dimension n unless specified.

5.1 Approximation of twisted cscK metrics for small
t > 0

Define
H4,α = {ϕ ∈ C4,α(M)|ω +

√
−1∂∂̄ϕ > 0}. (91)

Then for any t > 0, we define the map

Ft : H4,α → Cα(M),

ϕ 7→ t(Rϕ −R)− (trϕχ− χ).
(92)

To look for twisted cscK metric for parameter t > 0 sufficiently small, it
suffices to find ϕ ∈ H4,α such that Ft(ϕ) = 0 for small t > 0. We eventually
will use a quantitative inverse function theorem to find such ϕ. But before
doing that, let us first look at a good approximation of the twisted cscK
metric for small t > 0.

Given that 0 ∈ Iχ, then there exists a smooth Kähler potential ϕ0 such
that trϕ0χ = χ. Note that Ft(ϕ0) = t(Rϕ0 −R)→ 0 in C∞ sense as t→ 0.
However, ϕ0 is not a good enough approximation for our purpuse due to
the possible faster shrinking rate of invertible neighborhood around Ft(ϕ0)
with respect to t as t→ 0.
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Starting from ϕ0, we could build better approximations of twisted cscK
metric via taylor polynomials such that Ft(·) is small in terms of powers of
t. To be more precise, we introduce the following lemma.

Lemma 5.1. Suppose α ∈ (0, 1) and k ∈ N. There exists δk > 0 depending
on k and ϕ0 such that for any 0 < t < δk, there exists a smooth function
ϕt ∈ C∞(M) such that ω +

√
−1∂∂̄ϕt > 0 and

‖Ft(ϕt)‖Cα(M) ≤ Ckt
k+1, (93)

for some constant Ck > 0 depending on k and ϕ0. Moreover, we have for
any l ∈ N

‖ϕt − ϕ0‖Cl(M) ≤ Ck,lt, (94)

for some constant Ck,l depending on k, l and ϕ0.

Proof. We prove this lemma by explicit construction. For k = 0, ϕ0 would
suffice. However we are interested in the case when k � 1. Consider

ϕt = ϕ0 + tu1 +
t2

2
u2 + · · ·+ tk

k!
uk, (95)

where u′is are smooth functions to be determined. To find these u′is, we
consider the taylor expansion of Ft(ϕt) with respect to t at t = 0,

Ft(ϕt) = F0(ϕ0) + t
( ∂
∂t
Ft(ϕt)

)
|t=0 + · · ·+ tk

k!

( ∂k
∂tk

Ft(ϕt)
)
|t=0 +R, (96)

where the remainder is

R =
1

k!

∫ t

0

sk(
∂

∂s
)k+1Fs(ϕs)ds. (97)

The idea is to eliminate lower order term of t by choosing appropriate
u′is such that the first kth coefficients in the taylor expansion vanish. We
compute first a few coefficients in the taylor expansion of Ft(ϕt). Since
trϕ0 χ = χ, we have F0(ϕ0) = 0. Next compute

∂

∂t
Ft(ϕt) = (Rϕt −R) + t

∂Rϕt

∂t
+ giq̄ϕtg

pj̄
ϕtχij̄(

∂ϕt
∂t

),pq̄. (98)

Set t = 0 we get( ∂
∂t
Ft(ϕt)

)
|t=0 = Rϕ0 −R + giq̄ϕ0

gpj̄ϕ0
χij̄u1,pq̄ (99)
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Further compute that

∂2

∂t2
Ft(ϕt) =2(−∆2

ϕt

∂ϕt
∂t
− giq̄ϕtg

pj̄
ϕt(
∂ϕt
∂t

),ij̄Ricϕt,pq̄)

+ t
∂2Rϕt

∂t2
− gik̄ϕt(

∂ϕt
∂t

),k̄lg
lq̄
ϕtg

pj̄
ϕtχij̄(

∂ϕt
∂t

),pq̄

− giq̄ϕtg
pk̄
ϕtg

lj̄
ϕt(
∂ϕt
∂t

),k̄lχij̄(
∂ϕt
∂t

),pq̄ + giq̄ϕtg
pj̄
ϕtχij̄(

∂2ϕt
∂t2

),pq̄.

