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Abstract of the Dissertation

Invariants of transverse and annular links in combinatorial link Floer homology

by

Apratim Chakraborty

Doctor of Philosophy

in

Mathematics

Stony Brook University

2019

In this dissertation, we explore the Ozsváth-Szabó-Thurston transverse invariant and
various concordance invariants that could be defined using combinatorial link Floer homology.
We prove that non-vanishing of the transverse invariant for a link is equivalent to non-vanishing
of the invariant for certain transverse cables of that link. As an application, to these results
we generate many infinite families of examples of Legendrian and transversely non-simple
topological link types. Then, we give a refinement of the transverse invariant. Finally, we
define an annular concordance invariant and study its properties. When specialized to braids,
this invariant gives bounds on band rank. We also study the relationship of this invariant
with transverse and braid monodromy properties.
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Chapter 1

Introduction and summary of results

Symplectic structures on even dimensional manifolds and related contact structures on odd
dimensional manifolds originated from physics. In the presence of contact structures, an
important version of knot theory studies Legendrian links which are tangent to the contact
planes. Another important class, transverse links are transverse to the contact planes.
Legendrian and transverse links play an important role in the study of contact structures in
3-manifolds. They also provide interesting applications to smooth topology such as finding
obstructions to slicing a knot. In this thesis, we will explore Legendrian and transverse
links and the closely related problem of finding bounds on link cobordisms using the tools
of combinatorial link Floer homology.

Contact structure on a 3-manifold admits a surgery diagram represented by Legendrian
links. So, it is interesting to study isotopy of Legendrian links through Legendrian links and
isotopy of transverse links through transverse links. The classical invariants of Legendrian
isotopy are Thurston-Bennequin and rotation numbers. If any topological link type has
Legendrian representatives that are not distinguished by the classical invariants, it is called
Legendrian non-simple. Legendrian contact homology introduced by Eliashberg and Chekanov
[6] is a very powerful tool in this domain that is used in detecting Legendrian non-simplicity.
Similarly, the self-linking number is a basic topological invariant for transverse knots. If any
two transverse representatives in a topological link type with the same self-linking number are
isotopic, then the topological link type is called transversely simple. Otherwise, it is called
transversely non-simple. At first, it was not clear if there are any transversely non-simple
link types. The first examples of transversely non-simple knots were found by Birman and
Menasco [3] using braid foliation techniques and independently by Etnyre and Honda [12]
who showed that (2, 3) cable of the (2, 3) torus knot was transversely non-simple using convex
surface theory. Etnyre and Honda also showed that cables of transversely simple links are
simple under some conditions.

An effective invariant of transverse knots, θ was defined in combinatorial link Floer
homology by Ozsváth, Szabó and Thurston [30]. They also defined the related invariants
λ+ and λ− for Legendrian links. The invariant θ has been used several times to give
examples of transversely non-simple link types. Its especially powerful compared to the
classical techniques that focused on specific examples. Usually such examples involve finding
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Figure 1.1: A cable of trefoil knot

representatives T1 and T2 of a link type θ̂(T1) = 0 and θ̂(T2) 6= 0.

Cabling is a well-known operation on knots and links [See Figure 1.1]. Cables are
interesting objects to study in this context because they provide a natural avenue to look
for examples of transversely non-simple link types, and also they provide an interesting
insight into some concordance invariants. The work of Etnyre and Honda hints that it might
be possible to show that cables of transversely non-simple links are also non-simple under
certain conditions. In chapter 3, we study transverse and Legendrian non-simplicity under
cabling using combinatorial link Floer homology.

The transverse invariant [30] is defined combinatorially using chain complexes associated
to grid diagrams. We can obtain grid diagrams for cables Lp,q (for p ≥ 2) by subdividing
the grid of L. Then we consider a special version of combinatorial knot Floer complex CLp,q

associated to the grid diagram of Lp,q, and a chain complex pC (obtained by a change of
variable from the combinatorial knot Floer complex) associated to the grid diagram of L.
Then, we observe that there is a natural inclusion i of this complex to the collapsed grid
complex of the cable Lp,q. The key theorem states that i induces inclusion in homology.

Theorem 1.0.1. The map i induces an inclusion map on homology i.e.,

H∗(CLp,q) = H∗(i(pC ))⊕F2[V ] R

for some F2[U ] module R.

The above theorem also implies that non-vanishing of θ̂ of a transverse link L is equivalent
to non-vanishing of θ̂ for some transverse representatives of the cable Lp,q.

Theorem 1.0.2. θ̂(Lp,q) = 0 if and only if θ̂(L) = 0.

As an application of this theorem, we can obtain new non-simple knots by cabling
previously known examples such as m(10)132 and any of the infinite families in [1, 20, 39].

In a similar vein, one can also obtain Legendrian cables Kp,−pr±1 for r ≤ tb(K) + n(K)
(n(K) is the minimum grid number of L) for knot K. We prove the following result about
Legendrian invariants λ+(K) and λ−(K) using Theorem 3.2.1.

2



Theorem 1.0.3. λ+(Kp,−pr±1) = λ−(Kp,−pr±1) if and only if λ+(K) = λ−(K).

As a corollary, we can show that certain infinite family of cables of m(52) is Legendrian
non-simple.

In the second part of our thesis, we focus on braids and annular links and certain chain
complexes that can be assigned to them. Transverse links are equivalent to braid conjugacy
classes up to positive (de)stabilizations. So, we can get more insights into transverse links
by studying braid invariants that are well behaved under positive (de)stabilizations.

In chapter 4, we give a refinement of transverse GRID invariant θ. Baldwin, Vela-Vick and
Vértesi [2] showed the equivalence of LOSS and GRID transverse invariants for transverse
knots in S3 with the standard contact structure. We consider a deformed filtered complex
that is isomorphic to the complex considered by Baldwin, Vela-Vick, and Vértesi. An
invariant of braid conjugacy class η can be defined in this complex. By studying stabilization
moves in the complex, we show that η is very similar to the analogous invariant Kappa in
Khovanov homology [18].

Theorem 1.0.4. η(β) is a braid conjugacy class invariant. Also η(β) ≤ η(β+stab) ≤ η(β)+ 1
2
.

Since it only increases under positive stabilization, one can get a transverse invariant by
taking minimum over all braid representatives.

Theorem 1.0.5. Let β be a N braid and T be the transverse link represented by β. If
θ̂(T ) 6= 0 then η(β) =∞ and −N

2
≤ η(β) ≤ N

2
otherwise.

The above theorem shows that η is a refinement of the transverse invariant θ.

In chapter 5, we study annular links and cobordisms. Questions in concordance are
particularly interesting in low dimensional topology. If we loosen the conditions and only
require that the cylinder be locally flat, rather than smooth, we obtain the topological
concordance group. There are examples of slice knots that are not topologically concordant
to the unknot. They can be used to give examples of exotic structure in R4. On a different
note the work of Lee Rudolph [35] tells us that braided banded cobordisms are related to
ribbon immersed surfaces. This is a potentially effective way of finding ribbon obstruction
to slice knot. This was our original motivation that led to a thorough study of annular links
using combinatorial link Floer homology.

Inspired by similar work in Khovanov homology by Grigsby-Licata-Wehrli [13], we can
define invariant AL (and an invariant AL which is related by mirroring) of annular links
using two filtrations from combinatorial link Floer homology. AL : [0, 2]→ R is a piece-wise
linear continuous function constructed using filtered grid complexes of an annular link L. It
is an annular link invariant and gives genus bound for strong annular cobordisms (smooth).

Theorem 1.0.6. If Σ is a strong annular cobordism of genus g between two annular links
L1 and L2 then |AL1(t)−AL2(t)| ≤ g(1− t

2
).

3



Braided cobordisms are the most interesting examples of annular cobordism. We specialize
the invariant A for braids and braided cobordisms in which case it gives a lower bound on
band rank.

Theorem 1.0.7. Let β be an n-braid with l components and Idn be the identity n-braid.
Then Aβ(t)−AIdn(t) ≤ rkn(β)+l−n

2
(1− t

2
).

Work of Lee Rudolph shows that every ribbon immersed cobordism is isotopic a braided
banded cobordism. So, invariants like AL(t) can be used to obtain ribbon obstruction if
their behavior is well understood under stabilization.

We define a deformed complex tC. AL can also be interpreted as a max grading of a
non-torsion element in a deformed knot Floer complex tC.

Theorem 1.0.8. AL(t) = −Ft([α]).

A special case of tC at t = 0 was considered in chapter 4.

We study the annular invariant under crossing change and braid stabilizations in this
complex. We give a slice-Bennequin like lower bound for band rank using these properties
of this complex.

Theorem 1.0.9. Let L be an annular link with l components and L be the Legendrization
of L. Then we have the following inequality,

AL(t) ≥ lk(U,L)t

4
+ (1− t

2
)
tb(L) + |rot(L)|+ l + lk(U,L)

2

holds for all t ∈ [0, 2].

As an application, we get the following lower bound on the band rank.

Theorem 1.0.10. If β is a n-braid with l componenets and L its Legendrization then,

rkn(β) + l − n
2

≥ tb(L) + |rot(L)|+ l

2
.

Finally, we explore some relations with transverse invariants and braid monodromy
properties. In particular, we define subsets Mt of braids such that for 0 ≤ t1 ≤ · · · ≤ tn < 2
,

QP ⊆Mt1 ⊆ · · · ⊆Mtn ⊆ RV.

WhereQP andRV denotes the monoids of Quasi-positive and right-veering braids respectively.

Theorem 1.0.11. Membership in Mt is a transverse invariant and furthermore, Mt is a
monoid.

In chapter 6, we prove an inequality about τ of cables using grid homological framework
developed in chapter 3. We also give a different interpretation of τ as a filtration level of
a distinguished class. We propose that this relation could lead to a viable approach for
computing invariants like τ and the annular invariant.
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Chapter 2

Preliminaries

2.1 Legendrian and transverse links in contact structures

A contact structure on a 3-manifold M is a is a maximally nonintegrable plane field ξ. We say
the contact structure is co-orientable if there is a 1-form α such that ξ = ker α and α∧dα > 0.
We will consider the standard tight contact structure (R3, ξst), with ξst = ker(dz−ydx). An
oriented link L ⊂ R3 is called Legendrian if it is everywhere tangent to ξst. An oriented
link L ⊂ R3 is called transverse if it is everywhere transverse to ξst and dz− ydx > 0 along
the orientation. Any smooth link can be perturbed by a C0 isotopy to be Legendrian or
transverse. We say that two Legendrian (resp. transverse) links are Legendrian isotopic
(resp. transversely isotopic) if they are isotopic through Legendrian links (resp. transverse
links). We refer the reader to [9] for a thorough exposition of Legendrian and transverse
links.

It’s convenient to depict a Legendrian link is through its front projection or projection in
the x− z plane. A generic front projection has three features: it has no vertical tangencies;
it is immersed except at cusp singularities; and at all crossings, the strand of larger slope
passes underneath the strand of the smaller slope. Any front projection with these features
corresponds to a Legendrian link, with the y coordinate given by the formula y = dz

dx
.

The two main classical invariants of a Legendrian link L are are the Thurston−Bennequin
invariant tb(L) and the rotation number r(L). They can be easily defined in terms of
the front projection D(L) of L. Let wr(D(L)) denote the writhe of the projection. Then,

tb(L) = wr(D(L))− 1

2
#{cusps in D(L)}

and,

r(L) =
1

2
#({downward-oriented cusps} − {upward-oriented cusps}).

The transverse push-off T (L) of an oriented Legendrian link L is the transverse link type
which can be represented by transverse link arbitrarily close to L. Also, any transverse link
can be represented as a transverse push-off of some Legendrian link. The main classical
invariant of a transverse link L is the self-linking number sl(L). For a transverse push-off,
T (L) , sl(T (L)) = tb(L)− r(L).
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Figure 2.1: Grid diagram of figure eight

2.2 Grid Diagrams

Grid diagrams will be the central tool in our discussion. The combinatorial link Floer
complexes are defined using grid diagrams. In this section, we will define grid diagrams, grid
moves and how they are related to Legendrian and transverse links.

2.2.1 Toroidal grid diagram and grid moves

Definition 2.2.1. A planar grid diagram P with grid number n is an n×n grid with squares
marked with X’s and O’s in a way that no square contains both X and O, and each row and
each column contains exactly one X and one O.

X will denote the set of squares marked with an X, and O the ones containing an O.
Every planar grid diagram P determines a diagram of an oriented link L in the following
way: In each row connect the O-marking to the X-marking, and in each column connect the
X-marking to the O-marking with an oriented line segment, such that the vertical segments
always pass over the horizontal ones. We call P a planar grid diagram for L. Conversely,
every oriented link L can be represented by some planar grid diagram. If L is a link with l
components L1, L2, .., Ll, Xi (resp. Oi) denotes X marked squares (resp O marked squares)in
Li . Then,we can write X = X1 ∪ X2 ∪ .. ∪ Xl and O = O1 ∪O2 ∪ .. ∪Ol.

To work in Heegaard Floer homology setting, we find it convenient to transfer the diagram
to torus T.

Definition 2.2.2. A toroidal grid diagram can be obtained by identifying the opposite sides of
a planar grid diagram P : its top boundary segment with its bottom one and its left boundary
segment with its right one. The resulting diagram D in torus T is called a toroidal grid
diagram, or simply a grid diagram of the link L.

There are certain moves of grid diagrams that are the equivalent to Reidemeister moves
for knot diagrams. They are commutations and stabilizations.

6



Figure 2.2: Commutation move

Definition 2.2.3. In a grid diagram D, every column determines a closed interval of real
numbers that connect the height of its O-marking with the height of its X-marking. Consider a
pair of consecutive columns in D, and suppose that the two intervals associated with them are
disjoint, or one contains the interior of the other. We say that the diagram D′ differs from D
by a column commutation, if it can be obtained by interchanging two consecutive columns of
D that satisfy the above condition. A row commutation is defined analogously, using rows in
place of columns. Column or row commutations collectively are called commutation moves.

Definition 2.2.4. Let D be an n× n grid diagram. We say that the (n+ 1)× (n+ 1) grid
diagram D′ differs from D by a stabilization (or that D′ is the stabilization of D), if it can be
obtained from D in the following way: Choose a marked square in D, and erase the marking
in it, in the other marked square in its row and in the other marked square in its column.
Then split the row and the column of the chosen marking in D into two, that is, add a new
horizontal and a new vertical line to get an (n+ 1)× (n+ 1) grid.

There are four ways to insert markings in the two new rows and columns to have a grid
diagram. When the original square is marked with an X, these are called X: NE, X: NW, X:
SE and X: SW [See Fig 2.3]. It turns out that it suffices to consider only these stabilizations
for getting all Reidemeister moves.

2.2.2 Grid diagrams of Legendrian and transverse links

The grid diagram D can be viewed as the front projection of a Legendrian link via the
following construction. First, we smooth northwest and southeast corners and turn southwest

7



Figure 2.3: Stabilization Moves

and northeast corners into cusps. Then, to avoid vertical tangencies, we tilt the diagram 45°

clockwise. Lastly, we reverse all the crossing to ensure the correct crossing convention for a
Legendrian front projection [See Figure 2.4]. It is easy to see that if D is a grid diagram of a
link L, the Legendrian knot associated to D, denoted by LD is the Legendrian representative
of m(L).

Proposition 2.2.1. [36] Any Legendrian link type can be represented by some toroidal grid
diagram. Two toroidal grid diagrams represent the same Legendrian link type if and only if
they can be connected by a sequence of commutation and (de)stabilization of types X: NW
and X: SE on the torus.

Figure 2.4: Getting the front projection of a Legendrian link from grid diagram

There are also formulas of classical Legendrian and transverse invariants in terms of
corners in the grid corresponding to the front projection which will be useful to us. Let
xNW (and similarly xSW ,xSE,xNE) denote the number of northwest (similarly southwest,
southeast, northeast) X markings, and define oNW , oSW , oSE, oSW similarly. Then,

r(LD) =
1

2
(xNE + oSW − xSW − oNE) (2.1)

8



and,

tb(LD) = wr(D)− 1

2
(xNE + oSW + xSW + oNE). (2.2)

.
We can also obtain correspondence from transverse links to grid diagrams by thinking of

the transverse link as a push-off of a Legendrian link L and then taking the grid diagram
DL corresponding to L.

Proposition 2.2.2. [36] Any transverse link type can be represented by some toroidal grid
diagram. Two toroidal grid diagrams represent the same transverse link type if and only if
they can be connected by a sequence of commutation and (de)stabilization of types X: NW,
X: SE and X: SW on the torus.

2.3 Algebraic preliminaries

Now recall some homological algebra that will play an important role in dealing with our
main tools in grid homology. Let us assume R′ = F2[U ].

Definition 2.3.1. An R′-module M is a graded R′-module if it admits a splitting M =⊕
d

Md over F2, such that Uα ·Md ⊂Md−α for each d ∈ R and α ∈ R≥0.

A graded R′-module homomorphism is a homomorphism f : M →M ′ between two graded
R′-modules that preserves the grading, i.e. that sends Md to M ′

d for every d ∈ R. An
R′-module homomorphism is called homogeneous of degree s, if it maps Md to M ′

d+s for all
d, s ∈ R.

Definition 2.3.2. A graded chain complex over R′ is a pair (C, ∂), where C is a graded
R′-module equipped with R′-module homomorphism ∂ : C → C. The map ∂ is homogeneous
of degree -1 and satisfies ∂ ◦ ∂ = 0.

Definition 2.3.3. Let (C, ∂) and (C ′, ∂′) be two graded chain complexes over R′. A chain
map f : (C, ∂) → (C ′, ∂′) is an R′-module homomorphism with the property ∂′ ◦ f = f ◦ ∂.
If the chain map f is also a graded homomorphism, then f is a graded chain map.

Definition 2.3.4. An isomorphism of graded chain complexes is a graded chain map f : (C, ∂)→
(C ′, ∂′) for which there exists another graded chain map g : (C ′, ∂′) → (C, ∂) satisfying the
properties f ◦ g = IdC′ and g ◦ f = IdC. Two graded chain complexes are called isomorphic,
if there is an isomorphism connecting them.

We will also consider many cases when R′ will be a F2[U1, · · · , Uk] module. The above
definitions are similarly adapted in those cases.

