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Abstract

In this thesis we consider sequences of non-negative integers which

arise from counting the periodic points of a map T : X → X, where X

is a non-empty set. Some of the main results obtained are concerned

with the counting of the periodic points of an endomorphism of a group,

in particular when the group is locally nilpotent, for which class of

groups a local-global property is established. The ideas developed are

applied to some classical sequences, including the Bernoulli and Euler

numbers, which are shown to have certain ‘dynamical’ properties. We

also consider the Lehmer-Pierce construction for sequences of integers,

looking at possible generalizations and their associated measures.
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Notation and Conventions

Sets

• N the natural numbers {1, 2, 3, . . .}

• N0 the non-negative integers: {0} ∪ N

• Z the rational integers

• Q the rational numbers

• R the real numbers

• C the complex numbers

• Tn the additive n-dimensional torus Rn/Zn

• Fp the field of p elements

• Fq the field of q = pn elements

• Zn the ring of integers modulo n

• S1 the multiplicative circle group {z ∈ C : |z| = 1}

• ∅ the empty set

|X| is used for the cardinal of the set X.

Number Theory

• gcd(m,n) the greatest common divisor of m and n

• lcm(m,n) the least common multiple of m and n

• m | n m divides n

• pr ‖ n pr | n but pr+1 - n

• bxc the greatest integer less than or equal to x

The Möbius function µ : N → Z is defined by

µ(n) =


1 if n = 1

(−1)k if n = p1 · · · pk with p1, . . . , pk distinct primes

0 otherwise.

v



NOTATION AND CONVENTIONS vi

The Euler ϕ-function (or Euler totient), ϕ : N → N, is defined by

ϕ(n) = |{k ∈ N : k ≤ n and gcd(k, n) = 1}|.

Sequences

Sequences are written in the form (un) with the subscript n being a

natural number by default. If the subscript comes from a different set

of integers, or if we wish to emphasize the values taken by the subscript,

we will write the sequence in the form (un)n∈Z, for example.

Groups

Let G denote a group with a, b ∈ G. The binary operation on

G will be written additively as a + b, and in this case G is always

abelian with identity 0 and inverse of a being −a. Sometimes we will

use multiplicative notation and write ab, the identity element being 1,

with the inverse of a being a−1. The default operation is multiplication.

• o(a) the order of the element a

• ab = b−1ab the conjugate of a by b

• [a, b] = a−1b−1ab the commutator of a and b

• H ≤ G (G ≥ H) H is a subgroup of G

• N EG (G D N) N is a normal subgroup of G

• Xa = a−1Xa the conjugate by a of X ⊆ G

• |G : H| the index of the subgroup H in G

• Z(G) the centre of G

• ιG the identity automorphism of G

If S is any subset of G, the subgroup of G generated by S is the

smallest subgroup of G containing S and is written as 〈S〉. If S is a

finite set then the subgroup 〈S〉 is said to be finitely generated. If P

represents certain conditions imposed on the set S, we will write 〈S : P〉

for the subgroup of G generated by S subject to the conditions P.
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Polynomials

If R is a ring, R[x1, . . . , xn] is used to represent the ring of polyno-

mials in x1, . . . , xn over R. Let F ∈ R[x]. We write ∂(F ) for the degree

of F ; if F is the zero polynomial, ∂(F ) = −∞. If G ∈ R[x1, . . . , xn]

this is extended to ∂xk
(G) for the degree of G in the variable xk. The

polynomial F (x) = anx
n + · · · + a1x + a0 ∈ Z[x] is called primitive if

gcd(an, . . . , a1, a0) = 1.

If H ∈ C[x], we say that H is a monic polynomial if

H(x) = xd + ad−1x
d−1 + · · ·+ a1x+ a0, d ≥ 1.

In this case, the companion matrix to H is

ΛH =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −ad−1


.

General

• Mn(R) the ring of n× n matrices over R

• log+ x = log max{1, x}, x ∈ R, x ≥ 0

• diag(Xα) =
⋃
x∈X{x}α = {(x, x, . . .) : x ∈ X}

• xT the transpose of the vector x
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CHAPTER 1

Introduction

The primary concerns of this thesis are the arithmetic properties

of those integer sequences which count the periodic points of a given

map acting on a given set, with particular emphasis being placed on

endomorphisms of groups. In this chapter, the basic concepts are in-

troduced: there are no new results, though some proofs may be new.

1.1. Group Theory

The definitions, notations and properties of groups required in the

thesis are recalled here. For more detail we refer to the books [13], [24],

[25], and for specialized information about p-groups [14]. Throughout

this section we will use G to denote an arbitrary group with binary

operation ‘multiplication’. If H is a subgroup of G we write this as

H ≤ G. Following common practice, the symbol 1 (or 0 in the case

of an ‘additive’ group) is used to denote the identity of G, and also to

denote the subgroup of G containing the identity only.

1.1.1. Basics. We assume that the notions of group (abelian and

non-abelian), subgroup, coset, quotient group, group generators and

elementary presentations are all known. We will concentrate here on

terminology and notation.

Denote by X any non-empty subset of G and let g ∈ G. We use

the notation Xg to represent the set

{g−1xg : x ∈ X},

and xg for the element g−1xg when x ∈ G. This operation on the

subsets (elements) ofG is known as conjugation. Two subgroupsH1, H2

1
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of G are said to be conjugate if there exists g ∈ G such that Hg
1 = H2.

For a given H ≤ G, the set of subgroups of G, {Hg : g ∈ G}, is called

the conjugacy class of the subgroup H. If N ≤ G is such that N g = N

for all g ∈ G, then N is a normal subgroup of G, written as N E G

(or, occasionally, G D N). Thus, N is a normal subgroup of G if N

is the only member of the conjugacy class of N . The normalizer of a

subgroup H of G is

NG(H) = {g ∈ G : Hg = H}.

We have H E NG(H), and NG(H) = G if and only if H is a normal

subgroup of G. The centralizer of a non-empty subset X of G is defined

similarly:

CG(X) = {g ∈ G : xg = x for all x ∈ X}.

Given x, y ∈ G, the commutator of x and y is defined to be

[x, y] = x−1y−1xy = x−1xy.

If A,B ≤ G, the subgroup [A,B] of G is

[A,B] = 〈[a, b] : a ∈ A, b ∈ B〉.

If A and B are normal subgroups of G then [A,B] = [B,A] E G and

[A,B] ≤ A ∩B.

If L denotes a group and the map ϑ : G→ L is such that

ϑ(g1g2) = ϑ(g1)ϑ(g2) for all g1, g2 ∈ G,

then we call ϑ a homomorphism from G to L. When ϑ is also a bi-

jection, it is called an isomorphism, and in this case we write G ∼= L.

A homomorphism ϑ : G → G is called an endomorphism of G. The

set of all endomorphisms of G forms a semigroup under the operation

of composition of maps. An isomorphism α : G → G is known as an

automorphism, and the set of all automorphisms is written as Aut(G).
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This has the structure of a group, with binary operation the composi-

tion of maps. When g is a fixed element of G, the map ψg : G → G

defined by ψg : x 7→ xg, is easily seen to be an automorphism of G;

and any member of Aut(G) which has this shape is called an inner au-

tomorphism of G. We note here that if ψg is the inner automorphism

just defined then CG(g) = {x ∈ G : ψg(x) = x}: that is, CG(g) is the

set of fixed points of the map ψg : G→ G.

A subgroup F of G is said to be fully-invariant if ϑ(F ) ⊆ F for

all endomorphisms ϑ of G, and K ≤ G is known as a characteristic

subgroup of G if α(K) ⊆ K when α ∈ Aut(G). It is clear that a

fully-invariant subgroup is characteristic, and a characteristic subgroup

is normal: examples exist to show that the converse is not true. A

weakening of the requirements for a fully-invariant subgroup is: if ϑ is

an endomorphism of G, then the subgroup H is called ϑ-invariant if

ϑ(H) ⊆ H. Thus, H ≤ G is fully-invariant if it is ϑ-invariant for all

endomorphisms ϑ of G.

We conclude the basic constructions and definitions associated with

a group by making precise what it means for a group to have local

properties. Thus, if P is a property relating to the class of groups (for

example, being finite) then a group L is said to be locally P if every

finitely generated subgroup of L is contained in a subgroup of L having

the property P. For example, L is a locally finite group if every finitely

generated subgroup of L is in fact finite.

1.1.2. Sylow subgroups. If p is a prime and the group P is such

that every member of P has order a power of p, then P is called a

p-group. A subgroup H of G is a p-subgroup of G if H, considered as

a group in its own right, is a p-group. The maximal p-subgroups of G

are known as the Sylow p-subgroups of G. The following result, which

dates back to 1872, establishes the existence of Sylow p-subgroups of a

finite group.
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Theorem 1.1.1. (Sylow’s Theorem) Let S denote a finite group with

|S| = pmr, where p is prime, m is a non-negative integer and r is a

positive integer such that p - r. Then

(1) S has a Sylow p-subgroup of order pm.

(2) If P is a Sylow p-subgroup of S and H is any p-subgroup of

S then H ≤ P x for some x ∈ S. In particular, the Sylow

p-subgroups of S form a single conjugacy class.

(3) Let the number of distinct Sylow p-subgroups of S be denoted

by np. Then np = |S : NS(P )|, where P is any particular

Sylow p-subgroup of S; np | r; and np ≡ 1 (mod p).

1.1.3. Central Series and Nilpotent Groups. First we recall

the definition of the centre of a group. The centre Z(G) of G is defined

by

Z(G) = {x ∈ G : gx = g for all g ∈ G}.

It is easy to see that Z(G) is a characteristic subgroup of G.

Let H0, H1, . . . , Hn denote normal subgroups of G with n ≥ 1 and

(1.1) 1 = H0 E H1 E · · · E Hn = G.

We call (1.1) a normal series for G of length n. If the series is such

that

Hr/Hr−1 ≤ Z(G/Hr−1), for r = 1, . . . , n,

then it is called a central series for G. It is possible for a group to have a

normal series but not a central series: the group S3, the permutations

of three symbols, is an example of such. If a group does possess a

central series then it is said to be nilpotent. An abelian group A clearly

has a central series: 1 E A; so all abelian groups are nilpotent. An

example of a non-abelian nilpotent group follows.

Example 1.1.2. Let Q8 denote the quaternion group of order 8,

Q8 = {1,−1, i,−i, j,−j, k,−k},
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where the usual rules for the multiplication of quaternions apply. We

have Z(Q8) = {1,−1} and Z(Q8/Z(Q8)) = Q8/Z(Q8). It follows that

a central series for Q8 is 1 E Z(Q8) E Q8, so Q8 is a non-abelian

nilpotent group.

Next we consider the two most important cases of central series for

G. The first of these is related to the centre of G and the construction

is suggested by Example 1.1.2. The upper central series for the G is

(1.2) ζ0(G) E ζ1(G) · · · E ζα(G) E · · · E G,

where ζ0(G) = 1, and for r ≥ 1,

ζr(G)/ζr−1(G) = Z(G/ζr−1(G)).

Obviously, ζ1(G) is the centre of G and it is clear that the subgroups

ζr(G) are all characteristic. If G is a nilpotent group then there exists

a least non-negative integer c such that ζc(G) = G: c is called the class

of the nilpotent group. An abelian group A 6= 1 has class 1.

The lower central series for G is

(1.3) γ1(G) D γ2(G) D · · · D γβ(G) D · · · D 1,

where γ1(G) = G, and for r > 1,

γr(G) = [G, γr−1(G)].

If G is nilpotent then there is a positive integer n such that γn(G) = 1.

It is known that if G is a nilpotent group of class c, then γc+1(G) = 1;

and if c is the least non-negative integer such that γc+1(G) = 1, then

G is of nilpotent class c.

Example 1.1.3. Let G denote the upper triangular matrix group
1 Q/Z Q/Z

0 1 Z

0 0 1

 .
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Here the notation means that the elements of G are matrices of the

form 
1 s t

0 1 z

0 0 1

 ,

where s, t ∈ Q/Z and z ∈ Z. The group operation is matrix multipli-

cation, with Z acting on Q/Z in the natural way. It is clear that G is

an infinite non-abelian group: we will show that is nilpotent, of class 2.

First, the set of matrices 
1 0 Q/Z

0 1 0

0 0 1


is a subgroup of G, and it is easy to see that it is in fact the centre,

Z(G), of G. Now let

x =


1 s1 t1

0 1 z1

0 0 1

 and y =


1 s2 t2

0 1 z2

0 0 1


be any two members of G. Then we obtain

[x, y] =


1 0 z2s1 − z1s2

0 1 0

0 0 1

 ,

and so γ2(G) = [G,G] E Z(G). It follows that γ3(G) = 1, so G is

nilpotent of class 2.

We finish with two results concerning nilpotent groups, the first of

which guarantees a plentiful supply of such.

Theorem 1.1.4. Let p denote a prime and P a finite p-group. Then

P is nilpotent.
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The proof of this result is a consequence of the fact that the centre

of a finite p-group is non-trivial. The next theorem establishes the

overall structure of a finite nilpotent group.

Theorem 1.1.5. (Burnside and Wielandt) Let G denote a finite group.

Then G is nilpotent if and only if each Sylow p-subgroup of G is fully-

invariant.

It follows from this and Sylow’s Theorem that in a finite nilpotent

group the Sylow p-subgroups are unique for each prime, and that the

group is the (direct) product of these subgroups.

1.2. Realizable Sequences

A class of sequences is introduced which owes its origins to the

theory of dynamical systems. Many of the definitions and results in

this section are to be found in [22].

An important consideration in many branches of mathematics is

that of the set of periodic points of a map T : X → X, where both

X and T would normally possess some mathematical structure. For

example, X may be a compact topological space and T a continuous

map, or X may be a group and T an automorphism. Ergodic theory

and the study of dynamical systems provide many examples in these

categories. We refer to the books [10], [26] and [29] for information

relating to systems of this type. A natural question arising from the

study of this kind of system is to enquire about the properties of those

integer sequences that count the number of periodic points, leading to

the following definitions.

Let X denote a non-empty set, and T : X → X a map; call the

pair (X,T ) a system. The set of fixed points of the map T is

Fix(T ) = {x ∈ X : T (x) = x}.
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For each integer n ≥ 1, the set of periodic points of period n for T is

Pern(T ) = Fix(T n) = {x ∈ X : T n(x) = x}.

Definition 1.2.1. A sequence (un) of non-negative integers is said to

be realizable if there exists a system (X,T ) such that for every n ≥ 1,

un = |Pern(T )|.

In [22] the expression exactly realizable is used for this type of

sequence. We will variously use the alternatives: u is a realizable se-

quence; the sequence u is realized by the system (X,T ); (X,T ) realizes

the sequence u. Although no structure is placed on the system (X,T ),

it is known that without any loss of generality, X may be assumed to

be a compact topological space and T : X → X a homeomorphism;

see [22] for the details. Indeed, a recent result of Alistair Windsor,

states that without loss of generality, the system (X,T ) may be taken

to be: X is the 2-torus, T2, and T : X → X is a C∞ diffeomorphism.

A simple example of a realizable sequence follows.

Example 1.2.2. The permutation

T = (1 2 3 4)(5 6) acting on the set X = {1, 2, 3, . . . , 8}

realizes the periodic sequence (2, 4, 2, 8, 2, 4, 2, 8, . . .).

A further example of a realizable sequence, which we will require

later, is given in the next result.

Proposition 1.2.3. If a is a positive integer then the sequence (an)n≥1

is realizable.

Proof . Denote by X the set of sequences {0, 1, . . . , a − 1}N and let

T : X → X be the left shift map; that is, if x = (x1, x2, x3, . . .) ∈ X

then T : x 7→ (x2, x3, x4, . . .). Then it is easy to see that the system

(X,T ) realizes the sequence (an)n≥1. �
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The following gives an arithmetic criterion for determining whether

or not a given sequence is realizable. For a proof of the result we refer

to [22] where it is called the Basic Lemma.

Lemma 1.2.4. Let (un) denote a sequence of non-negative integers,

and define the sequence (u∗n) by

u∗n =
∑
d|n

µ(n/d)ud,

where µ is the Möbius function. Then (un) is a realizable sequence if

and only if the following two conditions hold for all n ≥ 1,

(1) u∗n ≥ 0

(2) n | u∗n.

The two conditions in Lemma 1.2.4 prompt the following defini-

tions. The first we are able to give in a general form, not being re-

stricted to just integer sequences.

Definition 1.2.5. Let x = (xn)n≥1 denote a sequence of non-negative

real numbers. We say that x has positivity if the sequence x∗ = (x∗n)

defined by

x∗n =
∑
d|n

µ(n/d)xd, n = 1, 2, 3, . . . ,

satisfies the condition x∗n ≥ 0 for all n ≥ 1.

The second definition is not quite so general.

Definition 1.2.6. Let a = (an)n≥1 denote a sequence of integers. We

say that a has divisibility if for every integer n ≥ 1,∑
d|n

µ(n/d)ad ≡ 0 (mod n).

Given a sequence u = (un) of non-negative integers, to show that it

is a realizable sequence we now have two means of attack available. The

first (and often the easiest) is to find a system (X,T ) which realizes the

sequence u. The other approach is to utilize Lemma 1.2.4 and show
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that u has both positivity and divisibility. On the negative side, the

following result often gives a very quick way of establishing the fact

that a sequence is not realizable.

Lemma 1.2.7. Let p denote a prime and u = (un) a sequence of non-

negative integers. If u is a realizable sequence then

up − u1 ≥ 0 and p | up − u1.

Proof . Since µ(p) = −1 and µ(1) = 1, this follows immediately from

Lemma 1.2.4. �

The class of realizable sequences possesses some algebraic structure,

as we will now demonstrate. If u = (un) and v = (vn) are any two

sequences, then the sum and product sequences are defined as pointwise

operations. That is: u+ v = (un + vn) and uv = (unvn).

Proposition 1.2.8. If u = (un) and v = (vn) are realizable sequences

then u+ v and uv are both realizable sequences.

Proof . Let the realizing systems for u and v be (U, Tu) and (V, Tv).

Denote by W the disjoint union of the sets U, V and define the map

S : W → W by

S : x 7→

 Tu(x) if x ∈ U

Tv(x) if x ∈ V ,

for x ∈ W . The system (W,S) realizes the sum u + v. Clearly, the

product sequence uv is realized by the system (U × V, Tu × Tv). �

The next result basically says that if we have the beginning of a

realizable sequence then we can extend it to give a complete realizable

sequence. It is included firstly for interest, but mainly to assist in the

proof of Lemma 1.2.10.

Lemma 1.2.9. Let m denote a fixed positive integer and s1, . . . , sm a

finite sequence of non-negative integers where for each integer n in the

range 1 ≤ n ≤ m
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(1)
∑

d|n µ(n/d)sd ≥ 0

(2)
∑

d|n µ(n/d)sd ≡ 0 (mod n).

Then there is a realizable sequence (un) with uk = sk when 1 ≤ k ≤ m.

Proof . Define the sequence of non-negative integers (an) by

an =


∑

d|n µ(n/d)sd if 1 ≤ n ≤ m

n if n > m.

We note that by the given conditions, an ≥ 0 and n | an for all n ≥ 1.

Now set un =
∑

d|n ad for n ≥ 1. Clearly, (un) is a sequence of non-

negative integers and the Möbius inversion formula gives uk = sk when

1 ≤ k ≤ m. Finally, Lemma 1.2.4 shows that (un) is a realizable

sequence because
∑

d|n µ(n/d)ud = an for all n ≥ 1. �

Next we have a (partial) generalization of Proposition 1.2.8 to se-

quences of real numbers.

Lemma 1.2.10. If the sequences x = (xn), y = (yn) of non-negative

real numbers both have positivity, then the sum and product sequences,

x+ y = (xn + yn) and xy = (xnyn) have positivity.

Proof . The fact that positivity is preserved by the sum x+ y is trivial,

so we will concentrate on the product sequence. Fix the integer m ≥ 1

and assume first of all that x and y are both sequences of non-negative

rationals. Then, using Lemma 1.2.9, we can find an integer k ≥ 1

and realizable sequences (un), (vn) so that un = kxn, vn = kyn when

1 ≤ n ≤ m. Next apply Lemma 1.2.8 to see that the sequence (unvn)

has positivity. However, when 1 ≤ n ≤ m we have unvn = k2xnyn, so

for n in this range

0 ≤
∑
d|n

µ(n/d)udvd = k2
∑
d|n

µ(n/d)xdyd,

from which we get∑
d|n

µ(n/d)xdyd ≥ 0, when 1 ≤ n ≤ m.
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Since m was an arbitrary fixed integer it follows that xy has posi-

tivity when x and y are non-negative rational sequences with positivity.

To complete the proof we just appeal to analysis and the fact that the

rationals are dense in the reals. �

We finish this section with a result establishing a simple sufficient

condition for a sequence to have positivity.

Lemma 1.2.11. If x = (xn) is an increasing sequence of non-negative

real numbers which is such that x2n ≥ nxn for all n ≥ 1, then x has

positivity.

Proof . First note that because x is an increasing sequence, for any

integer n ≥ 1

x2n+1 ≥ x2n ≥ nxn = b(2n+ 1)/2cxb(2n+1)/2c,

so we have xn ≥ bn/2cxbn/2c for all n ≥ 2. It follows from this and the

fact that µ(n) ≥ −1 when n ≥ 1,

∑
d|n

µ(n/d)xd ≥ xn −
∑
d|n
d 6=n

xd ≥ xn − bn/2cxbn/2c ≥ 0 if n ≥ 2.

Therefore the sequence x has positivity. �

Alternative proofs of Lemmas 1.2.10 and 1.2.11 can be found in the

second chapter of [22].

1.3. Local Realizability

In many branches of mathematics, it is often possible to throw light

on the structure of an object by looking at it locally. The survey article

[20] examines this process, as applied to number theory, in some depth.

We introduce the concept of a locally realizable sequence in order to

simplify (in some cases) the process of showing that a given sequence

is realizable.
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If a is a positive integer and p a prime, there are integers k ≥ 0

and b ≥ 1 such that a = pkb with p - b: pk is called the p-part of the

integer a; we write [a]p = pk and ordp(a) = k. Given a sequence (un)

of non-negative integers, (un) is locally realizable at p if the sequence

([un]p)n≥1 is realizable. If u = (un) is locally realizable at all primes

then u is everywhere locally realizable.

Proposition 1.3.1. If the sequence u = (un) is everywhere locally

realizable then u is realizable.

Proof . For each prime p there is a non-empty set Xp with a map

Tp : Xp → Xp such that (Xp, Tp) realizes the sequence of p-parts ([un]p).

