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Abstract

We find a Prime Orbit Theorem and an analogue of Mertens’ Theorem of analytic

number theory for maps of interest in the field of dynamics. The maps studied

are examples of S-Integer dynamical systems and are built as isometric extensions of

hyperbolic maps. The results we obtain bear the same relationship to those known in a

hyperbolic setting as Tchebyshev’s Theorem does to the Prime Number Theorem. For

the systems closest to hyperbolicity (those for which the set S is finite) the arguments

proceed essentially by comparing orbit-counting problems for the S−integer system

to the same problem for the hyperbolic base system. For the systems furthest from

hyperbolicity (those for which the set S is co-finite) different and more direct methods

are used. The S− integer systems are constructed from arithmetic data and in this

thesis both characteristic zero and positive characteristic examples are studied.
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Chapter 1

Introduction

This work studies the counting of orbits in dynamical systems in a non-hyperbolic

setting.

We look at how this has been done before for Axiom A flows and hyperbolic maps

in [23] and ergodic (not necessarily hyperbolic) automorphisms in [29]. We consider

such things as the topological entropy (Section 2.2), the growth rate of the periodic

points (Section 3.3) and zeta functions (Section 3.6). These are the ingredients that

contribute to the asymptotic formula for a Prime Orbit Theorem.

We first consider counting the number of orbits in a dynamical system as an

analogue to the Prime Number Theorem. This work is a first step to extending [23]

and [29] to non-hyperbolic maps and in particular S-integer systems, explained in

Chapter 3.

We first study hyperbolic maps (Section 2.1) and see what the results in [23] say

about them. We then consider if a hyperbolic map is perturbed (perturbed in an

arithmetic sense) slightly, what effect will this have on the Prime Orbit Theorem?

This small pertubation forms an S-integer dynamical system. We study the proof of
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the Prime Orbit Theorem in [29] and see if we can extend this to S-integer systems.

Unfortunately, we find this cannot be done and have to look for other methods to

count orbits. This results in an analogue to Tchebyshev’s Theorem. This is done

firstly by looking at the behaviour of the periodic points of these S-integer systems.

We see that this is erratic and this causes the methods of proof for theorems in [23]

and [29] to fail.

We then look at Mertens’ theorem (Chapter 7), for prime numbers. In the same

way as for the Prime Orbit Theorem we look at results already found in [26] and [22].

Here, we find it is easier to work with the logarithmic equivalent of Mertens’ theorem.

Again, we study the hyperbolic systems for which we know the results of from [26]

and [22] and try to extend this to an S-integer setting. The knowledge we have from

the Prime Orbit Theorem is used here.

1.1 Notation

The symbols O, ∼, �, ‖ are used often and are defined as follows for functions f ,

φ : R → R:

O : f = O(φ) means that there exists A > 0 such that |f(x)| < A|φ(x)|

for all x > 0;

∼: f ∼ φ means that f(x)/φ(x) → 1 as x→ ∞;

�: f � φ means that there exist A,B > 0 such that Aφ(x) < f(x) < Bφ(x)

for all x > 0;

‖: pa ‖ n means that pa | n but pa+1 - n.

Let A be a commutative ring with unit 1, and S ⊂ A a multiplicative set. That

is, 1 ∈ S and a, b ∈ S =⇒ ab ∈ S.
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Definition 1.1. Suppose that f : A→ B is a ring homomorphism with the properties

that

1. f(x) is a unit of B for all x ∈ S;

2. if g : A→ C is a ring homomorphism taking every element of S to a unit of C

then there exists a unique homomorphism h : B → C with g = hf .

Then B is uniquely determined up to isomorphism of rings, and B is called the

localisation or ring of fractions of A with respect to S. Write B = S−1A or B = AS

or sometimes B = A(S).

The ring B is constructed as follows. Define an equivalence relation ∼ on A × S

by

(a, s) ∼ (b, s′) ⇐⇒ ∃ t ∈ S such that t(s′a− sb) = 0.

Let B be the set of equivalence classes under ∼, and write a/s for the equivalence

class of (a, s). Extend the ring operations to B by defining

a/s+ b/s′ = (as′ + bs)/ss′, (a/s) · (b/s′) = ab/ss′.

The map f is defined to be f(a) = a/1. For example, for x ∈ S the image is a

unit since the multiplicative inverse of x/1 in B when x ∈ S is simply 1/x. For the

uniqueness claim, if g : A→ C is the given map, then we set h(a/s) = g(a)g(s)−1.

If P is a prime ideal in A, then S = A\P is a multiplicative set. In this case we

conventionally write A(P ) for AS.

Important example: Let A = Z, and P = 3Z. Then Z\P is a multiplicative set

consisting of all integers that are NOT divisible by 3. So there is a localisation in which

all such integers become units, and you get that this localisation is Z[1/2, 1/5, 1/7, . . .].

Thus, the ring Z(3) consists of all the rationals whose denominators are not divis-

ible by 3.
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Chapter 2

Periodic points and dynamical

systems

2.1 Periodic Points and Orbits

A dynamical system is an abstract mathematical model for the evolution over time

of a physical system obeying fixed laws. This is conventionally modelled by a map

whose iterates denote the passage of time.

Definition 2.1. A dynamical system (X, T ) consists of a compact metric space X

and a continuous mapping T : X → X.

A point x in a dynamical system (X, T ) is called a periodic point with least period

n if T n(x) = x and T j(x) 6= x for 0 < j < n. This means that after n iterations of

the map T , the point x will come back to the same place for the first time. Define

Ln(T ) = {x ∈ X : #{T k(x)}k∈N = n}, (1)

the set of points of least period n under T. Write Ln(T ) = |Ln(T )| for the number of

8



points of least period n. Define

Fn(T ) = {x ∈ X : T n(x) = x}, (2)

the set of points of period n under T. Write Fn(T ) = |Fn(T )| for the number of points

of period n.

The number of orbits of length n is then

On(T ) = Ln(T )/n. (3)

Notice that

Fn(T ) =
⋃

d|n
Ld(T ) (4)

and since the Ln(T ) are disjoint for distinct n, this implies that

Fn(T ) =
∑

d|n
Ld(T ). (5)

Example 2.2. Three of the following examples will arise again as special cases of

S-integer dynamical systems.

1. Let X denote the unit interval with its end points identified, X = R/Z = T.

Define a continuous map T : X → X by T (x) = 2x mod 1 i.e.

T (x) =





2x 0 ≤ x < 1/2;

2x− 1 1/2 ≤ x ≤ 1 .