Considering graded chain complexes, the interpretation of homology is the following:

Definition 2.3.5. Suppose that (C, ∂) is a graded chain complex. Split C into homogeneous
submodules as C =

⊕
d

Cd. For each d ∈ R consider the homology module Hd = Cd ∩

Ker ∂/Cd ∩ Im ∂. The homology of (C, ∂) is the R′-module H(C) =
⊕
d

Hd.

9



A graded chain map f : C → C ′ between two graded chain complexes over R′ induces a
well-defined graded map on homology, H(f) : H(C)→ H(C ′). If the induced homomorphism
is an isomorphism, then f is called a quasi-isomorphism.

Definition 2.3.6. Let f, g : (C, ∂)→ (C ′, ∂′) be two graded chain maps between graded chain
complexes over R′. An R′-module homomorphism h : C → C ′ is called a chain homotopy
from g to f if it is homogeneous of degree 1, and satisfies the equality

f − g = ∂′ ◦ h+ h ◦ ∂.

We say that f and g are chain homotopic if there exists a chain homotopy between them.

It is easy to show that chain homotopic maps induce the same map on homology.

Definition 2.3.7. A chain map f : C → C ′ is a chain homotopy equivalence if there exists
a chain map φ : C ′ → C with the property that f ◦ φ and φ ◦ f are both chain homotopic
to the respective identity maps. In this case, φ is called a chain homotopy inverse to f . C
and C ′ are chain homotopy equivalent complexes if there is a chain homotopy equivalence
connecting them.

Now we define the notion of mapping cone that will be useful in some proofs of Chapter
3.

Definition 2.3.8. Let (C, ∂) and (C ′, ∂′) be two chain complexes over R. The mapping
cone of a chain map f : C → C ′ is the chain complex, Cone(f) := (C ⊕C ′, ∂Cone), where the
differential ∂Cone for an element (c, c′) ∈ C ⊕ C ′ is defined as

∂Cone(c, c
′) = (−∂(c), ∂(c′) + f(c)).

Proposition 2.3.1. Consider the following short exact sequence of chain complexes.

0 −−−−−−→ A −−−−−−→ B −−−−−−→ C −−−−−−→ 0.

Then, there exists the long exact sequence of homologies:

. . . −−−−−−→ Hn+1(C) −−−−→ Hn(A) −−−−→ Hn(B) −−−−→ Hn(C) −−−−−−→ . . . .

Corollary 2.3.1. For C,C ′ chain complexes, a chain map f : C → C ′ is a quasi-isomorphism
if and only if H(Cone(f)) = 0.

Proof. There exists a short exact sequence of chain complexes:

0 −−−−−−→ C ′
ϕ

−−−−→ Cone(f)
ψ

−−−−→ C −−−−−−→ 0.

Consider the associated long exact sequence

. . .
Hn+1(ϕ)

−−−−−−→ Hn+1(Cone(f))
Hn(ψ)

−−−−→ Hn(C)
Hn(f)

−−−−→ Hn(C ′)
Hn(ϕ)

−−−−→ Hn(Cone(f)) −−−−→ . . .

10



If H(Cone(f)) = 0, it is easy to see that H(f) is both a monomorphism and an
epimorphism. Therefore, H(f) is an isomorphism.

Now suppose that f is a quasi-isomorphism. Then, H(f) is a monomorphism, thus,
because of the exactness, Ker(H(f)) = Im(H(ψ)) = 0. This also means that H(ϕ) is an
epimorphism, since Ker(H(ψ)) = Im(H(ϕ)) = H(Cone(f)). But we also know that H(f) is
an epimorphism, therefore Im(H(f)) = Ker(H(ϕ)) = H(C ′). Since H(ϕ) maps H(C ′) to 0,
and it is an epimorphism at the same time, we get that H(Cone(f)) = 0.

Proposition 2.3.2. Suppose that C is a free, graded chain complex over R that is bounded
above. Then H(C) 6= 0 if and only if H( C

Uα·C ) 6= 0 for a fixed α ∈ R>0.

Proof. We assumed that C is free, thus there exists a short exact sequence

0 −−−−−−→ C
·Uα

−−−−−−→ C −−−−→ C

Uα · C
−−−−→ 0

Considering the associated long exact sequence, it is easy to see that if H(C) = 0, then
H( C

Uα·C ) = 0.
Now suppose that H(C) 6= 0. Since C is bounded above, H(C) has a homogeneous,

non-zero element x with maximal grading. Then x cannot be of the form y · Uα for any
y ∈ H(C), else the grading of x was not maximal. Therefore x must inject to H( C

Uα·C ), and
this way we got a non-zero element of H( C

Uα·C ).

Now let us define the notion of filtrations that will be used throughout the text.

Definition 2.3.9. Let I be a partially ordered set. An I-filtration on a chain complex C is
the choice of subcomplex Fi ⊆ C for each i ∈ I, such that Fi ⊆ Fi′ if i ≤ i′.

We will be focused on Z, 1
2
Z and R filtrations in our discussion. For the next two

definitions, chain complexes C and C ′ are given I-filtrations (I is Z, 1
2
Z or R) F and F ′

respectively.

Definition 2.3.10. A map f : C → C ′ is said to be filtered of degree k ∈ I if f(Fi) ⊆ F ′i+k
for all i ∈ I.

Definition 2.3.11. Two filtered chain complexes (C, ∂) and (C ′ , ∂′) are said to be chain
homotopy equivalent if there exists filtered chain maps f : C → C ′ and g : C ′ → C and
filtered chain homotopies H : C → C and H

′
: C ′ → C ′ satisfying, gf − IdC = H∂ + ∂H and

fg− IdC′ = H
′
∂
′
+ ∂

′
H. The maps f and g are called filtered chain homotopy equivalences.

Sometimes, we will be interested in chain complexes with shifted gradings. The following
notation is useful for keeping track of those things. Let (C, ∂) be a bi-graded chain complex
and C

⊕
i,j Ci,j where Ci,j is the sub-module generated by elements in bi-grading (i, j). Then,

we define a bi-graded chain complex C[a, b] = C ′ so that C ′i,j = Ci−a,j−b for a, b ∈ Z. Similarly,
if we have a filtered graded complex complex (C, ∂) with filtration F . C ′ = C[a, b] will denote
the complex that satisfies F j(C ′i) = F j−b(Ci−a).

11



2.4 Grid homology

In this section, we will introduce various flavors of grid homology and state the key results
that will be used later.

2.4.1 Grid states and gradings

Definition 2.4.1. A grid state x for a grid diagram D with grid number n consists of n
points in the torus such that each horizontal and each vertical circle contains exactly one
element of x. The set of grid states for D is denoted by S(D).

Equivalently, we can regard the generators as n-tuples of intersection points between the
horizontal and vertical circles, such that no intersection point appears on more than one
horizontal or vertical circle.

Figure 2.5: Rectangles in a
grid diagram of a link

Given x, y ∈ S(D), let Rect(x, y) denote the space of
embedded rectangles with the following properties. First of all,
Rect(x, y) is empty unless x, y coincide at exactly n−2 points.
An element r of Rect(x, y) is an embedded disk in T, whose
boundary consists of four arcs, each contained in horizontal or
vertical circles; under the orientation induced on the boundary
of r, the horizontal arcs are oriented from a point in x to a
point in y. The set of empty rectangles r ∈ Rect(x, y) with
x ∩ Int(r) = φ is denoted by Recto(x, y). More generally, a
path from x to y is a 1-cycle γ on T contained in the union
of horizontal and vertical circles such that the boundary of the
intersection of γ with the union of the horizontal curves is y−x
, and a domain ∆ from x to y is a two-chain in T whose boundary ∂∆ is a path from x to
y. The set of domains from x to y is denoted Π(x, y).

Now we will introduce the gradings that will be used in various flavors of grid homology.
Maslov grading function M : S(D)→ Z is defined as

M(x) = J (x−O, x−O) + 1.

Here for sets P,Q of finitely many points in the grid,

J (P,Q) :=
∑
a∈P

#{(a, b) ∈ (P,Q)|b has both coordinates strictly greater than the ones of a}.

For each component Li , the Alexander grading function Ai : S(D)→ 1
2
Z is defined as

Ai(x) = J (x− 1

2
(X + O),Xi −Oi)−

ni − 1

2
.

If there is an empty rectangle r between x and y and the Alexander and Masolov gradings
also satisfy,

M(y)−M(x) = −1 + 2#(r ∩O)

12



and,

Ai(y)− Ai(x) = #(r ∩Oi)−#(r ∩ Xi).

Total Alexander grading A(x) is given by the sum of all component grading functions.
It satisfies,

A(x) =
1

2
(J (x−O, x−O)− J (x− X, x− X)− n− 1

2
. (2.1)

There is also a winding number formula for computing Alexander gradings of link components.
Let wLi(q) denote the winding number of component Li around a point q and (Pi)i=1,··· ,8n
be the corners of X and O markings. Then,

Ai(x) = −
∑
p∈x

wLi(p) +
1

8

8n∑
j=1

wLi(Pi)−
1

2
. (2.2)

2.4.2 Fully blocked filtered grid complex G̃C
Given a toroidal grid diagram D of a link L , we associate to it a chain complex (G̃C(D), ∂̃)

as follows. G̃C(D) is a free F2 module generated by grid states S(D).

Given x ∈ S(G), the differential map ∂̃ : G̃C(D) → G̃C(D), is defined in the following
way ,

∂̃x :=
∑

y∈S(D)

∑
r∈Recto(x,y),r∩O=φ

y ∀x ∈ S(D)

It can be shown that ∂̃ ◦ ∂̃ = 0 . Also, the Maslov grading when extended as a bi-linear
form gives the homological grading of this complex. Moreover, Alexander grading functions
Ai(x) gives filtrations when extended as bi-linear form. Therefore, (G̃C(D), ∂̃) can be thought

of as a filtered chain complex. Its homology,denoted by G̃H(D) isomorphic to F2n−1

2 . The

associated graded complex is denoted by (G̃C(D), ∂̃X).

2.4.3 Simply blocked filtered grid complex ĜC
LetD be the grid diagram of an oriented link L with l components. O is the set of O-markings
in D. sO ⊂ O is a subset that contains precisely one O marking from each component of L.
Elements of sO are called special and represented as ’φ’ in D. The simply blocked filtered

chain complex (ĜC(D), ∂̂) is defined as -

ĜC(D) = Free F2[V1, V2, ..., Vn] module over grid states S(D).

13



The differential ∂ is defined in the following way-

∂̂x :=
∑

y∈S(D)

∑
r∈Recto(x,y),r∩sO=φ

V
O1(r)

1 ...V Om(r)
m y ∀x ∈ S(D)

The homological grading of a generator x ∈ S(D) in this complex is again given by

Maslov grading. Multiplication by Vi lowers the Maslov grading by 2. ∂̂ lowers Maslov
grading by 1.

(ĜC(D), ∂̂) also comes with additional filtration for each link component. For a x ∈ S(D)
the i’th link component the Alexander filtration which are given by Ais on generators. Then,
Ai’s are extended to the whole module so that multiplication by Vk lowers Ai by 1 if Xk ∈ Xi

and it remains unchanged otherwise.

It can be shown that multiplication by each Vi is filtered chain homotopic to 0. So can
be thought of as a F2 module. Furthermore its homology, denoted by ĜH(L), isomorphic to

F2l−1

2 . Ozsvath and Szabó showed that the filtered chain homotopy type of (ĜC(D), ∂̂) is an
invariant of L.

τ(L) is particularly interesting invariant that one can extract from the filtered chain
homotopy type.

Definition 2.4.2. Let G be grid diagram of link L, τ(L) is defined to be the minimal value

of i such that the inclusion H0(Fi(ĜC(G))→ H0(ĜC(G)) is non zero.

It turns out that τ(L) is a smooth concordance invariant. In fact, for a knot, τ gives
lower bound on 4-ball genus. It is also possible to define a τ -set by considering other Maslov
gradings.

Sometimes we will be interested in the associated graded complex , (ĜC(D), ∂̂X).Its

homology groups are written as G̃H i(L, j) where i indicates Maslov grading and j indicates

Alexander grading. We also have, G̃H(D) ∼= ĜH(L) ⊗ W⊗n−l. Notice that even though

G̃H(D) depends on grid number, ĜH(L) is a link invariant independent of the diagram

D. ĜH(L) is also referred to as combinatorial link Floer homology or simply link Floer
homology.

2.4.4 Unblocked filtered grid complex GC−

The unblocked grid chain complex (GC−(D), ∂−) defined as -

GC−(D) = Free F2[V1, V2, ..., Vn] module over grid states S(D).

The differential ∂− is defined in the following way-

∂−x :=
∑

y∈S(D)

∑
r∈Recto(x,y)

V
O1(r)

1 ...V Om(r)
m y ∀x ∈ S(D)
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The unblocked grid homology package also comes with the same extra filtrations (one for
each link component). The filtered quasi-isomorphism type of the unblocked grid complex is
an invariant of the link L. We will denote its associated graded complex by (GC−(D), ∂−X ).
The maps given by multiplication by Vi and Vj are chain homotopic in this complex if
Oi and Oj are in the same link component. Therefore, GH−(D) can be thought of as a
F2[V1, V2, ..., Vl] module if the link L represented by D has l components. If L is a knot,
it can be shown that GH−(D) = F [U ] ⊕ Tor where Tor is the torsion part. Further, the
maximal Alexander grading of a non-torsion class is equal to −τ(L).

2.4.5 Invariants of Legendrian and transverse links

The element x+ ∈ S(D), which consists of the intersection points at the upper right corners
of the squares containing the markings X in D, is a cycle in (GC−(D), ∂−X ). The element
x− ∈ S(D) consisting of the intersection points at the south west corners of X markings is
also a cycle. If L is the Legendrian link corresponding to the grid diagram D, then we know
that D represents the topological link type of m(L). There is an interesting formula for the
Alexander and Maslov gradings of the distinguished class in terms of the classical invariants
of Legendrian link components. First, let us introduce some notations. Suppose L1, · · · , Ll
are the components of L. Define tbi(L) to be the linking number of Li with the Legendrian
push-off L′. It can be checked that tb(L) = tb1(L) + · · · + tbl(L). tbi can be computed in
terms of a generic front projection D(L) = ∪l1D(Li) where D(Li) is associated with Li.

tbi(L) = wr(D(Li)) + lk(D(Li),D(L)\D(Li))−
1

2
#{cusps in D(Li)}.

Now define rotation numbers

r(Li) :=
1

2
#({downward-oriented cusps inD(Li)} − {upward-oriented cusps inD(Li)}).

Again, it can be checked that r(L) = r1(L) + · · ·+ rl(L).

Proposition 2.4.1. Let x+ and x− be the distinguished cycles in the grids of m(L) then,

M(x+) = tb(L)− r(L) + 1 , M(x−) = tb(L) + r(L) + 1,

Ai(x
+) =

tbi(L)− ri(L) + 1

2
, Ai(x

−) =
tbi(L) + ri(L) + 1

2
,

A(x+) =
tb(L)− r(L) + l

2
and A(x−) =

tb(L) + r(L) + l

2
.

The above formulas will be used later in computations.

The homology classes [x+], [x−] ∈ GH−(m(L)), denoted by λ+(D) and λ−(D) respectively,
are called the Legendrian grid invariant of D. For the transverse push-off T of an oriented
Legendrian link L, the transverse grid invariant θ−(D) is defined to be λ+(L) ∈ GH−(m(L)).
The following proposition states that the homological class is a well-defined invariant of
Legendrian and transverse link types.
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Proposition 2.4.2. [30] Let D and D′ be two grid diagrams corresponding to Legendrian
link L (similarly transverse link T ), then there is an isomorphism

φ : GH−(D)→ GH−(D′)

such that φ(λ+(D)) = λ+(D′) and φ(λ−(D)) = λ−(D′) (similarly φ(θ−(D)) = θ−(D′)).

Therefore, we choose to write λ+(D) as λ+(L) and λ−(D) as λ−(L) when D corresponds
to Legendrian link type L. Similarly, we will write θ−(D) as θ−(T ) when D corresponds to

transverse link type T . It is often more useful to consider the projection of θ(T ) into ĜH,

which we will call θ̂(T ). Projection of θ̂(T ) into G̃H(D) will be denoted as θ̃(T ). It can be
showed that θ̂(T ) = 0 if and only if θ̃(T ) = 0.

2.4.6 Collapsed grid complexes

Let L be a link with l link components with grid diagram G. There are several collapsed
complexes that we can construct from the F2[V1, V2, ..., Vn] module GC−(G) by setting some
of the Vi’s equal to each other. The collapsed filtered grid complex is defined as cGC−(G) :=

GC−
Vi1=Vi2=...=Vil

, whereOik is aO marking belonging in the k’th link component. The associated

graded version will be denoted by cGC−(G). Its homology, cGH−(G) can be thought of as
a F2[V ] module. In fact, it can be shown that cGH−(G) ∼= (F2[V ])2l−1 ⊕ Tor (Here Tor is
the torsion part). As usual, cGH−i (G) denotes the homology at i’th Maslov grading.

We will also be interested in complexes where we collapse Vi and Vj with markings Oi

and Oj belonging in the same component.

Proposition 2.4.3. Let G be a grid of link L. Suppose markings Oi and Oj belong to some

link component LN . Then, there are filtered quasi-isomorphisms GC
−(G)

Vi−Vj → GC
−(G) ⊗WLN

and ĜC(G)
Vi−Vj → ĜC(G) ⊗ WLN , where WLN is a 2 dimensional graded vector space with one

generator having (Maslov grading = 0 , ALN grading = 0 , Alexander gradings for other link
components = 0) and the other generator having (Maslov grading = −1 , ALN grading = −1,
Alexander gradings for other link components = 0)

Proof. Lets consider the short exact sequence

0 GC−(G) GC−(G) GC−(G)
Vi−Vj 0

Vi−Vj

We know that the map given by multiplication by Vi − Vj is chain homotopic to 0.
Also , multiplication by Vi − Vj lowers Maslov grading by 2, ALN grading by 1 and total
Alexander grading by 1. Therefore, mapping cone is filter-quasi-isomorphic to GC−(G) ⊕
GC−(G)[−1,−1,−1]. So we have a quasi-isomorphism GC−(G)

Vi−Vj → GC
−(G)⊕GC−(G)[−1,−1,−1]

and the conclusion follows. Similarly by setting on of the Uk = 0 we can obtain the analogous
result for the hat version.
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We can iterate the process in the above proposition as many times as we wish, but we
need to be careful when the complex has two markings in two different link components
collapsed. It won’t make sense to talk about link filtration for those particular components,
and we need to talk about combined Alexander gradings.