Define the set X by X =
∏

pXp, and the map T : X → X to be the

corresponding product T =
∏

p Tp. Now we have

|Pern(T )| =
∏
p

|Pern(Tp)| =
∏
p

[un]p = un,

and so the system (X,T ) realizes the sequence u. �

In general, the converse of Proposition 1.3.1 is not true, as demon-

strated by the following example. However, it is true when the sequence

is realized by a system (X,ϑ) where X is a locally nilpotent group and

ϑ an endomorphism on X: this is proved in Chapter 3.

Example 1.3.2. Consider the symmetric group of order 6,

S3 = 〈a, b : a3 = 1, b2 = 1, ab = a−1〉.

If ψ : S3 → S3 is the inner automorphism, ψ : x 7→ xa, x ∈ S3, then

the sequence realized by the system (S3, ψ) is

u = (3, 3, 6, 3, 3, 6, . . .).

The 2-part sequence derived from u is (1, 1, 2, 1, 1, 2, . . .), which is not

realizable by Lemma 1.2.7 since 3 - 2 − 1. Hence u is not everywhere

locally realizable.

We will consider this simple example in more depth later.
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1.4. Lehmer-Pierce Sequences

In 1933, D.H. Lehmer published a paper [17] in which he made use

of a construction previously studied by T.A. Pierce [21] in 1917. This

construction results in a sequence of integers and is defined as follows.

Let F ∈ Z[x] denote a monic polynomial with factorization over C,

F (x) = (x− α1) · · · (x− αd), d = ∂(F ) ≥ 1.

The Lehmer-Pierce sequence (∆n(F )) is given by the equation:

(1.4) ∆n(F ) =
d∏

k=1

|αnk − 1|, n ≥ 1.

It is easy to see that (∆n(F )) is a sequence of non-negative integers

since ∆n(F ) is a symmetric function of the zeros of F . What is more,

it is a divisibility sequence in the sense that if m | n, then ∆n(F ) is a

multiple of ∆m(F ). This can be seen from the fact that the polynomial

xm − 1 is a factor of the polynomial xn − 1 when m | n.

Examples 1.4.1. Let F ∈ Z[x] be the monic polynomial defined by

F (x) = x2 − x− 1. If the zeros of F are α1, α2, then using α1 +α2 = 1

and α1α2 = −1, we easily obtain

(∆n(F )) = (1, 1, 4, 5, 11, 16, 29, 45, 76, 121, 199, 320, 521, 841, 1364 . . .).

Writing u = (un) = (∆n(F )) we note that at least for the number of

terms shown, Lemma 1.2.4 shows that u is a realizable sequence. Also

we note that the terms of u satisfy the linear recurrence relation

un+4 = un+3 + 2un+2 − un+1 − un; u1 = 1, u2 = 1, u3 = 4, u4 = 5.

Let f ∈ Z[x] denote the polynomial f(x) = x + 2. The Lehmer-

Pierce sequence (∆n(f)), usually known as the Jacobstal-Lucas se-

quence, is:

(|(−2)n − 1|) = (3, 3, 9, 15, 33, 63, 129, 255, 513, 1023, . . .).
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If the polynomial g ∈ Z[x] is given by g(x) = x2 − 2x+ 2, then the

Lehmer-Pierce sequence (∆n(g)) is calculated as

([(1+ i)n−1][(1− i)n−1]) = (1, 5, 13, 25, 41, 65, 113, 225, 481, 1025, . . .).

When the monic polynomial F ∈ Z[x] is such that no zero of F is a

root of unity, it is known that the Lehmer-Pierce sequence (∆n(F )) is

realizable, arising from the action of an endomorphism on an abelian

group. This will be shown to be the case in Chapter 4.



CHAPTER 2

New Realizable Sequences

In this chapter, various ways of obtaining new realizable sequences

from existing ones are considered. The first section presents some gen-

eral means of obtaining realizable sequences from an existing realizable

sequence. The second section is concerned with the realizability of cer-

tain subsequences of a realizable sequence. The main methods of proof

employed in this chapter are combinatoric arguments in conjunction

with Lemma 1.2.4.

2.1. Generating New Sequences

Given a realizable sequence u = (un), by definition there exists a

system (X,T ) such that un = |Pern(T )| for all positive integers n.

This system (or its implied existence) can be utilized to construct new

sequences. For example, we have the following easy result as a way of

introduction.

Proposition 2.1.1. Let m denote a positive integer and {k1, . . . , km}

a set of positive integers. If u = (un) is a realizable sequence, then the

sequence v = (vn) with terms given by

vn = uk1nuk2n · · ·ukmn, n = 1, 2, 3, . . .

is realizable.

Proof . If the sequence u is realized by the system (X,T ) then the

sequence v is realized by (W,S) where W = Xm and S : W → W is

the map T k1 × T k2 × · · · × T km . �

16
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Corollary 2.1.2. If m denotes a fixed positive integer and (un) a re-

alizable sequence, then the sequence (umn ) is realizable.

Proof . Let k1 = k2 = · · · = km = 1 in Proposition 2.1.1. �

We now establish results which provide a generalization of Corol-

lary 2.1.2 in that the constant integer m is shown to be replaceable by

certain integer polynomial functions of n.

Lemma 2.1.3. Let (un) be a realizable sequence and p a prime. If r

and m denote positive integers with p - m, then

uprm ≡ upr−1m (mod pr).

Proof . To shorten the proof we will quote a simple result proved in

Proposition 2.2.1 of the next section: the sequence (umn)n≥1 is realiz-

able. Using this and Lemma 1.2.4, we get

pr
∣∣ ∑
d|pr

µ(pr/d)umd,

from which the result easily follows. �

Theorem 2.1.4. If u = (un) is a realizable sequence, then the sequence

(unn) is also realizable.

Proof . Define the sequence v = (vn) by vn = unn for n = 1, 2, 3, . . .. We

will prove that v is a realizable sequence by showing that it possesses

both divisibility and positivity. To this end, for each n ≥ 1, we will

write

v∗n =
∑
d|n

µ(n/d)vd =
∑
d|n

µ(n/d)udd.

Fix the value of the integer n: since v∗1 = u1 we can suppose that n > 1.

We begin by establishing that v has divisibility. Let p denote a

prime, and r a positive integer where pr ‖ n; put n = prm, so that

v∗n =
∑
d|prm

µ(prm/d)vd =
∑
d|m

µ(m/d)(vprd − vpr−1d).
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Now,

vprd − vpr−1d = up
rd
prd − up

r−1d
pr−1d = (up

rd
prd − up

rd
pr−1d) + (up

rd
pr−1d − up

r−1d
pr−1d),

and examination of each of the bracketed terms in this expression gives,

firstly:

up
rd
prd − up

rd
pr−1d = (uprd − upr−1d)K

for some integer K, so by Lemma 2.1.3, pr | up
rd
prd − up

rd
pr−1d. Next we

have, on writing a = udpr−1d

up
rd
pr−1d − up

r−1d
pr−1d = ap

r−1

(aϕ(pr) − 1),

where ϕ is the Euler ϕ-function. If p - a then by the Euler-Fermat

Theorem,

up
rd
pr−1d − up

r−1d
pr−1d ≡ 0 (mod pr);

while if p | a,

pp
r−1d

∣∣uprd
pr−1d − up

r−1d
pr−1d,

from which it is easy to see that we also get

up
rd
pr−1d − up

r−1d
pr−1d ≡ 0 (mod pr).

By combining these results, pr | v∗n, and it follows immediately that the

sequence v has divisibility.

To prove that v has positivity, first we note that by the definition

of a realizable sequence, if d | n then ud ≤ un. Hence, if un ≤ 1 then

udd = ud for all d | n. It follows therefore, that if the sequence u is such

that un ≤ 1, then

v∗n =
∑
d|n

µ(n/d)ud ≥ 0

because u has positivity. Now suppose that un > 1. Then

v∗n = unn +
∑
d|n
d 6=n

µ(n/d)udd ≥ unn −
∑
d|n
d 6=n

udd,
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and so

v∗n ≥ unn −
bn/2c∑
k=1

ukn.

This gives

v∗n ≥ unn −
un(u

bn/2c
n − 1)

un − 1
≥ unn − u1+bn/2c

n ≥ 0,

and therefore the sequence v does have positivity. Lemma 1.2.4 com-

pletes the proof. �

Corollary 2.1.5. Let a, k denote fixed non-negative integers, and (un)

a realizable sequence. Then the sequence (uan
k

n )n≥1 is realizable.

Proof . If a = 0 this is trivial, so we assume a ≥ 1. Next, the case k = 0

follows from Corollary 2.1.2, so we also suppose that k ≥ 1. The proof

is now completed by first noting that the sequence (uan) is realizable by

Corollary 2.1.2, and then using Theorem 2.1.4 inductively. �

Corollary 2.1.6. If h denotes a polynomial from N0[x] and (un) is a

realizable sequence, then the sequence (u
h(n)
n ) is realizable.

Proof . If h is the zero polynomial this is trivial. Otherwise, suppose

that h(x) = cdx
d + · · · + c0, where d ≥ 0, c0, . . . , cd ≥ 0 and cd 6= 0.

Then

uh(n)
n = ucdn

d

n · · ·uc1nn uc0n ,

and so, from the previous Corollary, we see that the sequence (u
h(n)
n )

is a product of realizable sequences. Proposition 1.2.8 completes the

proof. �

2.2. Realizable Subsequences

In this section we show that the realizability of a sequence extends

to certain subsequences. The arguments used are mainly of a combi-

natoric nature, because in most cases the results seem not to be easily

accessible from properties of the realizing systems. However, this is
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certainly not the case for the first (essentially trivial) result which is

well known and is included just for the sake of completeness.

Proposition 2.2.1. Let u = (un) denote a realizable sequence, and let

c denote a positive integer. If the subsequence v = (vn) of u is defined

for each integer n ≥ 1 by vn = ucn, then v is a realizable sequence.

Proof . This follows immediately from Proposition 2.1.1. �

The aim now is to replace the constant c in Proposition 2.2.1 by

a non-constant function of n. Examples quickly demolish the use of

elaborate functions – though there may be some remaining. The main

result of this section follows, and it shows that we are able to replace

c by a simple polynomial multiplier of the form cnk−1. In contrast to

Proposition 2.1.1, this does not seem to be readily proved by a con-

struction using the realizing maps. It would appear to be an inherently

more subtle result.

Theorem 2.2.2. Let u = (un) denote a realizable sequence, and let k

be a positive integer. If the sequence v = (vn) is defined by

vn = unk , n = 1, 2, 3, . . . ,

then v is also a realizable sequence.

Proof . Let n ∈ N be such that n > 1 and let the distinct prime divisors

of n be p1, . . . , pr, so that n = ps11 · · · psr
r for some integers s1, . . . , sr ≥ 1.

Then,

v∗n =
∑
d|n

µ(n/d)vd = vn −
∑
pi

vn/pi
+
∑
pi, pj

vn/pipj
+ · · ·+ (−1)rvn/p1···pr ,

where pi, pj, . . . are distinct members of the set {p1, . . . , pr}. It follows

that

(2.1) v∗n = unk −
∑
pi

unk/pk
i
+
∑
pi, pj

unk/pk
i p

k
j
+ · · ·+ (−1)runk/pk

1 ···pk
r
.
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Set b = nk/pk−1
1 · · · pk−1

r ; then n | b. Next define the integer E by

(2.2) E =
∑
m|nk

b|m

∑
d|m

µ(m/d)ud.

Now, for each m | nk where b | m, since (un) is a realizable sequence,

Lemma 1.2.4 implies that∑
d|m

µ(m/d)ud ≥ 0 and m |
∑
d|m

µ(m/d)ud.

It follows that E ≥ 0 and n | E, so by Lemma 1.2.4 it is sufficient to

establish that E = v∗n.

Let m | nk with b | m. Then the form of m is

m = p
k(s1−1)+j1
1 · · · pk(sr−1)+jr

r ,

where the integers j1, . . . , jr satisfy 1 ≤ j1, . . . , jr ≤ k. Using this and

(2.2), express the integer E as

(2.3) E =
k∑

j1=1

· · ·
k∑

jr=1

∑
d|m

µ(d)um/d,

where in this equation m = p
k(s1−1)+j1
1 · · · pk(sr−1)+jr

r .

Let m1 = m/p
k(s1−1)+j1
1 : that is, m1 = p

k(s2−1)+j2
2 · · · pk(sr−1)+jr

r .

Then ∑
d|m

µ(d)um/d =
∑
d|m1

µ(d)(um/d − um/p1d),

and so, because m1 is independent of j1,

k∑
j1=1

∑
d|m

µ(d)um/d =
∑
d|m1

k∑
j1=1

µ(d)(um/d − um/p1d),

which gives

k∑
j1=1

∑
d|m

µ(d)um/d =
∑
d|m1

µ(d)(u
p

ks1
1 m1/d

− u
p

k(s1−1)
1 m1/d

).
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It follows from (2.3) that

E =
k∑

j2=1

· · ·
k∑

jr=1

∑
d|m1

µ(d)(u
p

ks1
1 m1/d

− u
p

ks1
1 m1/pk

1d
),

where m1 = p
k(s2−1)+j2
2 · · · pk(sr−1)+jr

r . Repeating the above procedure,

first setting m2 = m1/p
k(s2−1)+j2
2 , gives E = E1 − E2 where

E1 =
k∑

j3=1

· · ·
k∑

jr=1

∑
d|m2

µ(d)(u
p

ks1
1 p

ks2
2 m2/d

− u
p

ks1
1 p

ks2
2 m2/pk

2d
)

and

E2 =
k∑

j3=1

· · ·
k∑

jr=1

∑
d|m2

µ(d)(u
p

ks1
1 p

ks2
2 m2/pk

1d
− u

p
ks1
1 p

ks2
2 m2/pk

1p
k
2d

).

Continuing in this fashion, comparing each expression obtained

with that of (2.1), shows that E = v∗n. �

Corollary 2.2.3. Let u = (un) be a realizable sequence, and let c, k

denote fixed positive integers. If the subsequence v = (vn) of u is defined

by

vn = ucnk , n = 1, 2, 3, . . . ,

then v is a realizable sequence.

Proof . This follows from Proposition 2.2.1 and Theorem 2.2.2. �

Corollary 2.2.4. If a and k denote positive integers, then the sequence

(an
k
)n≥1 is realizable.

Proof . By Proposition 1.2.3 the sequence (an) is realizable. So the

result is an immediate consequence of Theorem 2.2.2. �

Corollary 2.2.5. Let a denote a positive integer and h a polynomial

from N0[x]. Then the sequence (ah(n)) is realizable.

Proof . If h is the zero polynomial this is trivial. Otherwise, suppose

that h(x) = cdx
d + · · ·+ c0, where d ≥ 0, c0, . . . , cd ≥ 0 and cd 6= 0. If
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we put ar = acr , r = 0, . . . , d, then

ah(n) = an
d

d · · · an1a0,

and so, from the previous Corollary, we see that the sequence (ah(n))

is a product of realizable sequences. It follows from Proposition 1.2.8,

therefore, that (ah(n)) is realizable. �

We note that the previous two Corollaries could equally well have

come from Theorem 2.1.4.

The Lucas sequence (Ln) = (1, 3, 4, 7, 11, 18, . . .) is shown to be

realizable in [22]. When h(n) = n2 + n we get

(2.4) (Lh(n))n≥1 = (3, 18, . . .),

and Lemma 1.2.7 with p = 2, immediately shows that (2.4) is not a

realizable sequence. So Corollary 2.2.5 does not extend to arbitrary

realizable sequences.

We end this chapter with a problem, the solution of which would

be very interesting, not only in its own right, but also because it could

provide information relating to sequences realized by the action of an

endomorphism on a group.

Problem 2.2.6. Give non-combinatoric proofs of Theorem 2.1.4 and

Theorem 2.2.2, by using constructions based on a realizing system

(X,T ) for the sequence u = (un) in each case.



CHAPTER 3

Periodic Points from Group Endomorphisms

In this chapter, the arithmetic structure of sequences realized by

endomorphisms of groups is studied, with particular emphasis being

placed on the class of locally nilpotent groups.

3.1. Group Endomorphisms

Certain realizable sequences are known to be realized by systems

(X,ψ) where X is a group and ψ : X → X is an endomorphism: such

systems will be called algebraic systems. A sequence which is realized

by an algebraic system will be said to be algebraically realizable. When

it is necessary to distinguish between abelian and non-abelian groups,

the algebraic systems will be called abelian systems or non-abelian sys-

tems. Being realized in this fashion imparts a considerable amount

of structure to the sequence, as we shall demonstrate in this chapter.

First we introduce the notion of a divisibility sequence, not to be con-

fused with a sequence having divisibility, introduced in Definition 1.2.6.

If u = (un) is a sequence of non-zero integers then u is a divisibility

sequence if for any integers m,n ≥ 1, m | n implies um | un. A

well known example of a divisibility sequence is the Fibonacci sequence

(1, 1, 2, 3, 5, 8, . . .). However, Lemma 1.2.7 proves that this sequence is

not realizable. On the other hand, Proposition 3.1.2 below, shows that

sequences realized by algebraic systems provide an unlimited supply of

divisibility sequences.

Lemma 3.1.1. Let the sequence u = (un) be realized by the algebraic

system (X,ψ). Then for each integer n ≥ 1, Pern(ψ) is a finite ψ-

invariant subgroup of X.

24
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Proof . If x, y ∈ Pern(ψ) then ψn(xy) = ψn(x)ψn(y) = xy and so

xy ∈ Pern(ψ). Also, ψn(x−1) = (ψn(x))−1 = x−1, so x−1 ∈ Pern(ψ). It

follows that Pern(ψ) is a subgroup of X: it is a finite subgroup since

by the definition of a realizable sequence, |Pern(ψ)| = un <∞. Lastly,

since ψn(x) = x, we have ψn(ψ(x)) = ψ(x), so ψ(x) ∈ Pern(ψ); hence

the subgroup Pern(ψ) is ψ-invariant. �

Proposition 3.1.2. If the sequence u is realized by the algebraic sys-

tem (X,ψ) then u is a divisibility sequence.

Proof . Let the integers m,n ≥ 1 have m | n, so n = mk for some

integer k ≥ 1. Then if x ∈ Perm(ψ),

ψn(x) = ψmk(x) = (ψm)k(x) = x,

so Perm(ψ) ≤ Pern(ψ). But Perm(ψ), Pern(ψ) are finite subgroups of

X by Lemma 3.1.1, so Lagrange’s Theorem gives |Perm(ψ)|
∣∣ |Pern(ψ)|,

establishing that u is a divisibility sequence. �

For sequences realized by algebraic systems, the following result

enables a simplification when dealing with bounded sequences, while

also providing information relating to other sequences in this class.

Lemma 3.1.3. Suppose that the sequence u = (un) is realized by the

algebraic system (W,ϑ). Then u can be realized by an algebraic system

(X,α) where X is a countable locally finite group and α ∈ Aut(X).

Further, if the sequence u is bounded, and m is the least positive integer

so that um = max{un : n ≥ 1}, the system (X,α) can be selected with

|X| = um, while the automorphism α has o(α) = m.

Proof . Let X =
⋃
n≥1 Pern(ϑ). If x, y ∈ X, there are positive in-

tegers m,n with x ∈ Perm(ϑ) and y ∈ Pern(ϑ); put r = lcm(m,n).

Then Perm(ϑ),Pern(ϑ) ≤ Perr(ϑ), so x, y ∈ Perr(ϑ). By Lemma 3.1.1,

Perr(ϑ) is a subgroup of W so xy, x−1 ∈ Perr(ϑ). Hence, xy, x−1 ∈ X

and therefore X is a subgroup of W . Next, since Pern(ϑ) is ϑ-invariant
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for each n ≥ 1, X is ϑ-invariant. Therefore if α : X → X is given by

α : x 7→ ϑ(x) for all x ∈ X, α is an endomorphism on X, and it is clear

that the system (X,α) realizes the sequence u, with Pern(α) = Pern(ϑ).

Let x1, . . . , xk be a finite set of elements from X. There are positive

integers n1, . . . , nk so that xj ∈ Pernj
(α), for j = 1, . . . , k. If s =

lcm(n1, . . . , nk) then x1, . . . , xk ∈ Pers(α), so 〈x1, . . . , xk〉 ≤ Pers(α),

since Pers(α) is a group. And because Pers(α) is a finite group by

Lemma 3.1.1, |〈x1, . . . , xk〉| < ∞. Therefore X is locally finite. Now,

if x ∈ X is such that α(x) = 1, since x ∈ Pern(α) for some n > 1,

x = αn(x) = αn−1(α(x)) = αn−1(1) = 1.

It follows that ker(α) = 1, and since it is clear that α : X → X is onto,

α is an automorphism.

Next, let u be bounded and choose m as in the statement of the

Lemma. If the integer n ≥ 1 exists with Pern(α) � Perm(α) then

Perm(α) $ Perm(α)∪Pern(α) which implies Perm(α) � Perr(α), where

r = lcm(m,n). But this gives um < ur, a contradiction. Hence,

Pern(α) ≤ Perm(α) for all n ≥ 1. So, in this case, X = Perm(α)

which gives αm(x) = x for all x ∈ X: therefore, o(α) = m.

Lastly, since X is the countable union of finite sets, it is clear that

the group X is countable. �

Proposition 3.1.2 showed that for a realizable sequence u to be

realized by an algebraic system (X,ϑ), it is necessary that u be a

divisibility sequence. The next example shows this is not a sufficient

condition.

Example 3.1.4. The sequence u = (1, 1, 1, 1, 6, 1, 1, 1, 1, 6, . . .), which

satisfies the linear recurrence relation

un+5 = un, n ≥ 1; u1 = u2 = u3 = u4 = 1, u5 = 6,
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is a realizable divisibility sequence which is not realizable by an alge-

braic system (X,ϑ).

First, it is clear that u is a divisibility sequence. Next, the permu-

tation (1 2 3 4 5) acting on the set {1, 2, 3, 4, 5, 6} establishes that u is

realizable. However, if there is an algebraic system (X,ϑ) which realizes

u, Lemma 3.1.3 allows us to assume that |X| = 6, ϑ is an automor-

phism and ϑ5 = ιX . For any x ∈ X not equal to the identity element,

suppose that there are integers m,n such that 0 ≤ m < n ≤ 4 and

ϑm(x) = ϑn(x). Since ϑ is an automorphism, this gives ϑn−m(x) = x, so

by the structure of the sequence u, x ∈ Fix(ϑ). Therefore x is the iden-

tity, a contradiction. Hence Orbϑ(x) = {x, ϑ(x), ϑ2(x), ϑ3(x), ϑ4(x)},

consists of 5 distinct elements, all of the same order. Since this is not

possible, the sequence u is not realizable by an algebraic system.

In the next Section, Theorem 3.2.11 provides an arithmetical ex-

planation for the previous example.

3.2. Endomorphisms of Locally Nilpotent Groups

We now introduce a class of algebraic systems which strictly con-

tains the abelian systems. Call (X,ϑ) a nilpotent system ifX is a locally

nilpotent group and ϑ : X → X an endomorphism. An important prop-

erty of a locally nilpotent group X follows from Theorem 1.1.5: if F is

a finite subgroup of X, then the Sylow p-subgroups of F are unique.