(100)

Set t = 0 and we have

∂2

∂t2
Ft(ϕt)|t=0 =2(−∆2

ϕ0
u1 − giq̄ϕ0

gpj̄ϕ0
(u1),ij̄Ricϕ0,pq̄)

− gik̄ϕ0
(u1),k̄lg

lq̄
ϕ0
gpj̄ϕ0

χij̄(u1),pq̄

− giq̄ϕ0
gpk̄ϕ0

glj̄ϕ0
(u1),k̄lχij̄(u1),pq̄ + giq̄ϕ0

gpj̄ϕ0
χij̄(u2),pq̄.

(101)

Compute one more coefficient, we have

∂3

∂t3
Ft(ϕt)|t=0 =3

∂2Rϕt

∂t2
|t=0 + (t

∂3Rϕt

∂t3
)|t=0 + (∂∂̄u1)∗3 + ∂∂̄u1 ∗ ∂∂̄u2

+ +giq̄ϕ0
gpj̄ϕ0

χij̄(u3),pq̄,

(102)

where
∂2Rϕt
∂t2
|t=0 is a smooth function M only involving u1, u2 and ϕ0, and

moreover “∗” abbreviates for multiplying with smooth functions depending
on ϕ0 and χ as well as proper contractions.

By computations above, we know that each ∂m

∂tm
Ft(ϕt)|t=0 only involves

u′is for i ≤ m and the only term involving um is gip̄ϕ0
gqj̄ϕ0

χpq̄um,ij̄. This fact
suggests that we could define u′ms inductively using previously determined
functions u′is for i ≤ m− 1.

Next, we describe how to define functions u′is. First, let us denote

∆χ,ϕ0 := gip̄ϕ0
gqj̄ϕ0

χpq̄
∂2

∂zi∂z̄j
. (103)

Given the fact that trϕ0χ = χ, ∆χ,ϕ0 indeed behaves like Laplacian operator
on M and ∆χ,ϕ0u = f is solvable if and only if

∫
M
fωnϕ0

= 0. We know that
F0(ϕ0) = 0 by assumption. Suppose we have smooth functions u′is defined
for all i ≤ m− 1 such that

∂i

∂ti
Ft(ϕt)|t=0 = 0, (104)
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for all i ≤ m− 1. We hope to find smooth function um such that

∂m

∂tm
Ft(ϕt)|t=0 = 0. (105)

Following the discussion above we have

∂m

∂tm
Ft(ϕt)|t=0 = ∆χ,ϕ0um + S(ϕ0, u1, · · · , um−1). (106)

So to define um, it suffices to check if
∫
M
S(ϕ0, u1, · · · , um−1)ωnϕ0

= 0. In
fact, when u′is satisfy (104), it is automatically true. Since for any 0 < t�
1 we have ∫

M

Ft(ϕt)ω
n
ϕt = 0, (107)

we take derivatives with respect to t of the above identity m times and get∫
M

(
∂

∂t
)mFt(ϕt)ω

n
ϕt +

m∑
i=1

m!

i!(m− i)!

∫
M

(
(
∂

∂t
)m−iFt(ϕt)

)
(
∂

∂t
)iωnϕt = 0.

(108)
Set t = 0 and we have ∫

M

(
(
∂

∂t
)mFt(ϕt)

)
|t=0ω

n
ϕ0

= 0. (109)

Since
∫
M

∆χ,ϕ0umω
n
ϕ0

= 0 no matter what um is, we get that∫
M

S(ϕ0, u1, · · · , um−1)ωnϕ0
= 0.

Thus we could solve um such that (105) holds. Notice in this construction
process, all u′is are smooth functions determined by the previous u′is, and
eventually only determined by the initial Kähler metric ϕ0. Thus (94)
holds.

It remains to check (93) and by our construction it suffices to consider
the remainder (97) and to show that

‖( ∂
∂s

)k+1Fs(ϕs)‖Cα(M) ≤ Ck, (110)

for some constant Ck independent of s � 1. Choose constant δk > 0 such
that for any s < δk, ω+

√
−1∂∂̄ϕs > 0. Denote ϕ

(i)
s = ( ∂

∂s
)iϕs for 1 ≤ i ≤ k

and they are smooth functions with any Cm norm uniformly bounded when
s goes to 0. By a direct computation when s < δk, we get that

(
∂

∂s
)k+1Fs(ϕs) = F (s, ∂∂̄ϕs, · · · , ∂∂̄ϕ(k)

s ,∇∂∂̄ϕs, · · · ,∇∂∂̄ϕ(k)
s ,∇4ϕs, · · · ,∇4ϕ(k)

s ),

(111)
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where F is a smooth functions with respect to its variables, especially
smooth up to s = 0. Thus, that for s < δk, ( ∂

∂s
)k+1Fs(ϕs) is a smooth

function on M and its Cα norm is uniformly bounded when s → 0. This
ends the proof of the lemma.