In our discussion, we will mostly consider a collapsed complex that we will call C (D) for
a grid diagram D.

Definition 2.4.3. Let D be a grid diagram of a link L. Define C (D) = F [U ] module over
grid states S(D) and

∂x :=
∑

y∈S(D)

∑
r∈Recto(x,y),r∩X=φ

UO(r)y ∀x ∈ S(D).

Proposition 2.4.4. There is a quasi-isomorphism C (D)) ∼= GC−(D) ⊗W⊗n−l, where W
is a 2 dimensional graded vector space with one generator having (Maslov grading = 0 ,
Alexander grading = 0) and the other generator having (Maslov grading = −1 , Alexander
grading = −1).

Proof. Proposition 2.4.3 can be specialized to associated graded complex. Then the claim
easily follows by iteration.

Proposition 2.4.5. Let D be the grid diagram of link L. The class [x+] ∈ H∗(C (D)) is in
the U-image if and only if θ̂(L) = 0.

Proof. Consider the short exact sequence

0 C (D) C (D) C (D)
U

0U

Therefore, from the induced long exact sequence, we can infer that if the class [x+] is in

U -image then the projection of [x+] in C (D)
U

is 0. Now notice that C (D)
U
∼= G̃H(L) and, the

projection of [x+] there is θ̃(L). So we get θ̃(L) = 0. This implies θ̂(L) = 0. Conversely,
θ̂(L) = 0 implies θ̃(L) = 0. Hence, the short exact sequence implies that [x+] ∈ H∗(C (D))
is in the U -image.

Proposition 2.4.6. Let D be the grid diagram of a knot K. Let x ∈ H∗(CD) be the
non-torsion element with maximal Alexander grading. Then τ(K) = −A(x).

Proof. We know from 2.4.4, H∗(CD) ∼= GH−(K) ⊗ W⊗n−1 ∼= (F [U ] ⊕ Tor) ⊗ W⊗n−1.
Therefore, the free part is isomorphic to F [U ](−2τ(K),−τ(K)) ⊗W⊗n−1. Hence, the conclusion
follows.

2.4.7 Grid complexes of mirror links

Given a grid diagram D (with grid number n) of a link L, let D∗ be the diagram obtained by
reflecting D through a horizontal axis. Then D∗ represents the link m(L). Let M and M∗
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Figure 2.6: Standard link Cobordisms

(resp. A and A∗) denote Maslov (resp Alexander) grading in grids D and D∗. Let x→ x∗ be
the natural bijection of the grid states induced by reflection. Then we observe that there is
also a bijection between Recto(x, y) and Recto(y∗, x∗). So there is an isomorphism of chain

complexes G̃C(D∗) ∼= Hom(G̃C(D),F2). Now, we can verify that M(x) + M∗(x∗) = 1 − n
and A(x) + A∗(x∗) = l − n for a grid state x. Also, using the standard convention the

dual complex G̃C
∗ ∼= Hom(G̃C(D),F2) has grading and filtration level obtained by taking

negative of those in G̃C. Then we get an isomorphism of G̃C(D∗) ∼= G̃C
∗
(D)[1−n, l−n]. Now,

we can pass to the hat version using Proposition 2.4.3, There, we have ĜC(D∗)⊗W⊗n−l ∼=
ĜC
∗
(D) ⊗W ∗⊗n−l[1 − l, 0]. So, we get an isomorphism ĜC(D∗) ∼= ĜC

∗
(D)[1 − l, 0]. In fact,

we can use the individual Alexander filtrations Fi, i = 1, · · · , l to put this isomorphism more
generally as

ĜC(D∗) ∼= ĜC
∗
(D))[1− l, 0, · · · , 0].

This fact will be used later.

2.5 Cobordisms of links and braids

Definition 2.5.1. A cobordism, between links L1 and L2 in the S3, is the image of a smooth
embedding f : Σ → S3 × [0, 1], where Σ is a compact, oriented surface (not necessarily
connected) of genus g such that ∂Σ = L1×{0}t−L2× 1 and every connected component of
Σ has boundary in both L1 and L2.

Any link cobordism can be decomposed into five standard cobordisms. They are identity,
birth, death, merge and split cobordisms [See Figure 2.6].

Two knots K1 and K2 in the S3 are called concordant if there exists a smooth, properly
embedded cylinder in S3× [0, 1] such that one end of the cylinder is K1×{0} and the other is
K2×{1}. This gives us an equivalence relation on the set of knots. A knot K is called slice
if K is concordant to the unknot. The set Knots/concordance equivalence forms the concordance
group C, where the operation is induced by connected sum. The class of slice knots is the
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Figure 2.7: A Quasi-positive banded Surface

identity element, and the inverse of [K] is [−K], where −K denotes the reverse of the mirror
image of K.

Definition 2.5.2. A braided cobordism W ⊂ S3× [0, 1] is a smoothly and properly embedded
surface, on which the projection pr2 : S3 × [0, 1]→ [0, 1] restricts as a Morse function, with
each regular level set W ∩ (S3 × t) a closed braid in S3 × t .

Hughes [19] proved that every link cobordism between braid closures is isotopic rel
boundary to a braided cobordism.

Given a braid σ, a band presentation is given by

σ =
c∏
j=1

ωjσ
±1
ij
ω−1
j

The band rank rkn(σ) =: minc{ There is band presentation of length c}.

A braid can be written as a product of c bands; then its closure bounds a banded surface
(See Fig 2.7) of Euler characteristics n− c.

Then it bounds a surface in S3 with ribbon type singularities(ribbon immersed surface).
The following theorem by Lee Rudolph [35] gives an intriguing relationship between banded
braided surfaces and ribbon immersed surface.

Theorem 2.5.1. [Rudolph] S is a ribbon-immersed orientable surface in S3; then it is
isotopic to a banded, braided surface of Euler characteristic n − c (from the closure of an
n-braid ).

Using this relationship, one can aim to find ribbon obstruction by obstructing certain
band ranks of braided cobordisms.
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Chapter 3

Cables and transverse invariant

3.1 Grid diagrams for Cables

The (p, q)- cable of a link L, denoted Lp,q , is the satellite link with pattern the (p, q)-torus
knot Tp,q (where p indicates the longitudinal winding and q indicates the meridional winding)
and companion L. So, we can think of Lp,q as the topological type of a link supported on the
boundary of a tubular neighborhood of L with slope p

q
with respect to the standard framing

of the torus, where the longitude is determined by the Seifert framing for L.

Figure 3.1: Blocks A and C have markings on diagonal. B and D have p− 1 markings on a
diagonal and the last one in a corner

Given a gridD of a link L, we can construct grids of p-cables from the grid by transforming
a single square to a p × p block, so that, empty squares are transformed to empty blocks
and marked squares are transformed into four types (A, B, C and D as shown in the Figure
3.1) of blocks. Now to ensure that we get a cable, we need to restrict allowed block types for
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corners. For top right and bottom left corner corners we use blocks A or B. For top left and
bottom right corners we use block C or D. For X marked squares, we will only use blocks of
type A. However, then we may not get a cable for p > 2. We will rectify this situation in 3.1.

Using the prescription, we can obtain the grid of the cable of topological link type Lp,q.
The Legendrian and transverse link types represented by the grid may depend on the choice
of the blocks. So when we refer to Lp,q as Legendrian/transverse links we refer to any of
those link types. Now we will determine for what values of cabling parameter q, we can
obtain Legendrian/transverse representatives of Lp,q. We first start with the case p = 2 and
then we will extend the results for p > 2.

Remark. It is possible to make arbitrary choices of blocks to get the grid of certain satellites.
However, it is not so clear what kind of satellite we can obtain from this construction.

Generating 2-cables

For 2-cables, we will only have blocks of type A and C. We will try to use stabilizations to
obtain a wide range of twisting coefficients.

Figure 3.2: Generating grid of a 2 cable

Proposition 3.1.1. The grid D2 can be constructed from grid D, link L, by following the
above procedure to represent a cable link L2,q if 2wr(D) + oSW + oNE − xSE − xNW ≥ q ≥
2wr(D)− oSE − oNW − xSE − xNW .

Proof. To determine the cabling coefficient, we need to keep track of contribution for each
type of corners and block type [See Figure 3.3] as well as signs of crossings. After putting it
all together for all possible block choices, we get the inequality.

Proposition 3.1.2. If D represents a Legendrian link L, then we can make certain stabilizations
in D followed by appropriate choices of blocks to construct a grid D′2 representing a Legendrian
link L2,−q as long as q ≤ n(L) + 2tb(L), where n(L) is the minimum grid number of L.

Proof. First, we realize that mirroring changes the sign of q in the represented Legendrian
link.

Since oSE + xSE ≥ 1 for any grid and X:SE and O:SE stabilizations don’t change the
Legendrian link type; we can carry out the procedure of replacing a square by blocks after
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Figure 3.3: Contributions to cabling coefficient for different block types and corners

performing repeated stabilizations on those corners (X:SE stabilization on X:SE corners and
O:SE stabilization on O:SE corners) to decrease q by any arbitrary number.

For the upper bound, we could write the upper bound from the previous proposition in
terms of tb and n.

Proposition 3.1.3. If D represents a transverse link T , then we can make certain stabilizations
in D followed by appropriate choices of blocks to construct a grid D′2 representing a transverse
link T2,q for any q ∈ Z.

Proof. First assume that oSW > 0. Now we can do a O:SW stabilization on O:SW corners
without changing the transverse link type and then repeat the subdivision procedure to
increase the value of q by any arbitrary number. Also if oSW = 0, we perform a torus
translation to ensure oSW > 0. This doesn’t affect Proposition 3.1.2 because oSE + xSE ≥ 1
for any grid. So we are able to get an arbitrary integer value for q.

Generating p -cables for p > 2

When p > 2, using block A for NW and SE X corners induces a half full twist in the satellite.
To get an integer value of the twisting parameter, we need to perform a stabilization on those
X corners before replacing the X marked squares by block A [See Figure 3.4]. Again for O
markings; we are allowed to use any blocks. There are obvious extensions of the results in
the previous section. First, we state the extension of Proposition 3.1.1 -

Proposition 3.1.4. The grid Dp can be constructed from grid D, representing link L, by
following the above procedure to represent a cable link Lp,q if p(wr(D)−xSE−xNW )+oSW +
oNE ≥ q ≥ p(wr(D)− xSE − xNW )− oSE − oNW .

For Legendrian links, we are only able to obtain a limited class of cables.
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Figure 3.4: Applying X:SE stabilization for X:SE corners and X:NW stabilization for X:NW
corners

Proposition 3.1.5. If D represents a Legendrian link L, then we can make certain stabilizations
in D followed by appropriate choices of blocks to construct a grid D′p representing a Legendrian
link Lp,−pk±1 as long as k ≤ n(L) + tb(L) , where n(L) is the minimum grid number of L.

Proof. In Proposition 3.1.4, wr(D)− xSE − xNW ≤ tb(L) + n. So we can replace the upper
bound by tb and n. Also we can make a torus translation to make sure the grid has at least
one SE or NW O corner (Alternatively SW or NE O corner).

But for transverse links, we can extend for full generality

Proposition 3.1.6. If D represents a transverse link T , then we can make certain stabilizations
in D followed by appropriate choices of blocks to construct a grid D′p representing a transverse
link Tp,q for any q ∈ Z.

Proof. We can obtain cables with arbitrarily small q from the last proposition. Then we can
use the argument from Proposition 3.1.3 again to get arbitrarily large values for q.

The Legendrian( Lp,q) and transverse ( Tn,q) link types obtained using this construction
may depend on the choices of blocks. However, we notice that choices of blocks don’t affect
the number of corners of each type. It only affects writhe, which is detected in the cabling
coefficient q. Therefore, by Equation 2.1 and 2.2, classical invariants (i.e., tb,r for Legendrian
and sl for transverse) of the constructed cable Legendrian/transverse links are determined
by the classical invariants of the original link and q.

3.2 Main theorems

Now we are ready to use tools of grid homology to study the constructed cables in Section
3.1. We first define a change of variable in the fully collapsed complex that will be useful for
relating the link complex with its cable complex.
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Figure 3.5: States of subcomplex K

Definition 3.2.1. Let D be a grid diagram of m(L) for some link L and p ∈ N. Define pC
as F2[V ] module over grid states S(D) and

∂pCx :=
∑

y∈S(D)

∑
r∈Recto(x,y),r∩X=φ

UpO(r)y for a x ∈ S(D)

Algebraically pC is obtained from C by a change of variable. Therefore it inherits a new
Alexander grading A satisfying, A(x) = pA(x) for x ∈ S(D) and A(U) = −1. The Maslov
grading M from C , can be adapted as M in pC so that M(x) = pM(x) for x ∈ S(D) and
M(U) = −2. ∂pC preserves the A and decreases M by p.

Now let us consider the grid Dp of the p-cable m(L)p,−q = m(Lp,q) constructed from D
using the prescription given in 3.1. Lp,q and L will refer to transverse link types corresponding
to those grids. Define i : pC → C (Dp) to be the F2[V ] module map that takes a generator
state x in parent grid D to a state in the cable grid Dp obtained by taking union of North-East
corners of X in the middle of each block and x. Let K be the sub-module of C (Dp) generated
by all the states that contain North-East corner of X in the middle of each block [See
Figure 3.5].

Proposition 3.2.1. The map i is a injective chain map and K is a subcomplex of C (Dp)
isomorphic to pC .

Proof. It follows from the definition that i(pC ) = K. Now to prove that i is a chain map, we
need to verify that i∂pC = ∂C (Dp)i. Lets take states �,M∈ pC such that ∂pC (M) = Upk �+ ..
[as depicted in Fig 3.5]. This implies i(∂pC (M)) = Upk i(�) + ... . Also, we have ∂C (Dp)(i(M
)) = Upk i(�)+ ... because the shaded rectangle contains p times manys Os in the cable grid.
Since there is no rectangle coming out the special points of K, any rectangle coming out of
i(M) must join it with another state of the form i(�) for some �. Hence, the map i satisfies
i∂pC = ∂C (Dp)i. Also since i is an injective chain map, it follows that K of is a subcomplex
of C (Dp) isomorphic to pC .
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Proposition 3.2.2. The map i sends the distinguished cycles [x+] and [x−] in pC to the
distinguished cycles [x+] and [x−] respectively in C (Dp). It shifts the Alexander grading by
(p−1)(q−1)

2
and Maslov grading by (p− 1)(q − 1).

Proof. It is obvious from the construction that i sends the distinguished states x+ and x−

in pC to the distinguished states x+ and x− respectively in C (Dp). Also it is easy to see
that i respects relative Alexander and Maslov grading. Hence, we just need to compute
the Alexander and Maslov grading difference of the distinguished state in the respective
complexes. Using 12.7.5 in [36], it is equal to

A(i(x+))− A(x+) = sl(Lp,q)+1

2
− p(sl(L)+1)

2
= sl(Lp,q)−p·sl(L)−(p−1)

2
.

To compute this quantity lets assume L has braid representative with index N and that Lp,q
has r twists with respect to blackboard framing. Then, q = p · wr(L) + r and Lp,q has a
braid representative with index Np and wr(Lp,q) = p2 ·wr(L) + r(p− 1). We also know that
for braid β of index n, sl(β) = wr(β)− n. Hence, it is equal to -

(wr(Lp,q)−Np)−p(wr(L)−N)−(p−1)

2
= (p−1)(p·wr(L)+r−1)

2
= (p−1)(q−1)

2
.

Similarly, M(i(x+))−M(x+) = (sl(Lp,q) + 1)− p(sl(L) + 1) = (p− 1)(q − 1).

Proposition 3.2.3. If θ̂(L) = 0 then θ̂(Lp,q) = 0

Proof. θ̂(L) = 0 implies that [x+] is in the U -image in the homology of complex pC i.e.,
[x+] = Uy for some y. Then, i∗([x

+]) = i∗(Uy) = Ui∗(y) is also in U -image in the homology
of complex C (Dp). So, it follows that θ̂(Lp,q) = 0.

Figure 3.6: Special point c and markings around it

Theorem 3.2.1. The map i induces an inclusion map on homology i.e.,

H∗(CLp,q) = H∗(i(pC ))⊕F2[V ] R

for some F2[U ] module R.
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Figure 3.7: Juxtapositions of rectangles from the red state to blue state in Equation (2).
First row, second row and third row represents HX2 ◦HO′ , HX2,O′ ◦ ∂NN and ∂N

N ◦HX2,O′

respectively.

Proof. Lets consider one of the n × n block in the grid [See Figure 3.6 ]. There are two
X markings inside the block around the special point c. The north-east square is marked
with X; the south-west square is marked with X2, and they intersect at c. Let O′ be the O
marking in the row containing X2. We will write, C (Dp) = S ⊕N , where S is a sub-module
generated by all states that contain a special point c and N is a sub-module generated by
all states that don’t contain c. Since there are no rectangles coming out of the special point
c, S is a subcomplex as before. Therefore, the differential of the complex can be written as,

∂ =

[
∂S

S ∂N
S

0 ∂N
N

]
.

So C (Dp) can be seen as Cone(∂N
S). If ∂N

S induces 0 map on homology then it will
follow that H∗(C (Dp), ∂) = H∗(S, ∂SS)⊕H∗(N , ∂NN). This verification is an adaptation of
the stabilization invariance proof in [36].

Define chain map HX2
: S −→ N as,

HX2(x) =
∑

y∈S(Dp)

∑
r∈Recto(x,y),r∩X=X2

UO(r)y

∂N
S ◦HX2 counts contributions from juxtapositions of rectangles where the first one goes

out of the special point c and the second one goes into c. The only scenario that allows
this is when we have the thin vertical or horizontal annulus containing X2. Hence, we have
∂N

S ◦ HX2 = U + U = 0. So if we can show that HX2 is an injective map on homology, it
will follow that ∂N

S induces 0 map on homology.
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To see that, we define chain maps HO′ : N −→ S,

HO′(x) =
∑

y∈S(Dp)

∑
r∈Recto(x,y),r∩X=φ,r3O′

UO(r)−1y

and, HX2,O′ : N −→ N ,

HX2,O′(x) =
∑

y∈S(Dp)

∑
r∈Recto(x,y),r∩X=X2,r3O′

UO(r)−1y

Then we have the following identity

HX2 ◦HO′ +HX2,O′ ◦ ∂NN + ∂N
N ◦HX2,O′ = Id (3.1)

To verify the identity, we see that the left-hand side counts some juxtapositions of
rectangles from N to N which only contains the markings X2 and O′. For such domains,
these contributions cancel [See Figure 3.7] unless the domain is a horizontal annulus (containing
O′ and X2) in which case it gives the right-hand side.