We make the following definitions in order to simplify terminology.

Definition 3.2.1. The sequence u = (un) is nilpotently realizable if

there is a nilpotent system (X,ϑ) which realizes u. Also, if there exists

a nilpotent system which realizes the sequence of p-parts of u for some

prime p, we say that the sequence u is locally nilpotently realizable at

p; a sequence which is locally nilpotently realizable at all primes is

everywhere locally nilpotently realizable.
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The following are examples of sequences which are nilpotently re-

alized. The first is realized by an abelian system.

Example 3.2.2. The Mersenne sequence (2n−1)n≥1 is realized by the

action of the endomorphism ϑ : x 7→ x2 on the circle group S1. This

sequence (and its close relatives) serves as a test-example for many

workers in the theory of dynamical systems.

The next example shows that it is possible to have a sequence which

is realized by a nilpotent system, but not by an abelian system.

Example 3.2.3. Let X = D8, the dihedral group of order 8. Since X

is a finite p-group (with p = 2), X is nilpotent by Theorem 1.1.4. A

presentation for X is

X = 〈a, b : a4 = 1, b2 = 1, ab = a−1〉.

Using this presentation, let α : X → X be the map given by the

following table

x 1 a a2 a3 b ab a2b a3b

α(x) 1 a a2 a3 ab a2b a3b b

It is easy to see that α is an (outer) automorphism and that the se-

quence realized by the nilpotent system (X,α) is

(3.1) u = (4, 4, 4, 8, 4, 4, 4, 8, . . .).

We will show that the sequence u of (3.1) is not realizable by an abelian

system. Assume the contrary, so there is an abelian group W and an

endomorphism ψ : W → W such that u is realized by the system

(W,ψ). By Lemma 3.1.3, we can assume that |W | = 8 and that ψ is

an automorphism where

Fix(ψ) = Per2(ψ) = Per3(ψ), |Fix(ψ)| = 4 and ψ4 = ιW .
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The quotient group W/Fix(ψ) has order 2: therefore if x ∈ W \Fix(ψ),

W/Fix(ψ) = {0 + Fix(ψ), x+ Fix(ψ)}.

This implies that 2x ∈ Fix(ψ), and since |Fix(ψ)| = 4,

(3.2) W \ Fix(ψ) = {x+ f : f ∈ Fix(ψ)}.

Consider the orbit of x under ψ,

Orbψ(x) = {ψn(x) : n = 0, 1, 2, . . .}.

Since ψ4 = ιW , Orbψ(x) = {x, ψ(x), ψ2(x), ψ3(x)}. We claim that the

four elements of Orbψ(x) are distinct, and that Fix(ψ) ∩Orbψ(x) = ∅.

To see this, first suppose that ψn(x) ∈ Fix(ψ) for some integer n,

0 < n ≤ 3. Then ψn+1(x) = ψn(x), so, because ψ is an automorphism,

ψ(x) = x implying x ∈ Fix(ψ), a contradiction. Next assume that

ψk(x) = ψm(x) for integers k,m where 0 ≤ k < m ≤ 3: put n = m−k,

so that 0 < n ≤ 3. Since ψ is an automorphism, this gives ψn(x) = x,

contradicting the above. Therefore Orbψ(x) consists of four distinct

elements from W \Fix(ψ). Using this and (3.2) gives ψ(x) = x+ f for

some f ∈ Fix(ψ). Since 2x ∈ Fix(ψ),

2x = ψ(2x) = 2ψ(x) = 2x+ 2f,

giving 2f = 0, and since x and ψ2(x) are distinct members of Orbψ(x),

x 6= ψ2(x) = ψ(x+ f) = x+ f + f = x.

This contradiction establishes that the sequence u is not realizable by

an abelian system.

A particular class of sequences plays an important role in the con-

siderations of nilpotently realizable sequences: we single this class out

in the following.

Definition 3.2.4. For a fixed prime p, (un) is called a p-sequence if

for all n ≥ 1, un = pkn , where each kn ∈ N0.
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Lemma 3.2.5. Let p denote a prime and suppose that the p-sequence

u = (un) is realized by the algebraic system (X,α). If

X =
⋃
n≥1

Pern(α),

then X is a countable, locally finite p-group. In particular, X is a

locally nilpotent group.

Proof . We already know that X is a countable, locally finite group by

Lemma 3.1.3. Suppose that x ∈ X has order not a power of p. Since

X is locally finite, this implies that there is a prime q 6= p such that

q | o(x). Now x ∈ Pern(α) for some n ≥ 1, so q | |Pern(α)|. Therefore

q | un, which contradicts the fact that u is a p-sequence. Hence, X is

a p-group.

Any finitely generated subgroup H of X is a finite subgroup be-

cause X is locally finite, and since a finite p-group is nilpotent by

Theorem 1.1.4, H is a nilpotent subgroup. Therefore, X is locally

nilpotent. �

Lemma 3.2.6. Suppose that the group G is given by the cartesian

product

G =
∏
p

Gp,

where this product is taken over all primes p and each Gp is a locally

finite p-group. If the subgroup X of G is locally finite then X is locally

nilpotent.

Proof . Let x = (xp) ∈ X. Since X is locally finite, o(x) < ∞: let

k = o(x). For each prime p we have xkp = 1 so o(xp) | k. But since

xp ∈ Gp, o(xp) is a power of p, which implies that xp = 1 for all but a

finite number of primes p. Let

supp(x) = {xp : x = (xp) ∈ X, o(xp) > 1},
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so that supp(x) is a finite (possibly empty) set for all x ∈ X. If

x(1), . . . , x(m) is a finite set of elements fromX, put S =
⋃m
r=1 supp(x(r)),

and for each prime p define the subgroup Xp of Gp by Xp = 〈S ∩Gp〉,

where we interpret this to mean that Xp = 1 if S ∩ Gp = ∅. Since S

is a finite set and Gp is a locally finite p-group, Xp is nilpotent. It is

clear that we have 〈x(1), . . . , x(m)〉 =
∏

pXp, and because there are only

a finite number of non-trivial groups in this product, 〈x(1), . . . , x(m)〉 is

nilpotent. Therefore, X is locally nilpotent. �

The next result is a reworking of Proposition 1.3.1.

Proposition 3.2.7. If the sequence u = (un) is everywhere locally

nilpotently realizable then u is nilpotently realizable.

Proof . For each prime p there is a locally nilpotent group Xp with

an endomorphism ϑp : Xp → Xp such that (Xp, ϑp) nilpotently re-

alizes the sequence of p-parts ([un]p)n≥1. Without loss of generality

we may assume that Xp =
⋃
n≥1 Pern(ϑp). Since the algebraic system

(Xp, ϑp) realizes a p-sequence, Lemma 3.2.5 gives Xp is a locally finite

p-group. Define the group G by G =
∏

pXp, and the endomorphism

ψ : G → G to be the corresponding product ψ =
∏

p ϑp. Then as in

Proposition 1.3.1, the algebraic system (G,ψ) realizes the sequence u.

Let X denote the subgroup of G, X =
⋃
n≥1 Pern(ψ), and let

α : X → X be given by α : x 7→ ψ(x), x ∈ X. Then by Lemma 3.1.3,

X is a locally finite subgroup of G and so Lemma 3.2.6 implies that X

is locally nilpotent. Since we know from Lemma 3.1.3 that u is realized

by the nilpotent system (X,α), we have u is nilpotently realizable. �

Lemma 3.2.8. Let G represent a group and p a prime. If G has a

unique Sylow p-subgroup P then any subgroup H ≤ G has a unique

Sylow p-subgroup given by P ∩H.

Proof . We may clearly assume that G is not a p-group. Suppose that

K is any p-subgroup of G. Because of the uniqueness of P we have
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P EG so P ≤ PK ≤ G. But PK is a p-subgroup of G, and therefore

by the maximality of Sylow subgroups, and the assumption that G is

not a p-group, we get PK = P . Hence, K ≤ P . Now let H ≤ G; any

Sylow p-subgroup of H is contained in P by the argument just given

so H ∩ P is the unique Sylow p-subgroup of H. �

Theorem 3.2.9. If the sequence u = (un) is realized by the algebraic

system (X,α) where the group X has a unique Sylow p-subgroup for

some prime p then u is locally nilpotently realizable at p.

Proof . By Lemmas 3.1.3 and 3.2.8, we can assume X =
⋃
n≥1 Pern(α)

so that X is locally finite and α : X → X an automorphism. If P

is the unique Sylow p-subgroup of X then because X is locally finite,

any finitely generated subgroup of P is a finite p-group, so is nilpotent.

Hence P is locally nilpotent. Further, P is α-invariant so we can restrict

the domain of α to P . Let β : P → P be defined by β : x 7→ α(x)

for all x ∈ P . Then β is an automorphism on P and we can consider

the nilpotent system (P, β): we will show that this system realizes the

sequence of p-parts of the sequence u.

For any n ≥ 1, if x ∈ Pern(β) then x = βn(x) = αn(x), so

x ∈ Pern(α). Hence Pern(β) ≤ Pern(α) and therefore, by Lagrange’s

Theorem, |Pern(β)|
∣∣ |Pern(α)|. Now, Pern(β) is a finite subgroup of

the p-group P , so |Pern(β)| is a power of p; therefore |Pern(β)|
∣∣ [un]p.

If for some n ≥ 1, |Pern(β)| 6= [un]p, then p
∣∣ [un]p/|Pern(β)| so

p
∣∣ |Pern(α) : Pern(β)|. This implies that Pern(β) is not a Sylow p-

subgroup of Pern(α) and so by Lemma 3.2.8, Pern(β) 6= P ∩ Pern(α).

However, if x ∈ P ∩ Pern(α), since x ∈ P , αn(x) = βn(x) so we get

x ∈ Pern(β) implying that Pern(β) = P ∩ Pern(α). This contradic-

tion means that for all n ≥ 1, |Pern(β)| = [un]p and so the system

(P, β) nilpotently realizes the sequence ([un]p)n≥1. That is, u is locally

nilpotently realizable at p. �
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Lemma 3.2.10. Suppose that G is a locally finite, locally nilpotent

group and p a prime. Then G has a unique Sylow p-subgroup consisting

of all elements of G with order a power of p.

Proof . Denote by P the collection of subgroups of G,

P = {Pω : Pω is a finite p-subgroup of G, ω ∈ Ω},

where Ω is an indexing set for the collection, and put H =
⋃
ω∈Ω Pω.

We will show that H is the required subgroup of G. If x, y ∈ H, we

can find ω, ν ∈ Ω such that Pω, Pν ∈ P and x ∈ Pω, y ∈ Pν . It

follows that x−1 ∈ Pω so x−1 ∈ H. If either of x or y is the identity

element, xy ∈ H. Hence we may suppose that o(x) = pr and o(y) = ps

for integers r, s > 0. Let K = 〈x, y〉. Then K is a finite nilpotent

subgroup of G, and since x ∈ K implies p
∣∣ |K|, K has a unique Sylow

p-subgroup L. This gives x, y ∈ L, from which K = L. Now L ∈ P, so

xy ∈ H and therefore H is a subgroup of G.

To complete the proof we note that if x ∈ G has order a power of

p, then 〈x〉 ∈ P, so for any endomorphism ϑ of G, ϑ(x) ∈ H. �

The main result of this section follows.

Theorem 3.2.11. Suppose that u = (un) is a sequence of positive

integers. Then u is nilpotently realizable if and only if u is everywhere

locally nilpotently realizable.

Proof . First assume that the sequence u is realized by the nilpotent

system (X,α). By Lemma 3.1.3 we can assume that X is a locally

finite group with α : X → X an automorphism. Let p denote a prime

number; then by Lemma 3.2.10, X has a unique Sylow p-subgroup.

Therefore, from Theorem 3.2.9, u is locally nilpotently realized at p.

This is true for all primes p, so u is everywhere locally nilpotently

realizable.

The converse result is proved in Proposition 3.2.7. �
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Lemma 3.2.12. Let p denote a fixed prime and suppose the sequence

u = (un) is equal to a product of nilpotently realizable p-sequences.

Then u is a nilpotently realizable p-sequence.

Proof . Let u be the product of the p-sequences {u(ω) : ω ∈ Ω}. For

any ω ∈ Ω, suppose the sequence u(ω) is nilpotently realized by the

nilpotent system (Xω, ϑω). Then by Lemma 3.1.3 we can assume that

Xω =
⋃
n≥1 Pern(ϑω), and it follows from Lemma 3.2.5 that Xω is a

locally finite p-group. Now, if W is the group W =
∏

ω∈ΩXω and

ψ : W → W the endomorphism ψ =
∏

ω∈Ω ϑω, let X denote the

subgroup of W given by X =
⋃
n≥1 Pern(ψ), with the map α : X → X

defined by α : x 7→ ψ(x). Lemma 3.1.3 gives X is locally finite from

which we easily obtain X is a p-group. Hence X is locally nilpotent

and so, since the system (X,α) realizes u, we have u is nilpotently

realizable. �

The following result provides an alternative view on Theorem 3.2.11

in that it is concerned with the factorization of nilpotently realizable

sequences.

Theorem 3.2.13. The sequence u = (un) of positive integers is nilpo-

tently realizable if and only if it is the product of nilpotently realizable

p-sequences.

Proof . First suppose that u is nilpotently realizable. Then by Theorem

3.2.11, u is everywhere locally nilpotently realizable. Hence, if for any

prime p we write u(p) = ([un]p)n≥1, then u(p) is nilpotently realizable

and since un =
∏

p[un]p, for n ≥ 1, the sequence u is the product of the

sequences u(p). This completes the proof in one direction.

Now suppose that the converse is true so that u is the product

of nilpotently realizable p-sequences for various primes p. For a fixed

prime p, if we group together all of the p-sequences in this product,
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Lemma 3.2.12 implies that this will form a nilpotently realizable p-

sequence. It follows that u is everywhere locally nilpotently realizable,

so Proposition 3.2.7 gives u is nilpotently realizable. �

3.3. Algebraically Realizable p-Sequences

In view of Lemmas 3.1.3 and 3.2.5, if a p-sequence u is algebraically

realized, then u is nilpotently realizable, so for the class of p-sequences

we can take the descriptions algebraically realizable and nilpotently re-

alizable as being equivalent. In this section we will look at various types

of p-sequence, and establish the algebraic realizability of some general

classes. The types considered do not encompass all algebraically real-

izable p-sequences, but are included just to give a general flavour. We

begin, however, with an example which shows that not all realizable

p-sequences are algebraically realizable.

Example 3.3.1. The permutation

(1 2 · · · 6) acting on the set {1, 2, . . . , 9}

realizes the periodic 3-sequence u = (3, 3, 3, 3, 3, 9, 3, 3, 3, 3, 3, 9, . . .).

We will show that u is not realizable by an algebraic system.

Suppose, on the contrary, that the sequence u can be algebraically

realized. Then by Lemma 3.1.3, there is a group X of order 9 (which

must therefore be abelian) and an automorphism α : X → X such

that the system (X,α) realizes u. If x ∈ X \ Fix(α) then it is easy

to see that the orbit Orbα(x) has order 6. However, since we should

have |Orbα(x)|
∣∣ |X|, this gives a contradiction, so the sequence u is

not algebraically realizable.

The previous example establishes the fact that the set of all re-

alizable p-sequences strictly contains the set of algebraically realizable

p-sequences. Indeed, this example shows that the set of realizable divis-

ibility p-sequences which satisfy a linear relation is not contained in the
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set of algebraically realizable p-sequences. We will now consider some

of the members of this latter set, with the first to be considered, the

‘geometric’ sequence, being possibly the simplest, arising in a natural

way from the shift operation on a group of sequences.

Throughout the rest of this section, for a given prime p we will

represent the field Fp of order p, by the set of integers {0, 1, . . . , p− 1},

where all operations are carried out mod p.

Proposition 3.3.2. For prime p, the geometric sequence (pn)n≥1 is

algebraically realizable.

Proof . Let G denote the additive group of the field Fp. Then X = GN

is an abelian group in which the group operation is pointwise addition

of the sequences mod p. If λ : X → X is defined to be the left shift

map, then λ ∈ Aut(X) and the system (X,λ) algebraically realizes the

sequence (pn). �

Next we consider various types of bounded p-sequences, arising from

the actions of the endomorphisms of finite p-groups. Before this, how-

ever, we require some results of a technical nature.

Lemma 3.3.3. Let m, p denote integers, with m > 1 and p an odd

prime. Then there exists an integer r > 1 such that rp ≡ 1 (mod pm),

while rn 6≡ 1 (mod pm) when the integer n is in the range 1 ≤ n < p.

Proof . Denote by g > 0 a primitive root modulo pm. Since m > 1, if ϕ

is the Euler ϕ-function, j = ϕ(pm)/p is an integer. Let r > 1 denote the

integer gj. Then by the definition of a primitive root, rp ≡ 1 (mod pm),

and when 1 ≤ n < p, rn 6≡ 1 (mod pm). �

Lemma 3.3.4. Let m, p denote integers, with m > 1 and p an odd

prime. If the integer r is such that 1 < r < pm, rp ≡ 1 (mod pm) and

rn 6≡ 1 (mod pm) for all integers n in the range 1 ≤ n < p, then there
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is a nilpotent group G of order pm+1 with the presentation

〈
a, b : ap

m

= 1, bp = 1, ab = ar
〉
.

Proof . First we note that Lemma 3.3.3 guarantees the existence of the

integer r. Denote by C the cyclic group 〈a : ap
m

= 1〉, and let the

automorphism β : C → C be given by β(a) = ar. Then, βn(a) = ar
n

for integer n ≥ 0, so o(β) = p. If the group G is defined to be the

semi-direct product 〈β〉 n C, then it is clear that |G| = pm+1, so G

is nilpotent by Theorem 1.1.4. Further, by the construction used, the

group G obviously has the presentation

〈
a, b : ap

m

= 1, bp = 1, ab = ar
〉
,

which completes the proof. �

The next result is a generalization of Example 3.2.3.

Proposition 3.3.5. Let m denote a fixed positive integer and p a

prime. Then the p-sequence u = (un) given by

un =

 pm if pm - n

pm+1 if pm | n,

is algebraically realizable.

Proof . First we will deal with the case m = 1. Denote by Zp2 the

additive group of the ring Zp2 , and γ : Zp2 → Zp2 the automorphism

γ : x 7→ (p + 1)x, x ∈ Zp2 . Then the abelian system (Zp2 , γ) realizes

the sequence u (with m = 1).

Next we make the assumption thatm > 1. As in Example 3.2.3, the

sequence u is algebraically realized by a non-abelian system. If p = 2,

let k denote 2m, and X the dihedral group D2k of order 2k = 2m+1,

with the presentation

〈c, d : ck = 1, d2 = 1, cd = c−1〉.



3.3. ALGEBRAICALLY REALIZABLE p-SEQUENCES 38

Since X is a finite 2-group, X is nilpotent by Theorem 1.1.4. The map

ψ : X → X, which is such that

ψ(cr) = cr and ψ(crd) = cr+1d,

for r = 0, . . . , k − 1, is an automorphism of X. It is easy to see that

the nilpotent system (X,ψ) realizes the sequence u with p = 2.

Now assume that the prime p is odd, and let the nilpotent group G

of order pm+1 be as in Lemma 3.3.4. That is, let

G =
〈
a, b : ap

m

= 1, bp = 1, ab = ar
〉
,

where the integer r is such that 1 < r < pm, rp ≡ 1 (mod pm) and

rn 6≡ 1 (mod pm) for all integers n in the range 1 ≤ n < p. Define the

automorphism α : G → G by α : g 7→ ga for all g ∈ G. The nilpotent

system (G,α) realizes the sequence u when p is odd. �

Next we look at the sequences obtained from cyclic groups of prime

power order. To facilitate this we introduce the following notation.

Definition 3.3.6. Let k,m and p denote non-negative integers, with

p prime. For each integer n ≥ 1 we define

ξn(k,m, p) = gcd(pk, [mn − 1]p).

Using the notation of this definition, it is clear that any sequence

of the form (ξn(k,m, p))n≥1 is a bounded and periodic p-sequence. The

next result shows how such a sequence can arise.

Proposition 3.3.7. Let k, p denote positive integers with p prime. If

C is a cyclic group of order pk and ϑ : C → C is an endomorphism,

then the p-sequence realized by the abelian system (C, ϑ) is of the form

ξ = (ξn(k,m, p))n≥1,

where m is an integer with 0 ≤ m < pk.
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Proof . There is no loss of generality by assuming that C is the additive

group of the ring Zpk : thus we can write

C = {0, 1, . . . , pk − 1},

where the group operation on C is addition mod pk. Let m denote

the integer ϑ(1). Clearly, 0 ≤ m < pk, and for all x ∈ C, ϑ(x) = mx

(reduced mod pk). Therefore, if n denotes a positive integer, then

x ∈ Pern(ϑ) if and only if

(3.3) (mn − 1)x = 0 in C.

Now, when [mn−1]p ≤ pk, the number of solutions of (3.3) is easily seen

to be [mn − 1]p; while the number of solutions is pk if [mn − 1]p > pk.

It follows that |Pern(ϑ)| = gcd(pk, [mn − 1]p), which completes the

proof. �

Example 3.3.8. The 2-sequence

(8, 8, 8, 8, 8, 8, 8, 16, 8, 8, 8, 8, 8, 8, 8, 16, 8, 8, 8, 8, 8, 8, 8, 16, . . .)

is algebraically realizable by Proposition 3.3.5, while both 2-sequences

(ξn(4, 3, 2)) = (2, 8, 2, 16, 2, 8, 2, 16, 2, 8, 2, 16, . . .)

and

(ξn(4, 5, 2)) = (4, 8, 4, 16, 4, 8, 4, 16, 4, 8, 4, 16, . . .)

are algebraically realizable by Proposition 3.3.7.

A periodic p-sequence u = (un) is called simply periodic if there

are integers k,m ≥ 1 such that urk = uk = pm for r = 1, 2, 3, . . ., and

un = 1 if k - n; the value of k is called the period of the sequence.

Lemma 3.3.9. Let u = (un) denote a simply periodic p-sequence of

period k, where uk = pm. Then u is a realizable sequence if and only if

k | pm − 1.
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Proof . If k = 1 then this is trivial, since we have a constant sequence;

so we will assume that k > 1.

For the proof in one direction, suppose that u is a realizable se-

quence. Then Lemma 1.2.4 gives

k |
∑
d|k

µ(k/d)ud.

However, since un = 1 for all integers n where 1 ≤ n < k, we have∑
d|k

µ(k/d)ud =
∑
d|k

µ(k/d) + µ(1)(uk − 1) = pm − 1.

Combining these two results gives: k | pm − 1.