This is called the circle doubling map since it locally doubles distances on the

circle. Then

F1(T ) = 1, F2(T ) = 3, F3(T ) = 7, . . . ,

indeed Fn(T ) = 2n − 1, the Mersenne sequence. This may be seen as follows:

Fn(T ) is the kernel of the map t 7→ (2n − 1)t mod 1 on T, which has the 2n − 1

elements, {0, 1
2n−1

, 2
2n−1

, . . . , 2n−2
2n−1

}.
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2. Let X denote the set of all doubly infinite strings of 0’s and 1’s, where any

0 is immediately followed by a 1. Define a continuous map T : X → X by

(Tx)n = xn+1. This map is a left (or right) shift. Then

F1(T ) = 1, F2(T ) = 3, F3(T ) = 4, F4(T ) = 7 . . . ,

and Fn(T ) = Fn−1(T )+Fn−2(T ) = Ln, the Lucas sequence. This is known as the

‘golden mean shift’; the formula for Fn(T ) may be found in [19, Prop. 2.2.12].

3. Let S1 denote the multiplicative circle. The map T : z → z−2 is an endomor-

phism of S1. The points of period n are given by

Fn = {z ∈ S1 | z(−2)n

= z},

so Fn(T ) = |(−2)n −1|. Thus (Fn(T )) is the Jacobsthal-Lucas sequence (see [8,

Example 11.1]).

Write Ta : T 7→ T for the map x 7→ ax mod 1, a ∈ Z. Thus the map in Example

2.2(1) is T2, while that of Example 2.2(3) is isomorphic to T−2. Since (T−2)
2 = T 2

2

we have that Fn(T−2) = Fn(T2) whenever n is even. One of the issues that will arise

later is this: what is the relationship between On(T2) and On(T−2)?

2.2 Topological Entropy

To measure how complicated the orbits in a dynamical system are, we use the topolog-

ical entropy. There are several different equivalent definitions of topological entropy.

We describe here the original definition of Adler, Konheim and McAndrew, which is

closely analogous to the earlier measure-theoretic entropy of Kolmogorov and Sinai.

The topological entropy of a dynamical system (X, T ) is a non-negative real number

or ∞ and is denoted by h(T ).
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Definition 2.3. The collection α = {Aλ}λ∈Λ is called an open cover of X if

X =
⋃

λ∈ΛAλ, each Aλ is an open set and a finite open cover if Λ is finite. By

compactness, an open cover has a finite subcover.

Definition 2.4. Let N(α) be the smallest number of sets in a finite subcover of α,

and define the entropy of α to be H(α) = logN(α).

The refinement of two open covers α
∨
β, is defined to be the open cover com-

prising sets of the form A ∩ B, where A ∈ α and B ∈ β. The following theorem and

more detailed proof is found in [31, Chap. 7, §7.1]. Notice that

H(α
∨

β) ≤ H(α) +H(β),

and for any continuous map T ,

H(T−1α) ≤ H(α).

Theorem 2.5. If α is an open cover of X and T : X → X is continuous then the

topological entropy of T with respect to α defined to be

lim
n→∞

1

n
H

(
n−1∨

j=0

T−j(α)

)

exists and is finite.

Proof. Recall that if {an}n≥1 is a sequence of real numbers such that

an+m ≤ an + am∀ n,m

then limn→∞ an/n exists and equals infn an/n. So if we set

an = H

(
n−1∨

j=0

T−j(α)

)
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then it suffices to show that an+m ≤ an + am∀ n,m ≥ 1. We have

an+m = H

(
n+m−1∨

j=0

T−j(α)

)

≤ H

(
n−1∨

j=0

T−j(α)

)
+H

(
T−n

m−1∨

i=0

T−i(α)

)

≤ an + am.

Definition 2.6. The topological entropy of T is

h(T ) = sup
α
h(T, α),

where α ranges over all open covers of X.

Lemma 2.7. h(ϕ) = 0, where ϕ is the identity map of X.

Proof. Now h(ϕ) := suph(ϕ, U), where the supremum is taken over all covers U .

h(ϕ, U) = lim
n→∞

H(U ∨ ϕ−1U ∨ · · · ∨ ϕ−n+1U)/n,

since ϕ is the identity map ϕ−kU = U, ∀k, so U ∨ ϕ−1U ∨ · · · ∨ ϕ−n+1U = U . So

lim
n→∞

H(U ∨ ϕ−1U ∨ · · · ∨ ϕ−n+1U)/n = lim
n→∞

1

n
H(U)

= 0.

Hence h(ϕ) = 0.

Definition 2.8. An open cover β is a refinement of an open cover α, written α ≺ β,

if every member of β is a subset of a member of α.

If α ≺ β then H(α) ≤ H(β).
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Theorem 2.9. h(T k) = kh(T ) for k ≥ 1

Proof.

h(T k) ≥ h(T k, U ∨ T−1U ∨ . . . ∨ T−k+1U)

= k lim
n→∞

H(U ∨ T−1U ∨ · · · ∨ T−k+1U ∨ T−kU ∨ · · ·

∨ T−2k+1U ∨ · · · ∨ T−(n−1)kU ∨ · · · ∨ T−nk+1U)/nk

= kh(T, U)

for any open cover U . Thus h(T k) ≥ kh(T ). On the other hand, since

U ∨ (T k)−1U ∨ · · · ∨ (T k)−n+1U ≺ U ∨ · · · ∨ T−nk+1U,

h(T, U) = lim
n→∞

H(U ∨ T−1U ∨ · · · ∨ T−nk+1U)/nk

≥ lim
n→∞

H(U ∨ (T k)−1U ∨ · · · ∨ (T k)−n+1U)/nk

= h(T k, U)/k,

for any open cover U ; thus kh(T ) ≥ h(T k).

In a metric space (X, d) define the diameter of a cover to be

diam(α) = sup
A∈α

diam(A),

where diam(A) denotes the diameter of the set A.

We have that α = {Aλ}λ∈Λ is an open cover. Define diam(α) = supλ∈Λ diam(Aλ),

where diam(A) = supx,y∈A d(x, y).

Theorem 2.10. Let (X, d) be a compact metric space. If {αn}∞1 is a sequence of

open covers of X with diam (αn) → 0 then if h(T ) < ∞, limn→∞ h(T, αn) exists and

equals h(T ), and if h(T ) = ∞ then limn→∞ h(T, αn) = ∞.

The proof can be found in [31, Chap. 7, §7.2].
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Theorem 2.11. Let X and Y be two compact topological spaces. Let T be a contin-

uous mapping of X into itself and S a continuous mapping of Y into itself. Then

h(T × S) = h(T ) + h(S)

where T×S is the continuous mapping of X×Y into itself by T×S : (x, y) → (Tx, Sy).

The proof of this can be found in [1].

Lemma 2.12. For K ∈ Z{0},the topological entropy of the map T : x → Kx on T

is log |K| when |K| ≥ 1.

Proof. If K = ±1 this is clear, so assume K > 1. The result may be seen using

[1, Property 12]. Let αr be the open cover of T consisting of all open intervals of length

1/r, for some r ∈ N. Then
∨n−1

j=0 T
−j(αr) comprises intervals of length 1/rK(n−1) so

rK(n−1) − 1 ≤ N

(
n−1∨

j=0

T−j(αr)

)
≤ rK(n−1) + 1.