This verifies that HX2 is an injective map on homology.

Now by iterating this procedure (starting with performing the same operation on S),
we can make the subcomplex include all such special points and recover the subcomplex as
mentioned earlier K. That will imply the decomposition and the fact that i induces inclusion
map on homology.

Remark. The statement of Theorem 3.2.1 is ungraded but after taking the degrees into
account, Proposition 3.2.2 implies that

HpM+(p−1)(q−1)(CLp,q , pA+
(p− 1)(q − 1)

2
) has a HM(CL, A) summand.

As a corollary, we obtain out key theorem -

Theorem 3.2.2. θ̂(Lp,q) = 0 if and only if θ̂(L) = 0.

Proof. We already know one direction from Proposition 3.2.3. Now by Theorem 3.2.1, we
know that i induces inclusion (as F2[V ] module) on homology. So θ̂(Lp,q) = 0 implies [x+] is

in U -image in H∗(C (Dp)) and hence in H∗(pC ). It follows that θ̂(L) = 0.

Now, for a Legendrian knot K, recall that we can construct a Legendrian cable Kp,−pk±1

for each k ≤ tb(K) + n(K). Instead of looking at λ+(K) or λ−(K) individually, it is more
useful to consider the sum λ+(K) + λ−(K) that will be denoted by η(K).
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Theorem 3.2.3. λ+(Kp,−pr±1) = λ−(Kp,−pr±1) if and only if λ+(K) = λ−(K).

Proof. We want to show that η(K) = 0 if and only if η(Kp,−pk±1) = 0. First, we need to
show that η(K) = 0 if and only if its projection η′(K) to the fully collapsed complex is 0.
Actually, this is true for any homology class. Suppose D is a grid diagram for K. Let us
consider the short exact sequence in 2.4.4 again.

0 GC−(D) GC−(D) GC−(D)
Vi−Vj 0

Vi−Vj

From the induced long exact sequence, we can infer that projection of any homology
class α = [ξ] is 0 then ξ is in the image of Vi − Vj which implies α = [ξ] = 0 since Vi − Vj
is null-homotopic. Conversely if α = 0 then obviously its projection is 0. Iteration of this
argument proves our claim.

Now the conclusion follows from Theorem 3.2.1 since i(η′(K)) = η′(Kp,−pk±1).

3.3 Examples of Legendrian and transversely non-simple

links

Now, let K and K ′ be two transverse links with same topological type and self-linking
number such that, θ̂(K) = 0 and θ̂(K ′) 6= 0. By our construction, Kp,q and K ′p,q also
represent transverse links with same topological type and self-linking number, but they are
not isotopic as θ̂ vanishes for only one of them. So we can combine our result with the
already known examples to generate various infinite families of transversely non-simple link
type. The following proposition gives an example -

Proposition 3.3.1. The topological link type m(10132)p,q is transversely non-simple for p ≥
2, q ∈ Z.

Proof. m(10132) has transverse representatives T1 and T2 with same self-linking number such
that θ̂(T1) = 0 and θ̂(T2) 6= 0. The conclusion follows.

In the same vein, further examples can be obtained for cables of m(10161),m(72) etc.

We know that vanishing of η distinguishes Chekanov [6] pair in knot type m(52). The
following proposition shows that some of its cables are also Legendrian non-simple.

Proposition 3.3.2. The topological link type m(52)p,−pk±1 is Legendrian non-simple for
p ≥ 2, k ≤ 8.

Proof. There are K and K′ in m(52) with tb = 1 and r = 0 such that η(K) = 0 and η(K′) 6= 0.
Also they have grid diagrams with grid number 7. Hence, Kp,−pk±1 and K′p,−pk±1 can be
constructed for k ≤ 8 in m(52)p,−pk±1 so that they have the same tb and r. So by applying
Theorem 3.2.3, we have η(Kp,−pk±1) = 0 and η(K′p,−pk±1) 6= 0. Therefore, m(52)p,−pk±1 is a
Legendrian non-simple link type for each p ≥ 2 and k ≤ 8.
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Chapter 4

Refinement of θ̂ invariant

4.1 Introduction

In this chapter, we will focus on grid complexes of braids. We will consider grid diagram of
a braid U ∪m(β) that will represent the braid β. This will allow us to define an invariant
for braid conjugacy classes. Now if we look at the rotationally symmetric contact structure
ξrot = ker(dz−ydx+xdy), any closed braid around z-axis can be made transverse to contact
planes. Conversely, any transverse link can also be represented as a closed braid. Now under
this correspondence, the Transverse Markov Theorem [28] tells us

Transverse links ∼= Braids/positive (de)stabilizations.

So if we know how the invariant changes under the operation of positive stabilization, we
can hope to find a transverse invariant from the braid conjugacy class invariant.

Baldwin, Vela-Vick and Vértesi [2] showed the equivalence of LOSS and GRID transverse
invariants for transverse knots in S3 with the standard contact structure. Their work involved
passing to the knot Floer complex CFK−,2(−U ∪ β) which comes with an extra filtration
F−U . A key proposition in their work showed that the distinguished class [x4] generated
Htop(F−Ubot ). In view of that, it is natural to ask if the filtered quasi-isomorphism itself
contains any information about the transverse knot represented by β. From a different
perspective, we consider a filtered grid complex CU∪β which turns out to be isomorphic to
CFK−,2(−U ∪ β). We can independently show that filtered quasi-isomorphism type of that
complex is an invariant of the braid conjugacy class. Moreover, by studying the crossing
change moves we study how it changes under positive stabilization. We can then extract
a numerical invariant η(β) from the complex that is similar to the braid conjugacy class
invariant κ defined by Hubbard and Saltz [18] in Khovanov homology.

29



Figure 4.1: Diagram of U ∪m(β)

4.2 Braid grid complex

4.2.1 Definition

Let β be a N -braid. We can consider the the grid diagram D of U ∪ m(β) [See Fig.
4.1] where the unknot U (oriented clockwise) acts as a braid axis. Also we assume that
the unknot is linked negatively with the braid. Let X = {X1, X2, X3, · · · , Xn} and O =
{O1, O2, O3, · · · , On} be the sets of X markings and O markings respectively whereX1, X2, O1 and O2

represent the markings of the unknot U . We will use the notation Oβ(r) to denote the number
of O markings belonging to the β component inside a rectangle r.

Definition 4.2.1. Define the chain complex (CU∪β(D), ∂) as a F2[V3, V4, · · · , Vn]-module over
grid states S(D)

∂x :=
∑

y∈S(D)

∑
r∈Recto(x,y),r∩X=φ

V
O3(r)

3 V
O4(r)

4 · · ·V On(r)
n y ∀x ∈ S(D)

From now on we will refer to a F2[V3, V4, · · · , Vn]-module as R-module.

Proposition 4.2.1. ∂ ◦ ∂ = 0

Proof. We need to observe that Oβ is additive for a juxtaposition of rectangles and then the
rest of the proof is identical to ∂−X ◦ ∂

−
X = 0 proof in ordinary grid link homology.

Let Aβ be the sum of Alexander gradings for components of β. It is easy to see that the
complex CU∪β is Aβ graded. We also observe that it is −AU gives a filtration which we will
call FU .

Proposition 4.2.2. CU∪β is Aβ graded and FU filtered.

Proof. Let y be a state appearing in the expansion of differential of x. Then,

Aβ(V
O3(r)

3 · · ·V On(r)
n y)− Aβ(x) = Aβ(y)− Aβ(x)−Oβ(r) = 0.

And,

FU(V
O3(r)

3 · · ·V On(r)
n y)−FU(x) = FU(y)−FU(x) ≤ 0
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4.2.2 Invariance

The goal of this section is to prove the following theorem

Theorem 4.2.1. FU filtered quasi-isomorphism type of (CU∪β(D), ∂) is a braid conjugacy
class invariant.

Firstly, we realize that grid diagram of any braid in the conjugacy class of β can be
obtained using the following moves

D/commutation moves + (de)stabilization moves on the components of β.

This is true since any braid word move can be made with grid moves on the β component
and for conjugation, we need to use commutation moves with U along with grid moves on
β component. So to prove this invariance, we would like to explore the maps induced by
commutation and stabilization moves in grid diagram. We will show that those maps can
be obtained by taking quotients of the maps in the usual grid link complex. The reader is
referred to [36] for more details.

Commutation moves

Consider two grid diagrams D and D′ of U ∪ β that differ by a commutation move. We can
represent these two diagrams in the same picture so that the X and O markings are fixed,
and two of the vertical circles are curved [ See Figure 4.2]. Denote the horizontal circles of D
by {α1, ...αn} and its vertical circles by {β1, ...βn}. Then the set of horizontal circles of D′ is
also {α1, ...αn} and its vertical circles are given by {β1, ..., βi−1, γi, βi+1, ..., βn}. The vertical
circles βi and γi intersect at two points. The complement of βi ∪ γi in the grid, consists of
two bigons. Consider the one, of which the western boundary is a part of βi, and the eastern
boundary is a part of γi. We label the two intersection points by s and s′ so that s is the
southern vertex and s′ is the northern vertex of that bigon.

We will need to define the pentagons in this picture to define the map corresponding to
the commutation move.

Definition 4.2.2. Consider two grid states x ∈ S(D) and y′ ∈ S(D′). A pentagon Π from
x to y′ is an embedded disk in the torus that satisfies the following conditions:

� The boundary of Π is the union of five arcs lying in αj, βj or γi for i and for some j.

� Four corners of Π are in x ∪ y′.

� If we consider any corner point of Π, it is the intersection of two curves of {αj, βj, γi}nj=1.
These two curves divide a small disk on the torus into four quadrants, and Π intersects
exactly one of them.

� The horizontal segments in the boundary of Π point from the components of x to the
components of y′.
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Figure 4.2: Diagrams in commutation move

We use the notation Pent(x, y′) for the set of pentagons going from x to y′. Observe that
the set Pent(x, y′) consists of at most one element, and it is empty unless x and y′ share
exactly n− 2 elements. From the above properties of a pentagon follows that its fifth corner
point is the distinguished point s. Pentagons from y′ to x are defined similarly. However, in
that case, the fifth vertex is given by the distinguished point t. A pentagon Π ∈ Pent(x, y′)
an empty pentagon if it doesn’t contain any point of x in the interior. The set of empty
pentagons from x to y′ is denoted by Pent◦(x, y′).

Define the R-module map P : CU∪β(D)→ CU∪β(D′) by the formula:

P (x) =
∑

y′∈S(D′)

∑
Π∈Pent◦(x,y′),Π∩X=φ

V
O3(Π)

3 · · ·V On(Π)
n · y′

Proposition 4.2.3. P is Aβ graded and FU filtered.

Proof. Suppose Π is an empty pentagon from x to y′ in the expansion of P (x). Then,

AU(x)− AU(y′) = OU(Π) and Aβ(x)− Aβ(y′) = Oβ(Π).

The conclusion follows by taking the sum with proper weights.

Proposition 4.2.4. The map P is a chain map.

Proof. Consider the F2[V1, V2, · · · , Vn]-module map P : GC−(D)→ GC−(D) given by

P(x) =
∑

y′∈S(D′)

∑
Π∈Pent◦(x,y′),Π∩X=φ

V
O1(Π)

1 V
O2(Π)

2 V
O3(Π)

3 · · ·V On(Π)
n · y′

We know P is a chain map [See Lemma 5.1.4 in [36]]. Then, P is induced map on the

quotient GC−(D)
(V1−1)(V2−1)

. Therefore, P is a chain map since P is a chain map.
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Proposition 4.2.5. The map P is a quasi-isomorphism.

Proof. Let Hex(x, y) for the set of hexagons going from x to y.

Definition 4.2.3. We call a hexagon h ∈ Hex(x, y) an empty hexagon if

x ∩ Int(h) = y ∩ Int(h) = ∅.

The set of empty hexagons from x to y is denoted by Hex◦(x, y).

Define the R-module homomorphism H : CU∪β(D)→ CU∪β(D) for each x ∈ S(D) by the
formula:

H(x) =
∑

y∈S(D)

 ∑
h∈Hex◦(x,y)

V
O3(h)

3 · · ·V On(h)
n

 · y.
Now lets consider the F2[V1, V2, · · · , Vn]-module map H : GC−(D)→ GC−(D) given by

H(x) =
∑

y∈S(D)

∑
h∈Hex◦(x,y′),h∩X=φ

V
O1(h)

1 V
O2(h)

2 V
O3(h)

3 · · ·V On(h)
n · y.

Then, H is induced map on the quotient GC−(D)
(V1−1)(V2−1)

. The map H satisfies [See Lemma

5.1.6 in [36]]

∂− ◦H + H ◦ ∂ = Id−P′ ◦P.

It follows that the induced quotient map is chain homotopy between P ◦P ′ and identity.
Therefore, the conclusion follows.

Stabilization moves

Let D be a grid diagram. By performing a stabilization of type X : SW , we get the diagram
D′ . Number the markings in the way that Oi is the newly-introduced O-marking, Oi+1 is in
the consecutive row below Oi, Xi and Xi+1 lie in the same row as Oi and Oi+1, respectively,

i.e.
Xi Oi

Xi+1
.

Denote c the intersection point of the new horizontal and vertical circles inD′. Considering
this point, we can partition the grid states of the stabilized diagram D′ into two parts,
depending on whether or not they contain the intersection point c. Define the sets I(D′)
and N(D′) so that x ∈ I(D′) if c is included in x, and x ∈ N(D′) if c is not included in x.
Now S(D′) = I(D′) ∪ N(D′) gives a decomposition of CU∪β(D′) ∼= I ⊕ N , where I and N
denote the R-modules spanned by the grid states of I(D′) and N(D′) respectively.

There is a one-to-one correspondence between grid states of I(D′) and grid states of
S(D): Let

e : I(D′)→ S(D), x ∪ {c} 7→ x.
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So the map e is well defined for the generators of GC−. Then we can extend the definition
of e to CU∪β(D′) by first linearly extending to to GC− and then passing to the quotient.

Proposition 4.2.6. The map e is a filtered quasi-isomorphism.

Proof. The same argument works in this case. The map e can be seen as a quotient of a
filtered quasi-isomorphism that is defined in GC− [See Section 5.2 in [36]]. Then, taking
quotients of the homotopy equivalences show that e is a filtered quasi-isomorphism.

4.2.3 Relation with CFK−,2 complex

We review the construction used in [2] and show how their chain complex is related to ours.
A multi-pointed Heegaard diagram for an oriented link L ⊂ Y is given by a ordered tuple
H = (Σ, α, β, zL, wL ∪ wf ), where wf is the set of free base points. A grid diagram can be
naturally viewed as a multi-pointed Heegard diagram embedded in torus. Lets denote the the
grid of β ∪U as the multi-pointed Heegard diagram, H1 = (T 2, α, β, zβ ∪ zU , wβ ∪wU). Here
′z′s denote the X markings and ′w′s denote the O markings. If we drop the points zU , then we
get the variant H4 = (T 2, α, β, zβ, wβ ∪ wU) where the set wU work as free basepoints. This
variant is considered in [2] to introduce the reformulation of GRID invariant. CFK−,2(H4)
denotes the knot Floer complex associated with H4.

Proposition 4.2.7. CU∪β is filtered quasi-isomorphic to CFK−,2(H4).

Proof. It is easy to see that these complexes are isomorphic after reversal of roles of X and
O markings in the unknot component, which also explains the orientation convention of the
unknot in these two complexes.

In their paper [2] , they also show that Htop(FUbot(CU∪β)) is generated by the distinguished
cycle [x4] which in our complex is the state consting of north-east corners of X-markings (Here
bot is minimum value of FU). We will use this relationship to refine the transverse invariant.

4.2.4 Properties of CU∪β
Proposition 4.2.8. Multiplication by Vi is chain homotopic to multiplication by Vj if Oi

and Oj belong to the same link component in β.

Proof. Let Xk be the X-marking that is in same row as Om and in the same column as On.
Define HXk : CU∪β → CU∪β,

HXk(x) :=
∑

y∈S(D)

∑
r∈Recto(x,y),r∩X=Xk

V
O3(r)

3 V
O4(r)

4 · · ·V On(r)
n y ∀x ∈ S(D)

Then, in the compositions of rectangles appearing in ∂HXk + HXk∂, contributions from
all but two annuli containing Xk cancel. So we get,
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Figure 4.3: Crossing change move

∂HXk +HXk∂ = Vm − Vn.

It follows that Vm and Vn are chain homotopic. Iterating this argument shows that Vi
and Vj are chain homotopic if Oi and Oj belong to the same link component.

In view of the last result, we can think of CU∪β as a F2[Vi1 , · · · , Vil ]-module. We can also

consider the complex cCU∪β ∼= CU∪β
Vi1=···=Vil

. It can be easily seen that FU filtered quasi-isomorphism

type of cCU∪β is also a braid conjugacy class invariant and its homology can be thought of
as a F2[V ]-module.

4.3 Refinement of θ̂ invariant

4.3.1 Crossing change move

Suppose L+ is obtained from L− by changing a negative crossing to positive crossing. The
crossing change maps between their GC− version of grid complexes was defined in Chapter 6
of [36]. Now, we will study the effect of crossing change map in the complex. First, we discuss
the effect of changing a positive crossing to negative in the braid β. The maps associated
with crossing change move will also appear for positive and negative stabilizations.