In the opposite direction, assume now that k | pm − 1, and write

u∗n =
∑
d|n

µ(n/d)ud, n = 1, 2, 3, . . . .

When n = 1 we trivially have u∗n ≥ 0 and n | u∗n, so we will assume

that n > 1. There are two cases to consider: k | n and k - n, the

second of which is easy to dispose of. If k - n, then since ud = 1 for all

d | n, we have u∗n = 0 by similar arguments to above, so in this case it

is certainly true that u∗n ≥ 0 and n | u∗n.

On the other hand, if k | n then n = kr for some integer r ≥ 1.

This gives

u∗n =
∑
d|kr
k-d

µ(kr/d)ud +
∑
c|r

µ(r/c)uck,

and so

u∗n =
∑
d|kr

µ(kr/d) + (pm − 1)
∑
c|r

µ(r/c).

It follows that,

u∗n =

 pm − 1 if n = k

0 if n > k.

Therefore we have u∗n ≥ 0 and n | u∗n for all values of n ≥ 1, so

Lemma 1.2.4 implies that the sequence u is realizable. �
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We will show that a realizable simply periodic p-sequence is always

algebraically realizable, but before doing this we require the following

result.

Lemma 3.3.10. Let p denote a prime number and m a positive inte-

ger, and let X represent the group Gm, where G is the additive group

of the field Fp. There exists an automorphism α : X → X such that for

all non-zero x ∈ X the orbit of x has the property |Orbα(x)| = pm− 1.

Proof . Let q = pm: the additive group of the field of q elements, Fq, is

isomorphic to X and has the structure of a vector space of dimension

m over the prime subfield P ∼= Fp of Fq. The multiplicative group F∗
q

of non-zero elements of Fq is cyclic, so there is an element g ∈ F∗
q such

that o(g) = q − 1. The map A : Fq → Fq given by A : x 7→ gx for

each x ∈ Fq, defines a non-singular linear transformation on the vector

space Fq over P and since An(x) = gnx, it is clear that for non-zero

x ∈ Fq we have |OrbA(x)| = q − 1. It follows from this that there is

an automorphism α : X → X with |Orbα(x)| = pm − 1 when x ∈ X is

non-zero. �

Proposition 3.3.11. If u = (un) denotes a realizable simply periodic

p-sequence, then u is an algebraically realizable sequence.

Proof . Let the period of the sequence u be k, with uk = pm. Since

u is realizable, by Lemma 3.3.9, k | pm − 1: put c = (pm − 1)/k. If

G represents the additive group of Fp, denote by X the group Gm.

Then from Lemma 3.3.10 we know that there exists an automorphism

α : X → X with |Orbα(x)| = pm − 1 for 0 6= x ∈ X. If β ∈ Aut(X) is

defined by β = αc, then for all non-zero x ∈ X this gives |Orbβ(x)| = k.

If k = 1, we obtain from this: β(x) = x for all x ∈ X, so the system

(X, β) algebraically realizes the sequence (pm, pm, pm, . . .). Assuming

that k > 1, suppose that 0 6= x ∈ Pern(β) where the integer n ≥ 1 is

such that k - n. Then βn(x) = x, and since |Orbβ(x)| = k, βk(x) = x.
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There are integers a, b with a ≥ 0, 0 < b < k and n = ak + b. It

follows that βb(x) = x and so |Orbβ(x)| ≤ b < k, a contradiction.

Therefore, the only member of Pern(β) is the zero element, and so

(X, β) algebraically realizes the sequence u. �

Corollary 3.3.12. Let u = (un) denote a simply periodic p-sequence of

period k, where uk = pm. Then u is an algebraically realizable sequence

if and only if k | pm − 1.

Proof . This follows from the previous result and Lemma 3.3.9. �

The set of realizable simply periodic p-sequences gives rise to an

uncountable class of algebraically realizable p-sequences as we will now

demonstrate. We begin by describing a general method for constructing

a p-sequence for any prime p; but first we note that given distinct

primes p and q then for any integer r ≥ 1, there is a smallest integer

s = s(p, q, r) ≥ 1 such that ps ≡ 1 (mod qr). This follows from the

Euler-Fermat theorem.

Construction 3.3.13. Let p denote a prime: the sequence g = (gn)

is constructed according to the following rules.

First we set gpr = 1 for r ∈ N0. Next, if q is a prime distinct from

p we choose either gq = 1 or gq = ps where s ≥ 1 is the least integer

such that ps ≡ 1 (mod q). Suppose that we have made selections for

gq, . . . , gqk where k ≥ 1. Then either we set gqk+1 = gqk or we have

gqk+1 = gqkpt where t ≥ 1 is the smallest integer such that pt ≡ 1

(mod qk+1). Thus we now have gn defined when n is a non-negative

integer power of any prime number.

To complete the construction, suppose that the integer n > 1 has

prime decomposition n = qk11 · · · qkr
r where the qj are distinct primes and

each integer kj ≥ 1, for j = 1, . . . , r. Then we define gn = g
q

k1
1
· · · gqkr

r
.
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The sequence g of Construction 3.3.13 is obviously a p-sequence.

We will show that it is algebraically realizable by establishing that it

is a product of realizable simply periodic p-sequences.

Proposition 3.3.14. With the notation of Construction 3.3.13, the

sequence g is algebraically realizable.

Proof . Fix a prime q 6= p. Then the sequence v(q) = (v
(q)
n ), which is

defined by: v
(q)
n = gn if n is a multiple of q, and v

(q)
n = 1 otherwise, is

easily seen to be a product of realizable simply periodic sequences. It

follows from Lemma 3.2.12 that v(q) is algebraically realizable.

Next we note that

g =
∏

q prime
q 6=p

v(q),

where this product is taken over all primes q 6= p. A further appli-

cation of Lemma 3.2.12 allows us to conclude that the sequence g is

algebraically realizable. �

The following result shows that there are quite a lot of algebraically

realizable p-sequences for any prime p.

Proposition 3.3.15. For a given prime p, the class of algebraically

realizable p-sequences is uncountable.

Proof . There are an uncountable number of p-sequences of the type

given by Construction 3.3.13. This is so because for a given prime

q 6= p, when constructing the values of gq, gq2 , gq3 , . . ., we are required

to make choices as to whether or not the next term in the sequence is to

equal the previous term. Depending on the choice, we can associate the

binary digits {0, 1}: say 0 if the choice was to keep the terms equal, and

1 otherwise. In this manner we associate the sequence (gq, gq2 , gq3 , . . .)

with the binary expansion of a number in the real closed interval [0, 1];

the reverse association is clear. Since the set of real numbers [0, 1] is

uncountable, we deduce that the number of sequences constructed by
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the rules of 3.3.13 must be uncountable. Hence the class of algebraically

realizable p-sequences is uncountable. �

It is obvious that not all realizable p-sequences given by products

of realizable simply periodic p-sequences arise in the manner of Con-

struction 3.3.13. Indeed, even if we restrict the sequences to those with

first term 1, the example

(1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 25, . . .),

of a realizable simply periodic 5-sequence, is easily seen to be distinct

from the sequences of Construction 3.3.13.

Before we consider a class of realizable p-sequences which does not

arise from simply periodic sequences, we will look at some examples.

Example 3.3.16. Let X represent the group G2, where G denotes

the additive group of the field F31. The endomorphism ϑ : X → X is

defined by ϑ : (a, b) 7→ (b, 23a + b), all calculations being carried out

mod 31. The sequence u = (un) which is realized by the system (X,ϑ)

is given by:

un =


1 if 5 - n

31 if 5 | n but 155 - n

961 if 155 | n.

It is easy to see that the algebraically realizable 31-sequence u described

in this example is not a product of simply periodic 31-sequences.

Although the previous example is not simply periodic, because it

is defined on a finite group, it is periodic. It is interesting to note

that the sequence from this example has the form (ξn(2, 2, 31)): see

Definition 3.3.6. The next example is defined on an infinite abelian

group, and is not periodic.
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Example 3.3.17. Let α : T3 → T3 denote the endomorphism given

by the action of the matrix 
0 1 0

0 0 1

1 1 0


on the elements of T3 represented as column vectors. The sequence

u = (un) realized by the algebraic system (T3, α) is in fact the Lehmer-

Pierce sequence for the monic polynomial F (x) = x3 − x − 1, which

will be established later. The first twenty terms of the sequence u are

(1, 1, 1, 5, 1, 7, 8, 5, 19, 11, 23, 35, 27, 64, 61, 85, 137, 133, 229, 275, . . .).

The p-part sequences derived from u, for various primes p, lead to

the next class of algebraically realizable p-sequences. Thus the 2-part

sequence derived from u is

(1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 512, . . .),

while the 5-part sequence is

(1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 25, 1, 1, 1, 125, 1, 1, 1, 5, . . .).

These are clearly not periodic sequences since it can be checked that

they are unbounded. The nth term of the 2-part sequence is given by 23(1+ord2(n)) if 7 | n

1 if 7 - n.

However, the 5-part sequence is the product of two 5-sequences with

one of them having nth term 51+ord5(n) if 4 | n

1 if 4 - n,
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and the other being the 5-sequence with nth term given by 52(1+ord5(n)) if 24 | n

1 if 24 - n.

The previous examples illustrate the next class of algebraically re-

alizable p-sequences. Before the introduction of this class we require

the following.

Lemma 3.3.18. If m denotes a positive integer and p a prime, let

q = pm. Then there exists a matrix A ∈ Mm(Z) with the properties

(1) det(An − I) 6≡ 0 (mod p) if q − 1 - n,

(2) Aq−1 = I + pB, where B ∈ Mm(Z) and det(B) 6≡ 0 (mod p).

Here, n is a positive integer and I ∈ Mm(Z) is the unit matrix.

Proof . Adapting the proof of Lemma 3.3.10, there exists a matrix

A ∈ Mm(Fp) such that An− I is non-singular if q−1 - n and Aq−1 = I.

By using the representation Fp = {0, 1, . . . , p− 1} we can interpret the

matrix A as being a member of the ring Mm(Z), with powers of the

matrix being calculated mod p. Dropping the requirement for reduc-

tion mod p, we have a matrix A from Mm(Z) which satisfies the first

property and is such that Aq−1 = I + pB for some matrix B ∈ Mm(Z).

We will show that it is possible to select A so that p - det(B).

From Aq−1 = I+pB we get AB = BA, so A(I+AB) = (I+AB)A.

Consider the matrix A′ = A + p(I + AB). Since A′ ≡ A (mod p), A′

satisfies the same conditions as the matrix A. However, we have

(A′)q−1 = Aq−1 + p(q − 1)Aq−2(I + AB) + p2L = I − pAq−2 + p2K,

where L,K ∈ Mm(Z). If we set B′ = −Aq−2 + pK then we have

(A′)q−1 = I + pB′ and det(B′) ≡ det(−Aq−2) 6≡ 0 (mod p). Replacing

A with A′ and B with B′ completes the proof. �

The next definition is made in order to simplify subsequent nota-

tion.
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Definition 3.3.19. Let k, m and p denote fixed positive integers, with

p being a prime such that p - k. For each integer n ≥ 1, the integer

λn(k,m, p) is defined by

λn(k,m, p) =

 pm(1+ordp(n)) if k | n

1 if k - n
.

Theorem 3.3.20. Let k, m denote positive integers and p an odd

prime with p - k. If the p-sequence u is defined by

u = (λn(k,m, p))n≥1,

then u is algebraically realizable if and only if k | pm − 1.

Proof . In one direction, the proof is easy: if u is an algebraically

realizable sequence then it is certainly realizable, so as in the proof of

Lemma 3.3.9, k | pm − 1.

Now consider the converse result, so assume that the sequence u

is such that k | pm − 1. It is not difficult to show that u is a realiz-

able sequence in this case, but our aim is to construct a system which

algebraically realizes u.

The set of rational numbers

Tp =
⋃
n≥1

{r/pn : r = 0, 1, . . . , pn − 1}

has the structure of an abelian group under the operation of addition

mod 1. Using this we denote by X the abelian group Tm
p . From

Lemma 3.3.18, there exists a matrix A ∈ Mm(Z) with the properties:

det(An − I) 6≡ 0 (mod p) if pm − 1 - n and Ap
m−1 = I + pB where

p - det(B). Let c = (pm − 1)/k and denote by α : X → X the

endomorphism α : x 7→ Acx for all x ∈ X. For the purposes of this

definition we assume that x is a column vector. The abelian system

(X,α) will be shown to realize u.

If x ∈ Pern(α) where k - n, then (Acn−I)x = 0, so since pm−1 - cn,

det(Acn − I) 6≡ 0 (mod p). Therefore there is a matrix C ∈ Mm(Z)
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such that (I + pC)x = 0. It follows that x = 0 so that |Pern(α)| = 1

when k - n.

Next, if k | n, write n = pskr for some integers s ≥ 0 and r ≥ 1,

where p - r. From Ap
m−1 = I + pB we get

Acn = A(pm−1)psr = (I + pB)p
sr = I + ps+1rB + · · · = I + ps+1D,

where D ∈ Mm(Z) and det(D) 6≡ 0 (mod p) since p - det(B).1 Hence,

if x ∈ Pern(α) we have ps+1Dx = 0 and since p - det(D) this implies

that ps+1x = 0. It follows from this that |Pern(α)| = pm(s+1); that is,

|Pern(α)| = pm(1+ordp(n)), and so the abelian system (X,α) algebraically

realizes the sequence u. �

Corollary 3.3.21. If p denotes an odd prime, then the sequence ($n)

where $n = p1+ordp(n) for n ≥ 1, is algebraically realizable.

Proof . This follows from Theorem 3.3.20 since p1+ordp(n) = λn(1, 1, p)

for all n ∈ N. �

By an application of the results of this section and Theorem 2.2.2

of Chapter 2, we get the following general result.

Proposition 3.3.22. Let p denote an odd prime and r, s positive in-

tegers. Then the p-sequence with nth term pr+s ordp(n) is realizable.

Proof . Let u = (un) be the sequence given by un = pr+ordp(n). Since we

can write this as un = pr−1p1+ordp(n), it follows from Lemma 3.3.9 and

Corollary 3.3.21 that the sequence u is algebraically realizable. Denote

by v = (vn) the sequence where vn = uns ; then by Theorem 2.2.2, v is

realizable, and since vn = pr+s ordp(n), the result follows. �

The methods used in the proof of Theorem 3.3.20 do not work for

the prime 2. However, it is relatively easy to prove a result which is

similar to Corollary 3.3.21.

1It is essential here that p is odd
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Let X(2) denote the following subgroup of the multiplicative circle

group S1 = {x ∈ C : |x| = 1}:

{x ∈ S1 : x2r

= 1 for some r ≥ 1} =
⋃
r≥1

{e2kπi/2r

: 0 ≤ k ≤ 2r − 1}.

For any x ∈ X(2), let ρ(x) = x5. It is easy to see that ρ : X(2) → X(2)

is an endomorphism. The sequence realized by the algebraic system

(X(2), ρ) will be shown to be (22+ord2(n)).

Lemma 3.3.23. Let r denote a non-negative integer. For any odd

integer m ≥ 1 we have 2r+2 | 52rm − 1, while 2r+3 - 52rm − 1.

Proof . From 52rm = (1 + 22)2rm, a simple application of the binomial

theorem gives

52rm = 1 + 2r+2m+ 2r+3K,

for some integer K ≥ 0, and the result follows from this. �

Proposition 3.3.24. The 2-sequence (22+ord2(n))n≥1 is algebraically re-

alized by the system (X(2), ρ).

Proof . If x ∈ Pern(ρ), where the integer n ≥ 1 is fixed, then by the

definition of the map ρ, x ∈ X(2) and x5n−1 = 1. We can express n

in the form n = 2rm where the integers r,m are such that r ≥ 0 and

m ≥ 1 is odd. It follows from Lemma 3.3.23 that 5n− 1 = 2r+2s where

s ≥ 1 is an odd integer. Since x ∈ X(2), this implies that x = e2kπi/2
r+2

for 0 ≤ k < 2r+2 − 1. It follows that |Pern(ρ)| = 2r+2 = 22+ord2(n). �

Corollary 3.3.25. Let r denote a fixed integer where r ≥ 2. Then the

2-sequence (2r+ord2(n)) is algebraically realizable.

Proof . This follows from Lemma 3.3.9 and Proposition 3.3.24. �

We finish this section by extending Corollary 3.3.21 to the case

where p = 2. This requires new techniques, and these will be developed

in the following.
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Lemma 3.3.26. Let (G1, α1), (G2, α2), (G3, α3), . . . denote a chain of

algebraic systems, where the groups G1, G2, G3 . . . are such that

G1 � G2 � G3 � · · · ,

and for each integer n ≥ 1, the endomorphisms αn, αn+1 satisfy

αn+1(x) = αn(x), for all x ∈ Gn.

Then G =
⋃
n≥1Gn is a group and there is a natural endomorphism

α : G→ G such that α(x) = αn(x) whenever x ∈ Gn.

Proof . It is obvious that G =
⋃
n≥1Gn is a group. Define the map

α : G → G by α : x 7→ αn(x) if x ∈ Gn. This is a well-defined map

since if x ∈ Gm and x ∈ Gn, where m < n, then αn(x) = αn−1(x) =

· · · = αm(x). Also, for any x, y ∈ G, there is an integer n ≥ 1 such

that x, y ∈ Gn. Therefore α(xy) = αn(xy) = αn(x)αn(y) = α(x)α(y),

so that α is an endomorphism of G which by definition has the stated

property. �

Our aim is to prove that the 2-sequence (λn(1, 1, 2)) is algebraically

realizable. Before doing this, it is necessary to construct certain 2-

groups and automorphisms of them. Let Z2 denote the additive group

{0, 1} of the field F2, and 0 ≤ Z2 the zero group; we define the groups

Hn for n = 1, 2, 3, . . . by:

Hn =

 Z2 if n = 2k, where k ∈ N0

0 otherwise.

The groups Hn are now put together to form an ascending chain of

abelian 2-groups. Denote by Kn the group of order 2n given by

Kn =
2n−1∏

k=1

Hk, n = 1, 2, 3, . . . .

Next, the groups Xn are defined for n ≥ 1 by

Xn = Kn ×

(
∞∏

k=2n−1+1

0

)
.
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It is clear from the definitions, that the (additive abelian) groups Xn

satisfy: Xn
∼= Z n

2 , |Xn| = 2n, and X1 � X2 � X3 � · · · .

Now, for each integer n ≥ 1, denote by An ∈ M2n−1(F2), the upper

triangular matrix 

1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1


so that

A1 = (1), A2 =

 1 1

0 1

 , A3 =


1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

 , · · · .

Each of the matrices An give rise in a natural way to an automorphism

Fn : Kn → Kn where Fn : x 7→ Anx for all x ∈ Kn.

Next, extend An to the matrix An of size (∞×∞) by means of the

block diagonal matrix

An =



An 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·

0 0 0 1 · · ·
...

...
...

...
. . .


.

Using the matrix An, we now define an automorphism Tn : Xn → Xn

(the natural extension of Fn : Kn → Kn) by Tn : x 7→ Anx for all

x ∈ Xn. This gives the chain of abelian systems

(X1, T1), (X2, T2), (X3, T3), . . .

and it is clear that for each n ≥ 1,

Tn+1(x) = Tn(x), for all x ∈ Xn.
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Hence, the requirements of Lemma 3.3.26 are all satisfied, so we can

define the abelian group X to be
⋃
n≥1 Xn, and the endomorphism

τ : X → X by τ(x) = Tn(x) when x ∈ Xn; it is easy to see that τ is in

fact an automorphism of the group X. The abelian system (X, τ) will

be used below to establish the algebraic realizability of the 2-sequence

(λn(1, 1, 2)), but before doing this we consider an example, and then

determine some facts about the systems (Km,Fm).

Example 3.3.27. The 2-sequences realized by the abelian systems

(K1,F1), (K2,F2) and (K3,F3) are

(2, 2, 2, 2 . . .), (2, 4, 2, 4, . . .) and (2, 4, 2, 8, 2, 4, 2, 8, . . .)

respectively. We note that each of these sequences is an approximation

(in some sense) to the sequence (λn(1, 1, 2)) = (2, 4, 2, 8, 2, 4, 2, 16, . . .);

and that form = 1, 2, the sequence realized by the system (Km+1,Fm+1)

first differs from that realized by (Km,Fm) at the 2mth term.

Lemma 3.3.28. Let m denote a positive integer, and u(m) = (u
(m)
n )n≥1

represent the sequence realized by the system (Km,Fm). Then for all

integer n ≥ 1

u(m+1)
n =

 u
(m)
n if 2m - n

2u
(m)
n if 2m | n.

Proof . We will assume that m ≥ 3, since Example 3.3.27 deals with

smaller values of m. Note first of all that o(Fm+1) = 2m: this is easy

to see from the form of the matrix Am+1 over the field F2. Next, using

block matrix notation, we can write

Am+1 =

 Am Bm

0 Am


where Bm ∈ M2m−1(F2) is the matrix with every entry equal to 1. For

any integer n ≥ 1, define the matrices C
(n)
m by: C

(1)
m = Bm, and for



3.3. ALGEBRAICALLY REALIZABLE p-SEQUENCES 53

n > 1, C
(n)
m = AmC

(n−1)
m +BmA

n−1
m . Then

Anm+1 =

 Anm C
(n)
m

0 Anm

 .

Denote by x = (x1, . . . , x2m−1 , x2m−1+1, . . . , x2m) an element of the group

Km+1. Then by construction we have x2m−1+1 = · · · = x2m−1 = 0, so

from the form of the matrix Anm+1, the number of fixed points of Fn
m+1,

where the integer n is in the range 1 ≤ n ≤ 2m, is determined by the

number of solutions of the equation Anmx̂ = x̂, x̂ = (x1, . . . , x2m−1)T,

along with the possible values of x2m . That is, the periodic points of

Fm+1 are determined by the periodic points of Fm and the term x2m . A

simple induction on m, using o(Fm+1) = 2m, completes the proof. �

Lemma 3.3.29. If m denotes a positive integer, and u(m) = (u
(m)
n )n≥1

represents the sequence realized by the system (Km,Fm), then

u(m) =
(
gcd(2m, 21+ord2(n))

)
n≥1

.

Proof . From Example 3.3.27 we have u(1) = (2, 2, 2, 2, . . .), so the result

is certainly true when m = 1. Assume that it is true when m = k ≥ 1;

then by Lemma 3.3.28,

u(k+1)
n =

 gcd(2k, 21+ord2(n)) if 2k - n

2 gcd(2k, 21+ord2(n)) if 2k | n.

Now, if 2k - n then 1 + ord2(n) ≤ k, so that

gcd(2k, 21+ord2(n)) = gcd(2k+1, 21+ord2(n)).

Alternatively, if 2k | n then 1 + ord2(n) ≥ k + 1, so

2 gcd(2k, 21+ord2(n)) = 2k+1 = gcd(2k+1, 21+ord2(n)).