5.2 Quantitative inverse function theorem

In this section, we study the local invertibility of Ft : H4,α → Cα(M) at a
given point ψ ∈ H for fixed t > 0 sufficiently small. First of all, we notice
that ∫

M

Ft(ϕ)ωnϕ = 0, (112)

for any ϕ ∈ H4,α. Given this fact, one could not expect Ft to be surjective
on any open set in Cα(M). However, we can modify Ft and the corre-
sponding function spaces to get local invertibility in the modified setting.

At any given point ψ ∈ H, without loss of generality we could assume
that

∫
ψωnψ = 0 and define

H4,α
ψ = {ϕ ∈ H4,α|

∫
M

ϕωnψ = 0.},

Ck,α
ψ = {f ∈ Ck,α(M)|

∫
M

fωnψ = 0.},

C∞ψ = {f ∈ C∞(M)|
∫
M

fωnψ = 0.}.

(113)

Moreover, we could define Ft,ψ : H4,α
ψ → Cα

ψ

Ft,ψ(ϕ) = Ft(ϕ)−
∫
M

Ft(ϕ)ωnψ. (114)

Following these definitions, we get that Ft,ψ(ψ) = Ft(ψ) since
∫
M
Ft(ψ)ωnψ =

0 always. Moreover we have that if Ft,ψ(ϕ) = 0, then Ft(ϕ) = 0. It is
shown in [10] that for any fixed t > 0 if ψ is a twisted cscK metric, namely
Ft(ψ) = Ft,ψ(ψ) = 0, then the map Ft,ψ : H4,α

ψ → Cα
ψ is locally invertible

from ψ ∈ H4,α
ψ to 0 ∈ Cα

ψ . If we vary ψ a little bit away from the twisted
cscK metric, one should expect the local invertibility of Ft,ψ still hold.

In the next theorem, we prove that for t > 0 sufficiently small, Ft,ψ :
H4,α
ψ → Cα

ψ is still locally invertible from ψ ∈ H4,α
ψ to Ft,ψ(ψ) ∈ Cα

ψ if ψ ∈ H
is close to a twisted cscK metric in the sense that ‖ψ − ϕ0‖C6(M) � 1.
Moreover, we derive an estimate on the size of invertible neighborhood of
Ft,ψ : H4,α

ψ → Cα
ψ near Ft,ψ(ψ) ∈ Cα

ψ .
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Theorem 5.2. Given ϕ0 ∈ H such that trϕ0χ = χ and
∫
M
ϕ0ω

n
ϕ0

= 0,
there exists constant ε = ε(ϕ0) > 0 such that for any 0 < t < ε and ψ ∈ H
satisfying

∫
M
ψωnψ = 0 and ‖ψ − ϕ0‖C6(M) < ε, we have that Ft,ψ : H4,α

ψ →
Cα
ψ is locally invertible from ψ to Ft,ψ(ψ).

Moreover, we have that for any y ∈ Cα
ψ with ‖y−Ft,ψ(ψ)‖Cα(M) ≤ εt2γ+2

for γ given in Lemma 3.2, we can find an x ∈ H4,α
ψ such that Ft,ψ(x) = y.

In order to prove Theorem 5.2, first of all one needs to study the lin-
earization of Ft,ψ at ψ, denoted by DFt,ψ|ψ. We compute DFt,ψ|ψ : C4,α

ψ →
Cα
ψ , for any u ∈ C4,α

ψ

DFt,ψ|ψ(u) = −t∆2
ψu+ 〈χ− tRicψ, ∂∂̄u〉ψ

−
∫
M

〈χ− tRicψ, ∂∂̄u〉ψωnψ.
(115)

Denote Pt,ψ(u) = −t∆2
ψu+ 〈χ− tRicψ, ∂∂̄u〉ψ, then

DFt,ψ|ψ = πψ ◦ Pt,ψ, (116)

where πψf = f −
∫
M
fωnψ.