Suppose the diagram D− representing U ∪ β−is obtained by cross commutation of the
two columns from the diagram D+ representing U ∪ β+ (See Figure 4.3.3). The vertical
circle βi in D+ is replaced by the dotted vertical circle γi in D− and, they intersect at
two points s and t. We define the R-module maps c− : CU∪β+(D+) → CU∪β−(D−) and
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Figure 4.4: Local change in (Aβ, AU) grading

c+ : CU∪β+(D−) → CU∪β−(D+) for a grid state x ∈ S(D+) and y′ ∈ S(D−) respectively in
the following way

c−(x) =
∑

y∈S(D−)

∑
p∈Pentso(x,y), X∩p=φ

V
Op(r)

3 V
O4(p)

4 · · ·V On(p)
n y

and,

c+(y′) =
∑

x′∈S(D+)

∑
p∈Pentto(y′,x′), X∩p=φ

V
O3(p)

3 V
Op(r)

4 · · ·V On(p)
n x′.

Proposition 4.3.1. The map c− is Aβ graded and FU filtered. The map c+ is Aβ graded of
degree 1 and FU filtered.

Proof. To compute degrees of c− and c+ as in Lemma 6.2.1 of [36], we can compare the
pentagons appearing in those maps with rectangles. First notice, that each state s in D+

corresponds to a state φ(s) in D− by mapping the point in βi vertical circle to the γi circle.
Now, the 4 X and O markings divide the vertical circles βi and γi into four intervals A, B,
C and D. We consider states that contains a point in on of the the four intervals A, B, C
and D [See Figure 4.4] between the four special markings. We can make local computations
in each case (based on relative position of markings) to compute the difference in gradings
between a state and its corresponding state. Now if y is a term appearing in c−(x), the
there is a pentagon from x to y. To each pentagon from a state in D+ to a state in D−, we
can associate a rectangle [See Figure 4.5] in D+ from x to φ(y). This allows us to compute
grading change under c− by the following formula

A(x)− A(y) = (A(x)− A(φ−(y)) + (A(φ−(y)− A(y)).

The first term A(x)−A(φ(y)) just counts extra contribution in the associated rectangle as
the differential preserves degree and filtration, and the second term A(φ(y)−A(y) computes
the local change. In this case, it is easy to see the FU filtration is unaffected. Similarly, we
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Figure 4.5: A left pentagon and its associated rectangle

can compute grading change under c+. In our case, there is no change in FU filtration level
for either c− or c+ as there no local change in AU grading or any extra X marking belonging
to the unknot component in the associated rectangles. So those maps are FU filtered. Then,
the computation of Aβ grading change under c− and c+ turns out to be identical to Lemma
6.2.1 of [36].

Figure 4.6: Associated rectangle for a left pentagon in interval C

Let y be the term, appearing in c−(x) and assume there is a left pentagon from x to y.
Case 1: y is type B Since there are no extra markings in the associated rectangles [See
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Figure 4.5] we have,

Aβ(y)− Aβ(x) = Aβ(φ−(y))− Aβ(x) + Aβ(y)− Aβ(φ−(y)) = 0

and

FU(y)−FU(x) = FU(φ−(y))−FU(x) + FU(y)−FU(φ−(y)) ≤ FU(φ−(y))−FU(y) = 0.

Case 2: y is type C In this case, we have an extra X marking belonging to the braid
β [See Figure 4.6] in the associated rectangle. So,

Aβ(y)− Aβ(x) = Aβ(φ−(y))− Aβ(x) + Aβ(y)− Aβ(φ−(y)) = 1− 1 = 0

and

FU(y)−FU(x) = FU(φ−(y))−FU(x) + FU(y)−FU(φ−(y)) ≤ FU(φ−(y))−FU(y) = 0.

For right pentagons, we consider initial corners in B and C and the computation works
similarly. We can also compute grading and filtered degree of c+ using the same technique.

Proposition 4.3.2. The map c− and c+ are chain maps.

Proof. Again, consider the F2[V1, V2, · · · , Vn]-module map c− : GC−(D+)→ GC−(D−) given
by

c−(x) =
∑

y′∈S(D−)

∑
p∈Pents◦(x,y′),p∩X=φ

V
O1(p)

1 V
O2(p)

2 V
O3(p)

3 · · ·V On(p)
n · y′

Then, c− is induced map on the quotient GC−(D)
(V1−1)(V2−1)

. Therefore, c− is a chain map since c−
is a chain map. A similar argument shows that c+ is a chain map.

The chain maps c− and c+ induce the desired maps C− and C+ on the homologies.

Proposition 4.3.3. c+ ◦ c− and c− ◦ c+ are chain homotopic to multiplication by Vi.

Proof. For x−, y− ∈ S(D−), let Hex◦s,t(x−, y−) denote the set of empty hexagons with two
consecutive corners at s and at t in the order consistent with the orientation of the hexagon.
The set Hex◦s,t for x+, y+ ∈ S(D+) is defined analogously.

Let H− : CU∪β(D−)→ CU∪β(D−) be the R-module map whose value on any x− ∈ S(D−)
is

H−(x−) =
∑

y−∈S(D−)

∑
h∈Hex◦s,t(x−,y−)

V
O3(h)

3 · · ·V On(h)
n · y−.

The analogous mapH+ : CU∪β(D+)→ CU∪β(D+) is defined in the same way using Hex◦s,t(x+, y+).
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Figure 4.7: Positive stabilization

Following the lines of the proof of Proposition 6.1.1. in [36], we can easily verify that H+

is a chain homotopy between c+ ◦ c− and the multiplication by Vi, and that H− is a chain
homotopy between c− ◦ c+ and Vi, i.e.:

∂ ◦H+ +H+ ◦ ∂ = c+ ◦ c− + Vi,

∂ ◦H− +H− ◦ ∂ = c− ◦ c+ + Vi.

4.3.2 Positive stabilization

Suppose we have a positive stabilization diagram D+ (See Figure 4.7) and D− is obtained
by cross commutation of the two columns in the left one belonging to the unknot and the
other one belonging to the braid β as shown in Figure 4.7. It is easy to see that then D−

represents U ∪ β. We define the R-module maps PS+ : CU∪β+stab(D−) → CU∪β(D+) and
PS− : CU∪β(D+) → CU∪β+stab(D−) for a grid state x ∈ S(D+) and y′ ∈ S(D−) respectively
in the following way:

PS−(x) =
∑

y∈S(D−)

∑
p∈Pentso(x,y), X∩p=φ

V
Op(r)

3 V
O4(p)

4 · · ·V On(p)
n y

PS+(y′) =
∑

x′∈S(D+)

∑
p∈Pentso(y′,x′), X∩p=φ

V
O3(p)

3 V
Op(r)

4 · · ·V On(p)
n x′

Proposition 4.3.4. The maps PS− is FU filtered and PS+ is FU filtered of degree 1
2
.

Proof. We inspect the intervals A, B, C and D again [See Figure 4.8]. Local change in AU
can be computed easily using the winding number formula [Equation 2.2] for AU . Then,
we can use the fact that FU = −AU for grid states to compute filtration change. If y is a
term appearing in PS−(x) and there is an empty left pentagon p (pentagon to the the left
of vertical circle βi or γi) from x to y. Notice that, that the terminal generator y is either of
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Figure 4.8: Change in local AU grading

type B or C [ See Lemma 6.2.1 of [36]]. So we can use associated left rectangles for the left
pentagons to compute grading change as in Proposition 4.3.1.

Case 1: y is type B Since there are no extra markings in the associated rectangles [See
Figure 4.5] we have,

FU(y)−FU(x) = FU(φ−(y))−FU(x) + FU(y)−FU(φ−(y)) ≤ FU(φ−(y))−FU(y) = −1

2
.

Case 2: y is type C In this case, we have an extra X marking belonging to the unknot
[See Figure 4.6] in the associated rectangle. So,

FU(y)−FU(x) = FU(φ−(y))−FU(x)+FU(φ−(y))−FU(y) ≤ −1+FU(φ−(y))−FU(y) = −1+
1

2
= −1

2
.

Similarly for a right pentagon (pentagon to the the right of vertical circle βi or γi), we
compare it with a right rectangle. Here the initial corner is either of type B or type C. In
each case, we get filtration change = 0. Therefore, PS− is FU filtered of degree 0.

Now, let y′ be a term appearing in PS+(x′).

Case 1: y′ is type B From Figure 4.9, we observe that the associated rectangle has one
less O marking belonging to the unknot. So we have,

FU(y′)−FU(x′) = FU(φ(y′))−FU(x′) +FU(y′)−FU(φ(y′)) ≤ 1 +FU(y′)−FU(φ(y′)) =
1

2
.

Case 2: y′ is type C There are no additional markings. So we have,

FU(y′)−FU(x′) = FU(φ(y′))−FU(x′) + FU(y′)−FU(φ(y′)) ≤ FU(y′)−FU(φ(y′)) =
1

2
.

Case 3: y′ is type D Again there are no additional markings. Therefore,

FU(y′)−FU(x′) = FU(φ(y′))−FU(x′) + FU(y′)−FU(φ(y′)) ≤ FU(y′)−FU(φ(y′)) =
1

2
.
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Case 4: y′ is type A Again the associated rectangle has one less O marking belonging
to the unknot. So we have,

FU(y′)−FU(x′) = FU(φ(y′))−FU(x′) +FU(y′)−FU(φ(y′)) ≤ 1 +FU(y′)−FU(φ(y′)) =
1

2
.

Hence, the map PS+ is FU filtered of degree 1
2
.

Figure 4.9: Associated rectangle for interval A, B, C and D in the map PS+

Proposition 4.3.5. The maps PS− and PS+ are chain maps.

Proof. This same argument shows that ∂◦PS−+PS−◦∂ = 0 and ∂◦PS++PS+◦∂ = 0.

Proposition 4.3.6. PS− and PS+ are quasi-isomorphisms.

Proof. Let us revisit the homotopy equivalence maps from the previous section again. In
this case, the same argument shows

∂ ◦H+ +H+ ◦ ∂ = PS+ ◦ PS− + 1,

∂ ◦H− +H− ◦ ∂ = PS− ◦ PS+ + 1.

The conclusion follows.

4.3.3 Refinement of θ

Let x4 be the distinguished cycle consisting of northeast corners of X-markings in D as
described before. Let V be the subset of homology generated by Vi’s. Any class belonging
in V is said to be in V -image.

Definition 4.3.1. Define η(β) = min { k | [x4] is in the V -image in H∗(FUk(CU∪β)}.
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Theorem 4.3.1. η(β) is a braid conjugacy class invariant. Also η(β) ≤ η(β+stab) ≤ η(β)+ 1
2
.

Proof. From [2], we know that Htop(FUbot(CU∪β)) is generated by [x4]. So we can reinterpret
the definition as η(β) = min { k | the natural inclusion map i : Htop(FUbot(CU∪β)) →
H∗(FUk(CU∪β))

V
is trivial }. It follows that η(β) is a braid conjugacy class invariant. Since

PS− and PS+ are filtered quasi-isomorphisms, the second claim follows from the filtered
degrees of the maps PS− and PS+.

Using the above theorem, we know that η(β) is non decreasing under positive stabilization.
So it is possible to define a transverse invariant η̄(β) by taking minimum over all braid
representatives.

Theorem 4.3.2. Let β be a N-braid and T be the transverse link represented by β. If
θ̂(T ) 6= 0 then η(β) =∞ and −N

2
≤ η(β) ≤ N

2
otherwise.

Proof. From [2], we know that there is a inclusion map I : HFK−(m(β)) → HFK−,2(H4)
sending θ(T ) to the distinguished class [x4] ∈ HFK−,2(H4). Therefore, if θ̂(T ) 6= 0 then [x4]
can’t be in the V image in any filtration level in HFK−,2 ∼= H(CU∪β) and vice-versa. Hence,

it follows that η(β) = ∞ if and only if θ̂(T ) 6= 0. Also since [x4] generates the top Maslov
grading in the bottom filtration in HFK−,2. From the winding number formula [Equation
2.2], we have bot = AU(x+) = −N + 1

8
4(N + 1)− 1

2
= −N

2
. It follows that η(β) ≥ bot = −N

2
.

Also since F
N
2
U (CU∪β) = CU∪β, it is obvious that N

2
≥ η(β).

It also follows that the transverse invariant η̄(β) is atleast as strong as θ̂.

Proposition 4.3.7. If β+ is obtained from β− by changing a negative crossing to positive
crossing then, η(β+) ≥ η(β−).

Proof. It can be shown that the crossing change map C− sends the cycle [x4] in H(CU∪β+)
to [x4] in H(CU∪β−). Since C− is filtered of degree 0, the conclusion follows.

4.3.4 Negative stabilization

Now lets consider a negative stabilization diagram as in Figure 4.10. Then we can define
analogous maps NS− : CU∪β−stab(D+) → CU∪β(D−) and NS+ : CU∪β(D−) → CU∪β−stab(D+)
be the analogous R-module maps. Again the same argument shows that these are chain
maps. However, it is easily checked that they are not filtered quasi-isomorphisms through
the next proposition.

Proposition 4.3.8. NS+ ◦NS− is chain homotopic to Vi.

Proof. This also follows from the discussion in Proposition 4.3.3.

Hence, unlike positive stabilizations these maps are not quasi-isomorphisms. In fact, in
the next proposition, we show that negative stabilizations have a special value.
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Figure 4.10: Negative stabilization

Figure 4.11: Rectangle to the distinguished state in a negative stabilization

43



Proposition 4.3.9. η(β−stab) = −N+1
2

.

Proof. Let r be red colored state in Figure 4.11 where x4 is depicted by the blue colored
state. It is easy to see that r ∈ F −N+1

2 (CU∪β). By considering the rectangles from r, we
find that either they must contain a O marking in the β component or they connect to the
distinguished state x4. So, ∂r = x4 + Vi(..). It follows that [x4] is V -image in F −N+1

2 (CU∪β)
and the conclusion follows.

Remark. These properties of η(β) are very similar to the Kapppa invariant [18] in Khovanov
homology which served as a motivation for defining η. It is not clear at this point how one can
compute the transverse η̄(β). However for Kapppa invariant, computation suggests that the
minimum of Kappa over all braid representatives is probably an effective transverse invariant.
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Chapter 5

Annular Invariant

In this chapter, we will define an invariant of annular links. The invariant is a piece-wise linear
function from [0, 2]→ R. The construction is analogous construction by Grigsby, Wehrli and
Licata [13] in Khovanov homology. It gives a lower bound on annular cobordisms. It also has
an alternative description in terms of max grading of a non-torsion element of a deformed
complex tC. We recover the braid complex from the last chapter in the special case t = 0.
We study the invariant under crossing change and stabilizations using the deformed complex.
The knowledge of maps associated with crossing change and stabilizations allows us to define
braid monoids with properties similar to those defined by Grigsby, Wehrli and Licata [13].

5.1 Annular concordance invariant

5.1.1 Definition

Let L be an oriented link in R3. An annular link is L′ = L ∪ U where U is an unknot [See
Fig 5.1]. We will assume that U is oriented clockwise in x-y plane. So −U will indicate the
anticlockwise orientation.

We will consider the grid chain complex (ĜC(D), ∂̂), where D is a toroidal grid diagram

Figure 5.1: Grid of U ∪ L
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of U ∪ L ; U being the unknot (oriented clockwise) and L an oriented link. Suppose D has
grid number n and l is the number of components of L. We can write the set of non-special
O- markings as O \ sO = {O1, O2, .., On−l}.

We will call Alexander filtration for the unknot U as AU and (A1, ..., Al) = Alexander
filtrations for l components of L. We denote the sum A = A1 + .. + Al as simply AL and
A = AU + AL is the total Alexander grading.

Definition 5.1.1. Define Ft(x) to be t
2
AU(x) + (1 − t

2
)AL(x) for each 0 ≤ t ≤ 2 and

x ∈ ĜC(D).

Since Ft(x)(∂̂(x)) ≤ Ft(x)(x), Ft gives filtration levels defined as F st (ĜC) = {a ∈
ĜC(D)|Ft(a) ≤ s} for every s ∈ R. These filtration levels .. ⊆ F st ⊆ F s+1

t ⊆ .. naturally
induce filtration levels in the homology.

Since U∪L has l+1 components from [36], we know that ĜH(U∪L) = H∗(ĜC, ∂̂) ∼= (F2)2l

and ĜH0(U ∪ L) ∼= F2 ( ĜH0 is the homology at maslov grading 0)

Definition 5.1.2. Define A U
L (t) := min{s|H0(F st (ĜC), ∂̂)

i−→ ĜH0 is nontrivial }.

Since F st (ĜC) = ĜC for sufficiently large s and F st (ĜC) is empty for sufficiently small s,
it follows that A U

L (t) is a finite real number.

Analogously, since the homology at Maslov grading −l has rank equal to 1, we can define

Definition 5.1.3. Define AUL(t) := min{s|H−l(F st (ĜC), ∂̂)
i−→ ĜH−l is nontrivial }.

We will drop U for making the notation look less cumbersome (with a slight abuse of
notation) and write A U

L (t) and AUL(t) as AL(t) and AL(t).
Since filtered quasi-isomorphism type of the complex is an invariant of the link U ∪L, it

follows that AL(t) and AL(t) are annular link invariants.

5.1.2 Adding special O-markings

Now we will show that if we add any number of special O markings the invariant AL(t)
(defined in the same way in that diagram) remains the same.

In particular, we may define the invariant in the G̃C version which is useful for computations.
First, we notice that G̃C ∼= ĜH ⊗W⊗n−l−1. So G̃H0 and G̃H1−n have rank 1.

Definition 5.1.4. ÃL(t) := min{s|H0(F st (G̃C), ∂̃)
i−→ G̃H0 is nontrivial }.

We have the following equivalence,
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Proposition 5.1.1. AL(t) = ÃL(t).

Proof. Let,

W = 2 dimensional graded vector space generated by {v+
L , v

−
L}

[with (M,AU , AL)(v+
L ) = (0, 0, 0) and (M,AU , AL)(v−L ) = (−1, 0,−1)].

and

WU = 2 dimensional graded vector space generated by {v+
U , v

−
U}

[with (M,AU , AL)(v+
U ) = (0, 0, 0) and (M,AU , AL)(v−U ) = (−1,−1, 0)].

From Proposition 2.4.3, we know that (G̃C, ∂̃) is (AL,AU) filtered quasi-isomorphic to (ĜC ⊗
W⊗n−l−2 ⊗WU , ∂̂). So it follows that AL(t) = ÃL(t).

Similarly, we can define

Definition 5.1.5. ÃL(t) := min{s|H1−n(F st (G̃C), ∂̃)
i−→ G̃H1−n is nontrivial } [ where n is

the grid number of U ∪ L].