Therefore, in both possible cases we get

u(k+1)
n = gcd(2k+1, 21+ord2(n)),

and induction completes the proof. �
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Lemma 3.3.30. If n denotes a positive integer and m = blog2 nc+ 1,

then

Pern(T1) ≤ Pern(T2) ≤ · · · ≤ Pern(Tm) = Pern(Tm+1) = · · · .

Proof . Let r denote any positive integer and suppose that x ∈ Pern(Tr).

Then since x ∈ Xr, Tr+1(x) = Tr(x), and so because Xr is Tr-invariant,

x ∈ Pern(Tr+1). Hence Pern(Tr) ≤ Pern(Tr+1), which gives the ascend-

ing chain of subgroups of X

Pern(T1) ≤ Pern(T2) ≤ Pern(T3) ≤ · · · .

We will prove that this chain eventually stabilizes by showing that

|Pern(Tm)| = |Pern(Tm+s)| where m = blog2 nc + 1 and the integer

s ≥ 0.

By definition, the systems (Kj,Fj) and (Xj, Tj) are essentially the

same for all j ≥ 1, and therefore it is easy to see that

|Perk(Tj)| = |Perk(Fj)|, for k = 1, 2, 3, . . . .

From Lemma 3.3.29 we have

|Perk(Fj)| = gcd(2j, 21+ord2(k)),

so when j ≥ 1 + ord2(k) this gives |Perk(Tj)| = 21+ord2(k). It is obvious

that blog2 kc ≥ ord2(k), so for all j ≥ blog2 kc+ 1,

|Perk(Tj)| = 21+ord2(k).

The result follows from this. �

In the next result, Corollary 3.3.21 is extended to include the case

where the prime p = 2. We note that Proposition 3.3.24 is a conse-

quence of this new result, but since it was possible to prove it without

the effort required for the more general case, we preferred to give the

easier demonstration.
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Theorem 3.3.31. The 2-sequence υ = (21+ord2(n))n≥1 is algebraically

realizable.

Proof . We will show that the sequence υ is algebraically realized by

the abelian system (X, τ) constructed above.

Let n denote a positive integer and m = blog2 nc+1. If x ∈ Pern(τ)

then x ∈ Xr for some positive integer r, so x = τn(x) = T n
r (x). Thus,

x ∈ Pern(Tr), and therefore by Lemma 3.3.30, x ∈ Pern(Tm): hence

Pern(τ) ≤ Pern(Tm). Since it is clear that the reverse inclusion holds,

we have Pern(τ) = Pern(Tm). Applying Lemma 3.3.29, it follows that

|Pern(τ)| = 21+ord2(n), and this completes the proof. �

The result just obtained does not completely extend Theorem 3.3.20

to the case where the prime p = 2, so we finish this section with the

following problem.

Problem 3.3.32. Extend Theorem 3.3.20 to include the prime p = 2.

3.4. Non-Locally Nilpotent Groups

In the final section of this chapter, we will look at a question which

can be considered to be a converse to Theorem 3.2.11: if the group G

possesses the property that every automorphism α : G → G is such

that the sequence realized by the algebraic system (G,α) is everywhere

locally realizable, then is G locally nilpotent? This question can be

interpreted in the alternative form:

Question 3.4.1. If G denotes a group which is not locally nilpotent,

does there exist an automorphism α : G → G which is such that

the sequence realized by the algebraic system (G,α) is not everywhere

locally realizable?

We do not have a complete answer to Question 3.4.1, but we do

show that several well known infinite classes of finite non-nilpotent

groups do exist for which the question has a positive answer.
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In a finite nilpotent group, the Sylow p-subgroups are unique, so in

the the following result, where by implication the group has more than

one Sylow p-subgroup, the group in question is not nilpotent.

Lemma 3.4.2. Let X denote a finite group and p a prime with the

following properties

(1) p ‖ |X|

(2) there is an automorphism ϑ ∈ Aut(X) and an integer n ≥ 2

where n - p− 1 and |ϑ| = n

(3) for any Sylow p-subgroup P of X, {P, ϑ(P ), . . . , ϑn−1(P )} con-

sists of n distinct Sylow p-subroups of X.

Then the sequence realized by the algebraic system (X,ϑ) is not locally

realizable at the prime p.

Proof . Let the integer r be in the range 0 < r < n, and assume that

p | |Perr(ϑ)|. Then there is a Sylow p-subgroup P of X such that

P ≤ Perr(ϑ). This implies that P = ϑr(P ) and since 0 < r < n, this

contradicts condition 3. Hence, p - |Perr(ϑ)| for r = 1, . . . , n − 1. It

follows that the p-part of the sequence realized by the system (X,ϑ) is

of the form

u = (uk) = (1, 1, . . . , 1, p, 1, 1, . . . , 1, p, . . .)

where p occurs at the n, 2n, 3n, . . . positions only. If u is a realizable

sequence then we know from Lemma 1.2.4 that

n |
∑
d|n

udµ(n/d).

Now, since n > 1 and uk = 1 for 1 ≤ k < n, we obtain∑
d|n

udµ(n/d) =
∑
d|n

µ(n/d)− 1 + p = p− 1

so n | p − 1, contrary to condition 2. Hence u is not a realizable

sequence, and therefore the sequence realized by (X,ϑ) is not locally

realizable at p. �
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Proposition 3.4.3. Let X denote a non-nilpotent group of order pq,

where p and q are distinct primes. Then there is an automorphism

ϑ ∈ Aut(X) such that the sequence realized by the system (X,ϑ) is not

everywhere locally realizable.

Proof . Since X is not nilpotent, we may assume that the number of

Sylow p-subgroups of X is greater than 1. If we denote this number by

np, then from Sylow’s theorem we have

np ≡ 1 (mod p) and np | pq.

It follows that the prime q must be such that q ≡ 1 (mod p) and

np = q > p, so we certainly have q - p − 1. It is now easy to see from

Sylow’s theorem, that X has a unique Sylow q-subgroup Q, so that Q

is a normal subgroup of X. Therefore, if P is any Sylow p-subgroup

of X, we have X = PQ = QP . Now Q is cyclic, so we can write

Q = 〈z : zq = 1〉 for some z ∈ Q. If we define the inner automorphism

ϑ ∈ Aut(X) by ϑ : x 7→ xz, then |ϑ| = q, and by using Sylow’s theorem

and the fact that X = PQ, we see that the set

{P, ϑ(P ), ϑ2(P ), . . . , ϑq−1(P )}

consists of the q distinct Sylow p-subgroups of X, whenever P is any

fixed Sylow p-subgroup of X. We now have all of the ingredients nec-

essary for Lemma 3.4.2, and this completes the proof. �

Theorem 3.4.4. Denote by n an odd integer with n ≥ 3, and let D2n

be the dihedral group of order 2n. Then there is an automorphism

ϑ ∈ Aut(D2n) such that the sequence realized by the system (D2n, ϑ) is

not everywhere locally realizable.

Proof . A presentation for D2n is

D2n = 〈a, b : an = 1, b2 = 1, ab = a−1〉
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and using this we obtain: B = {1, b} is a Sylow 2-subgroup of D2n.

For any integer r, we easily compute ba
r

= a−2rb, so if we set

Pr = Bar

= {1, a−2rb}, for 0 ≤ r < n,

the complete set of distinct Sylow 2-subgroups of D2n is

{P0, P1, P2, . . . , Pn−1}.

Denoting by ϑ ∈ Aut(D2n) the inner automorphism ϑ : x 7→ xa, we

have |ϑ| = n, and it follows easily that if P is any Sylow 2-subgroup of

X then the set

{P, ϑ(P ), ϑ2(P ), . . . , ϑn−1(P )}

consists of the n Sylow 2-subgroups of X. Lemma 3.4.2 completes the

proof. �

Theorem 3.4.5. Let n denote an integer with n ≥ 3, and let Sn

be the symmetric group of order n!. Then there is an automorphism

ϑ ∈ Aut(Sn) such that the sequence realized by the system (Sn, ϑ) is not

everywhere locally realizable.

Proof . The case n = 3 is contained in Theorem 3.4.4, since S3 ≡ D6,

and therefore we will assume that n ≥ 4. In order to make use of

Lemma 3.4.2, the first task is to show that there is a prime p ‖ |Sn|. To

do this we appeal to Bertrand’s Postulate to establish the existence of

an odd prime p with n/2 < p < n. Now, because p < n < 2p, we easily

see that p occurs just once (as a factor of any of the terms) in the list

(1, 2, . . . , n− 1, n), and so p ‖ n!. Next, since any Sylow p-subgroup of

Sn is cyclic and is generated by a cycle of length p, the number np of

such subgroups is given by

np =
n(n− 1) · · · (n− p+ 1)

p(p− 1)
.

Because it is clear that p - n while p − 1 | (n − 1) · · · (n − p + 1), we

have: np is a multiple of n, so it is certainly true that np > 1.
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Let x denote the permutation (1 2 · · · n) ∈ Sn. Then if π ∈ Sn is

any cycle of length p, it is easy to see that πx 6= πr for any integer

r. Therefore, if ϑ ∈ Aut(Sn) is the inner automorphism given by

ϑ(ω) = ωx for all ω ∈ Sn, and if P is any Sylow p-subgroup of Sn, the

set

{P, ϑ(P ), ϑ2(P ), . . . , ϑn−1(P )}

consists of n distinct Sylow p-subgroups of Sn. Noting that |ϑ| = n

and n - p− 1, the proof is completed by Lemma 3.4.2. �

Theorem 3.4.6. Let n denote an integer with n ≥ 4, and let An be

the alternating group of order n!/2. Then there is an automorphism

ϑ ∈ Aut(An) such that the sequence realized by the system (An, ϑ) is

not everywhere locally realizable.

Proof . The proof of this is essentially the same as that of the previ-

ous Theorem, since the prime p being odd guarantees that the Sylow

p-subgroups of Sn are in fact contained in An. The only other thing to

note is that when n is even, the automorphism ϑ is an outer automor-

phism of An, since in this case x 6∈ An. �



CHAPTER 4

Sequences of Lehmer-Pierce Type

A sequence of Lehmer-Pierce type will be shown to be algebraically

realizable when no term of the sequence is zero. This is not a new

result and it is included for completeness. Possible generalizations of

the Lehmer-Pierce construction will be considered, some leading to

known results. The main source of reference for this chapter is [10].

Throughout this chapter we will write ς = (ςn) for the sequence of

monic polynomials ςn(x) = xn − 1, and S1
n for the finite subgroup of

the circle group S1 defined for each integer n ≥ 1 by

S1
n = {z ∈ S1 : zn = 1} = {e2rπi/n : r = 0, 1, . . . , n− 1}.

Finally, S1
ω is used to represent the countable subgroup of S1:

⋃
n≥1 S1

n.

4.1. Integer Matrices and Lehmer-Pierce Sequences

In this section we aim to establish certain results about matrices

with integer entries. Many of the definitions and early results apply

in a wider context but will be given in a form of more use in later

arguments. The books [4] and [8] detail further information.

Let d denote a positive integer. If A ∈ Md(C), then the charac-

teristic polynomial of A, written as χA ∈ C[x], is the polynomial of

degree d defined by χA(x) = det(A−xI), where I is the unit matrix in

Md(C). The eigenvalues of the matrix A are the zeros of χA. A notion

corresponding to the eigenvalues of A, is that of the eigenvectors of A:

a non-zero element x of the vector space Cd is called an eigenvector

of A if Ax = λx for some λ ∈ C; in this equation, x is interpreted as

a column vector. It is a standard result of linear algebra that λ is an

60
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eigenvalue of A; and further, that η is an eigenvalue of A only if there

exists 0 6= x ∈ Cd such that Ax = ηx.

Lemma 4.1.1. Let d denote a positive integer and A a matrix from

Md(C) with eigenvalues α1, . . . , αd. Then det(A) = α1 · · ·αd.

Proof . By definition, the eigenvalues of A are the zeros of the charac-

teristic polynomial χA(x) = det(A − xI). This gives det(A) = χA(0)

and the result now follows from elementary algebra. �

Lemma 4.1.2. Let d and n denote positive integers. If the matrix

A ∈ Md(C) has eigenvalues α1, . . . , αd, then the eigenvalues of the

matrix An are αn1 , . . . , α
n
d .

Proof . For some integer r in the range 1 ≤ r ≤ d, let x ∈ Cd denote an

eigenvector of A corresponding to the eigenvalue αr. Then Ax = αrx,

and from this we obtain

Anx = αrA
n−1x = α2

rA
n−2x = · · · = αnrx.

Therefore, x is an eigenvector of the matrix An with associated eigen-

value αnr . The result follows from this. �

Keeping with the notation of the proof of Lemma 4.1.2, from the

equation Anx = αnrx we easily obtain (An − I)x = (αnr − 1)x, which

leads to the following.

Lemma 4.1.3. If d and n denote positive integers and the matrix

A ∈ Md(C) has eigenvalues α1, . . . , αd, then

det(An − I) = (αn1 − 1) · · · (αnd − 1).

Proof . This follows by the argument just given and Lemma 4.1.1. �

The next result establishes a connection between Lehmer-Pierce

sequences and integer matrices. Although being very straightforward,

it is of great use.
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Proposition 4.1.4. Let d denote a positive integer and A a matrix

from Md(Z). The Lehmer-Pierce sequence (∆n(χA)) which is derived

from the characteristic polynomial χA of A, has terms given by

∆n(χA) = | det(An − I)| for n = 1, 2, 3, . . . .

Proof . Let α1, . . . , αd denote the zeros of the polynomial χA. Then

by definition, the terms of the Lehmer-Pierce sequence (∆n(χA)) are

given by

∆n(χA) =
d∏
r=1

|αnr − 1|.

The proof is completed by Lemma 4.1.3. �

One of the reasons that Proposition 4.1.4 is so useful, especially

when calculating Lehmer-Pierce sequences, is due to the following def-

inition.

Definition 4.1.5. Denote by h a monic polynomial from C[x] of degree

d ≥ 1. If h(x) = xd + ad−1x
d−1 + · · · + a1x + a0, then the companion

matrix to h is

Λh =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−a0 −a1 −a2 . . . −ad−1


.

The main property of the matrix Λh which we require is the well

known fact that the eigenvalues of Λh are the zeros of the polynomial

h: in fact, h = (−1)dχΛh
.

Proposition 4.1.6. Let h denote a monic polynomial from Z[x]. The

Lehmer-Pierce sequence (∆n(h)) has terms given by

∆n(h) = | det(Λn
h − I)| for n = 1, 2, 3, . . . .
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Proof . This follows immediately from Proposition 4.1.4. �

The previous result gives an alternative demonstration of the fact

that the terms of a Lehmer-Pierce sequence are integers.

The section is completed by showing that a Lehmer-Pierce sequence

which contains no zero terms can be algebraically realized by an abelian

system. The proof is based on that given in [10], the idea being to use

the companion matrix Λh of the monic polynomial h ∈ Z[x] to construct

an endomorphism on an abelian group.

Suppose that C is an abelian group and that n denotes an integer.

We can define an endomorphism ϑ : C → C by ϑ : x 7→ nx for all

x ∈ C. If we ask about the order of the subgroup ker(ϑ) then in general

this question will remain unanswered. However, when C = T = R/Z,

the additive circle group, it is easy to give an answer. Using the half-

open interval representation: T = [0, 1), with addition carried out mod

1, and writing m = |n|, we have ker(ϑ) = T if m = 0. And when m 6= 0,

| ker(ϑ)| = m since in this case ker(ϑ) = {r/m : r = 0, 1, . . . ,m − 1}.

Thus: | ker(ϑ)| = |Z/nZ|.

A natural way to extend this is to consider an endomorphism of the

toral group Td defined by the action of a matrix A ∈ Md(Z). To make

this precise we have the following definition.

Definition 4.1.7. Let d denote a positive integer and A a matrix from

Md(Z). The endomorphism τA : Td → Td is defined by τA : x 7→ Ax

for all x ∈ Td.

If A ∈ Md(Z), then it is clear that AZd = {Ax : x ∈ Zd} is a

subgroup of Zd; and if A is non-singular then A−1Zd is a subgroup of Qd,

containing Zd. Hence, if A ∈ Md(Z) is non-singular, Zd ≤ A−1Zd ≤ Qd.

Lemma 4.1.8. Let d denote a positive integer and A a non-singular

matrix from Md(Z). Then A−1Zd/Zd ∼= Zd/AZd.
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Proof . Define the map ψ : Zd → A−1Zd/Zd by ψ : x 7→ A−1x + Zd for

all x ∈ Zd. Then it is easy to see that ψ is a surjective homomorphism

(epimorphism) and ker(ψ) = AZd. The proof is completed by appealing

to one of the standard isomorphism theorems from group theory. �

Lemma 4.1.9. If A ∈ Md(Z) is non-singular then ker(τA) ∼= Zd/AZd.

Proof . Let x ∈ Rd be such that x + Zd ∈ ker(τA). By the definition of

τA, Ax ∈ Zd, so x + Zd ∈ A−1Zd/Zd, which gives ker(τA) ≤ A−1Zd/Zd.

The reverse inclusion is also easy to establish, so ker(τA) = A−1Zd/Zd.

The result now follows from Lemma 4.1.8. �

Next we have a technical result.

Lemma 4.1.10. If the matrix A = (aij) ∈ Md(Z) is non-singular with

n = | det(A)|, let Â = (âij) denote the unique matrix in Md(Zn) which

is defined by

Adj(A) = Â+ nM, for some M ∈ Md(Z).

Here, for the sake of the definition, the elements of the ring Zn are

interpreted as the set of integers {0, 1, . . . , n− 1}, and we assume that

0 ≤ âij < n for all 1 ≤ i, j ≤ d.

The subgroup ÂZd
n of the additive group Zd

n is such that |ÂZd
n| = n.

Proof . [Outline Sketch] Clearly we may assume that d ≥ 2. The matrix

Adj(A) is such that all 2 × 2 minors are divisible by n (see [11]). It

follows that the determinantal rank of the matrix Â over the ring Zn is

at most 1, and so the row rank of Â is either 0 or 1. However, if the row

rank were 0, this would contradict the fact that det(Adj(A)) = ±nd−1,

so we must have: row-rankZn(Â) = 1. From this we deduce that the

number of distinct elements in ÂZd
n is n. �

Lemma 4.1.11. If A ∈ Md(Z) is non-singular, |Zd/AZd| = | det(A)|.
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Proof . Let n = | det(A)| and denote by Ã the adjoint matrix of

A. Then from standard linear algebra results, Ã ∈ Md(Z) is non-

singular and AÃ = ÃA = ±nI. By a similar argument to that used

in the proof of Lemma 4.1.8, Zd/AZd ∼= ÃZd/AÃZd, from which we

get: Zd/AZd ∼= ÃZd/nZd. If we define the matrix Â ∈ Md(Zn) as in

Lemma 4.1.10, then it is easy to see that the group ÃZd/nZd is iso-

morphic to the subgroup ÂZd
n of the additive group Zd

n, so a further

application of Lemma 4.1.10 completes the proof. �

The main result of this section follows.

Theorem 4.1.12. Denote by h a monic polynomial from Z[x] which

is such that no zero of h is a root of unity; that is, the set of zeros of h

is disjoint from the set S1
ω. Then the Lehmer-Pierce sequence (∆n(h))

is algebraically realized by an abelian system.

Proof . The condition that no zero of h is a root of unity is clearly

equivalent to the requirement that no term of the sequence (∆n(h))

is zero. By Proposition 4.1.6 this implies that the matrix Λn
h − I is

non-singular for each positive integer n. Let d = ∂(h), and for ease

of notation, write A = Λh ∈ Md(Z). We will show that the abelian

system (Td, τA) realizes the Lehmer-Pierce sequence (∆n(h)).

Let n denote a fixed positive integer and suppose x ∈ Rd is such

that x + Zd ∈ Pern(τA). Then by the definition of τA this is equivalent

to (An − I)x ∈ Zd. Writing B for the matrix An − I, the preceding

arguments give: Pern(τA) = ker(τB). It follows from Lemma 4.1.9 that

Pern(τA) ∼= Zd/BZd, so by Lemma 4.1.11, |Pern(τA)| = | det(B)|. The

proof is completed by Proposition 4.1.6. �

We end this section by defining a special type of realizable sequence.

Definition 4.1.13. The sequence u = (un) of positive integers is said

to be Lehmer-Pierce realizable if there is a monic polynomial h ∈ Z[x]

such that un = ∆n(h) for all n ≥ 1.
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Since zero is excluded from the definition of a Lehmer-Pierce realiz-

able sequence, this is in fact a special case of an algebraically realizable

sequence, as established above in Theorem 4.1.12.

Example 4.1.14. The sequence (υn) = (1, 3, 1, 15, 31, 27, 127, 255, . . .),

which is defined for n = 1, 2, 3, . . . by

υn =

 2n − 1 if 3 - n

(2n/3 − 1)3 if 3 | n

is Lehmer-Pierce realizable since υn = ∆n(f), where f(x) = x3 − 2.

4.2. Divisibility Sequences of Polynomials

The sequence of polynomials ς = (ςn) is such that if the positive

integers m,n have m | n, then there is a polynomial κ ∈ Z[x] with

ςn = κςm: in fact we have

(4.1) xn − 1 = (xm − 1)(xn−m + xn−2m + · · ·+ xm + 1).

Extending the notation used for the divisibility of integers, we will

write this as ςm | ςn. A sequence (fn) of non-zero polynomials from the

ring Z[x] will be called a divisibility sequence of polynomials if fm | fn
when the integers m,n ≥ 1 are such that m | n. The sequence ς also

has the property that 1 ≤ ∂(ςn) < ∂(ςn+1) for all n ≥ 1. We will call a

sequence (fn) from Z[x] a proper divisibility sequence of polynomials

if: ∂(fn) → ∞ as n → ∞; 1 ≤ ∂(fn) ≤ ∂(fn+1) for all n ≥ 1, and

when the positive integers m,n are such that m | n, then fm | fn.

Thus the sequence ς is a proper divisibility sequence of polynomials.

In this section, we will investigate a generalization of the Lehmer-Pierce

construction which utilises divisibility sequences of polynomials.

Given a monic polynomial h ∈ Z[x] with zeros α1, . . . , αd ∈ C,

where d = ∂(h), the Lehmer-Pierce sequence (∆n(h)) is defined by

∆n(h) =
d∏

k=1

|αnk − 1|, n = 1, 2, 3, . . . .



4.2. DIVISIBILITY SEQUENCES OF POLYNOMIALS 67

In terms of the polynomial sequence ς, this can be expressed as

∆n(h) =
d∏

k=1

|ςn(αk)|, n = 1, 2, 3, . . . ,

and it is this formulation of the Lehmer-Pierce sequence which leads

to the following generalization.