It follows that h(T, αr) = logK; the sequence of covers αr is refining, so we are done.

The case for K < 1 is similar.

Example 2.13. Using Example (1) from Section 2.1, let αr be the open cover of T

consisting of all open intervals of length 1/r, then
∨n−1

j=0 T
−j(αr) contains intervals of

length 1/r2(n−1) so

h(T ) = h(T, α)

= lim
n→∞

1

n
H

(
n−1∨

j=0

T−j(αr)

)

= lim
n→∞

1

n
logN

(
n−1∨

j=0

T−j(αr)

)

= lim
n→∞

1

n
log (2n − 1)

= log 2.
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Define log+ x = max{log x, 0}, so that Lemma 2.12 may be written

h(T ) = log+ |K|. The topological entropy arises in the calculation of the number of

orbits in a dynamical system.

2.3 Expansiveness

Expansiveness is a natural geometrical property a dynamical system may have. It

influences the computation of topological entropy.

Definition 2.14. A continuous map T of a compact metric space (X, d) is said to

be forwardly expansive if there exists a constant δ > 0 such that for any x 6= y there

exists n ∈ N with d(T n(x), T n(y)) > δ.

Lemma 2.15. If T : X → X is a forwardly expansive homeomorphism then X is

finite.

See [2, Th. 3.9].

The following definition is from [31, Chap. 5, §5.6].

Definition 2.16. A homeomorphism T of a compact metric space (X, d) is said to

be expansive if there exists a constant δ > 0 with the property that if x 6= y then

there exists n ∈ Z with d(T n(x), T n(y)) > δ.

In either case (Definition 2.14 or 2.16) we call δ an expansive constant for T .

The examples given in Example 2.1 are all expansive (or forwardly expansive)

maps. The proofs follow.

Example 2.17. 1. The circle doubling map, Example 1, is forwardly expansive.

Let δ = 1/4. Notice that d(T nx, T ny) = d(T n(x − y), 0), so it is enough to
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show that there exists a δ > 0 with the property that any x 6= 0 in T has

d(T nx, 0) > 1/4 for some n ≥ 0. Write x = 0.x1x2x3 . . . in base 2, then since

x 6= 0, not all digits are 0 and T (x) = 0.x2x3x4 . . . . Therefore there exists an n

such that T n(x) = 0.10 ∗ . . . so d(T n(x), 0) ≥ 1/4, as required.

2. Example 2, the Golden Mean shift map is expansive. Let δ = 1/4. Define a

metric on X to be d(x, y) =
∑

n∈Z 2−|n| · |xn − yn|. When x 6= y this implies

there exists a k such that xk 6= yk. Therefore d(T−kx, T−ky) ≥ 1/4.

3. The expansiveness of Example 3 can be proved in a similar way to Example 1.

The following Theorem and proof are found in [31, Ch. 5, §5.6].

Lemma 2.18. Let T : X → X be an expansive homeomorphism of a compact metric

space. For each integer p > 0 the homeomorphism T p has only a finite number of

fixed points.

Proof. Let δ be an expansive constant for T p. Suppose T p(x) = x and T p(y) = y.

Then either x = y or d(x, y) > δ. So {Bδ(x) | T p(x) = x} is a set of disjoint δ−balls

in X, so must be a finite collection by compactness.

2.4 Möbius Inversion Formula

If n > 1, write n = pa1
1 · · ·pak

k , where ai ≥ 1 for the prime decomposition. The Möbius

function µ(n) is defined as follows:

µ(n) =





1 if n = 1

(−1)k if a1 = a2 = · · · = ak = 1

0 if n has a square factor > 1.
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The Möbius function arises in the relationship between points of least period n

and points of period n. It is useful because it eliminates values that will already have

been counted.

Lemma 2.19.

∑

d|n
µ(d) =





1 if n = 1

0 if n > 1

Proof. If n = 1 then µ(1) = 1.

If n > 1, then take a prime p that divides n. Any squares of p give 0 by definition.

For divisors that are square-free, arrange them into pairs d and dp, where p - d. Then

µ(dp) = −µ(d), thus cancelling each other. Hence the result.

Theorem 2.20. Let A and B be functions on the positive integers.

Then A(n) =
∑

d|n
B(d) if and only if B(n) =

∑

d|n
µ
(n
d

)
A(d).

Proof. The proof is taken from [24, Chap.2 §2.1].
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∑
d|nA(d)µ

(
n
d

)
=

∑
d|nA

(
n
d

)
µ(d) (this is simply the same sum

in reverse order)

=
∑

d1d2=n µ(d1)A(d2) (this sum is taken over all

pairs d1, d2 such that

d1d2 = n)

=
∑

d1d2=n

[
µ(d1)

∑
d|d2

B(d)
]

(by definition)

=
∑

d1d|n µ(d1)B(d) (by multiplying out the terms

in the square brackets above,

this new sum is taken over all

pairs d1, d such that d1d | n)

=
∑

d|nB(d)
∑

d1|n/d µ(d1) (by collecting together all

multiples of B(d) when d | n)

= B(n)

This is known as the Möbius Inversion Formula.

Using the Möbius inversion formula equations (2) and (1) can be written as

Fn(T ) =
∑

d|n
Ld(T ). (6)

and

Ln(T ) =
∑

d|n
µ
(n
d

)
Fd(T ). (7)

respectively. Also we can write equation (3) as

On(T ) =
1

n

∑

d|n
µ
(n
d

)
Fd(T ). (8)
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Example 2.21. Using Example (1) from (2.1), let Fn(T ) = 2n − 1. Then

Ln(T ) =
∑

d|n
µ
(n
d

) (
2d − 1

)
.

Taking n = 6, we find

L6(T ) = µ(6) · F1(T ) + µ(3) · F2(T ) + µ(2) · F3(T ) + µ(1) · F6(T )

= 1 · 1 + (−1) · 3 + (−1) · 7 + 1 · 63

= 54.

The following extract is taken from [3]. For any partially ordered set in which

all the intervals are finite, there is a integer-valued Möbius function of two variables,

µ(x, y), giving an inversion relation: if

A(x, y) =
∑

x≤z≤y

B(x, z),

then

B(x, y) =
∑

x≤z≤y

A(x, z)µ(z, y),

and conversely. If we take the positive integers ordered by divisibility, then the

function µ(1, n) is the ‘classical’ Möbius Function. The more general case can be

applied to the lattice of subgroups of finite index in a countable group Γ, allowing (6)

and (7) to be extended to periodic orbits for Γ-actions.

2.5 Zero and Positive Characteristic

Every field contains a unique prime subfield that is isomorphic to either Q or Fp,

where p is a prime number. We say that the characteristic of the field is either 0 or p.
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A field of characteristic p has px = 0 for every element x, where px = (1+1+. . .+1)x,

where there are p elements 1, and p is the smallest positive integer such that px = 0.