Then, we have the following relation

Proposition 5.1.2. ÃL(t) = AL(t)− t
2
− (n− l − 2)(1− t

2
).

Proof. Again, since homology at Maslov grading 1−n has rank 1, we have (ĜC, ∂̃) is (AL,AU)

filtered quasi-isomorphic to (ĜC ⊗W⊗n−l ⊗WU , ∂̂). Now, F t(G̃H(U ∪ L)1−n = F t(G̃H(U ∪
L)l ⊗ v−U ⊗ v

−
L
⊗(n−l−2)

). Therefore, it follows from the definition that ÃL(t) = AL(t) − t
2
−

(n− l − 2)(1− t
2
)

5.1.3 Properties of the invariant

Proposition 5.1.3. A −U
−L (t) = A U

L (t) and AUL(t) = A−U−L(t) .

Proof. As in [3], we can consider a map Φ from the diagram of U ∪ L to the reflection of
the diagram along a diagonal which is a diagram of −(U ∪ L). We have AU(Φ(x)) = AU(x)
and AL(Φ(x)) = AL(x). Then Φ is a filtered isomorphism. Therefore, it follows that if both
orientations are reversed, the invariants don’t change.

Proposition 5.1.4. AL1tL2(t) = AL1(t) + AL2(t).

Proof. We observe that (L1 t L2) ∪ U can be viewed as (L1 ∪ U1)#(L2 ∪ U2) where the
connected sum is obtained as (U1#U2) t (L1 t L2). Let AU be equal to AU1 + AU2 . From

the Kunneth formula ( See Theorem 11.1 in [29] ), we know that ĜC((L1∪U1)#(L2∪U2)) is

(AU , AL1 , AL2)-filtered isomorphic to ĜC(L1 ∪ U1)⊗ ĜC((L2 ∪ U2). Therefore, they are also
Ft filtered isomorphic and the conclusion immediately follows.

Proposition 5.1.5. A−L(t) = −AL(t).
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Proof. There is an annular cobordism from L t −L to null. So ALt−L(t) = 0. Then we can
apply Proposition5.1.4.

Proposition 5.1.6. AL(t) = −Am(L)(t).

Proof. Let D be the grid diagram for L∪U , and let D∗ be the diagram obtained by reflecting
D through a horizontal axis. Then D∗ represents m(L ∪ U).

We know that ĜC(D∗) is filtered isomorphic to ĜC
∗
(D)[l − 1, 0, · · · , 0] [See Section 2.4.7].

This implies H∗(F st (ĜC(D∗))) = H∗−(1−l)(F∗st(ĜC
∗
(D))). Therefore, the conclusion

follows.

We can extract two invariant functions from the invariant AL(t). For any t0 ∈ [0, 2), the
slope function

mt0(L) := lim
t→t+0

AL(t)− AL(t0)

t− t0
.

We will also assume m2(L) = 0. We also define the y-value function yt0(L) := AL(t0) −
t0mt0(L).

Proposition 5.1.7. (i)AL(t) is a continuous piece-wise linear function.

(ii) At a non-singular point t0, the slope mt0 is equal to AU (x0)−AL(x0)
2

for some generator

x0 ∈ ĜC(U ∪ L).
(iii)If t0 is a singular point, then the absolute value of change in slope |∆mto| is equal to

|AL(x2)−AL(x1)
t0

| for some generators x1, x2 ∈ ĜC(U ∪ L).

Proof. There are only finitely many elements xi ∈ ĜC(U∪L) that are generators of homology
at Maslov degree 0. Lets consider all linear functions Gxi(t) = t

2
AU(xi) + (1 − t

2
)AL(xi).

Then, AL(t) = miniGxi(t). It follows that AL(t) is a continuous piece-wise linear.

At each non-singular point t0, there must be some generator x0 such that AL(t) = Gx0(t)
∀t ∈ (t0 − δ, t0 + δ) for some δ > 0. Hence, the slope of Gx0(t) is equal to mt0 .

At a singular point t0 assume there is a generator generator x1 that assumes the value
of the invariant for t’s slightly less than t0 and x2 assumes the value for t’s slightly greater
than t0. Then at t0, we must have t0

2
AU(x1) + (1− t0

2
)AL(x1) = t0

2
AU(x2) + (1− t0

2
)AL(x2) .

So, t0∆mt0 = AL(x2)− AL(x1) and the conclusion follows.

Let τ be the Cavallo’s invariant [4] for links.

Proposition 5.1.8. AL(1
2
) = τ(U∪L)

2
.

Proof. We have, F 1
2

= 1
2
AU + 1

2
AL = 1

2
A. Therefore, A U

L (1
2
) := min{s|H0(F s1

2

(ĜC), ∂̂)
i−→

ĜH0 is nontrivial } = 1
2
τ(U ∪ L).
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5.1.4 Some computations

We will give two sample computations for torus braids and trivial braid. We will derive a
more general formula for quasi-positive braids in Proposition 5.3.5.

Figure 5.2: Torus braid

Proposition 5.1.9. ATp,q(t) = pq−q+l
2

+ t
4
(p+ q − pq − l) where Tp,q is the torus braid with

l components and 0 ≤ p ≤ q.

Proof. In case of annular torus links Tp,q with p ≤ q, the grid diagram( of Tp,q ∪ U) [See
Fig 5.2] contains a unique generator xNWO [37] of the filtered complex at Maslov grading 0.
We can compute the AU and AL gradings of the generator xNWO representing the cycle to
determine the invariant. We have,

AU(xNWO) =
p

2
[Using Equation 2.2]

and

ATp,q(xNWO) =
pq − q + l

2
[Using Equation 2.1] .

Therefore,

ATp,q(t) =
pq − q + l

2
+
t

4
(p+ q − pq − l)

Proposition 5.1.10. AIn(t) = n
2

where In is the trivial braid with n strands.

Proof. As in the case of annular torus links, the grid diagram contains a unique cycle in
Maslov grading 0 represented by the generator xNWO. Also,

AU(xNWO) =
n

2
[Using Equation 2.2]

and
AIn(xNWO) =

n

2
[Using Equation 2.1] .

Therefore,

AIn(t) =
n

2
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5.1.5 Annular concordance

Definition 5.1.6. An annular cobordism Σ between two annular links L1 ∈ S3 × {0} and
L2 ∈ S3 × {1} is an embedded surface in S3 × [0, 1] which is disjoint from z-axis in each
S3 × {i} for i ∈ [0, 1] and satisfying ∂Σ = L1 t −L2.

Any annular cobordism can be represented by a sequence of an identity, annular split,
annular merge, annular birth, and annular death cobordisms. An annular cobordism Σ
between two links L1 and L2 is called strong if the connected components of Σ are knot
cobordisms between a two components of L1 and L2. Any strong annular cobordism can be
perturbed so that it is a composition of torus cobordisms, annular birth followed by merge
cobordisms and split followed by annular death cobordisms.

Figure 5.3: Identity cobordism

By taking slices of a cobordism, any cobordism can also be seen as a movie in the link
diagram. An identity cobordism is a cobordism between a link the movie is represented
by the three Reidemeister moves performed. For birth and death, the movie corresponds
introduction or deletion of an unknotted circle. For merge or split cobordisms the change is
represented by perturbing the link diagram like Figure 5.6. Similarly, we can easily figure
out annular version of the movie [See [13] for more details].

Figure 5.4: Annular merge cobordism

We know that each of these moves induces filtered maps of some degree. We check
that these maps are both AU and AL filtered. We also compute the Ft grading shift that
will give bounds on cobordism genus. Our construction follows the prescription given in [37].
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Figure 5.5: Annular Split cobordism

1. Identity: These maps are filtered quasi-isomorphisms, hence Ft filtered of degree 0.

2. Split: If the grid diagram D2 of L2 is obtained from D1 of L1 by a split move, then
it can represented as the effect of swapping the positions of two Xs(in one of the
components of L1 in 2 ∗ 2 block. Notice that we need an extra special marking in D2

for ĜC version. So, we consider the G̃C version as done in [37].

Figure 5.6: Grid move corresponding to Merge and Split cobordisms

Consider Id : G̃C(D1) → G̃C(D2). It induces an isomorphism in homology as it is
unaffected by O swaps. So we just need to compute AU and AL degree shifts.

Now, we have the formula [From Equation 2.2] for alexander filtration for unknot in

terms of winding numbers- AU(x) =
∑
x∈x

wU(x) + 1
8

8n∑
j=1

wU(pj)− 1, where pj are corners

of Xs and Os. Clearly swapping two Xs in one of the components of L doesn’t affect
any of the winding numbers. Therefore, AU degree shift is 0.
Now AL1(x)−AL2(x) = 1

2
(J (x−XL1 , x−XL1)−J (x−XL2 , x−XL2))+

1
2

= 1
2
(J (x,XL2)−

J (x,XL1) + J (XL2 , x) − J (XL1 , x) + J (XL1 ,XL1) − J (XL2 ,XL2)) + 1
2

= 1[Since the
quantity J (XL1 ,XL1) − J (XL2 ,XL2) = 1 from the diagram]. Here XL1 are the X’s in
the grid diagram of L1 and XL2 are X’s in grid diagram of L2.

Passing to the ĜC version, we get a quasi-isomorphism Φmerge : ĜC(L1)→ ĜC(L2)⊗W
of Ft filtered of degree 1− t

2
.

3. Merge: We use the same construction for the merge move. AU degree shift is 0 by the
same argument, but for the AL grading, since number of link component is decreasing
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by 1 here, AL1(x)−AL2(x) = 1
2
(J (x−XL1 , x−XL1)−J (x−XL2 , x−XL2))− 1

2
= 0.

Again by passing to the ĜC version, we get a quasi-isomorphism Φsplit : ĜC(L1)⊗W →
ĜC(L2) of Ft filtered of degree 0.

Figure 5.7: Annular Birth and death cobordisms

4. Birth: If L2 (with grid D2 is obtained from L1 (with grid D1) by birth, we know from

[37] that there is a quasi-isomorphism from ĜC(L1) to ĜC(L2) given by

s(x) =
∑

y∈S(D1)

∑
H∈sL (i(x),y,x),H∩sO=φ

V
n1(H)

1 ...V
nm(H)
m y for any x ∈ S(D1). Here sL (i(x), y, x)

are snail like domains centered at c joining i(x) to y and ni(H) is the number of times
its passes through Oi.

Figure 5.8: Snail like domains in the birth move

Now let us assume O1 be the non-special O marking in U . Now, for any H ∈
sL (i(x), y, x) we have AU(x)−AU(y) = −

∑
( unknot winding numbers for x points )+∑

( unknot winding numbers for y points ) = n1(H).ThereforeAU(x) = AU(V
n1(H)

1 ...V
nm(H)
m y).

So s is AU filtered.
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We already know that s is A filtered from [2]. Therefore, s is Ft filtered of degree 0.

5. Death: If we compose annular birth cobordism with a merge then we get a cobordism
BM which induces a quasi-isomorphism ΦBM : ĜC(L1)→ ĜC(L2) which is Ft filtered

of degree 0. It can also be seen as Φ∗BM : ĜC(L∗2) → ĜC(L∗1). It follows that Φ∗BM is
also Ft filtered of degree 0. Now we observe that the cobordism from L∗2 to L∗1 is a
split move followed by annular death,i.e. Φ∗BM = ΦSplit ◦ ΦDeath. Therefore, annular
death induces the quasi-isomorphism ΦDeath which is Ft filtered of degree −1 + t

2
.

We will call annular merge cobordism followed by an annular split cobordism(or annular
split cobordism followed by an annular merge cobordism) a torus cobordism. Clearly torus

cobordism induces a quasi-isomorphism ΦT : ĜC(L1)→ ĜC(L2) of filtered degree 1− t
2
.

Theorem 5.1.1. If Σ is a strong annular cobordism of genus g between two annular links
L1 and L2 then

∣∣AL1(t)−AL2(t)
∣∣ ≤ g(1− t

2
).

Proof. Since any strong cobordism of genus g can be written as composition of g torus
cobordisms, some annular birth followed by merge and some split followed by annular death
cobordisms. Both annular birth followed by merge and some split followed by annular death
are filtered of degree 0. So, we get a quasi-isomorphism Φ : ĜC(L1) → ĜC(L2) with filtered
degree g(1− t

2
). So we have a commutative diagram

H0(F st (ĜC(U ∪ L1)) H0(F s+g(1−
t
2

)
t (ĜC(U ∪ L2))

ĜH0(U ∪ L1) ĜH0(U ∪ L2)

F2 F2

Φ

i i

Id

∼ = ∼ =

.

It follows that AL2(t) ≤ AL1(t) + g(1 − t
2
). Similarly by looking at the cobordism from

L2 to L1, we can show that AL1(t) ≤ AL2(t) + g(1− t
2
).

Corollary 5.1.1. If L1 and L2 are annular concordant then AL1(t) = AL2(t).

5.2 A t-modified annular chain complex

In this section, we define the modified annular grid complex tC. Then, we will link it to the
annular concordance invariant.
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5.2.1 Definition

Let D be a grid diagram of annular link U ∪ L. Let X = {X1, X2, X3, · · · , Xn} and
O = {O1, O2, O3, · · · , On} be the sets of X markings and O markings respectively where
X1, X2, O1 and O2 represent the markings of the unknot U . For 0 ≤ t = 2p

q
≤ 2 where p, q

are co-prime non-negative integers, we define the following modified link Floer complex.

Definition 5.2.1. Define tC(D) = F2[V1, V2, V3, · · · , Vn−1] module over grid states S(D)
and for a x ∈ S(D),

∂tx :=
∑

y∈S(D)

∑
r∈Recto(x,y),r∩X=φ

V
pO1(r)

1 V
pO2(r)

2 V
(q−p)O3(r)

3 · · ·V (q−p)On−1(r)
n−1 V

(q−p)On(r)
1 y

We first show that ∂t is indeed a differential.

Proposition 5.2.1. ∂t ◦ ∂t = 0.

Proof. Let CU∪L be the F2[W1,W2, · · · ,Wn] module over grid states S(D)

∂Xx :=
∑

y∈S(D)

∑
r∈Recto(x,y),r∩X=φ

W
p(q−p)O1(r)
1 W

p(q−p)O2(r)
2 · · ·W p(q−p)On(r)

n y

(CU∪L,∂X) is a chain complex obtained GC−(U ∪L) by change of variables Vi → W
p(q−p)
i .

Now, consider the quotient complex CU∪L
W q−p

1 −W p
n

. After setting, V1 = W q−p
1 = W p

n , V2 = W q−p
2

and Vi = W p
i for i > 2, we observe that the differential ∂X becomes ∂t in the quotient. Hence,

tC ∼= CU∪L
W q−p

1 −W p
n

and ∂t is just the restriction of ∂X to the quotient. The conclusion follows

easily.

tC is not Maslov graded. We define a function, Ft(x) = pAU (x)+(q−p)AL(x)
q

for x ∈ S(D)

which is extended to tC by setting Ft(Vi) = −1
q
. Similarly define, Ft(x) =

(2p−2q)AU (x)− p
2
AL(x)

q

for x ∈ S(D) and Ft(Vi) = −1
q

Proposition 5.2.2. tC is Ft graded and Ft filtered.

Proof. Let y be a state appearing in the expansion of differential of x. Then,

Ft(V
pO1(r)

1 V
pO2(r)

2 V
(q−p)O3(r)

3 · · ·V (q−p)On−1(r)
n−1 V

(q−p)On(r)
1 y)−Ft(x)

= Ft(y
′)−Ft(x)− 1

q
(pOU(r) + (q − p)OL(r)) = 0.

and

Ft(V
pO1(r)

1 V
pO2(r)

2 V
(q−p)O3(r)

3 · · ·V (q−p)On−1(r)
n−1 V

(q−p)On(r)
1 y)− Ft(x)
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= Ft(y
′)− Ft(x)− 1

q
(pOU(r) + (q − p)OL(r)) =

1

q
((p− 2q)OU(r) + (

p

2
− q)OL(r)) ≤ 0.

The homology of tC will be denoted by tH∗(C).

5.2.2 Invariance of tC

The goal of this section is to prove the following theorem

Theorem 5.2.1. Ft filtered quasi-isomorphism type of tC is an annular link invariant.

The proof is identical to the invariance proof of the last chapter. We sketch the details for
completeness. The key observation is that we need to check invariance under commutation
moves and stabilization moves of the component L.

Commutation move

Let D and D′ be two grid diagrams that differ by a commutation move and we assume the
same notation we saw in the last chapter.

Define the R-module map P : tC(D)→ tC(D′) by the formula:

P (x) =
∑

y′∈S(D′)

∑
Π∈Pent◦(x,y′),Π∩X=φ

V
pO1(Π)

1 V
pO2(Π)

2 V
(q−p)O3(Π)

3 · · ·V (q−p)On−1(Π)
n−1 V

(q−p)On(Π)
1 · y′

Proposition 5.2.3. P is Ft graded and Ft filtered.

Proof. Suppose Π is an empty pentagon from x to y′ in the expansion of P (x). Then,

AU(x)− AU(y′) = OU(Π) and AL(x)− AL(y′) = OL(Π)

The conclusion follows by taking the sum with proper weights.
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The following proposition can be proved analogously.

Proposition 5.2.4. The map P is a chain map.

Proof. Consider the F2[W1, V2, · · · ,Wn]-module map P : GC−(D) → GC−(D) that gives
quasi-isomorphism between two diagrams differing by commutation move [See Lemma 5.1.4
in [36]]. Again, P is the induced map on the quotient complex CU∪L

W q−p
1 −W p

n
. Hence, P is a chain

map.

Now, we define an analogous R-module homomorphism P ′ : tC(D′)→ tC(D). For a grid
state x ∈ S(D′), let

P ′(x′) =
∑

y∈S(D)

 ∑
p∈Pent◦(x′,y)

V
pO1(Π)

1 V
pO2(Π)

2 V
(q−p)O3(Π)

3 · · ·V (q−p)On−1(Π)
n−1 V

(q−p)On(Π)
1

 · y.
Again. We will show that the two maps P and P ′ are homotopy inverses of each other.
Define the R-module homomorphism H : tC(D) → tC(D) for each x ∈ S(D) by the

formula:

H(x) =
∑

y∈S(D)

 ∑
h∈Hex◦(x,y)

V
pO1(h

1 V
pO2(h)

2 V
(q−p)O3(h)

3 · · ·V (q−p)On−1(h)
n−1 V

(q−p)On(h)
1

 · y.
An analogous map H ′ : tC(D′) → tC(D′) can be defined by counting empty hexagons

from S(D′) to itself. Again, H and H ′ are maps induced in the quotient complex from H
and H′.