Definition 4.2.1. Denote by f = (fn) a sequence of non-zero polyno-

mials from Z[x]. If h ∈ Z[x] is a monic polynomial of degree d with

zeros α1, . . . , αd, then the sequence (∆
(f)
n (h)) is given by

∆(f)
n (h) =

d∏
k=1

|fn(αk)|, n = 1, 2, 3, . . . .

Using this definition, the standard Lehmer-Pierce sequence becomes

(∆
(ς)
n (h)); however, we will keep with the notation previously used when

referring to this sequence.

Example 4.2.2. Let fn ∈ Z[x] denote the polynomial fn(x) = xdn − 1

where dn is the nth term of the Fibonacci sequence (1, 1, 2, 3, 5, . . .).

Then f = (fn) is a proper divisibility sequence of polynomials.

Let the polynomial h ∈ Z[x] be given by h(x) = x− 2. Then using

the sequence f from Example 4.2.2 we obtain

(∆(f)
n (h)) = (1, 1, 3, 7, 31, . . .),

and it is interesting to note that this sequence of integers is not realiz-

able.

Lemma 4.2.3. Let h ∈ Z[x] denote a polynomial with ∂(h) = d ≥ 1

and factorization over C, h(x) = a(x−α1) · · · (x−αd). If the polynomial

g ∈ Z[x1, . . . , xm], where the integer m ≥ 1, then for t ∈ {1, 2, . . . ,m},

ψt(g, h) = a∂xt (g)

d∏
k=1

g(x1, . . . , xt−1, αk, xt+1, . . . , xm)

is a member of the ring R = Z[x1, . . . , xt−1, xt+1, . . . , xm]. Further,

ψt(g, h) = a∂xt (g) det(g(x1, . . . , xt−1,Λh∗ , xt+1, . . . , xm))



4.2. DIVISIBILITY SEQUENCES OF POLYNOMIALS 68

where Λh∗ is the companion matrix to the monic polynomial h∗ = a−1h.

Proof . Clearly there will be no loss of generality (but a considerable

gain in ease of notation) if we assume that t = m. It is easy to see

that, by grouping terms appropriately, ψm(g, h) can be put in the form

ψm(g, h) = a∂xm (g)
∑
j

rjsj,

where each rj ∈ R = Z[x1, . . . , xm−1] and the sj ∈ Z[α1, . . . , αd] are

symmetric expressions in the zeros α1, . . . , αd of h. It follows from this,

and elementary algebraic number theory, (see [27]) that a∂xm (g)sj ∈ Z

and so ψm(g, h) ∈ R.

Now, we can think of g as being a member of the ring R[xm], and

since the eigenvalues of Λh∗ are α1, . . . , αd,

det(g(Λh∗)) = g(α1) · · · g(αd),

from which the result follows. �

We illustrate the previous result with the following example.

Example 4.2.4. Denote by g(x1, x2, x3) = 3x1x2 − x2
1x2x3 + 2x1x

3
3 a

polynomial from the ring Z[x1, x2, x3], and let h(x) = 2x2−x+2 ∈ Z[x].

If the zeros of h are α and β then in the notation of Lemma 4.2.3,

ψ1(g, h) = 4(−x2x3α
2 + (3x2 + 2x3

3)α)(−x2x3β
2 + (3x2 + 2x3

3)β).

Expanding this and grouping the terms,

ψ1(g, h) = 4(x2
2x

2
3α

2β2−x2x3(3x2 +2x3
3)(α

2β+αβ2)+ (3x2 +2x3
3)

2αβ)

from which, on using α+ β = 1/2 and αβ = 1,

ψ1(g, h) = 2(2x2
3 − 3x3 + 18)x2

2 − 4x3
3(x3 − 12)x2 + 16x6

3 ∈ Z[x2, x3].

Alternatively, the companion matrix to h∗ = 2−1h is

Λh∗ =

 0 1

−1 1/2

 ,
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so that g(x1, x2,Λh∗) = 2x1Λ
3
h∗ − x2

1x2Λh∗ + 3x1x2I, where I denotes

the 2× 2 identity matrix. Hence,

g(x1, x2,Λh∗) =
1

4
x1

 12x2 − 4 −4x1x2 − 6

4x1x2 + 6 −2x1x2 + 12x2 − 7

 ,

and from Lemma 4.2.3,

ψ3(g, h) =
1

2
x2

1

∣∣∣∣∣∣ 12x2 − 4 −4x1x2 − 6

4x1x2 + 6 −2x1x2 + 12x2 − 7

∣∣∣∣∣∣ .
Expanding this determinant,

ψ3(g, h) = 8x2
2x

4
1 − 4x2(3x2 − 7)x3

1 + 2(36x2
2 − 33x2 + 16)x2

1 ∈ Z[x1, x2].

Proposition 4.2.5. Let f = (fn) denote a sequence of non-zero poly-

nomials from Z[x]. If h ∈ Z[x] is a monic polynomial, then (∆
(f)
n (h))

is a sequence of non-negative integers. Further, if f is a divisibility

sequence of polynomials and the integers m,n ≥ 1 are such that m | n,

then ∆
(f)
n (h) is a multiple of ∆

(f)
m (h), so that in this case (∆

(f)
n (h)) is a

divisibility sequence of positive integers if it consists of non-zero terms.

Proof . For each integer n ≥ 1, the fact that ∆
(f)
n (h) is a non-negative

integer follows from Definition 4.2.1 and Lemma 4.2.3. Next, if f is

a divisibility sequence and the integers m,n ≥ 1 are such that m | n,

then fn = gfm for some polynomial g ∈ Z[x], so by Definition 4.2.1,

∆(f)
n (h) = ∆(f)

m (h)
d∏

k=1

|g(αk)|,

where h has the factorization over C: h(x) = (x−α1) · · · (x−αd). Now

from Lemma 4.2.3,
∏d

k=1 |g(αk)| is a non-negative integer, and this fact

completes the proof. �

In order to consider a converse result to Proposition 4.2.5, we intro-

duce notation to deal with the individual terms of the integer sequence

(∆
(f)
n (h)).
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Definition 4.2.6. If g, h ∈ Z[x] denote polynomials with ∂(g) ≥ 0 and

h having factorization over C, h(x) = ah(x− α1) · · · (x− αd), then we

define

δ(g, h) = |ah|∂(g)

d∏
k=1

|g(αk)|.

Thus, in the notation of this definition, the individual term ∆
(f)
n (h)

from the sequence (∆
(f)
n (h)) of Definition 4.2.1, can be written as:

δ(fn, h). Note also, that Lemma 4.2.3 guarantees that δ(g, h) is a non-

negative integer.

The following example illustrates why a simple converse to the di-

visibility conclusion of Proposition 4.2.5 will not work.

Example 4.2.7. Let g1, g2 ∈ Z[x] denote the polynomials given by

g1(x) = 2(x2 + 1) and g2(x) = x(x + 1)(x4 − 1). Then it is easy to

see that δ(g1, h) | δ(g2, h) for all linear monic h ∈ Z[x]. However,

g1 - g2, although it is obvious that g1 is a factor of g2 in Q[x]. Note

that if k(x) = x2 + x + 1, then δ(g1, k) = 4 and δ(g2, k) = 3, so that

δ(g1, k) - δ(g2, k).

Lemma 4.2.8. Let p denote a prime number, n a non-negative integer,

and let g(x) = gnx
n+· · ·+g0 represent a polynomial from the ring Z[x],

where the coefficients satisfy: gn 6= 0 and gcd(p, g0, . . . , gn) = 1. Then

there exists a monic polynomial h ∈ Z[x] for which δ(g, h) ≡ 1 (mod p).

Proof . If ∂(g) = 0, then the result follows easily from the Euler-

Fermat theorem, so we will assume that ∂(g) = n > 0. The condition

gcd(p, g0, . . . , gn) = 1 implies that there are polynomials f, k ∈ Z[x] so

that g = pf + k where k is such that: if k(x) = kmx
m + · · · + k0 then

0 ≤ kr ≤ p − 1 for r = 0, . . . ,m and km 6= 0. If ∂(k) = 0, so that

k ≡ k0 6= 0, then we can complete the proof by a simple application

of the Euler-Fermat theorem. Assuming that ∂(k) > 0, we can find a

unique integer a such that 1 ≤ a ≤ p − 1 and akm ≡ 1 (mod p), and

by a suitable redefinition of the polynomials f, k we have ag = pf + k
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where k is monic. Let the monic polynomial h ∈ Z[x] be given by

h(x) = k(x)− a. If the zeros of h are α1, . . . , αm, we have

δ(ag, h) =
m∏
r=1

|ag(αr)| =
m∏
r=1

|pf(αr) + k(αr)| =
m∏
r=1

|pf(αr) + a|,

the last expression arising from 0 = h(αr) = k(αr)− a for 1 ≤ r ≤ m.

It follows that

δ(ag, h) =
m∏
r=1

|pf(αr) + a| = |pψ(α1, . . . , αm) + am|,

where ψ is a symmetric expression in α1, . . . , αm, with integer coeffi-

cients, and so is an integer. Hence,

amδ(g, h) = δ(ag, h) ≡ ±am (mod p),

and therefore, δ(g, h) ≡ ±1 (mod p). If δ(g, h) ≡ −1 (mod p) then

δ(g, h′) ≡ 1 (mod p) where h′ ≡ h2, so replace h with h′. �

We illustrate the method used in the proof of Lemma 4.2.8 in the

following example.

Example 4.2.9. Let g(x) = 3x4 − 2x3 + 5x2 − 8 and the prime p = 5.

Then write g in the form g(x) = 5(−x3 +x2−2)+3x4 +3x3 +2. Next,

2g(x) = 5(−2x3 + 2x2 − 4) + 6x4 + 6x3 + 4 which can be rewritten as

2g(x) = 5(x4−x3+2x2−4)+x4+x3+4. Finally, set h(x) = x4+x3+2

and calculate: δ(g, h) = 69976 ≡ 1 (mod 5).

Proposition 4.2.10. Denote by f, g non-zero polynomials from Z[x],

and suppose that δ(f, h) | δ(g, h) for every monic h ∈ Z[x] where

δ(f, h) 6= 0. Then f | g.

Proof . Because Z[x] is a subring of the Euclidean domain Q[x], we can

use the division algorithm in Q[x] to find polynomials k, r ∈ Q[x] such

that g = kf + r, where ∂(r) < ∂(f). We aim to show that r ≡ 0 and

then that k ∈ Z[x] and we begin by obtaining a contradiction to the

assumption that r 6= 0.
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Fix an integer N > max{|α| : α ∈ C and f(α) = 0}; then for all

integers n ≥ N we have f(n) 6= 0. Therefore, if hn(x) = x − n for

n ≥ N , we have: hn ∈ Z[x] is monic and δ(f, hn) = |f(n)| 6= 0. Find

an integer m > 0 so that mk,mr ∈ Z[x]. Then

mδ(g, hn) = |mk(n)f(n) +mr(n)| = δ(f, hn)|mk(n) +mr(n)/f(n)|,

so since δ(f, hn) | δ(g, hn), and mk(n),mr(n) ∈ Z, it follows that

f(n) | mr(n) for all integers n ≥ N . However, because we are assuming

that 0 ≤ ∂(r) < ∂(f), we have limn→∞ |mr(n)/f(n)| = 0 and so there

is an integer N1 ≥ N such that for every n ≥ N1, |f(n)| > |mr(n)|,

which clearly contradicts f(n) | mr(n) for all integers n ≥ N . It follows

that r ≡ 0 and so g = kf . We will now show that k ∈ Z[x].

There exist integers a and b such that

a, b ≥ 1, gcd(a, b) = 1 and k =
a

b
w,

where the polynomial w ∈ Z[x] is primitive. Similarly, there is an

integer c > 0 such that f = cv, with v ∈ Z[x] primitive. This gives

bg = acwv and it is clear from this that the proof will be complete if

we can show that b = 1. Assuming that this is not the case, let p be

a prime factor of b. Since both w and v are primitive, wv is primitive.

Therefore, by Lemma 4.2.8, there is a monic polynomial h ∈ Z[x] such

that δ(wv, h) ≡ 1 (mod p). If ∂(h) = d > 0, then

bdδ(g, h) = adcdδ(wv, h).

Noting that δ(wv, h) = δ(w, h)δ(v, h), we see that δ(v, h) 6= 0, which

implies

0 6= cdδ(v, h) = δ(cv, h) = δ(f, h).

It follows from this that cd | δ(g, h) since δ(f, h) | δ(g, h). Therefore

ad

bd
δ(wv, h) =

δ(g, h)

cd
∈ Z,
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so, since p | b and δ(wv, h) ≡ 1 (mod p), this implies that p | a, which

contradicts gcd(a, b) = 1. Hence we must have b = 1. �

The following result is the converse to the divisibility sequence

statement of Proposition 4.2.5.

Theorem 4.2.11. Let f = (fn) denote a sequence of non-zero poly-

nomials from the ring Z[x]. If for any monic polynomial h ∈ Z[x], the

integer sequence (∆
(f)
n (h)) is such that ∆

(f)
n (h) is a multiple of ∆

(f)
m (h)

when m | n, then f is a divisibility sequence of polynomials.

Proof . Given integers m,n ≥ 1 with m | n, the conditions imply that

δ(fm, h) | δ(fn, h) for every monic h ∈ Z[x] where δ(fm, h) 6= 0. By

Proposition 4.2.10 we get fm | fn, and so f is a divisibility sequence of

polynomials. �

From here to the end of the section we will concentrate on divisi-

bility sequences of polynomials f = (fn) and their associated Lehmer-

Pierce type integer sequences (∆
(f)
n (h)) of Definition 4.2.1. The main

task will be to construct algebraically realizable sequences by this

means, though as an aside the techniques will indicate methods for the

production of integer divisibility sequences of quite complex structure.

A natural way of constructing polynomial divisibility sequences is to

analyze the sequence ς in order to determine possible routines. So the

first question to consider is: why does ςm | ςn when m | n? An obvious

answer is: because of (4.1), but this does not readily provide routines

which can be generalized. However, a closer look at this equation does

in fact suggest some methods.

If we denote the complex number e2πi/n by %n, then for any positive

integer n we have the factorization

ςn(x) =
n∏
k=1

(x− %kn).
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Now if m denotes a positive integer such that m | n,

ςm(x) =
m∏
k=1

(x− %kn/mn ),

which not only explains why ςm | ςn, but on noting that

S1
n = {%kn : 1 ≤ k ≤ n} and S1

m = {%kn/mn : 1 ≤ k ≤ m},

gives the alternative formulation:

ςn(x) =
∏
σ∈S1

n

(x− σ) and ςm(x) =
∏
σ∈S1

m

(x− σ).

Since the subgroups S1
m,S1

n of S1
ω have S1

m ≤ S1
n when m | n, this also

indicates why ςm | ςn, with Lagrange’s Theorem providing a partial

converse. It is this second method of construction which we will utilize

because it suggests further generalizations, a possible candidate being

to replace the groups S1
n with the torsion subgroups associated with a

particular elliptic curve. We will not pursue this here, but note that it

does lead to divisibility sequences (both integer and polynomial) which

have very interesting structures.

If g ∈ Z[x, y] denotes the simple polynomial g(x, y) = x − y, then

for any n ∈ N,

ςn(t) =
∏
σ∈S1

n

g(t, σ),

from which we are led to the next definition.

Definition 4.2.12. Let g ∈ Z[x, y] denote a polynomial with the fol-

lowing properties:

(1) ∂x(g) ≥ 1

(2) ∂t(g(t, σ)) = ∂x(g) for all σ ∈ S1
ω.

Then for each integer n ≥ 1, the polynomial ς
(g)
n is defined by

ς(g)n (t) =
∏
σ∈S1

n

g(t, σ).
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The reason the two conditions are imposed on g in this definition

is to ensure that for all n ≥ 1, ς
(g)
n (t) is never a constant function of

the variable t. Although this is not a strictly necessary restriction, it

simplifies matters considerably and we will assume the conditions to be

in place whenever the notation ς
(g)
n is used. We will, however, revert to

our customary notation of ςn for this polynomial when g(x, y) ≡ x− y.

Example 4.2.13. If g ∈ Z[x, y] denotes g(x, y) = (2 − y)x − y, then

the sequence of polynomials (ς
(g)
n (t))n≥1 is

(t− 1, 3t2 − 2t− 1, 7t3 − 11t2 + 5t− 1, 15t4 − 4t3 − 6t2 − 4t− 1, . . .).

Proposition 4.2.14. For each integer n ≥ 1, the polynomial ς
(g)
n of

Definition 4.2.12 is a member of the ring Z[t]. Further, the sequence

(ς
(g)
n )n≥1 is a proper divisibility sequence of polynomials.

Proof . The fact that ς
(g)
n ∈ Z[t] is an immediate consequence of

Lemma 4.2.3. And because of the restrictions placed upon the poly-

nomial g ∈ Z[x, y], it is easy to see that ∂(ς
(g)
n ) = n∂x(g), so that

1 ≤ ∂(ς
(g)
n ) < ∂(ς

(g)
n+1) for all n ≥ 1. Finally, since S1

m ≤ S1
n when m | n,

the sequence (ς
(g)
n ) is a divisibility sequence of polynomials. �

The next example will help illustrate the theory to follow. It shows

how from a polynomial g ∈ Z[x, y], subject to certain conditions, and

a monic polynomial h ∈ Z[x], we can obtain an algebraically realizable

sequence of integers by using the polynomial sequence (ς
(g)
n ).

Example 4.2.15. Let g ∈ Z[x, y] denote g(x, y) = 12x2+6xy+y2 and

h ∈ Z[x] the monic polynomial h(x) = x2 − x− 1. If the zeros of h are

α and β, denote by g̃h the polynomial given by: g̃h(t) = g(α, t)g(β, t).

Then we calculate

g̃h(t) = t4 + 6t3 − 72t+ 144 ∈ Z[t].
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It is easy to see that the set of zeros of the monic polynomial g̃h is

disjoint from the set S1
ω, so by Theorem 4.1.12 the sequence of integers

(4.2) (∆n(g̃h)) = (79, 16669, 3017089, 451879921, 64312113889, . . .)

is algebraically realizable.

Next we calculate the sequence of polynomials ĝ = (ς
(g)
n (t)) as:

(12t2 + 6t+ 1, 144t4 − 12t2 + 1, 1728t6 + 1, 20736t8 + 144t4 + 1, . . .).

And finally we obtain the Lehmer-Pierce type integer sequence

(∆(ĝ)
n (h)) = (79, 16669, 3017089, 451879921, 64312113889, . . .),

which is identical with the sequence calculated above in (4.2), and so

is algebraically realizable.

First we note some things about the previous example – apart from

the increasing complications in the notation. Lemma 4.2.3 guarantees

that the function g̃h is a member of the ring Z[t]. So provided the pair

(g, h) are such that g̃h is a monic polynomial with a set of zeros which

is disjoint from the group S1
ω, then Theorem 4.1.12 establishes the fact

that the Lehmer-Pierce sequence (∆n(g̃h)) is algebraically realizable.

Next, the equivalence between the two sequences (∆n(g̃h)) and

(∆
(ĝ)
n (h)) will be shown to be a property of the various constructions

we have made. Thus we see that Example 4.2.15 results in an alge-

braically realizable sequence of integers mainly because of the choice

of the two polynomials g ∈ Z[x, y] and h ∈ Z[x].

We finish this section with a result in which the number of condi-

tions imposed can certainly be reduced: however, to do so would require

a different approach to the Lehmer-Pierce construction – in particular,

one in which the polynomial does not have to be monic. Although this

approach is not a great deal more difficult – with the first steps in this

direction being already supplied by Lemma 4.2.3 and Definition 4.2.6,
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it does increase the complexity of the notation, and to avoid this we

have sacrificed some generality.

Theorem 4.2.16. Let h ∈ Z[x] denote a monic polynomial with zeros

α1, . . . , αd, where d = ∂(h). For any g ∈ Z[x, y], we write g̃h ∈ Z[t] to

denote the polynomial

g̃h(t) =
d∏
r=1

g(αr, t).

Suppose the polynomial g ∈ Z[x, y] is such that the following condi-

tions hold:

(1) ∂x(g) ≥ 1

(2) ∂t(g(t, σ)) = ∂x(g) for all σ ∈ S1
ω

(3) g̃h is a monic polynomial

(4) {β ∈ C : g̃h(β) = 0} ∩ S1
ω = ∅.

If ĝ denotes the sequence of polynomials (ς
(g)
n ), then the integer sequence

(∆
(ĝ)
n (h)) is algebraically realizable.

Proof . By the first two conditions imposed on g and Proposition 4.2.14,

the sequence ĝ is a proper divisibility sequence of polynomials in Z[t],

so the integer sequence (∆
(ĝ)
n (h)) is well-defined. Whereas conditions

(3) and (4) alongside Theorem 4.1.12 imply that (∆n(g̃h)) is an alge-

braically realizable sequence of integers. Therefore, to complete the

proof, it is sufficient to show that the two integer sequences are the

same.

Denote by n a fixed positive integer. If the zeros of the polynomial

g̃h ∈ Z[t] are β1, . . . , βc where c = ∂(g̃h), then

∆n(g̃h) =
c∏

k=1

|βnk − 1|

by the definition of the Lehmer-Pierce sequence. Now, by using

βnk − 1 =
∏
σ∈S1

n

(βk − σ),



4.3. GENERALIZATIONS AND MEASURES 78

we get

∆n(g̃h) =

∣∣∣∣∣∣
∏
σ∈S1

n

c∏
k=1

(σ − βk)

∣∣∣∣∣∣ =
∏
σ∈S1

n

|g̃h(σ)|.

It follows from this and the definition of the polynomial g̃h, that

∆n(g̃h) =
∏
σ∈S1

n

d∏
r=1

|g(αr, σ)|,

and so by Definition 4.2.12,

∆n(g̃h) =
d∏
r=1

|ς(g)n (αr)|.

Therefore, ∆n(g̃h) = ∆
(ĝ)
n (h) using Definition 4.2.1, and this completes

the proof. �

Problem 4.2.17. Find further classes of divisibility sequences of poly-

nomials for which the associated Lehmer-Pierce type integer sequences

are (algebraically) realizable.

4.3. Generalizations and Measures

In this section we will consider a possible generalization of the stan-

dard Lehmer-Pierce sequence to multi-dimensional polynomials. We

will also briefly look at the important topic of the Mahler Measure of

a sequence. First, however, we prove a simple reciprocal property for

the quantity δ(g, h) of Definition 4.2.6.

Proposition 4.3.1. If g, h denote polynomials from Z[x] with degrees

∂(g), ∂(h) ≥ 1, then δ(g, h) = δ(h, g).