If a field has characteristic zero, and if nx = 0 for some non-zero element x, and

integer n, then n = 0.
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Chapter 3

S-integer dynamical systems

3.1 Non-Archimedean Valuations

Definition 3.1. Let K be a field. A valuation on K is a function | · | : K → R

satisfying the properties:

1. |x| ≥ 0 for all x ∈ K, with equality if and only if x = 0 (positive-definite);

2. |xy| = |x| · |y| for all x, y ∈ K (multiplicative);

3. |x+ y| ≤ |x| + |y| (triangle inequality).

A familiar valuation on the field Q is the absolute value |x| that comes from

the metric d(x, y) = |x − y|, the usual notion of distance on the number line. Any

valuation defines a metric by d(x, y) = |x− y|.

The following definitions are taken from [15, Chap. 1, §2].

Definition 3.2. A valuation on a field K is called non-Archimedean if

|x+ y| ≤ max{|x|, |y|}
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for all x, y ∈ K. A metric is called non-Archimedean if

d(x, y) ≤ max(d(x, z), d(z, y));

in particular, a metric is non-Archimedean if it is induced by a non-Archimedean

norm, since in that case

d(x, y) = |x− y| = |(x− z) + (z − y)| ≤ max(|x− z|, |z − y|) = max(d(x, z), d(z, y)).

Definition 3.3. Let p be prime and let ordpa be the highest power of p which divides

a. For example,

ord315 = 1, ord525 = 2, ord216 = 4, ord314 = 0.

For any rational number x = a/b, define ordpx = ordpa− ordpb.

Define a map | · |p : Q → R as follows:

|x|p =





1
pordpx , if x 6= 0,

0, if x = 0.

We claim that | · |p is a non-Archimedean norm on Q. It is known as the p-adic

norm. The following proof is taken from [15, Chap.1, §2].

Proof. Properties 1 and 2 are straightforward to check. We now check Property 3. If

x = 0 or y = 0, or if x+ y = 0, Property 3 is trivial, so assume x, y and x+ y are all

nonzero. Let x = a/b and y = c/d be written in lowest terms. Then we have

x+ y = (ad+ bc)/bd, and ordp(x+ y) = ordp(ad+ bc) − ordpb− ordpd.

Now the highest power of p dividing the sum of two numbers is at least the minimum

of the highest power dividing the first and the highest power dividing the second.
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Hence

ordp(x+ y) ≥ min(ordpad, ordpbc) − ordpb− ordpd

= min(ordpa+ ordpd, ordpb+ ordpc) − ordpb− ordpd

= min(ordpa− ordpb, ordpc− ordpd)

= min(ordpx, ordpy).

Therefore |x + y|p = p−ordp(x+y) ≤ max(p−ordpx, p−ordpy) = max(|x|p, |y|p), and this is

≤ |x|p + |y|p.

Example 3.4.

|15|3 =
1

3
, |25|5 =

1

52
, |16|2 =

1

24
, |14|3 = 1.

Definition 3.5. Define | · |∞ to be the usual absolute value on R.

The following Lemma and proof is from [9, Chap. 3 §3.1].

Lemma 3.6. (Artin-Whaples Product Formula) For any x ∈ Q×, we have

∏

p≤∞
|x|p = 1,

where p ≤ ∞ means that we take the product over all of the primes of Q, including

the ‘prime at infinity’.

Proof. It is easy to see that we only need to prove the formula when x is a positive

integer, and that the general case will then follow. So let x be a positive integer,

which we can factor as x = pa1
1 · pa2

2 · · · pak
k . Then we have





|x|q = 1 if q 6= pi

|x|pi = p−ai
i for i = 1, 2, . . . , k

|x|∞ = pa1
1 · pa2

2 · · ·pak
k

The result then follows.
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3.2 S-Integer Dynamical Systems

The paper [4] associates to a set of data coming from an A-field a compact group

automorphism called an S-integer dynamical system.

Definition 3.7. An algebraic number field k is an extension of the rational field Q

of finite degree. A rational function field is an extension of Fp(t) of finite degree. A

field of either type is called an A-field.

A-fields have a well-understood set of locally compact completions; indeed their

completions comprise the non-discrete locally compact fields (see [36, Chap. I, §3]).

In the following a place w ∈ P of an A-field k is an equivalence class of valuations

on k, where valuations are equivalent if the corresponding completions are isomorphic

(see [36, Chap.III, §1]). The following examples are taken from [4].

Example 3.8. 1. Let k = Q, the rationals. The places of Q are in one-to-one

correspondence with the set of rational primes {2, 3, 5, 7, . . .} together with one

additional place ∞ at infinity. The corresponding valuations are |r|∞ = |r| (the

usual archimedean valuation), and for each p, |r|p = p−ordp(r), where ordp(r) is

the (signed) multiplicity with which the rational prime p divides the rational

number r.

2. For k = Fq(t), the function field, there are no archimedean places. For each

monic irreducible v(t) ∈ Fq[t] there is a distinct place v, with corresponding

valuation given by

|f |v = q−ordv(f)·deg(v),

where ordv(f) is the signed multiplicity with which v divides the rational func-

tion f . There is one additional place given by v(t) = t−1, and this place will
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be called an infinite place even though the corresponding valuation is non-

archimedean.

The product formula holds for any A−field, with suitable normalization.

The set of places P contains a special set P∞. In characteristic 0, the P∞ cor-

responds to the Archimedean completions; in characteristic > 0 they are chosen

arbitrarily as in Example 3.8 (2).

Definition 3.9. Let k be an A-field. Given an element ξ ∈ k∗ (where k∗ is the group

of non-zero elements of k), and any set S ⊂ P (k)\P∞(k) with the property that

|ξ|w ≤ 1 for all w /∈ S ∪ P∞, define a dynamical system (X,α) = (X(k,S), α(k,S,ξ)) as

follows. The compact abelian group X is the dual group to the discrete countable

group of S-integers RS in k, defined by

RS = {x ∈ k : |x|w ≤ 1 for all w /∈ S ∪ P∞(k)}.

The continuous group endomorphism α : X → X is dual to the monomorphism

α̂ : RS → RS defined by α̂(x) = ξx.

Dynamical systems of the form (X(k,S), α(k,S,ξ)) are called S-integer dynamical

systems. These can be divided into two classes: arithmetic systems when k is a

number field and geometric when k has positive characteristic.

The following examples are taken from [4].

Example 3.10. 1. Let k = Q, S = ∅, and ξ = 2. Then

RS = {x ∈ Q : |x|p ≤ 1 for all primes p} = Z,

so X = T and α is the circle doubling map.
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2. Let k = Q, S = 2, and ξ = 2. Then

RS = {x ∈ Q : |x|p ≤ 1 for all primes p 6= 2} = Z[1
2
],

so X is the solenoid Ẑ[1
2
] and α is the automorphism of X dual to the auto-

morphism x 7→ 2x of RS. This is the natural invertible extension of the circle

doubling map, see [5], Example (c).