Proposition 5.2.5. The map H : tC(D) → tC(D) provides a chain homotopy from the
chain map P ′ ◦ P to the identity map on tC(D).

Proof. To have that H is a chain homotopy from P ′ ◦ P to the identity map on tC(D), we
need to verify the following identity which are true since H satisfies it. [See Lemma 5.1.6 in
[36]].

∂t ◦H +H ◦ ∂t = Id− P ′ ◦ P.

Now by putting it all together, we get -

Theorem 5.2.2. Let D and D′ be two grid diagrams that differ by a commutation move.
Then

tH(C)(D) ∼= tH(C)(D′).
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Stabilization moves

We assume the same notation from the last chapter. As before, there is a one-to-one
correspondence e between grid states of I(D′) and grid states of S(D). It is defined as-

e : I(D′)→ S(D), x ∪ {c} 7→ x.

Then, we linearly extend e to tC.

Proposition 5.2.6. The map e is a filtered quasi-isomorphism.

Proof. The same argument works in this case. e can be seen as a quotient of a filtered
quasi-isomorphism that is defined in GC− [See Section 5.2 in [36]]. Then, taking quotients
of the homotopy equivalences show that e is a filtered quasi-isomorphism.

5.2.3 Relation with the annular concordance invariant

Definition 5.2.2. For 0 ≤ t = p
q
≤ 1, Define tC = F [V ] module over grid states S(D) and

∂tx :=
∑

y∈S(D)

∑
r∈Recto(x,y),r∩X=φ

V pOU (r)+(q−p)OL(r)y for a x ∈ S(D)

So tC is obtained from tC by setting all V ′i s equal to each other.

Proposition 5.2.7. Multiplication by V q
i is chain homotopic to multiplication by V q

j in tC
if Oi and Oj belong to the same link component in L.

Proof. Let Xk be the X-marking that is in same row as Om and in the same column as On.
Define HXk : tC→ tC,

HXk(x) :=
∑

y∈S(D)

∑
r∈Recto(x,y),r∩X=Xk

V
pO1(r)

1 V
pO2(r)

2 V
(q−p)O3(r)

3 · · ·V (q−p)On−1(r)
n−1 V

(q−p)On(r)
1 y ∀x ∈ S(D)

Then, if Om is one of the markings belonging to L

∂HXk +HXk∂ = V q
m − V q

n

It follows that V q
m and V q

n are chain homotopic. Iterating this argument shows that V q
i

and V q
j are chain homotopic if Oi and Oj belong to the same link component in L.

In light of Proposition 5.2.7, we can think of tC as a F2[Vi1 , · · · , Vil ]-module. We
can also consider the complex ctC ∼= tC

Vi1=···=Vil
. It can be easily seen that Ft filtered

quasi-isomorphism type of ctC is also an annular link invariant and its homology (denoted
by ctH∗(C)) can be thought of as a F2[V ]-module. Now, we are ready to relate tC with ctC
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Let WL be a vector space with two generators, one in 0 Ft-grading and the other in
(1− t) Ft-grading. Let WU be a vector space with two generators one in 0 Ft-grading and
the other in t Ft-grading (Similar to proposition 5.1.1).

Proposition 5.2.8. tC is quasi-isomorphic to ctC ⊗Wn−l−2
L ⊗WU where l denotes the

number of components in L.

Proof. Using Proposition 5.2.7 and a short exact sequence similar to one considered earlier,
we can derive the relation.

Proposition 5.2.9. tH(C ) ∼= (F2[V ])2n−1⊕
Tor , where n is the grid number of U ∪ L.

Proof. Let φ : tC → tC
V−1

be the projection onto quotient.

Now the quotient, tC
V−1
∼= G̃C(−(U ∪ L)) under the natural identification (we will call the

identification map χ).
We also know that [ξ] ∈ tH(C ) is non-torsion element if and only if H(φ)([ξ]) 6= 0. So
ker(H(φ)) = Tor(tC ) .

Now since G̃C(−(U ∪ L)) ∼= F2l

2 , it follows that rank of free part of tH(C ) is 2n−1. Hence
we can conclude that tH(C ) ∼= (F2[V ])2n−1⊕

Tor.

We can also compute the free rank of ctC.

Proposition 5.2.10. If an annular link U ∪ L has l components.

ctH∗(C(D))

Tor(ctH∗(C(D))
∼= F2[V ]2

l−1

.

Proof. The conclusion follows from Proposition 5.2.8 and 5.2.9.

The distinguished class [x+] in ctH∗(C) ⊂ tH(C ) is a non-torsion element since its image

under φ ◦ χ is [xNEX ] in G̃C(−(U ∪L)), which is non trivial of Maslov grading 1− n. There

is an unique generator of that grading in G̃C(−(U ∪ L)). So, there must be a class [α] in
ctH∗(C) ⊂ tH(C ) for which [x+] = V k[α] + [β] where [β] is a torsion class and k ≥ 0 is
maximum. Similarly, it can be seen that [x−] is also a non-torsion element in the same tower.
This gives the following relation with the annular concordance invariant AL(t).

Theorem 5.2.3. AL(t) = −Ft([α]).

Proof. Let Ft be the filtration given by t
2
A−U + (1 − t

2
)A−L on G̃C(−(U ∪ L)). It follows

from the definitions that Ft(x) = −Ft(x)− t
2
− (n− l− 2)(1− t

2
) . Since H(φ ◦χ)([α]) 6= 0.

It follows from the definition of ÃL(t) and 4.3 that ÃUL(t) = Ã−U−L(t) ≤ Ft((φ ◦ χ)([α])) =
−Ft([α]) − t

2
− (n − l − 2)(1 − t

2
). Therefore, using 4.2 we obtain AL(t) ≤ −Ft([α]) .

Conversely, if we take an element a 6= 0 ∈ G̃C1−n(−(U ∪ L)) with ÃL(t) = Ft(a) . Since
H(φ ◦ χ)([α]) = [xNEX ] = [a], it follows that AL(t) = Ft(a) + t

2
+ (n − l − 2)(1 − t

2
) ≥

Ft([a]) + t
2

+ (n− l − 2)(1− t
2
) = −Ft([α]). Hence, the equality follows.
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Figure 5.9: Crossing change move in tC

5.2.4 Crossing change

Let L+ and L− be two annular links with grids D+ and D− that differ only in a crossing in
the L component.

Proposition 5.2.11. There are R-module maps

C− : ctH(C)(L+)→ ctH(C)(L−) and C+ : ctH(C)(L−)→ ctH(C)(L+)

where C− is homogeneous and preserves the Ft grading, and C+ is homogeneous and shifts
Ft degree by −(1− t

2
). C− ◦ C+ and C+ ◦ C− are both the multiplication by V q−p.

Here again, we have the same picture as in the previous chapter. We assume that we
have the same notation.

Proof. Fix grid states x+ ∈ S(D+) and x− ∈ S(D−). We again use the notation Pent◦s(x+, x−)
for the set of empty pentagons from x+ to x− containing s as a vertex, and similarly,
Pent◦s(x−, x+) for the set of empty pentagons from x− to x+ with one vertex at t.

Consider the R-module maps c− : ctC(D+) → ctC(D−) and c+ : ctC(D−) → ctC(D+)
defined on a grid state x+ ∈ S(D+) and x− ∈ S(D−) respectively in the following way:

c−(x+) =
∑

y−∈S(D−)

∑
Π∈Pent◦s(x+,y−)

V
pO1(Π)

1 V
pO2(Π)

2 V
(q−p)O3(Π)

3 · · ·V (q−p)On−1(Π)
n−1 V

(q−p)On(Π)
1 · y−.

c+(x−) =
∑

y+∈S(D+)

∑
Π∈Pent◦t (x−,y+)

V
pO1(Π)

1 V
pO2(Π)

2 V
(q−p)O3(Π)

3 · · ·V (q−p)On−1(Π)
n−1 V

(q−p)On(Π)
1 · y+.
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Proposition 5.2.12. The map c− preserves the Ft-grading and c+ drops the Ft-grading by
(1− t

2
).

Proof. The grading changes can be computed like chapter 4 by considering local computations
for each interval. Let y be the term, appearing in c−(x) and assume there is a left pentagon
from x to y.

Case 1: y is type B In this case we saw that, AL(y)− AL(x) = AL(φ−(y))− AL(x) +
AL(y)−AL(φ−(y)) = 0 and AU(y)−AU(x) = AU(φ−(y))−AU(x)+AU(y)−AU(φ−(y)) = 0.
So Ft(y)−Ft(x) = 0.

Case 2: y is type C In this case, AL(y) − AL(x) = AL(φ−(y)) − AL(x) + AL(y) −
AL(φ−(y)) = 1−1 = 0 and AU(y)−AU(x) = AU(φ−(y))−AU(x)+AU(y)−AU(φ−(y)) = 0.
So Ft(y)−Ft(x) = 0.

For right pentagons, the computation is same except we consider initial corners in B and
C.

Similarly, we can compute the grading shift for c+.

Proposition 5.2.13. The maps c− and c+ are chain maps.

Proof. Again the proof is similar to the one given in chapter 4.

The above chain maps c− and c+ induce the desired maps C− and C+ on the homologies.
In order to verify Proposition 5.2.11, we have to show that C− ◦ C+ and C+ ◦ C− are both
the multiplication by V q. For this, we can find chain homotopies between the composites
c− ◦ c+ respectively c+ ◦ c− and multiplication by V q−p by taking quotient similar to the
proof in the last chapter.

Therefore, we have that C− ◦ C+ and C+ ◦ C− are both the multiplication by V q−p.

5.2.5 Stabilizations

Now, we will look at stabilizations. First, we will need to define the notion of stabilization
of annular links. We define negative stabilization L− to be the annular link obtained from of
an annular link L by adding a linked negative crossing [See Figure 5.10]. Similarly, we define
positive stabilization L+ by generalizing the picture of positive stabilization in Figure 4.10.
Obviously, for braids, these correspond to the standard braid stabilizations. We will abuse
notations by referring to both grids of annular links L and L+ by L and L+ respectively.

We define the R-module maps PS− : ctC(L+)→ ctC(L) and PS+ : ctC(L)→ ctC(L+)
for a grid state x ∈ S(L+) and y′ ∈ S(L) respectively in the following way:

PS−(x) =
∑
y∈S(L)

∑
Π∈Pent◦s(x+,y−)

V
pO1(Π)

1 V
pO2(Π)

2 V
(q−p)O3(Π)

3 · · ·V (q−p)On−1(Π)
n−1 V

(q−p)On(Π)
1 · y

PS+(y′) =
∑

x′∈S(L+)

∑
Π∈Pent◦t (x−,y+)

V
pO1(Π)

1 V
pO2(Π)

2 V
(q−p)O3(Π)

3 · · ·V (q−p)On−1(Π)
n−1 V

(q−p)On(Π)
1 · x′
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Figure 5.10: Negative stabilization of an annular link

For a negative stabilzation L− of L, we have the R-module maps NS+ : ctC(L−) →
ctC(L) and NS− : ctC(L) → ctC(L−) for a grid state x ∈ S(L+) and y′ ∈ S(L) defined as
usual.

Now, the following propositions are derived just like the last chapter.

Proposition 5.2.14. The maps NS−, NS+, PS− and PS+ are chain maps.

Proposition 5.2.15. The maps PS− ◦ PS+ and PS+ ◦ PS− are both homotopic to V q−p.
The maps NS− ◦NS+ and NS+ ◦NS− are both homotopic to V p.

Now we will compute grading shifts of these maps that will be key for understanding
behavior of the invariant under positive/negative stabilizations.

Figure 5.11: Change in local values of (A,AU) gradings

Proposition 5.2.16. The maps NS− shifts Ft by 1
2
(1− t) and NS+ shifts Ft by −1

2
. The

maps PS− shifts Ft by −1
2

and PS+ shifts Ft by t−1
2

.
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Proof. We again make local computations for each of the intervals and keep track of local
change in both A = AL + AU and AU gradings [See Figure 5.11]. We know how A
grading changes locally from Lemmma 6.2.1 of [36] and we use the winding number formula
(Proposition 11.2.6. in [36]) for computing the AU grading change. If y is a term appearing
in NS−(x) and there is an empty left pentagon p (pentagon to the the left of vertical circle
βi or γi) from x to y and from Lemma 6.2.1 of [36] that the terminal generator y is either
of type B or C. So we can use associated left rectangles for the left pentagons to compute
grading change.

Case 1: y is type B Since there are no extra markings in the associated rectangles we
have,

Ft(y)−Ft(x) = Local change =
1

2
(1− t

2
) + (−1

2
)
t

2
=

1− t
2

.

Case 2: y is type C In this case, we have an extra X marking belonging to the unknot
in the associated rectangle. So,

Ft(y)−Ft(x) = Local change − t

2
=

1

2
· t

2
+

1

2
(1− t

2
)− t

2
=

1− t
2

.

Similarly for a right pentagon (pentagon to the the right of vertical circle βi or γi), we
compare it with a right rectangle. Here the initial corner is either of type B or type C. In
each case, we get grading change = 1−t

2
.

Now, let y′ be a term appearing in NS+(x′).

Case 1: y′ is type B From Figure 4.9, we observe that the associated rectangle has one
extra X and O markings belonging to L and one less O marking belonging to the unknot.
So we have,

Ft(y
′)−Ft(x

′) = Local change − t

2
= −1− t

2
− t

2
= −1

2
.

Case 2: y′ is type C There are no additional markings. So we have,

Ft(y
′)−Ft(x

′) = Local change = −1

2
(1− t

2
)− t

2
· 1

2
= −1

2
.

Case 3: y′ is type D There is an additional X marking belonging to L. Therefore,

Ft(y
′)−Ft(x

′) = Local change − (1− t

2
) =

1

2
(1− t

2
)− 1

2
· t

2
− (1− t

2
) = −1

2
.

Case 4: y′ is type A Now, the associated rectangle has one extra X marking belonging
to L and one less O marking belonging to the unknot. So we have,

Ft(y
′)−Ft(x

′) = Local change − (1− t

2
)− t

2
=

1

2
(1− t

2
) +

1

2
· t

2
− 1 = −1

2
.

Hence, the map NS+ is Ft graded of degree −1
2
. Similarly, we compute the PS− and

PS+ shifts.
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5.2.6 Inequalities involving the annular concordance invariant

Proposition 5.2.17. If the annular links L+ and L− differ in a crossing change, then for
t ∈ [0, 2]

AL−(t) ≤ AL+(t) ≤ AL−(t) + (1− t

2
)

and

AL−(t) ≤ AL+(t) ≤ AL−(t) + (1− t

2
).

Proof. Consider a non-torsion element ξ ∈ ctH(C)(L−) that has grading −AL−(t). Since
C− ◦ C+ and C+ ◦ C− are both the multiplication by V q−p, C+(ξ) is non-torsion. The Ft
grading of C+(ξ) is −AL−(t)− (1− t

2
). Also since it is in the tower of the distinguished class

[x+], by Theorem 5.2.3 −AL+(t) ≥ −AL−(t) − (1 − t
2
). Similarly, if σ ∈ ctH(C)(L+) is a

non-torsion element with grading −AL+(t), then its image C−(η) has grading −AL+(t) too.
Again since C−(η) is non-torsion and in the tower of the distinguished class, −AL+(t) ≤
−AL−(t). For the second inequality, we use the fact that mirroring takes At to −At.

Proposition 5.2.18. Let L+ and L− denote the positive and negative stabilization of an
annular link L. Then for t ∈ [0, 2]

AL(t)− 1

2
≤ AL−(t) ≤ AL(t)− 1− t

2

and

AL(t)− 1

2
≤ AL+(t) ≤ AL(t) +

1− t
2

Also,

AL(t)− 1− t
2
≤ AL−(t) ≤ AL(t) +

1

2

and

AL(t) +
1− t

2
≤ AL+(t) ≤ AL(t) +

1

2
.

Proof. The proof for AL inequalities is similar to the last proposition. Instead of using C+

and C−, we use PS+, PS−, NS+ and NS− to derive the inequalities. Then, we obtain AL

inequalities by taking the mirror.
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Since AL(t) = −Am(L)(t), Theorem 5.2.3 implies AL(t) = F (t)([α]) where [α] is the
maximum non-torsion class in [x+] tower in ctC(m(L)). We can use this relationship to derive
a slice-Bennequin type inequality. Given a link L, a Legendrization of L is a Legendrian link
whose topological link type is L. A slice-Bennequin type inequality relates classical invariants
of the Legendrization with a concordance invariant of the topological link type.

Theorem 5.2.4. Let L be an annular link with l components and L be a Legendrization of
L. Then we have the following inequality,

AL(t) ≥ lk(U,L)t

4
+ (1− t

2
)
tb(L) + |rot(L)|+ l + lk(U,L)

2

holds for all t ∈ [0, 2].

Proof. By Theorem 5.2.3, Aβ(t) ≥ Ft(x+) = t
2
AU(x+) + (1 − t

2
)AL(x+) = t

2
AU(x+) + (1 −

t
2
)(A(x+)− AU(x+)).

Now, AU(x+) = −1+1+lk(U,L)
2

= lk(U,L)
2

using the winding number formula (Equation 2.2).

Also, A(x+) = tb(L∪U)−rot(L∪U)+l+1
2

= tb(L)−rot(L)+l+2lk(U,L)
2

. Therefore,

AL(t) ≥ lk(U,L)t

4
+ (1− t

2
)(
tb(L)− rot(L) + l + lk(U,L)

2
)

We also know that x− is non-torsion in the same tower hence. Hence, Aβ(t) ≥ Ft(x−) and
a similar computation shows that

AL(t) ≥ lk(U,L)t

4
+ (1− t

2
)(
tb(L) + rot(L) + l + lk(U,L)

2
)

.

The above lower bound is similar in spirit to lower bound given by Plamenevskaya [32, 34]
on τ and Rasmussen’s s invariant.