Proof . Let the factorizations of g, h over C be

g(x) = ag(x− α1) · · · (x− αm) and h(x) = bh(x− β1) · · · (x− βn).
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Then from Definition 4.2.6,

δ(g, h) = |bh|m
n∏
j=1

|g(βj)|

= |bh|m
n∏
j=1

(
|ag|

m∏
k=1

|βj − αk|

)

= |ag|n
m∏
k=1

(
|bh|

n∏
j=1

|αk − βj|

)

= |ag|n
m∏
k=1

|h(αk)|

= δ(h, g),

which completes the proof. �

Now, if h ∈ Z[x] is a monic polynomial, the nth term of the Lehmer-

Pierce sequence (∆n(h)) is equal to δ(ςn, h), so Proposition 4.3.1 gives

∆n(h) = δ(h, ςn). Therefore we have the formulation

(4.3) ∆n(h) =
∏
σ∈S1

n

|h(σ)|,

and since Proposition 4.3.1 does not require the polynomial h to be

monic, (4.3) could be used as the starting point for the definition of

the Lehmer-Pierce sequence associated with an arbitrary non-zero poly-

nomial h ∈ Z[x]. If this procedure is adopted, then results similar to

those above can be established, and in particular the following is true.

Theorem 4.3.2. Let h ∈ Z[x] denote a non-zero polynomial which is

such that

{α ∈ C : h(α) = 0} ∩ S1
ω = ∅.

If the Lehmer-Pierce sequence ∆(h) = (∆n(h)) is defined by (4.3), then

∆(h) is algebraically realized by an abelian system.

Proof . For the proof of this result we refer to [10]. �
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Let m,n denote positive integers. We will write Tm
n for the group

(S1
n)
m. Using (4.3), a natural extension of the Lehmer-Pierce construc-

tion to multi-dimensional polynomials is suggested.

Definition 4.3.3. Let f ∈ Z[x1, . . . , xm] denote a non-zero polyno-

mial. The sequence (∆n(f))n≥1 is defined by

∆n(f) =
∏

(σ1,...,σm)∈Tm
n

|f(σ1, . . . , σm)|, n = 1, 2, 3, . . . .

We note that if m = 1 then this reduces to the standard Lehmer-

Pierce sequence of integers when f is monic, or to the extension of the

sequence suggested above, otherwise. Obviously, other generalizations

of this sequence are suggested by (4.3): for example, taking each σj in

the above formula from S1
nj

where the point (n1, . . . , nm) is specified

in some way. Or the σj could be the zeros of some sequence of monic

polynomials. We will not pursue this, though it is of interest.

Proposition 4.3.4. If f ∈ Z[x1, . . . , xm] denotes a non-zero polyno-

mial, then (∆n(f))n≥1 is a sequence of non-negative integers.

Proof . This follows inductively from Lemma 4.2.3. �

Example 4.3.5. If f(x, y) = 2x+ y12 − 4 ∈ Z[x, y] then the sequence

(∆n(f)) is calculated as:

(1, 25, 6859, 17850625, 932232699865951, 86482825840140625, . . .).

Apart from special cases, the terms of the sequence (∆n(f)) grow

quite fast. Indeed, for the above example we have

∆9(f) = 3532360846405013663662429925057064158597040112831.

A cursory look at this sequence suggests that it is realizable, and this

is indeed the case.
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Theorem 4.3.6. If f ∈ Z[x1, . . . , xm] denotes a non-zero polynomial,

then the sequence (∆n(f)) can be algebraically realized by an abelian

system provided that no term of the sequence is zero.

Proof . Refer to [10] – a special case, and [18] for the general case. �

Example 4.3.7. Denote by f ∈ Z[x, y, z] the polynomial given by

f(x, y, z) = (x− 2z)(1− y2) + 7,

and for m = 1, 2, 3, let f̂
(m)
n denote the polynomial

f̂ (m)
n (t) =

∏
σ∈S1

n

∏
%∈S1

n

f(w), n = 1, 2, 3, . . . ,

where

w =


(t, σ, %), m=1

(σ, t, %), m=2

(σ, %, t), m=3.

Lemma 4.2.3 guarantees that f̂
(m)
n ∈ Z[t] for m = 1, 2, 3, n ≥ 1, and

we calculate:

(f̂ (1)
n (t)) = (7, 2401, 9261t6 + 194481t5 + · · · , . . .)

(f̂ (2)
n (t)) = (t2 + 6, 9t8 − 36t6 − 436t4 + 994t2 + 1920, . . .)

(f̂ (3)
n (t)) = (7, 2401, 592704t6 − 6223392t5 + · · · , . . .).

Further calculation gives the generalized Lehmer-Pierce sequence

associated with the polynomial f by Definition 4.3.3:

(4.4) (7, 5764801, 61820635482493869899008, . . .).

We note that the sequences (δ(f̂
(1)
n , ςn)), (δ(f̂

(2)
n , ςn)) and (δ(f̂

(3)
n , ςn))

are all equal to the sequence (4.4).

The next result is based upon Example 4.3.7.
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Proposition 4.3.8. Denote by f ∈ Z[x1, . . . , xm] a non-zero polyno-

mial, and for k = 1, . . . ,m, n ≥ 1, let f̂
(k)
n denote the polynomial

f̂ (k)
n (t) =

∏
(σ1,...,σk−1)∈Tk−1

n

∏
(%k+1,...,%m)∈Tm−k

n

f(σ1, . . . , σk−1, t, %k+1, . . . , %m).

Then f̂
(k)
n ∈ Z[t] and,

(∆n(f)) = (δ(f̂ (k)
n , ςn))n≥1, k = 1, . . . ,m.

If for a fixed value of j in the range 1 ≤ j ≤ m, the sequence of

polynomials (f̂
(j)
n )n≥1 is such that

S1
ω ∩

(⋃
n≥1

{α ∈ C : f̂ (j)
n (α) = 0}

)
= ∅,

then

(4.5) S1
ω ∩

(⋃
n≥1

{α ∈ C : f̂ (k)
n (α) = 0}

)
= ∅ for k = 1, . . . ,m.

Given that (4.5) holds, the sequence (∆n(f)) is algebraically realizable

and for k = 1, . . . ,m, (f̂
(k)
n )n≥1 is a divisibility sequence of polynomials.

Proof . The fact that f̂
(k)
n ∈ Z[t], is a consequence of Lemma 4.2.3; and

(∆n(f)) = (δ(f̂
(k)
n , ςn)) follows directly from the definition of ∆n(f). If

for some fixed j in the range 1 ≤ j ≤ m we have

S1
ω ∩

(⋃
n≥1

{α ∈ C : f̂ (j)
n (α) = 0}

)
= ∅,

then the sequence (∆n(f)) has no zero terms, so

S1
ω ∩

(⋃
n≥1

{α ∈ C : f̂ (k)
n (α) = 0}

)
= ∅ for k = 1, . . . ,m.

By Theorem 4.3.6, (∆n(f)) is an algebraically realizable sequence

if it has no zero terms, and this follows if (4.5) holds. Finally, it is clear

that when (4.5) holds, (f̂
(k)
n )n≥1 is a divisibility sequence of polynomials

since for any positive integers a, b, c, if a | b then Tc
a ≤ Tc

b. �
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In the notation of the previous result, since δ(f̂
(k)
n , ςn) = ∆n(f̂

(k)
n ),

we see that the sequence (∆n(f)) of Definition 4.3.3 is a definite gen-

eralization of the original Lehmer-Pierce sequence, and could lead to a

new definition using a divisibility sequence of polynomials (hn) in place

of the original fixed monic polynomial h.

We will finish this section with a brief look at the Mahler measure

of a Lehmer-Pierce sequence. This is a (logarithmic) measure of the

rate of growth of the sequence. First some technical results, using the

notation of Proposition 4.3.8.

Lemma 4.3.9. Let f ∈ Z[x1, . . . , xm] be a non-zero polynomial. Then

for each integer n ≥ 1, ∂(f̂
(k)
n ) ≤ nm−1∂xk

(F ). If the leading coefficient

of f̂
(k)
n is b

(k)
n , then there exists a positive integer c, dependent only upon

the polynomial f , such that |b(k)n | ≤ cn
m−1

for all n ≥ 1.

Proof . It is easy to see from the definition of the polynomial f̂
(k)
n that

∂(f̂
(k)
n ) ≤ nm−1∂xk

(f) for every n ≥ 1. For the remainder of the proof,

since the result is clear if f̂
(k)
n ≡ 0, we will assume that f̂

(k)
n is not the

zero polynomial. Further, in order to make the notation easier, we will

assume that k = 1. Thus we will show that for f̂
(1)
n (t) = ant

s+· · ·+a(n)
0 ,

where s = s(n) = ∂(f̂
(1)
n ), there exists a positive integer constant c such

that |an| ≤ cn
m−1

for all n ≥ 1.

We can express the polynomial f in the form

f(x1, x2, . . . , xm) = gd(x2, . . . , xm)xd1 + · · ·+ g0(x2, . . . , xm),

where gr ∈ Z[x2, . . . , xm], r = 0, . . . , d. Here we have d = ∂x1(f) ≥ 0.

Consider a non-zero polynomial gr for some r in the range 0 ≤ r ≤ d.

This polynomial is of the form

gr(x2, . . . , xm) =
∑

j2,...,jm

hj2···jmx
j2
2 · · ·xjmm ,
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where j2, . . . , jm are non-negative integers and each hj2...jm ∈ Z. We

define the positive integer qr by

qr =
∑

j2,...,jm

|hj2···jm|.

Next, if for any r in the range 0 ≤ r ≤ d we have gr = 0, then

we put qr = 1. Thus we now have a complete set {q0, . . . , qd} of pos-

itive integers. Let the positive integer c = max{q0, . . . , qd}. We note

that c does not depend on n, but only on the polynomial f . Now,

given any integers j2, . . . , jm in the range 0 ≤ j2, . . . , jm ≤ n − 1, the

polynomial f(t, %j2 , . . . , %jm) ∈ C[t], where % = exp(2πi/n), is non-zero

since f̂
(1)
n 6= 0. Let the leading coefficient of f(t, %j2 , . . . , %jm) be bj2···jm .

Then the leading coefficient an of f̂
(1)
n is given by,

an =
n−1∏
j2=0

· · ·
n−1∏
jm=0

bj2···jm .

By the definition of the constant c, since |%| = 1, we clearly have

|bj2···jm| ≤ c for all possible choices of j2, . . . , jm. It follows that

|an| ≤
n−1∏
j2=0

· · ·
n−1∏
jm=0

c.

This gives |an| ≤ cn
m−1

and completes the proof. �

We now consider the sequence (log+ ∆n(f))n≥1, where the polyno-

mial f ∈ Z[x1, . . . , xm] and the notation log+ x = log max{1, x}, x ∈ R

is used. The terms of this sequence will be shown have order O(nm) in

the case where there are no zero terms in the Lehmer-Pierce sequence

(∆n(f)), so that the sequence (log+ ∆n(f)/nm) is bounded. This will

enable us to define a logarithmic measure of the polynomial f in terms

of the integer sequence (∆n(f)).

Lemma 4.3.10. Let f ∈ Z[x1, . . . , xm] denote a polynomial which is

such that the sequence (∆n(f)) has no zero terms. Then for all n ≥ 1,

log+ ∆n(f) = O(nm).
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Proof . If k denotes an integer with 1 ≤ k ≤ m, then Proposition 4.3.8

gives ∆n(f) = δn(f̂
(k)
n , ςn). Fix k and n ≥ 1, and let the polynomial

f̂
(k)
n factorize over C as:

f̂ (k)
n (t) = ad(t− α1) · · · (t− αd), d = ∂(f̂ (k)

n ).

Using Proposition 4.3.1,

∆n(f) = δ(ςn, f̂
(k)
n ) = |ad|n

d∏
j=1

|αnj − 1|.

It follows that

log+ ∆n(f) = n log+ |ad|+
d∑
j=1

log+ |αnj − 1|.

Now, from Lemma 4.3.9 we know that d ≤ nm−1bk where bk = ∂xk
(f),

and there exists a constant c ≥ 1 such that |ad| ≤ cn
m−1

. This implies

that log+ |ad| ≤ log cn
m−1

= nm−1 log c, so n log+ |ad| ≤ nm log c, which

gives n log+ |ad| = O(nm).

In [10] the authors use Baker’s theorem (see [7]) to obtain the

following estimate, where β denotes an algebraic number which does

not belong to S1
ω:

log+ |βn − 1| =

 O(n), if |β| 6= 1

O(log n), if |β| = 1.

It follows that
d∑
j=1

log+ |αnj − 1| = O(dn),

and so since d ≤ nm−1bk,

d∑
j=1

log+ |αnj − 1| = O(nm).

Thus we have log+ ∆n(f) = O(nm) +O(nm) = O(nm). �

It follows from Lemma 4.3.10 that the sequence (log+ ∆n(f)/nm) is

bounded above, so the next definition makes sense.
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Definition 4.3.11. If f ∈ Z[x1, . . . , xm] denotes a non-zero polyno-

mial, then the logarithmic Mahler measure of f , written as m(f), is

defined by

m(f) = lim sup
n→∞

log+ ∆n(f)

nm
.

Example 4.3.12. Let f ∈ Z[x, y] denote f(x, y) = x − y + 3. Then

for a fixed integer n ≥ 1 we calculate:

f̂ (1)
n (t) =

∏
σ∈S1

n

f(t, σ) =
∏
σ∈S1

n

((t+ 3)− σ) = (t+ 3)n − 1.

By Proposition 4.3.8,

∆n(f) =
∏
σ∈S1

n

((σ + 3)n − 1),

which gives the approximation m(f) = 1.0986122886681096914 (this is

equal to log 3) from the 100th term of the sequence (∆n(f)).

The usual definition of the Mahler measure of a non-zero polynomial

f ∈ Z[x1, . . . , xm] is the multiple integral

m(f) =

∫ 1

0

· · ·
∫ 1

0

log |f(e2πit1 , . . . , e2πitm)|dt1 . . . dtm.

It is easy to check that the value calculated in Example 4.3.12 agrees

with the value of this integral, and it is possible by using more detailed

analysis to show that the measure of Definition 4.3.11 is equivalent to

the usual definition of the measure for a large class of polynomials. We

will not take this further, but instead pose the question: Is it possible to

generalize Definition 4.3.11 in some way to give a (meaningful) measure

for an algebraically realizable sequence of integers? In the case of a

sequence u = (un) realized on an infinite minimal (in the sense of

Lemma 3.1.3) abelian system (X,ϑ), perhaps something like:

m(u) = lim sup
n→∞

log un
nr

,

where r is the rank of the abelian group X.



CHAPTER 5

Periodic Points and Arithmetic

5.1. Introduction

In this chapter, we will look at the sequences of Bernoulli and Euler

numbers from a dynamical point of view. We will require the use of sev-

eral classical results (for example, theorems of von Staudt-Clausen and

Kummer) and this begs the question: can the procedure be reversed so

that the classical results are obtained from dynamical considerations?

We do not attempt to answer this question, but suggest that the results

obtained indicate that it may have a positive solution.

5.2. The Euler Numbers

The sequence of Euler Numbers (En)n≥0 is defined by the equation

(5.1)
2

et + e−t
=

∞∑
n=0

En
tn

n!
.

It is known that each En, n ≥ 0, is an integer. Since the left hand side

of (5.1) is an even function of t, En = 0 for all odd n, and for m ≥ 0,

we have (−1)mE2m > 0. A congruence due to Kummer [16] is: for all

n ≥ 1 and odd prime p,

E2n+p−1 ≡ E2n (mod p).

It follows easily that if the integers m,n are such that 1 ≤ n ≤ m and

2m ≡ 2n (mod p− 1) then E2m ≡ E2n (mod p). Theorem 5.2.3 below

extends this congruence. First though, we introduce some notation and

related results.

87
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For integers m,n with m ≥ 1 and n ≥ 0, we write

An(m) =
m∑
k=1

(−1)m−kkn = mn − (m− 1)n + · · ·+ (−1)m−11n.

The next equation is shown to be true in [28]. If p ≥ 1 is odd and

n > 0 then

(5.2) 22n+1A2n

(
p− 1

2

)
=

2n∑
k=0

(
2n

k

)
Ekp

2n−k.

We will make use of this equation in the following, with ϕ being used

to denote the Euler ϕ-function.

Lemma 5.2.1. Let p denote an odd prime and suppose that the inte-

gers m,n, r ≥ 1 are such that 2m ≡ 2n (mod ϕ(pr)). Then

22m+1A2m(c) ≡ 22n+1A2n(c) (mod pr),

where c = (p− 1)/2.

Proof . Assume that m ≥ n and put 2m = 2n + sϕ(pr) where s ≥ 0.

Then 22m+1 = 22n+1(2ϕ(pr))s and so 22m+1 ≡ 22n+1 (mod pr) by the

Euler-Fermat Theorem. Next, if 1 ≤ k ≤ c, then a second application

of the Euler-Fermat Theorem gives k2m ≡ k2n (mod pr). It follows

that

22m+1A2m(c) = 22m+1
∑c

k=1(−1)c−kk2m

≡ 22n+1
∑c

k=1(−1)c−kk2n (mod pr).

That is, 22m+1A2m(c) ≡ 22n+1A2n(c) (mod pr). �

Lemma 5.2.2. If m,n, r are such that 1 ≤ r ≤ 2n− 1 ≤ 2m− 1, and

p denotes an odd prime with 2m ≡ 2n (mod ϕ(pr)), then

r−1∑
k=0

(
2m

k

)
E2m−kp

k ≡
r−1∑
k=0

(
2n

k

)
E2n−kp

k (mod pr).

Proof . Using (5.2) with c = (p− 1)/2 we get

22m+1A2m(c) =
2m∑
k=0

(
2m

k

)
Ekp

2m−k
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and

22n+1A2n(c) =
2n∑
k=0

(
2n

k

)
Ekp

2n−k,

so Lemma 5.2.1 gives

2m∑
k=0

(
2m

k

)
Ekp

2m−k ≡
2n∑
k=0

(
2n

k

)
Ekp

2n−k (mod pr).

Reducing this expression mod pr, and adjusting the range of summa-

tion, completes the proof. �

We now come to the main result in this section, the generalization

of the Kummer congruence stated above.

Theorem 5.2.3. If m,n, r ∈ N are such that 1 ≤ r ≤ 2n−1 ≤ 2m−1

and p denotes an odd prime with 2m ≡ 2n (mod ϕ(pr)) then

E2m ≡ E2n (mod pr).

Proof . If r = 1 in Lemma 5.2.2 then we get E2m ≡ E2n (mod p) when

2m ≡ 2n (mod p− 1) and m ≥ n ≥ 1. Therefore we will suppose that

r > 1, and assume that when 1 ≤ s < r,

2m ≡ 2n (mod ϕ(ps)) implies E2m ≡ E2n (mod ps).

Since ϕ(ps) | ϕ(pr) when 1 ≤ s < r, this means that we can assume

that E2m ≡ E2n (mod pr−1) when 2m ≡ 2n (mod ϕ(pr)). Now, from

Lemma 5.2.2

E2m +
r−1∑
k=1

(
2n

k

)
(E2m−k − E2n−k)p

k +

+
r−1∑
k=1

((
2m

k

)
−
(

2n

k

))
E2m−kp

k ≡ E2n (mod pr),

and by the assumption made, this reduces to

E2m +
r−1∑
k=1

((
2m

k

)
−
(

2n

k

))
E2m−kp

k ≡ E2n (mod pr).



5.2. THE EULER NUMBERS 90

Since 2m ≡ 2n (mod ϕ(pr)) and 1 ≤ k ≤ r− 1, a simple consideration

of the binomial coefficients gives(
2m

k

)
≡
(

2n

k

)
(mod pr−k),

so we get E2m ≡ E2n (mod pr). �

Corollary 5.2.4. Let p denote an odd prime and suppose b, r ≥ 1 with

p - b. Then E2prb ≡ E2pr−1b (mod pr).

Proof . The conditions imply 1 ≤ r ≤ 2pr−1b−1 < 2prb−1, and so since

2prb ≡ 2pr−1b (mod ϕ(pr)), the result follows from Theorem 5.2.3. �

In [28] the following result is proved.

Theorem 5.2.5. If k, n denote non-negative integers, then

E2n ≡ E2n+2k + 2k (mod 2k+1).

Using this result it is possible to extend Corollary 5.2.4 to include

the prime 2.

Lemma 5.2.6. If b, r denote positive integers with b odd, then

E2r+1b ≡ E2rb (mod 2r).

Proof . Using Theorem 5.2.5 gives

E2r+1b = E(2r+1b−2r)+2r ≡ E2r+1b−2r + 2r (mod 2r+1).

Applying Theorem 5.2.5 again, E2r+1b−2r ≡ E2r+1b−(2r)2+2r (mod 2r+1),

and so E2r+1b ≡ E2r+1b−(2r)2 + (2r)2 (mod 2r+1). Continuing in this

fashion we obtain E2r+1b ≡ E2r+1b−2rb + 2rb (mod 2r+1), which gives

E2r+1b ≡ E2rb + 2r (mod 2r+1). The result follows from this. �

To end this section, we combine Corollary 5.2.4 and the previous

Lemma, to give the next result.
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Theorem 5.2.7. Let p denote a prime and m, r positive integers where

m is such that p - m. Then

E2prm ≡ E2pr−1m (mod pr).

Proof . This follows from Corollary 5.2.4 if p is odd and Lemma 5.2.6

when p = 2. �

5.3. Periodic Points and Euler Numbers

The sequence ε = (εn)n≥1 is defined by

εn = |E2n| = (−1)nE2n, n ≥ 1,

and we write ε∗ = (ε∗n) where

ε∗n =
∑
d|n

µ(n/d)εd, n ≥ 1.

We begin by showing that the sequence ε has divisibility.

Proposition 5.3.1. For every integer n ≥ 1 we have n | ε∗n.

Proof . If n = 1 this is obvious, so assume that n > 1. Let n = prm

where p is prime, r ≥ 1 and p - m. Then

ε∗n =
∑
d|n

µ(n/d)εd =
∑
d|m

µ(m/d)(εprd − εpr−1d).

Now by definition,

εprd − εpr−1d = (−1)p
rdE2prd − (−1)p

r−1dE2pr−1d

which gives

εprd − εpr−1d = (−1)p
r−1d((−1)p

r−1(p−1)dE2prd − E2pr−1d).

If p is odd, or if p = 2 and r > 1, (−1)p
r−1(p−1)d = 1, so that in either

of these cases εprd−εpr−1d = (−1)p
r−1d(E2prd−E2pr−1d). The remaining

alternative is p = 2 and r = 1. In this case, (−1)p
r−1(p−1)d = −1 so

ε2d − εd = E4d + E2d = (E4d − E2d) + 2E2d ≡ E4d − E2d (mod 2).
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We now appeal to Theorem 5.2.7 to obtain pr | εprd − εpr−1d in all

possible cases, so pr | ε∗n. It follows that n | ε∗n. �

Theorem 5.3.2. The sequence ε = (εn) is realizable.1

Proof . It is known that (see [1], page 807)

E2n = (−1)n
22n+2(2n)!