3. Let k = Q, S = {2, 3, 5, 7, 11, . . .}, and ξ = 3
2
. Then RS = Q and α is the

automorphism of the full solenoid Q̂ dual to multiplication by 3
2

on Q. This

map has only one periodic point for any period by [20], Section 3, and has

entropy log 3 by [20], Section 2.

4. Let k = Fq(t), S = ∅, and ξ = t. Then RS = Fq[t] and so

X = R̂S =
∞∏

i=0

{0, 1, . . . , q − 1}.

The map α is therefore the full one-sided shift on q symbols.

5. Let k = Fq(t), S = {t}, and ξ = t. Recall that the valuation corresponding to t

is |f |t = q−ordt(f), so |t|t = q−1. The ring of S-integers is

RS = {f ∈ Fq(t) : |f |w ≤ 1 for all w /∈ t, t−1} = Fq[t
±1].

The dual of RS is then
∏∞

−∞{0, 1, . . . , q − 1}, and in this case α is the full

two-sided shift on q symbols.

6. Let k = Fq(t), S = {t, 1 + t}, and ξ = 1 + t. Then α is the invertible extension

of the cellular automaton defined by

(α(x))k = xk + xk+1 mod q.
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Theorem 3.11. The topological entropy of the S-integer system (X(k,S), α(k,S,ξ)) is

given by

h(α(k,S,ξ)) =
∑

w∈S∪P∞(k)

log+ |ξ|w.

The proof of this can be found in [4]. The point is that there is a local isometry

between (X(k,S), α(k,S,ξ)) and multiplication by ξ on
∏

w∈S∪P∞(k) kw, where kw is the

locally compact non-discrete completion of k with respect to the metric induced by

the valuation w (see [36, Ch.3]). In each coordinate kw, x → ξx multiplies distance

by |ξ|w. So it is reasonable to expect the entropy to be

∑

w∈S∪P∞(k)

log+ |ξ|w.

The notion of expansiveness also makes sense on non-compact spaces (with the same

definition).

Theorem 3.12. Let K be a non-discrete field complete with respect to a valuation

| · |, and let K denote the algebraic closure of K with the uniquely extended absolute

value from K. Let E be a finite dimensional vector space over K, and let u be an

automorphism of E. Then u is expansive if and only if |λ| 6= 1 for each eigenvalue λ

of u in K.

Proof. See Eisenberg’s paper [7], Theorem 3.

Corollary 3.13. Let (X,α) = (X(k,S), α(k,S,ξ)) be an S-integer dynamical system.

Then α is expansive if and only if S ∪ P∞ ⊆ {w ≤ ∞ : |ξ|w 6= 1}.

Again, the proof can be found in [4].

Lemma 3.14. Let (X,α) = (X(k,S), α(k,S,ξ)) be an S-integer dynamical system. Then

the number of periodic points n ≥ 1 is finite for all n if α is ergodic, and

|Fn(α)| =
∏

w∈S∪P∞

|ξn − 1|w.
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The proof can be found in [4]. This is a generalization of Example 2.2(1) in

Section 2.1: the group Fn(α) is realized as the kernel of a certain map, whose size is

computed using Haar measure in an adelic covering space.

3.3 Growth Rate of Periodic Points

Let θ : X → X be a dynamical system. The quantity limn→∞
1
n

logFn(θ), if it exists,

gives the exponential growth rate of periodic points in a dynamical system.

Theorem 3.15. Let (X,α) = (X(k,S), α(k,S,ξ)) be an ergodic arithmetic S-integer

dynamical system with S finite. Then the growth rate of the number of periodic points

exists and is given by

lim inf
n→∞

1

n
log |Fn(α)| = lim sup

n→∞

1

n
log |Fn(α)| = h(α).

Theorem 3.16. Let (X,α) = (X(k,S), α(k,S,ξ)) be an ergodic geometric S-integer dy-

namical system with S finite. Then

lim sup
n→∞

1

n
log |Fn(α)| = h(α).

For S non empty in the geometric case, the sequence behaves very badly, indeed

for most geometric systems with S 6= ∅, { 1
n

logFn(α)} has infinitely many limit points.

See [34].

Proofs of these theorems can be found in [4]. The following table shows the growth

rate of periodic points and the topological entropy for some of the arithmetic systems

we study here. The effects of Theorem 3.15 are shown.
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ξ S Periodic points:Fn(α) h(α) limn→∞(1/n) logFn(α)

2 ∅ 2n − 1 log 2 log 2

2 {3} (2n − 1)|2n − 1|3 log 2 log 2

2 {3, 5} (2n − 1)|2n − 1|3|2n − 1|5 log 2 log 2

...
...

...
...

2 {2, 5, 7, 11, . . .} (2n − 1)
∏

p 6=3 |2n − 1|p log 2 0

2 {2, 7, 11, . . .} (2n − 1)
∏

p 6=3,5 |2n − 1|p log 2 0

Thus the growth rate of the number of periodic points when S is finite or co-finite is

understood. The general case is not clear, but conjecturally, for a ‘typical’ set S of

primes (for example, for a set of primes S chosen by a fair coin toss),

lim sup
n→∞

1

n
log |Fn(α)| = h(α), lim inf

n→∞

1

n
log |Fn(α)| = 0.

This can be proved in certain geometric cases, and holds in general under the as-

sumption that certain standard conjectures in number theory hold. See [32] and [33]

for details.

3.4 Hyperbolic Toral Automorphism

A toral automorphism is a linear and bijective map T : Tn → Tn. Such a map is

called hyperbolic if it does not have any eigenvalues of modulus 1.

Example 3.17. Consider the linear map of R2 given by the matrix A =


 2 1

1 1


.

The eigenvalues are λ+ = 3+
√

5
2

and λ− = 3−
√

5
2

. Thus A is hyperbolic since its

eigenvalues are not of modulus 1. The matrix A has integer entries and preserves the

integer lattice Z2 ⊂ R2 and so generates a map of the torus T2 = R2/Z2. The group
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T2 is abelian and since A−1 is also an integer matrix, A induces an automorphism.

TA of T2.

The Mersenne sequence frequently used throughout this thesis arises from an

expansive map, which is hyperbolic in a suitably generalized form, see [6]. We look

to see what happens when it is perturbed slightly by an isometric extension.

Definition 3.18. Call a matrix A hyperbolic if all eigenvalues have modulus 6= 1.

Then the toral map induced by TA is expansive if and only if the corresponding matrix

A is hyperbolic.

We use ‘hyperbolic’ loosely to include maps whose invertible extension is hyper-

bolic with respect to suitable valuations. In particular, x→ 2x on T is ‘hyperbolic’.