P = Pt,ψ : C∞(M) → C∞(M) is an elliptic differential operator. By
the fredholm theorem, we have the orthogonal decomposition C∞(M) =
Im(P ) ⊕ Ker(P T ). Denote P ′ = πψPπψ and P ′T = πψP

Tπψ. For any
f ∈ C∞ψ , we have orthogonal decomposition f = Pu + v for u ∈ C∞(M)
and v ∈ Ker(P T ). Applying πψ, we get f = πψPu + πψv. We have by
computation that πψPu = P ′u and πψv ∈ Ker(P ′T ). Thus f = P ′πψu +
πψv. Thus we have orthogonal decomposition of C∞ψ = Im(P ′)⊕Ker(P ′T ).

For t � 1 and ‖ψ − ϕ0‖C6(M) � 1 we have that DFt,ψ|ψ = πψPt,ψπψ :
C∞ψ → C∞ψ has kernel and cokernel both equal to zero. More precisely, we
introduce the following lemma.

Lemma 5.3. There exists a constant ε = ε(ϕ0) > 0 such that for any
0 < t < ε and ψ ∈ H with

∫
M
ψωnψ = 0 and ‖ψ − ϕ0‖C6(M) ≤ ε, we have

that DFt,ψ|ψ : C∞ψ → C∞ψ is bijective.
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Proof. For any u ∈ C∞(M), we compute∫
M

(πψPt,ψu)uωnψ =

∫
M

(Pt,ψu)πψuω
n
ψ,

= −t
∫
M

|u,αβ|2ψωnψ −
∫
M

u,ᾱu,βg
pᾱ
ψ g

βq̄
ψ χpq̄ω

n
ψ

− 1

2

∫
M

(πψu)2∆ψ(tRψ − trψχ)ωnψ,

≤ −
∫
M

u,ᾱu,βg
pᾱ
ψ g

βq̄
ψ χpq̄ω

n
ψ

+
Cψ
2

sup
M
|∆ψ(tRψ − trψχ)|

∫
M

|∇u|2ψωnψ,

(117)

where Cψ denotes the Poincaré constant of metric gψ. Note that

gpᾱϕ0
gβq̄ϕ0

χpq̄ ≥ δϕ0g
βᾱ
ϕ0
, for some constant δϕ0 > 0.

∆ϕ0(tRϕ0 − trϕ0χ) = t∆ϕ0Rϕ0 .

Cψ ≤ Cr for some constant Cr > 0, if r−1g ≤ gψ ≤ rg.

(118)

Thus we can choose ε > 0 depending on ϕ0 such that for any ψ with
‖ψ − ϕ0‖C6(M) ≤ ε, we have

gpᾱψ g
βq̄
ψ χpq̄ ≥

1

2
δϕ0g

βᾱ
ψ .

sup
M
|∆ψ(tRψ − trψχ)| ≤ Ct+

1

4C
δϕ0 and Cψ ≤ C,

for some constant C > 0.

(119)

We could choose ε > 0 even smaller such that for any 0 < t < ε, we
have that Ct < 1

4C
δϕ0 . Thus by (117), we get that∫

M

(πψPt,ψu)uωnψ ≤ −
δ0

2

∫
M

|∇u|2ψωnψ +
δϕ0

4

∫
M

|∇u|2ψωnψ,

≤ −δϕ0

4

∫
M

|∇u|2ψωnψ.
(120)

Thus πψPt,ψu = 0 if and only if u is a constant. The same computation
also implies that the adjoint operator (πψPt,ψ)tu = 0 if and only if u is a
constant since by definition,∫

M

u(πψPt,ψ)tuωnψ =

∫
M

(πψPt,ψu)uωnψ. (121)

By the fredholm theorem for πψPt,ψπψ, we can get thatDFt,ψ|ψ = πψPt,ψπψ :
C∞ψ → C∞ψ is a bijection if 0 < t < ε and ‖ψ − ϕ0‖C6(M) < ε.
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We have shown in the last lemma that DFt,ψ|ψ has an inverse defined on
C∞ψ . Next we show a schauder type apriori estimate for operator DFt,ψ|ψ,
then by an approximation by smooth functions fi ∈ C∞ψ → f ∈ Cα

ψ in

hölder space, we could get that DFt,ψ|ψ : C4,α
ψ → Cα

ψ is a surjective. And
it’s injective because of Lemma 5.3.