5.2.7 Grid complex of n-cables and tC

For an annular link U ∪ L we will build the p-cable by only transform cells in the same row
or column of X-markings belonging to L like chapter 2.

We will denote the annular p-cable generated using this construction by Ur ∪Lp,q. Here,
one copy of unknot is replaced by r copies of unknot for any natural number r. Let us
consider a subset K of CU∪Lp,q which is generated by states that contains intermediate north
east corners of X in marking inside the block.

The following proposition is an analog of Proposition 3.2.1 from chapter 3.

Proposition 5.2.19. K of is a subcomplex of CUr∪Lp,q and is isomorphic to r
p
C .

64



Figure 5.12: The states in subcomplex K contains black dots

Proof. There is no rectangle coming out the special points(See Fig 5.12) of K. Therefore,
any rectangle coming out of a state in K must join it with another state in K. Hence, its a
subcomplex. We can identify the states of CUr∪Lp,q with generators of r

p
C . It easily follows

from the construction that these two complexes are indeed isomorphic.

Proposition 5.2.20. There is a chain map i : r
p
C → CUr∪Lp,q such that i([α]) = Uk[α′]

where k ∈ N and [α], [α′] are non torsion elements in the respective complexes satisfying the
described property.

Proof. We know that i sends the distinguished state x+ to itself. Since [x+] ∈ CUr∪Lp,q =
Um[α′] for some m and [x+] ∈ r

p
C = Un[α] for some n , it follows that i(Un[α]) = i([x+]) =

[x+] = Um[α′]. This implies Uni([α]) = Um[α′] . So m ≥ n as [α′] is top of the non torsion
tower in CU∪L2,q . If m > n, then i([α]) = Uk[α′] where k = m− n is a natural number.

Proposition 5.2.21. τ(Lp,q ∪ Ur) ≥ pAL(t) + (p−1)(p+q−1)
2

.

Proof. Like chapter 3, we need to compute the filtered degree of the map i , which is
A(i(x+))−pF1/p(x

+) = A(i(x+))−AU(x+)−pAL(x+). So the degree is equal to, (p−1)(q−1)
2

+
(p−1)p

2
= (p−1)(p+q−1)

2
. Therefore, τ(Lp,q ∪ U) ≥ pAL(t) + (p−1)(p+q−1)

2
.

Proposition 5.2.22. If L ∪ U is a quasi-positive link. then AL(t) = −Am(L)(t) = Ft(x
+)

where x+ is the distinguished generator in the grid of the annular link m(L).

Proof. We will show that if L is a quasi-positive then [x+] is the top of the non-torsion tower
in ctH∗(C)(U ∪m(L)). First, notice that if L∪U is quasi-positive, then the n-cable Ur∪Ln,q
is quasi-positive for q ≥ 0. It follows [x+] is the top of the non-torsion tower in CUr∪m(Ln,q)

since CUr∪m(Ln,q) = GC−⊗W⊗N for some N and [x+] is the top of the tower in GC−(L) for
a quasi-positive link L [5]. Now since we have i(x+) = x+, it follows that x+ is the top of
the tower in ctC. Therefore, Am(L)(t) = −Ft(x

+).

5.3 Braided cobordisms

We can define an invariant of a braid β by considering annular invariant of the annular link
U ∪ β where U acts like the braid axis.
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5.3.1 Properties of the annular invariant for braids

A braided cobordism Σ from β1 = Σ ∩ (S3 × {0}) to β2 = Σ ∩ (S3 × {1}) is braid-orientable
if it admits an orientation compatible with the braid-like orientations of β1 and β2.

Proposition 5.3.1. If β1 and β2 are braids , and Σ is a braid-orientable braided cobordism
from β2 to β1 with s split saddles and d deaths then

Aβ1(t)−Aβ2(t) ≤ (s− d)(1− t

2
).

Proof. From Section 5.1 we know that split moves have filtered degree 1 − t
2

and death
moves have filtered degree −1 + t

2
. We get the inequality by adding the contributions in the

cobordism.

Now we will study the effect of braid stabilization on the annular invariant.

Proposition 5.3.2. If β is a n-braid,let β+ and β− represent the n + 1-braids obtained by
positively and negatively stabilizing β respectively. Then, we have the following inequalities

Aβ(t)− 1− t
2
≤ Aβ−(t) ≤ Aβ(t) +

1

2

and

Aβ(t) +
1− t

2
≤ Aβ+(t) ≤ Aβ(t) +

1

2
.

Proof. The above inequalities follow directly from Proposition 5.2.18.

Proposition 5.3.3. Aβ(2) = n
2

for any n-braid β.

Proof. To see this, we can consider a strong braided cobordism from β to Idn. Then, it
follows from Proposition 5.3.1.

Proposition 5.3.4. If β has 1 component then, Aβ(0) = τ(β) + n
2
.

Proof. We can think of −Aβ(0) as the max Aβ grading of the x+ tower in 0C(m(β)) ∼=
HFK−,2(m(β)). Now from the inclusion isomorphism in [25], it is clear that the non-torsion
tower is taken to the non-torsion tower in HFK−(m(β)) and the grading shift is −n

2
. The

conclusion follows.
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5.3.2 Bounds on band rank

We also get the following lower bound on band rank from the annular invariant.

Theorem 5.3.1. Let β be an n-braid with l components and Idn be the identity n-braid.
Then Aβ(t)−AIdn(t) ≤ rkn(β)+l−n

2
(1− t

2
).

Proof. Recall that if a braid β has band rank rkn(β), then it can be written as

β =

rkn(β)∏
j=1

ωjσ
±1
ij
ω−1
j

Therefore, there is a cobordism from Idn to β that has rkn number of saddles. Now,
rkn = s + m, where s is the number of split and m is the number of merge cobordism
componenets in that cobordism. Also we have, s−m = l− n. Hence, the inequality follows
from Proposition 5.3.1.

K ⊂ S is called a ribbon knot if it bounds a smoothly embedded disk in B4, Morse, with
no interior maxima. Rudolph’s theorem (2.5.1) tells us, if K is ribbon then it has a closed
n-braid representative σ with rkn(σ) = n − 1. So if a closed n-braid representative β of a
some slice knot K satisfies |Aβ(t)−AIdn(t)| > (n−1)(1− t

2
) and this inequality is preserved

under (de)stabilization then that will provide a counterexample to slice-ribbon conjecture.

Given a braid β we can transform it to a Legendrian link (See Figure 5.13)which is call
Legendrization of the braid. The following inequality establishes an interesting relationship
between band rank and classical Legendrian invariants.

Theorem 5.3.2. If β is a n-braid with l componenets and L its Legendrization then,

rkn(β) + l − n
2

≥ tb(L) + |rot(L)|+ l

2
.

Proof. For all t ∈ [0, 2], the inequality

rkn(β) + l − n
2

(1− t

2
) ≥ nt

4
+ (1− t

2
)
tb(L) + |rot(L)|+ l + n

2
− n

2

follows easily by combining Theorem 5.3.1 and Theorem 5.2.4. In particular for t = 0, we
get

rkn(β) + l − n
2

≥ tb(L) + |rot(L)|+ l

2
.

5.3.3 Right veering and transverse properties

The annular braid invariant also has right veering and transverse properties properties
analagous to Grigsby-Wehrli-Licata invariant. Before proving those results, let us first
compute the invariant for quasi-positive braids.
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Figure 5.13: Legendrization of a braid

Proposition 5.3.5. If β is a quasi-positive braid of index n with l componenents. Then,
Aβ(t) = t−wr(β)−l+n

4
+ wr(β)+l

2
.

Proof. By Proposition 5.2.22, Aβ(t) = Ft(x+) = t
2
AU(x+) + (1 − t

2
)AL(x+) = (−1 +

t)AU(x+) + (1− t
2
)A(x+).

Now AU(x+) = −1+1+lk(U,L)
2

= n
2

and A(x+) = −(n+1)+(wr(β)+2n)+l+1
2

= wr(β)+n+l
2

. Hence,

Aβ(t) = (t− 1)n
2

+ wr(β)+n+l
2

(1− t
2
).

For quasi-positive braids with one component, we recover the τ to be sl(β)+1
2

since
Aβ(0) = τ(β) + n

2
.

Recall that we defined slope function mt(β) and y-value yt(β) associated to Aβ(t). Let
us define a related function.

Definition 5.3.1. For a braid β and t ∈ [0, 2]

Mt(β) := 2mt(β) + yt(β).

Then by Proposition 5.1.7, Mt(β) = AU(x0) for some generator x0 at each t ∈ [0, 2].
The function Mt also has an alternative formulation in the ctC complex. By Theorem 5.2.3,
AL(t) = −Ft([α]) where α is a maximum non-torsion element in [x+] tower in ctC. Then
again by Proposition 5.1.7, Mt(β) = −AU(α).

Notice that Mt(β) = n
2

for all t in the case of quasi-positive braids. The following
proposition gives a more general criteria in terms of right veering.
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Proposition 5.3.6. If Mt(β) = n
2

for some 0 < t < 2 then β is right veering.

Proof. Suppose β is non-right veering. Then we know that θ̂ and θ̃ vanishes. Consider the
short exact sequence

0 tC (β) tC (β) G̃C(m(β)) 0V p

In the induced long exact sequence, p∗ takes [x+] to θ̃. It follows that [x+] is V -image in tC .
But this implies Mt(β) < AU(x+) = n

2
.

Proposition 5.3.7. If Mt0(β) = n
2

for some t0 ∈ [0, 2) then Mt(β) = n
2

for 2 ≥ t > t0.

Proof. By Proposition 5.1.7, we can easily see that For t > t0 ∆Mt ≥ 0. Since n
2

is the
maximum possible value, it follows that Mt(β) = n

2
for 2 ≥ t > t0.

Proposition 5.3.8. Suppose β+ and β− are obtained from β by addition of a positive and
negative crossing respectively then

Mβ−(t) ≥Mβ(t) ≥Mβ+(t).

Proof. It is easy to see that m(β) can be obtained from m(β−) by addition of a negative
crossing. So we can consider the crossing change map c− : ctC(m(β−)) → ctC(m(β)).
Now let α ∈ tC(m(β−)) non-torsion in x+ tower with AU(α) = −Mβ−(t). Then c−(α)
is also non-torsion in the x+ tower with AU(c−(α)) = −Mβ−(t). Hence, it follows that
−Mβ(t) ≥ −Mβ−(t). Similarly, we obtain the other inequality.

Let
Mt := {β | β has index n,Mt(β) =

n

2
}.

Let t1, t2 · · · tn be real numbers satisfying 0 ≤ t1 ≤ · · · ≤ tn < 2. Then we clearly have,

QP ⊆Mt1 ⊆ · · · ⊆Mtn ⊆ RV.

WhereQP andRV denotes the monoids of Quasi-positive and right-veering braids respectively.

Theorem 5.3.3. Membership in Mt is a transverse invariant and furthermore, Mt is a
monoid.

Proof. Suppose β ∈Mt, then there is a non-torsion element α in the x+ tower in ctC(m(β))
with AU(α) = −n

2
. Now, we consider the negative stabilization map NS− : ctC(m(β)) →

ctC(m(β+stab)). Then, from Proposition 5.2.16 we have, AU(NS−(α)) = −n
2
− 1

2
= −n+1

2
.

This implies that max non torsion element in tC(m(β+stab)) also has AU equal to −n+1
2

since
its the minimum possible value. Therefore, β+stab ∈Mt.

Let us take an index N - braid β1 ∈Mt and an index M - braid β2 ∈Mt. To prove that
Mt is a monoid, we need to show that β1β2 ∈ Mt. Firs, we observe that Mt(β1 t β2) =
Mt(β1) + Mt(β2) = N

2
+ M

2
= M+N

2
. So β1 t β2 ∈ Mt. Now Baldwin [1] showed that β1β2
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is transversely isotopic to β1 t β2 after adding negative crossing. Since Mt is non decreasing
for addition of negative crossing and membership in Mt is a transverse invariant, it follows
that β1β2 ∈Mt.

70



Chapter 6

Some remarks about the τ invariant

In this chapter, we will use techniques of Chapter 3 to derive an inequality of τ for cables.
Then, we will re-interpret τ as filtration level of a distinguished element in a filtered complex.
This is analogous to the interpretation of Rasmussen’s s-invariant as the filtration level of
distinguished element in Khovanov homology. This interpretation might make computation
of τ more feasible in some cases. A similar formula can also be used to reinterpret the
annular invariant. This re-interpretation might make computational implementation more
feasible in some cases.

6.1 The concordance invariant τ for cables

Ozsváth and Szabó defined the concordance invariant τ(K) for a knot K. It can be showed
that −τ(K) is maximal Alexander grading of a non-torsion element in GH−(K). The
following proposition relates it with the collapsed complex.

Proposition 6.1.1. Let D be the grid diagram of a knot K. Let x ∈ H∗(CD) be the
non-torsion element with maximal Alexander grading. Then τ(K) = −A(x).

Proof. We know from Proposition 2.4.4, H∗(CD) ∼= GH−(K) ⊗W⊗n−1 ∼= (F2[V ] ⊕ Tor) ⊗
W⊗n−1. Therefore, the free part is isomorphic to F2[V ](−2τ(K),−τ(K)) ⊗W⊗n−1. Hence, the
conclusion follows.

We can derive the following inequality by looking at the free part of the decomposition
in Theorem 3.2.1.

Proposition 6.1.2. Let K be a knot and Kp,q its cable knot. Then,

pτ(K) +
(p− 1)(q + 1)

2
≥ τ(Kp,q) ≥ pτ(K) +

(p− 1)(q − 1)

2

holds for all p ≥ 2, q ∈ Z.

Proof. Assume thatD from earlier discussion representm(K). Then, Dp representsm(K)p,−q =
m(Kp,q). Lets take a non-torsion element in x ∈ H∗(CD). Then by, Theorem 3.2.1, i(x) ∈
H∗(C (Dp)) is non-torsion. Using Proposition 2.4.6, we can conclude that −pτ(m(K)) +
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(p−1)(q−1)
2

≤ −τ(m(Kp,q)). Since mirroring changes the sign of τ , the lower bound follows.
We can also take D to represent K, then Dp represents Kp,q. However, in this case we

can modify Proposition 3.2.2 to see that i is graded of degree − (p−1)(q+1)
2

. Now a similar
argument gives the upper bound.

Remark. J. Hom proved ( See [15]) that

τ(Kp,q) = pτ(K) +
(p− 1)(q − ε(K))

2
when ε(K) 6= 0

and
τ(Kp,q) = τ(Tp,q) when ε(K) = 0

where ε(K) is a concordance invariant valued −1, 0 or 1. Proposition 6.1.2 is an obvious
corollary of Hom’s theorem. However, it will be interesting to see if one can further analyze
the R summand in Theorem 3.2.1 to extract information about ε(K).

6.2 Computing τ as a filtration level

Proposition 6.2.1. Let K be a knot represented by grid D. K− denotes the same knot with
the orientation reversed represented by grid D− obtained by reversal of roles of X and O.

There is an isomorphism χ : GC−(D)
V1=V2=...=Vn=1

→ G̃C(D−).

Proof. The differential ∂−x :=
∑

y∈S(D)

∑
r∈Recto(x,y),r∩X=φ

V
O1(r)

1 ...V
Om(r)
m y in GC−(K) becomes

the differential
∑

y∈S(D)

∑
r∈Recto(x,y),r∩X=φ

y which happens to be the differential of G̃C(D−), since

the reversal of roles of X and O changes the orientation of the knot. Therefore, the natural
identification of states gives the stated isomorphism.

We know that τ(K) can be defined as −1 times the maximal Alexander grading of a
non torsion element [α] ∈ GH−(K) (We can assume α is homogeneous in GC−(D)). Let

us consider the projection onto quotient, φ : GC−(D) → GC−(D)
V1=V2=...=Vn=1

. A class [β] is non
torsion if and only if H(φ)([β]) 6= 0.

Proposition 6.2.2. H(φ ◦ χ)([α]) = [x+]G̃H where x+ is the distinguished state consisting
of north east corners of Os in the grid D− (or north east corners of Xs in the grid D) .

Proof. We know that [α]Uk+[β] = [x+]GH− for some non-negative integer k and some torsion

class [β]. Therefore, the conclusion follows. In particular, we have G̃H(K−) 3 [x+]G̃H 6= 0
since [α] is non-torsion.

SupposeA1 andA2 are Alexander gradings in the grid complexes ofD andD− respectively.
Then we know that A1(x) + A2(x) = 1− n for a state x in the grids of K or K− with grid
number n. Let F1 and F2 be the filtration induced by A1 and A2 in their respective filtered
grid complexes. Since orientation reversal induces filtered quasi-isomorphism in the grid
complex, we have τ(K−) = min{s|H0(F s2 (ĜC(D−))) 6= 0} = τ(K)
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Theorem 6.2.1. τ(K) = F2([x+]G̃H) + (n− 1).

Proof. Let W ∼= F(0,0)⊕F(−1,−1) be the bigraded two dimensional vector space. We know that

there is a filtered quasi-isomorphism f : ĜC(D−)⊗W⊗(n−1) → G̃C(D−). Let k = F2([x+]G̃H)
We can explicitly write ,

Fk+n−1)
2 (ĜC(D−)⊗W⊗(n−1)) = (Fk+n−1

2 (ĜC(D−)0⊗F(−1,−1)
⊗(n−1))⊕....⊕(Fk(ĜC(D−)n−1⊗F(0,0)

⊗(n−1))

.
Since Maslov grading of [x+]G̃H is 1− n, we have,

[x+]G̃H ∈ H0(Fk+(n−1)
2 (ĜC(D−))⊗ F(−1,−1)

⊗(n−1))

(Since homology of ĜC is zero for positive Maslov grading). Therefore ,H0(Fk+n−1
2 (ĜC(D−)) 6=

0. Hence τ(K) = τ(K−) ≤ k + n− l = F2([x+]G̃H) + n− 1.

On the other hand we have, τ(K) = −A1(α). We also have A1((φ ◦ χ)(x)) ≥ A1(x) for
any x ∈ GC−(D). Under the identification , we obtain

F2([(φ◦χ)(α)]) ≤ A2((φ◦χ)(α)) = −A1((φ◦χ)(α)) + 1−n ≤ −A1(α) + 1−nτ(K) + (1−n)

Therefore , F2([x+]G̃H) ≤ τ(K) + (1− n). Hence, the equality follows.
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