3.5 Ergodic Toral Automorphisms

Lemma 3.19. A toral automorphism TA : Td → Td is ergodic if and only if the

matrix A has no roots of unity as eigenvalues.

The proof of this can be found in [31, Chap. 1, §1.5].

Recall Kronecker’s theorem.

Theorem 3.20. If α1, . . . , αn are the roots of the polynomial

P (x) = xn + c1x
n−1 + · · ·+ cn,

where c1, . . . , cn are integers with P (0) 6= 0, and if all the roots lie inside the closed

unit disc, then they must all be roots of unity.

Lemma 3.21. If d ≤ 3 then any ergodic automorphism TA : Td → Td is hyperbolic.
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Proof. Suppose TA is ergodic but not hyperbolic. If d = 1, then since A = [±1], so

TA cannot be ergodic. If d = 2 or 3 then if λ is a unit modulus eigenvalue, it cannot

be ±1 since TA is ergodic. Therefore λ is not real and so there exists a λ 6= λ that is

also an eigenvalue.

So for the case d = 2, λ and λ are the eigenvalues. By Kronecker’s Theorem above λ

and λ are the roots of the characteristic polynomial relating to the matrix A and so

are roots of unity, and so not ergodic. Therefore any other eigenvalue that is ergodic

must also be hyperbolic.

For d = 3 then | det(A)| = |µ| · |λ| · |λ| = 1, since |λ| and |λ| both equal 1, then

|µ| must also equal 1. So again by Kronecker’s Theorem the three eigenvalues λ, λ, µ

are roots of unity and so not ergodic. Therefore any other eigenvalue that is ergodic

must also be hyperbolic. So any ergodic but non-hyperbolic automorphism on Td

must have d equal to at least 4.

The following two examples are of ergodic (but non-hyperbolic) automorphisms

on T4.

Example 3.22. This example is taken from [30]. Let

A =




0 0 0 −1

1 0 0 8

0 1 0 −6

0 0 1 8



.

This matrix has two real eigenvalues, α1 = 0.1364697 and α2 = 7.32719 and two

complex eigenvalues of modulus 1. The topological entropy h of TA is logα2. TA is

not expansive since it has eigenvalues of modulus 1.
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Example 3.23. Let α be the S-integer dynamical system corresponding to

S = ∅, ξ =
√

2 − 1 + i

√
2
√

2 − 2, and k = Q(ξ).

Then α is isomorphic to the automorphism of the 4-torus given by the matrix

B =




0 1 0 0

0 0 1 0

0 0 0 1

−1 −4 2 −4




As discussed in [18] this automorphism is ergodic but not expansive. This matrix has

two real eigenvalues of modulus 4.612 and 0.2168 and two complex with modulus 1.

3.6 Zeta Functions

The Artin-Mazur zeta function is defined as

ζα(z) = exp
∞∑

n=1

zn · Fn(α)

n
,

where Fn(α) are the periodic points under α.

The following lemmas and examples are from [4].

Lemma 3.24. Let X be a compact, connected group (necessarily abelian) and let α

be an expansive automorphism of X. Then ζα is rational.

Proof. By Theorem 6.1 in [14], X is isomorphic to

YH(A) = {x = {xi}∞−∞ ∈ (Tn)Z : (xi, xi+1) ∈ H(A) for all i ∈ Z},

where H(A) ⊂ Tn × Tn is defined by

H(A) = τ({(y, Ay) : y ∈ Rn})
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for some n ≥ 1, A ∈ GL(n,Q) and τ is the quotient map

Rn × Rn → Tn × Tn.

The isomorphism carries α to TA, the shift on YH(A). The group YH(A) is a generalised

solenoidal group as studied by Lawton in [16]. Let d be the least positive integer for

which dA has integer entries. Then the number of periodic points is given by

|Fv(α)| = dv
∏

|λv
i − 1|

where λ1, . . . , λn are the eigenvalues of dA. Expanding the finite product shows that

the zeta function is rational.

Example 3.25. If A = [3/2] then (YH(A), T
A) is homeomorphic to the

one-dimensional solenoidal automorphism dual to multiplication by 3/2 on Z[1
6
]

and the number of points of period n under TA is (3n − 2n).

Lemma 3.26. Let X be a compact, zero-dimensional topological group and let α be

an expansive automorphism. Then ζα is rational if α is ergodic.

Proof. By Theorem 1(ii) in [13], (X,α) is homeomorphic to (F, ψ) × (GZ, σ) where

F is a finite group, ψ is an automorphism, G is a finite group and σ is the shift. For

n ≥ 1,

|Fn(α)| = |Fn(ψ × σ)| = |Fn(ψ)| · |G|n,

which is finite. So the zeta function is given by

ζα(z) = exp

( ∞∑

n=1

|Fn(α)|
n

zn

)
= exp

( ∞∑

n=1

|Fn(ψ)| · |G|n
n

zn

)
.

Now α is ergodic if and only if F = {e}, in which case |Fn(ψ)| = 1 and the zeta

function has the form 1
1−|G|z .
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The dynamical zeta function does characterize ergodicity in the setting of

Lemma 3.26 (assuming the group X is infinite): α is ergodic if and only if the only

pole of ζα in the closed unit disc is at exp (−h(α)) .

Clearly Lemma 3.26 cannot have a converse - the identity on {0, 1} has a rational

zeta function but is not ergodic.

Example 3.27. This example is the same as Example 3.25 but presented in a different

format. Let α be the expansive automorphism of Ẑ[1
6
] dual to ×2

3
on Z[1

6
]. The entropy

of α is log 3 and for each n ≥ 1,

|Fn(α)| =

∣∣∣∣
(

2

3

)n

− 1

∣∣∣∣
∞

∣∣∣∣
(

2

3

)n

− 1

∣∣∣∣
2

∣∣∣∣
(

2

3

)n

− 1

∣∣∣∣
3

= 3n − 2n.

The zeta function is therefore given by

ζα(z) =
1 − 2z

1 − 3z
.

Example 3.28. Let α be the endomorphism of Ẑ[ 1
30

] dual to ×3
2

on Z[ 1
30

]. By

Corollary 3.13 α is non-expansive (since |3
2
|5 = 1|). The number of points of period

n is given by

|Fn(α)| =

∣∣∣∣
(

3

2

)n

− 1

∣∣∣∣
∞

∣∣∣∣
(

3

2

)n

− 1

∣∣∣∣
2

∣∣∣∣
(

3

2

)n

− 1

∣∣∣∣
3

∣∣∣∣
(

3

2

)n

− 1

∣∣∣∣
5

= (3n −2n)|3n −2n|5,

the first few values of which are

1, 1, 19, 13, 211, 133, 2059, 1261, . . . .