Lemma 5.4. Suppose ε > 0 is the constant chosen as in Lemma 5.3. Given
α ∈ (0, 1), 0 < t < ε and ψ ∈ H with ‖ψ − ϕ0‖C6(M) < ε, for any u ∈ C∞ψ ,
we have

‖u‖C4,α(M) ≤ Ct−γ−1‖DFt,ψ|ψ(u)‖Cα(M), (122)

where γ is a constant chosen as in Lemma 3.2 and C > 0 is some constant
depending on ϕ0 only.

Proof. Denote f = DFt,ψ|ψ(u). Then we get

∆2
ψu = −1

t
f +

1

t
〈χ− tRicψ, ∂∂̄u〉ψ −

1

t

∫
M

〈χ− tRicψ, ∂∂̄u〉ψωnψ. (123)

Thus by standard schauder estimate, we get

‖u‖C4,α(M) ≤ C‖∆ψu‖C2,α(M)

≤ C

t

(
‖f‖Cα(M) + ‖u‖C2,α(M)

)
.

(124)

By the interpolations in Lemma 3.2,

‖u‖C4,α(M) ≤
C

t
‖f‖Cα(M) +

C

t

(
η‖u‖C4,α(M) + Cη−γ‖u‖L2(M)

)
, (125)

where γ is the constant in Lemma 3.2. Choose η = t
2C

, we get

‖u‖C4,α(M) ≤
C

t
‖f‖Cα(M) + Ct−γ−1‖u‖L2(M). (126)

Following computations in Lemma 5.3, inequality (120), since
∫
M
uωnψ = 0,

we get∫
M

u2ωnψ ≤ C

∫
M

|∇u|2ψωnψ ≤ C

∫
M

fuωnψ ≤ C‖f‖L2(M)‖u‖L2(M). (127)

Thus, we have that
‖u‖L2(M) ≤ C‖f‖L2(M), (128)

and then
‖u‖C4,α(M) ≤ Ct−γ−1‖f‖Cα(M). (129)
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Now we’re ready to prove Theorem 5.2.

Proof. By Lemma 5.3, Lemma 5.4 and standard inverse function theorem
we have already shown the local invertibility of Ft,ψ : H4,α

ψ → Cα
ψ from ψ

to Ft,ψ(ψ). Now we estimate the size of invertible neighborhood of Ft,ψ(ψ)
in Cα

ψ . Given y ∈ Cα
ψ , we could define map

Ψy : H4,α
ψ → C4,α

ψ ,

x 7→ x+ (DFt,ψ|ψ)−1(y − Ft,ψ(x)).
(130)

Note that x is the fixed point of Ψy if and only if y = Ft,ψ(x). In fact Ψy

is a contraction map near ψ.

Claim 5.5. If t > 0, ψ ∈ H satisfies the assumptions in Theorem 5.2, then
there exists a constant δ > 0 depending on ϕ0 such that for any x0, x1 ∈
H4,α
ψ with ‖x0−ψ‖C4,α(M) ≤ δtγ+1 and ‖x1−ψ‖C4,α(M) ≤ δtγ+1 for γ given

in Lemma 3.2, then

‖Ψy(x1)−Ψy(x0)‖C4,α(M) ≤
1

2
‖x1 − x0‖C4,α(M), (131)

Proof. Proof of claim 5.5. Denote xs = sx1 + (1 − s)x0 for s ∈ [0, 1] and
we compute

Ψy(x1)−Ψy(x0) = x1 − x0 − (DFt,ψ|ψ)−1(Ft,ψ(x1)− Ft,ψ(x0)),

=

∫ 1

0

(DFt,ψ|ψ)−1
(
(DFt,ψ|ψ −DFt,ψ|xs)(x1 − x0)

)
ds

(132)

where for any ϕ ∈ H4,α
ψ

DFt,ψ|ϕ(u) = −t∆2
ϕu+〈χ−tRicϕ, ∂∂̄u〉ϕ−

∫
M

(
−t∆2

ϕu+〈χ−tRicϕ, ∂∂̄u〉ϕ
)
ωnψ.