π2n+1

(
1− 1

32n+1
+

1

52n+1
− 1

72n+1
+ · · ·

)
,

and using this it is easy to show that ε is an increasing sequence and

ε2n ≥ nεn for all n ≥ 1. Since ε1 = 1 ≥ 0, it follows from Lemma 1.2.11

that ε∗n ≥ 0 when n ≥ 1, and so the sequence ε has positivity. Propo-

sition 5.3.1 established divisibility for ε, hence from Lemma 1.2.4, the

sequence ε is realizable. �

5.4. The Bernoulli Numbers

The Bernoulli Numbers (Bn)n≥0 are defined by the relation

t

et − 1
=

∞∑
n=0

Bn
tn

n!
.

This sequence of numbers is of great importance in many areas of

mathematics, examples of which include algebraic topology [3] and the

theory of cyclotomic fields [30].

It is clear that (Bn)n≥0 = (1,−1/2, 1/6, 0, . . .) is a sequence of ra-

tional numbers, and since

t

et − 1
+

1

2
t

is an even function of t, B2n+1 = 0 for n ≥ 1, while (−1)n+1B2n > 0

when n ≥ 1.

The next three results, due to Adams, von Staudt-Clausen and

Kummer, date from the nineteenth century. They provide essential

information about the Bernoulli numbers. These are classical theorems

1This result has been obtained independently by Juan Arias de Reyna [6].
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with proofs to be found in many journals. We refer in particular to [2],

[12], [15] and [16].

Theorem 5.4.1. (Adams) If p denotes an odd prime and n, r are pos-

itive integers with n being such that p− 1 - 2n, then

pr | n implies that B2n ≡ 0 (mod pr).

Theorem 5.4.2. (von Staudt-Clausen) The denominator dn of the

Bernoulli number B2n is given by

dn =
∏

p prime
p−1|2n

p, n ≥ 1.

Theorem 5.4.3. (Kummer) Suppose that the integers m,n, r are such

that 1 ≤ r ≤ 2n−1 ≤ 2m−1. Then for any odd prime p where p−1 - 2n

and 2m ≡ 2n (mod ϕ(pr)),

B2m

2m
≡ B2n

2n
(mod pr).

There have been many generalizations of Kummer’s theorem since

it was first published. The next result relaxes the restriction on the

prime p and is a special case of a theorem established in [31] by using

p-adic analysis.

Theorem 5.4.4. Let p denote an odd prime and n, r positive integers

where pr ‖ n and p− 1 | 2n. If k = n/p then

(g2n
p − 1)

B2n

2n
≡ (g2k

p − 1)
B2k

2k
(mod pr),

where gp > 1 is a primitive root mod p such that p2 - gp−1
p − 1.

A similar result to Theorem 5.4.4 holds for the prime 2. However,

in this case, since the result requires an adaptation of the theorem in

[31], we give a proof.
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Theorem 5.4.5. Let n and r denote positive integers with 2r ‖ n. If

k = n/2 then

(5n − 1)
B2n

2n
≡ (5k − 1)

B2k

2k
(mod 2r).

Proof . Denote by f the function

f(t) =
5

e5t − 1
− 1

et − 1
,

and suppose that f has the formal power series expansion

f(t) =
∞∑
j=0

aj
tj

j!
.

In [31] it shown that if the integers n, r and k are as in the statement

of the theorem, then

(5.3) a2n−1 ≡ a2k−1 (mod 2s) where s = min{n− 1, r + 2}.

Now we have

f(t) = t−1

(
5t

e5t − 1
− t

et − 1

)
= t−1

∞∑
j=0

(5j − 1)Bj
tj

j!
,

and so (5.3) gives

(52n − 1)
B2n

2n
≡ (52k − 1)

B2k

2k
(mod 2s), s = min{n− 1, r + 2}.

Noting that for any integer q ≥ 1 we have 2 ‖ 5q + 1, the above gives

(5n − 1)
B2n

2n
≡ (5k − 1)

B2k

2k
(mod 2b),

where b = min{n − 2, r + 1}. Since when r > 1 it is easy to see that

r ≤ min{n− 2, r + 1}, the proof will be complete if we can show that

the result holds for r = 1. However, this case is easily seen to be true,

so we are done. �
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5.5. Periodic Points and Bernoulli Numbers

In [9] the authors prove that the denominators of the sequence

(|B2n|)n≥1 form a realizable sequence, and in an earlier preprint, con-

jectured that both the denominators and numerators of the sequence

(|B2n/2n|)n≥1 are realizable; we will show that these conjectures hold.

Throughout this section we denote by τ = (τn) and β = (βn) the

sequences of positive integers defined by∣∣∣∣B2n

2n

∣∣∣∣ =
τn
βn
, n ≥ 1,

where gcd(τn, βn) = 1 for each value of n. By Theorem 5.4.2, the

terms of the sequence β are all even, so we note for later use that τ

contains only odd numbers. We begin the section by showing that β is

an algebraically realizable sequence.

5.5.1. The Denominator Sequence β. Most of the work re-

quired to demonstrate the algebraic realizability of the sequence β has

already been done, and just needs to be gathered together.

Proposition 5.5.1. The sequence w = (wn) which is defined by

wn = 2
∏

p prime
p−1|2n

p1+ordp(n),

is algebraically realizable.

Proof . The 2-part of w is the sequence (22+ord2(n)), and if the prime

p is odd, the p-part of w has the form (λn((p − 1)/2, 1, p))n≥1 – see

Definition 3.3.19. Hence by Theorem 3.3.20 and Proposition 3.3.24, w

is equal to a product of algebraically realizable sequences and so w is

algebraically realizable. �

Proposition 5.5.2. If n denotes an integer, with n ≥ 1,

βn = 2
∏

p prime
p−1|2n

p1+ordp(n).
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Proof . We consider the primes 2 and 3 separately. Firstly, by Theo-

rem 5.4.2, the sequence of 2-parts obtained from (dn)n≥1 is (2, 2, 2, . . .),

where dn is the denominator of the Bernoulli number B2n. Therefore,

the 2-part of the sequence β is (22+ord2(n))n≥1. Similarly, the 3-part of

(dn) is (3, 3, 3, . . .), from which the 3-part of β is (31+ord3(n))n≥1.

Next assume that the prime p ≥ 5. If n is such that p − 1 | 2n

then the p-part of dn is p by Theorem 5.4.2, so B2n 6≡ 0 (mod p). It

follows that the p-part of βn in this case is p1+ordp(n). Alternatively, if

p− 1 - 2n, then Theorem 5.4.1 says that B2n ≡ 0 (mod pordp(n)), so we

get βn = 1. Summing this up, if p ≥ 5

[βn]p =

 1 p− 1 - 2n

p1+ordp(n) p− 1 | 2n
.

The result now follows easily. �

Theorem 5.5.3. The sequence β is algebraically realizable.

Proof . This is a consequence of Propositions 5.5.1 and 5.5.2. �

5.5.2. The Numerator Sequence τ . To prove that the sequence

τ is realizable we will show that τ has both divisibility and positivity.

Thus if τ ∗ = (τ ∗n) is the sequence given by

τ ∗n =
∑
d|n

µ(n/d)τd, n = 1, 2, 3, . . . ,

the following two facts will be established: n | τ ∗n and τ ∗n ≥ 0, when

n ≥ 1. We begin with the divisibility property and so we can assume

that n > 1. If n = prm, where p is prime, r,m ≥ 1 and p - m, we

will show that pr | τ ∗n by considering the separate cases, p− 1 - 2n and

p − 1 | 2n. So to start with, suppose n such that p − 1 - 2n. Then p

must be an odd prime and we can make use of Theorems 5.4.1, 5.4.2

and 5.4.3. If k = n/p then

B2n

2n
= (−1)n+1 τn

βn
and

B2k

2k
= (−1)k+1 τk

βk
,
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so because n ≡ k (mod ϕ(pr)), Theorem 5.4.3 gives

(5.4) (−1)n+1 τn
βn

≡ (−1)k+1 τk
βk

(mod pr).

Now since p is odd, (−1)n = (−1)k, so (5.4) simplifies to

(5.5)
τn
βn

≡ τk
βk

(mod pr).

Theorem 5.4.2 implies βn = δnβk, where the positive integer δn is such

that δn ≡ 1 (mod pr). Using this and the fact that Theorem 5.4.1

guarantees that gcd(p, βn) = 1, (5.5) gives

τn ≡ δnτk ≡ τk (mod pr).

Since

τ ∗n =
∑
d|m

µ(m/d)(τprd − τpr−1d),

we obtain from the above, pr | τ ∗n in the case p− 1 - 2n.

Next the case p− 1 | 2n will be considered.

Lemma 5.5.4. Let n = 2rm where m is odd and r ≥ 1, and put

k = n/2. Then (5n − 1)/2r+2 and (5k − 1)/2r+1 are odd integers with

5n − 1

2r+2
≡ 5k − 1

2r+1
(mod 2r).

Proof . Lemma 3.3.23 implies that both (5n−1)/2r+2 and (5k−1)/2r+1

are odd integers, and from

5n − 1

2r+2
− 5k − 1

2r+1
=

5k − 1

2r+1

(
5n − 1

2(5k − 1)
− 1

)
=

5k − 1

2r+1

(
5k − 1

2

)
we obtain

5n − 1

2r+2
− 5k − 1

2r+1
= 2r

(
5k − 1

2r+1

)2

≡ 0 (mod 2r),

which completes the proof. �

The next result is the equivalent of Lemma 3.3.23, and is just the

standard result that gp is a primitive root mod pr for all r ≥ 1.
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Lemma 5.5.5. Let p denote an odd prime and gp > 1 a primitive root

mod p which is such that p2 - gp−1
p − 1. If r denotes a non-negative

integer and m a positive integer such that p - m, then

pr+1 - g(pr−pr−1)m
p − 1.

Proof . Since p2 - gp−1
p − 1 and gp is a primitive root mod p, there is an

integer s ≥ 1 with p - s such that gp−1
p = 1 + sp. Therefore,

g(pr−pr−1)m
p = (1 + sp)p

r−1m = 1 +mspr + tpr+1

with t ∈ N0. The result follows. �

Lemma 5.5.6. Let p denote an odd prime and gp > 1 a primitive root

mod p which is such that p2 - gp−1
p − 1. If m, r denote positive integers

where p - m, let 2n = pr(p−1)m and set k = n/p. Then (g2n
p −1)/pr+1

and (g2k
p − 1)/pr are both integers prime to p, and

g2n
p − 1

pr+1
≡
g2k
p − 1

pr
(mod pr).

Proof . It follows from the Euler-Fermat Theorem and Lemma 5.5.5

that g2n
p − 1 = pr+1c, where the integer c ≥ 1 is such that p - c. Hence,

(g2n
p − 1)/pr+1 and (g2k

p − 1)/pr are both integers prime to p. Now,

g2n
p − 1

pr+1
−
g2k
p − 1

pr
=
g2k
p − 1

pr

(
g2n
p − 1

p(g2k
p − 1)

− 1

)
,

from which we get

g2n
p − 1

pr+1
−
g2k
p − 1

pr
=
g2k
p − 1

pr

(
1

p

p−1∑
s=0

g2ks
p − 1

)
.

Consideration of the expression in the final set of brackets gives

1

p

p−1∑
s=0

g2ks
p − 1 =

1

p

p−1∑
s=1

(g2ks
p − 1) =

g2k
p − 1

p

p−1∑
s=1

sg2k(p−1−s)
p ,

and so

g2n
p − 1

pr+1
−
g2k
p − 1

pr
= pr−1

(
g2k
p − 1

pr

)2 p−1∑
s=1

sg2k(p−1−s)
p .
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Next, since p − 1 | 2k and gp is a primitive root mod p, we have

g
2k(p−1−s)
p ≡ 1 (mod p) when 1 ≤ s ≤ p− 1. This gives

p−1∑
s=1

sg2k(p−1−s)
p ≡

p−1∑
s=1

s (mod p),

and therefore there is an integer b ≥ 1 such that

g2n
p − 1

pr+1
−
g2k
p − 1

pr
= bpr

(
g2k
p − 1

pr

)2

.

The result follows from this. �

Proposition 5.5.7. Let p denote a prime and suppose the integers

n, r ≥ 1 are such that pr ‖ n and p− 1 | 2n. Then

τn ≡ τk (mod pr), where k = n/p.

Proof . We deal with the cases p = 2 and p odd separately, though the

arguments used are similar. So to begin with suppose that p = 2 and

that n = 2rm with m ≥ 1 odd. By Theorem 5.4.5

(5n − 1)
B2n

2n
≡ (5k − 1)

B2k

2k
(mod 2r),

so when r > 1 this gives

(5n − 1)
τn
βn

≡ (5k − 1)
τk
βk

(mod 2r),

and when r = 1

(5n − 1)
τn
βn

≡ −(5k − 1)
τk
βk

(mod 2).

However, for any integer x, x ≡ −x (mod 2) so the above implies that

for all r ≥ 1

(5.6) (5n − 1)
τn
βn

≡ (5k − 1)
τk
βk

(mod 2r).

Proposition 5.5.2 implies that there are odd positive integers γn, δn,

with δn ≡ 1 (mod 2r), such that βn = 2r+2γnδn and βk = 2r+1γn.
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Using this in (5.6) we get(
5n − 1

2r+2

)
τn
γnδn

≡
(

5k − 1

2r+1

)
τk
γn

(mod 2r).

From Lemma 5.5.4, (5n − 1)/2r+2 and (5k − 1)/2r+1 are odd integers,

congruent to each other mod 2r. It follows, therefore, that

τn
γnδn

≡ τk
γn

(mod 2r).

Since γn, δn are odd, this gives τn ≡ δnτk (mod 2r), so by making use

of δn ≡ 1 (mod 2r), we obtain τn ≡ τk (mod 2r).

Now assume that the prime p is odd. Since p − 1 | 2n we have

2n = pr(p − 1)m for some integer m ≥ 1 such that p - m. Using

Theorem 5.4.4 we get

(g2n
p − 1)

B2n

2n
≡ (g2k

p − 1)
B2k

2k
(mod pr),

where gp > 1 is a primitive root mod p such that p2 - gp−1
p − 1. Next,

Proposition 5.5.2 gives βn = pr+1γnδn and βk = prγn, where γn, δn

denote positive integers such that p - γn and δn ≡ 1 (mod pr). This

leads to (
g2n
p − 1

pr+1

)
τn
γnδn

≡

(
g2k
p − 1

pr

)
τk
γn

(mod pr).

Using Lemma 5.5.6 and similar arguments to above, we obtain from

this

τn ≡ δnτk ≡ τk (mod pr),

and this completes the proof. �

The results obtained above can be combined to give the following.

Theorem 5.5.8. If n denotes a positive integer, then n | τ ∗n.

Proof . Since we may clearly assume that n > 1, there are integers

r,m ≥ 1 and a prime p such that n = prm with p - m. Denoting by
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k the integer n/p, from the above both possibilities p − 1 - 2n and

p− 1 | 2n give the result: pr | τn − τk. It follows from the equation

τ ∗n =
∑
d|m

µ(m/d)(τprd − τpr−1d),

that pr | τ ∗n and so n | τ ∗n. �

We have now come to the last stage in showing that the sequence

τ is realizable: we will prove that τ has positivity (that is, τ ∗n ≥ 0 for

all n ≥ 1).

Theorem 5.5.9. The sequence τ has positivity.

Proof . Define the sequence x = (xn) of positive rational numbers by

xn =

∣∣∣∣B2n

2n

∣∣∣∣ , n = 1, 2, 3, . . . .

The terms of this sequence are known to be given by the equation

(5.7) xn =
2(2n− 1)!

(2π)2n

∞∑
r=1

1

r2n
, n ≥ 1 .

This is a standard result relating to the Riemann zeta function: a

proof can be found in [5]. Using (5.7) it is easy to show that xn+1 ≥ xn

and x2n ≥ nxn when n > 2. Consider the sequence y = (yn) where

y1 = y2 = 0 and yn = xn when n ≥ 3. Then y is an increasing sequence

of non-negative rational numbers and y2n ≥ nyn for all n ≥ 1. It follows

from Lemma 1.2.11 that y has positivity. Now, since the denominator

sequence β = (βn) is realizable by Theorem 5.5.3, Lemma 1.2.4 implies

that β has positivity. It follows from Lemma 1.2.10, therefore, that the

sequence βy has positivity. If we write t = (tn) for the sequence βy

then t = (0, 0, τ3, τ4, . . .), whereas τ = (1, 1, τ3, τ4, . . .). Suppose that

τ does not have positivity. Then there is an integer n > 1 such that

τ ∗n < 0. Since the terms of the sequence τ are all odd numbers, τ ∗n is

even, and because the sequences t and τ differ only in the values of the

first two terms and t∗n ≥ 0, this implies that τ ∗n = −2. Now for this to
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be the case n must be even with µ(n) = µ(n/2) = −1. However, this

is easily seen to be impossible, so τ does have positivity. �

We sum the above results up in the following.

Theorem 5.5.10. The numerator sequence τ is realizable.

Proof . Theorems 5.5.8 and 5.5.9 show that the sequence τ satisfies the

conditions of Lemma 1.2.4, and so τ is a realizable sequence. �

5.6. Local Properties of Bernoulli and Euler Numbers

We end this chapter by considering the sequences β, ε and τ , in-

troduced above, from a local viewpoint. First, the sequence β is al-

gebraically realizable by an abelian system, so by Theorem 3.2.11 β

is everywhere locally (algebraically) realizable. Indeed, the method

of proof employed above was basically to work in the other direction:

construct algebraic realizations of the p-part sequences ([βn]p) for each

prime p, and so conclude that β is realizable.

The situation is completely different for the sequences ε and τ . It

is easy to show, by just inspecting the initial terms of each sequence,

that they are not everywhere locally realizable. Thus we have

ε = (1, 5, 61, 1385, 50521, 2702765, 199360981, 19391512145, . . .)

and the 61-part of this sequence is

([εn]61) = (1, 1, 61, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .)

with the next occurrence of 61 being at the 30th term. This is not a

realizable sequence since∑
d|9

µ(9/d)[εd]61 = 1− 61 = −60

so it does not possess the property of positivity (or divisibility). Sim-

ilarly, it is easy to check that the 43-part is not realizable. However,
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the 5-part is the sequence which begins

([εn]5) = (1, 5, 1, 5, 1, 5, 1, 5, 1, 25, 1, 5, 1, 5, 1, 5, 1, 5, 1, 25, 1, 5, 1, 5, 1, 5,

1, 5, 1, 25, 1, 5, 1, 5, 1, 5, 1, 5, 1, 25, 1, 5, 1, 5, 1, 5, 1, 5, 1, 125, 1, 5, . . .)

and this is of the form (λn(2, 1, 5)), which is an algebraically realiz-

able sequence by Theorem 3.3.20. The 13-part has a similar form:

(λn(6, 1, 13)). And, trivially, the 2-part sequence is algebraically realiz-

able since every term of ε is an odd number. So from just an inspection

of the terms, it seems that the sequence ε has a fairly complicated local

structure.

Problem 5.6.1. Determine the primes p for which the sequence ε is

locally realizable at p.

The initial terms of the sequence τ are

(1, 1, 1, 1, 1, 691, 1, 3617, 43867, 174611, 77683, 236364091, 657931, . . .)

and a first inspection would suggest that this sequence should also

have a complicated local structure, since it clearly has an markedly

erratic global one. However, despite this appearance, it is possible to

determine (in some sense) the local structure of τ , by using the concept

of a regular prime – which dates back to Kummer’s investigations into

the Fermat problem.

Definition 5.6.2. A prime p is called regular if p - B2n when the

integer n is in the range 1 ≤ n ≤ (p− 3)/2.

The primes 2 and 3 do not quite fit this definition (except for in

a strictly logical sense) but this is of no great consequence, since it

follows from Proposition 5.5.2 that,

([τn]p)n≥1 = (1, 1, 1, 1, 1, 1, . . .)
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when p ∈ {2, 3}, so the sequence τ is trivially locally realizable at the

primes 2 and 3. In fact this simple localization is a property of all

regular primes.

Proposition 5.6.3. Let p denote a regular prime. Then [τn]p = 1 for

all n ∈ N, and so the sequence τ is trivially locally realizable at p.

Proof . Clearly we may assume that p ≥ 5. Suppose that there is an

integer n ≥ 1 such that p | τn: choose the value of n minimal with

respect to this property. Then p | B2n/2n so from Definition 5.6.2,

2n > p − 3 and it follows that p − 1 ≤ 2n. If p − 1 | 2n, then

Proposition 5.5.2 implies that p | βn, which contradicts p | τn: hence

p − 1 - 2n, so if the integer m is defined by 2m = 2n − p + 1 we have

m ≥ 1. Now, Kummer’s theorem gives

B2n

2n
≡ B2m

2m
(mod p),

from which we obtain p | B2m/2m, so that p | τm, contradicting the

minimality of n. This completes the proof. �

Because of the previous result, we only need to consider the local

properties of the sequence τ at the irregular primes, the first of which

are: {37, 59, 67, 101, 103, 131, 149, 157, 233, 257, . . .}.

Proposition 5.6.4. Let p denote a prime. The sequence ([τn]p)n≥1 is

non-trivial if and only if p is irregular.

Proof . If ([τn]p)n≥1 is not the trivial sequence (1, 1, 1, . . .), then p must

be an irregular prime by Proposition 5.6.3.

For the proof in the other direction, suppose that p is an irregular

prime. Then there is an integer m such that 1 ≤ m ≤ (p − 3)/2 with

p | B2m. Since p > 2m this implies that p | τm, and so the sequence

([τn]p)n≥1 is non-trivial. �
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Lemma 5.6.5. Let p denote an irregular prime. If k is an integer

in the set {1, 2, . . . , (p − 3)/2} such that p | τk, then p - τm, where

m = k(p− 1)/2.

Proof . By Theorem 5.4.2 – the von Staudt-Clausen theorem – since

p− 1 | 2m, the prime p is a factor of the denominator of B2m, so that

p | βm. This immediately gives: p - τm. �

Proposition 5.6.6. If p denotes an irregular prime, then τ localized

at p is not realizable.

Proof . Let k denote an integer in the set {1, 2, . . . , (p − 3)/2} such

that p | τk, and put m = k(p − 1)/2. Then clearly k | m and by

Lemma 5.6.5, [τm]p = 1, so that [τk]p > [τm]p. However, if the sequence

([τn]p) is realizable, then [τk]p ≤ [τm]p since k | m. This contradiction

completes the proof. �

We sum the above up in the final result.

Theorem 5.6.7. The sequence τ is not locally realizable precisely at

the set of irregular primes.

Proof . This follows from Propositions 5.6.4 and 5.6.6. �
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