The exponential growth rate of this sequence is equal to log 3 by Theorem 3.15, the

entropy of α. We claim that ζα is irrational and will use the following theorem, the

Hadamard Quotient Theorem, to prove this.
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Theorem 3.29. (Hadamard Quotient Theorem)

Let F be a field of characteristic zero and (a′n) a sequence of elements of a subring

R of F which is finitely generated over Z. Let
∑
bnX

n and
∑
cnX

n be formal series

over F representing rational functions. Denote by J the set of integers n ≥ 0 such

that bn 6= 0. Suppose that a′n = cn/bn for all n ∈ J . Then there is a sequence (an)

with an = a′n for n ∈ J , such that the series
∑
anX

n represents a rational function.

Proof. This was proved by van der Poorten: see [27] and the lecture notes of [25] for

a proof, and [28] for a general discussion.

Thus the quotient (term by term) of two non-zero linear recurrence relations is a

linear recurrence relation.

Proposition 3.30. The number of values that a non-degenerate recurrence sequence

can take on infinitely often is bounded by some integer that depends only on the poles

of its generating rational function.

Proof. See [21], Proposition 2.

Proof of statement in Example 3.28. Suppose, for a contradiction, that ζα is ratio-

nal. then by differentiating ζα,
∑∞

n=1 |Fn(α)|zn is also rational. The sequence defined

by an = 3n − 2n is a recurrence sequence since it satisfies the linear, homogeneous

recurrence relation

an+2 = 5an+1 − 6an,

together with the initial conditions a0 = 0, a1 = 1. Hence
∑∞

n=1 anz
n represents the

rational function

z

1 − 5z + 6z2
.
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By Theorem 3.29, with |Fn(α)| 6= 0,

∞∑

n=1

zn

|3n − 2n|5

is a rational function P (z)/Q(z) and hence bn = |3n − 2n|−1
5 forms a recurrence

sequence. The Taylor series coefficients are given by

bn =





1 if n is odd

51+ord5(n) if n is even

By the above Proposition the number of values that bn can take on infinitely of-

ten is bounded by some integer depending on the roots of Q(z). However, the set

{1, 5, 52, . . .} is infinite, giving a contradiction. Hence ζα is irrational. 2

Example 3.31. Let k = Fp(t) and S = {t}. Define α to be the endomorphism of

R̂S = F[t±1] dual to multiplication by t on Fp[t
±1]. The entropy of α is

h(α) =
∑

v≤∞
log+ |t|v = log p

and the number of periodic points is given by

|Fn(α)| = |tn − 1|∞|tn − 1|t = pn.

Alternatively, we may note that R̂S
∼= ⊕̂ZFp

∼= FZ
p and that α is the one-sided shift

action on p symbols. Thus the entropy and the number of periodic points are as

expected. The zeta function is rational and ζα(z) = 1
1−pz

.

Example 3.32. Let k = Fp(t) and S = {t − 1}. Define α to be the endomorphism

of R̂S = ̂Fp[t][
1

t−1
] dual to multiplication by t on Fp[t][

1
t−1

]. The entropy of α is again

log p and the number of periodic points is

|Fn(α)| = |tn − 1|∞|(1 + t− 1)n − 1|t−1 = pn−pordp(n)

.
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Suppose that ζα is rational, so
∑∞

n=1 |Fn(α)|zn is also rational. We know that
∑∞

n=1 p
nzn = 1

1−pz
is rational. Using the method similar to that in Example 3.28

we see that

pn

|Fn(α)| = ppordp(n)

is a recurrence sequence in Z, and by Theorem 3.29

∞∑

n=1

ppordp(n)

zn

would then be a rational function. However, the sequence ppordp(n)
has an infinite num-

ber of values that it takes on infinitely often namely {p, pp, pp2
, . . .}. This contradicts

Proposition 3.30 and therefore implies that ζα is irrational, and so α is non-expansive.
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Chapter 4

Counting Orbits

4.1 Prime Number Theorem

Let π(x) denote the number of primes not exceeding x. Then the classical Prime

Number Theorem states that

π(x) ∼ x

log x
, as x→ ∞.

This was conjectured by Gauss and Legendre and not proved until much later. There

is an analytic proof of this in many books and an elementary proof has been found

(see [12]). The analytic method uses complex analysis and the meromorphic exten-

sion of the Riemann Zeta function ζ(s) =
∑∞

n=1
1
ns .

Much earlier Chebyshev proved a weaker version of the Prime Number Theorem.

Theorem 4.1. The order of magnitude of π(x) is x/ log(x):

π(x) � x

log(x)
.
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That is, there exist constants A,B ∈ (0,∞) with

A · x

log(x)
≤ π(x) ≤ B · x

log(x)
,

for all x.

4.2 Prime Orbit Theorem

Parry and Pollicott [23] showed an analogy between the number of closed orbits of

Axiom A flows (actions of R analogous to hyperbolic invertible maps viewed as Z-

actions) and the Prime Number Theorem. The main result was that if ϕ is an Axiom

A diffeomorphism restricted to a non-trivial basic set Λ with topological entropy

h = h(ϕ|Λ), and τ denotes a generic prime closed orbit of ϕ|Λ with least period λ(τ),

then

|{τ : λ(τ) ≤ x}| ∼ eh(x+1)

(eh − 1)x
(9)

as x → ∞ through the positive integers. The proof of this involves Markov partitions

and the associated symbolic dynamics, together with a meromorphic extension of an

associated zeta function. Similar results hold for hyperbolic maps. Waddington [29]

later extended this analogy to the least periods of closed orbits of ergodic automor-

phisms of the N -torus. Examples of these can be found in Section 3.5. The main

result of [29] is an asymptotic formula for the number of periodic orbits for quasi-

hyperbolic toral automorphisms. The term ‘quasihyperbolic’ in his paper is used to

describe ergodic automorphisms that are not hyperbolic.

Waddington’s Prime Orbit Theorem is highly dependent on the behaviour of the

dynamical zeta function on the circle at the radius of convergence and beyond.

Let T : Tn → Tn be an ergodic automorphism and let τ be a generic prime closed

orbit with least period λ(τ). Set π(x) = |{τ : λ(τ) ≤ x}|, that is, the number of
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orbits of least period not exceeding x. Then Waddington shows there is a finite set

U ⊂ S1, and integers K(ρ) for ρ ∈ U, such that

π(x) ∼ eh(x+1)

x

∑

ρ∈U

K(ρ)
ρ(x+1)

ρeh − 1
, (10)

as x → ∞ through the positive integers. The set U is comprised of the eigenvalues

of modulus 1, together with 1, and so lie on the unit circle, and has:-

(a)1 ∈ U and (b) if u ∈ U then u ∈ U.

In the proof, the Artin-Mazur zeta function for dynamical systems is used in a similar

way to the Riemann zeta function used in the analytic proof of the Prime Number

Theorem in Section 4.1.

The proof relies on the fact that the Artin-Mazur zeta function can be mero-

morphically continued beyond the radius of convergence for these types of maps. A

complete proof of the above formula can be found in [29].