(133)

We first consider

(DFt,ψ|ψ −DFt,ψ|xs)(x1 − x0)

= −t(∆2
ψ −∆2

xs)(x1 − x0) +
(
(χ− tRicψ)pq̄g

αq̄
ψ g

pβ̄
ψ

− (χ− tRicxs)pq̄g
αq̄
xs g

pβ̄
xs

)
(x1 − x0),αβ̄

+

∫
M

{t(∆2
ψ −∆2

xs)(x1 − x0)−
(
(χ− tRicψ)pq̄g

αq̄
ψ g

pβ̄
ψ

− (χ− tRicxs)pq̄g
αq̄
xs g

pβ̄
xs

)
(x1 − x0),αβ̄}ωnψ.

(134)
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Thus we have

‖(DFt,ψ|ψ −DFt,ψ|xs)(x1 − x0)‖Cα(M) ≤ C‖ψ − xs‖C4,α(M)‖x1 − x0‖C4,α(M),
(135)

for some C > 0 depending on ‖xs‖C4,α(M) and ϕ0. Combining (132) and
(135), by Lemma 5.4 we get that

‖Ψy(x1)−Ψy(x0)‖C4,α(M) ≤ Ct−γ−1( max
s∈[0,1]

‖ψ−xs‖C4,α(M))‖x1−x0‖C4,α(M),

(136)
where C > 0 is a constant depending on maxs∈[0,1] ‖xs‖C4,α(M) and ϕ0. If
we have ‖x0 − ψ‖C4,α(M) ≤ δtγ+1 and ‖x1 − ψ‖C4,α(M) ≤ δtγ+1 for some
constant δ � 1 to be determined, then ‖xs‖C4,α is uniformly bounded on
s ∈ [0, 1] and ‖ψ − xs‖C4,α(M) ≤ δtγ+1. Therefore, we have

‖Ψy(x1)−Ψy(x0)‖C4,α(M) ≤ Cδ‖x1 − x0‖C4,α(M). (137)

From the last inequality, it’s clear that we should choose our δ = 1
2C

and
then it ends the proof of claim.

We continue the proof of Theorem 5.2. For y ∈ Cα
ψ with ‖y−Ft,ψ(ψ)‖Cα(M) ≤

εt2γ+2, we have

‖Ψy(ψ)− ψ‖C4,α(M) = ‖(DFt,ψ|ψ)−1(y − Ft,ψ(ψ))‖C4,α(M)

≤ Ct−γ−1‖y − Ft,ψ(ψ)‖Cα(M) ≤ Cεtγ+1,
(138)

for some constant C > 0 just depending on ϕ0. We could choose even
smaller ε > 0 such that Cε < 1

2
δ where δ is given in the above claim. Thus

Ψi
y(ψ) would be a contracting sequence converging to the fixed point of Ψy.

Following the previous discussion, the fixed point of Ψy, say x satisfies that
Ft,ψ(x) = y.

Combining Theorem 5.2 and Lemma 5.1, we could prove our Main The-
orem 2.5 now.

Proof. Let k = [2γ + 2] the largest integer smaller than or equal to 2γ + 2.
By Lemma 5.1 we could find an approximated twisted cscK metric ϕt for
every t > 0 with bounds

‖Ft(ϕt)‖Cα(M) ≤ Ctk+1, ‖ϕt − ϕ0‖C6(M) ≤ Ct. (139)

Denote ψt = ϕt −
∫
M
ϕtω

n
ϕt , then

‖Ft,ψt(ψt)‖Cα(M) ≤ C1t
k+1, ‖ψt − ϕ0‖C6(M) ≤ C2t. (140)
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For t < min{( ε
C1

)k+1−(2γ+2), 1
C2
ε, ε} where ε is determined in Theorem

5.2, we have that

‖0− Ft,ψt(ψt)‖Cα(M) ≤ εt2γ+2, ‖ψt − ϕ0‖C6(M) < ε. (141)

Thus by Theorem 5.2, we get that there exists ϕ ∈ C4,α
ψt

such that Ft,ψt(ϕ) =
0 and then Ft(ϕ) = 0.
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