4.3 Iterations of a Map

Recall that On(T ) = Ln(T )/n from (3) in Section 2.1. Then

Fn(T ) =
∑

d|n
Ld(T ). (11)

We can therefore determine the sequence of values of one of these quantities from

the other. A consequence of this is a relationship between the number of orbits of a

map and the number of orbits of its iterates which will be needed in particular cases

further on.
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Lemma 4.2. Let T : X → X be a map. Define On(T k) to be the number of orbits

under the map T k of length n. Then

On(T k) =
1

n

∑

d|n
µ
(n
d

)∑

d′|dk

d′Od′(T )

Proof. Let an = Fn(T ), then Fn(T k) = Fnk(T ) = ank. Then

On(T
k) =

1

n

∑

d|n
µ
(n
d

)
Fd(T

k)

=
1

n

∑

d|n
µ
(n
d

)
adk

=
1

n

∑

d|n
µ
(n
d

)∑

d′|dk

d′Od′

Example 4.3. Consider the expression for On(T 2).

By (11) and (3),

On(T 2) =
1

n

∑

d|n
µ
(n
d

)
F2d(T ).

First assume that n is odd, so all divisors d are odd. Then,

On(T
2) =

1

n

∑

d|n
µ
(n
d

)
F2d(T ) − 1

n

∑

d|n
µ
(n
d

)
Fd(T ) +

1

n

∑

d|n
µ
(n
d

)
Fd(T )

=
1

n

∑

d|2n

µ

(
2n

d

)
Fd(T ) +

1

n

∑

d|n
µ
(n
d

)
Fd(T )

= 2 · 1

2n

∑

d|2n

µ

(
2n

d

)
Fd(T ) +

1

n

∑

d|n
µ
(n
d

)
Fd(T )

= 2O2n(T ) +On(T ).

When n is even, notice that when a divisor d is odd µ
(

2n
d

)
= 0.
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So,

On(T 2) =
1

n

∑

d|n
µ
(n
d

)
F2d(T )

= 2 · 1

2n

∑

d|2n

µ

(
2n

d

)
Fd(T )

= 2O2n(T ).

So we can deduce that,

On(T
2) =





2O2n(T ) +On(T ) if n is odd ;

2O2n(T ) if n is even

4.4 Natural Boundary

Let D be a domain in C, and ∂D be the boundary of D. Let g be a function such

that g : D → C. If g cannot be analytically continued beyond ∂D, then we say that

∂D is the natural boundary of g.

Example 4.4. Let g(z) =
∑∞

n=0 z
2n

= z + z2 + z4 + . . . . Then g(z) converges for

|z| < 1. It is clear that limz→ξ g(z) = ∞ for any ξ with ξ2n
= 1. So the boundary

∂D of the circle, radius 1 is a natural boundary for the function g.

4.5 The Prime Orbit Theorem for other maps

We want to try and apply the Prime Orbit Theorems of [23] and [29] to Example (1)

in Section 2.1 and to see if it would be possible to obtain a similar Prime Orbit

Theorem to maps from Section 3.2.

Example (1) from Section 2.1 is the circle doubling map. Let X denote the unit

interval with its end points identified, X = R/Z = T. Define a continuous map
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T : X → X by T (x) = 2x mod 1 i.e.

T (x) =





2x 0 ≤ x < 1/2;

2x− 1 1/2 ≤ x ≤ 1 .

The sequence of periodic points is Fn(T ) = 2n − 1, the Mersenne sequence. This

map is non-invertible as every point has 2 pre-images but it is a forwardly expanding

map since it doubles distances locally on X. This map behaves like a hyperbolic

automorphism and so we can apply the Prime Orbit Theorem of Parry and Pollicott

in [23]. The topological entropy of the system is h(T ) = log 2. The Artin-Mazur zeta

function for this map is

ζ(z) = exp

∞∑

n=1

zn

n
(2n − 1) =

1 − z

1 − 2z
.

This is a rational function and has a singularity at z = exp(−h(T )) = 1/2 and a zero

at z = 1. Following the argument in [23], we arrive at the asymptotic

π(x) ∼ 2(x+1)

x
, (12)

where π(x) is the number of orbits less than the given number x.

Let

Ta(x) : x→ ax (mod 1),

be a map, where a > 1 is an integer, then Fn(T ) = an − 1. This is a generalization of

the doubling map. The Artin-Mazur zeta function is rational,

ζ(z) = exp

∞∑

n=1

zn

n
(an − 1) =

1 − z

1 − az
,

and the Prime Orbit Theorem is

π(x) ∼ a(x+1)

x

1

(a− 1)
.
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Chapter 5

S-Integer Dynamical Systems:

Zero Characteristic

5.1 An S-Integer Dynamical System

Consider the map φ : x → 2x on the ring Z[1
3
]. We cannot use the Prime Orbit

Theorem of Parry and Pollicott since the dual of φ does not behave like a hyperbolic

function in the way the ‘circle doubling map’ does. Is is possible to use Waddington’s

method in [29] to find a Prime Orbit Theorem for this map? Write X = Ẑ[1
3
] for the

dual (character) group, and f = φ̂ for the dual map. Then the topological entropy

is log 2 and the number of points of period n under f is Fn(φ) = (2n − 1)|2n − 1|3.
This can be thought of as an extension of the circle doubling map by a cocycle taking

values in Z3, the 3-adic integers. This extension kills certain periodic orbits.
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n 1 2 3 4 5 6 7 8 9 10

Periodic points 2n − 1 1 3 7 15 31 63 127 255 511 1023

Periodic points (2n − 1)|2n − 1|3 1 1 7 5 31 7 127 85 511 341

#Orbits in Circle Doubling Map 1 1 2 3 6 9 18 30 56 99

#Orbits under φ 1 0 2 1 6 0 18 10 56 31

From the table we expect that for odd n, the number of periodic points and orbits

for 2n−1 is equal to those for (2n−1)|2n−1|3. When n is even the number of periodic

points seems to be reduced by a factor of a power of 3. (This is dependent on how

divisible by 3 n is.) The rationality of the Artin-Mazur zeta function is crucial in the

method of Waddington’s prime orbit theorem.

First, notice that

|2n − 1|3 = |(3 − 1)n − 1|3

= |3n − n3n−1 + · · · + (−1)n−13n+ (−1)n − 1|3

=





1
3
|n|3 if n is even

1 if n is odd

In particular

|4n − 1|3 = |22n − 1|3 =
1

3
|2n|3 =

1

3
|n|3. (13)

Since |n|3 = 3−ord3(n) ≥ 3− log3(n) ≥ 1/n, it follows that

1

3n
≤ |2n − 1|3 ≤ 1 for all n ≥ 1, (14)

so just as for the circle doubling map, Example (2.2)(1) in Section 2.1, the logarithmic

growth rate of periodic points gives the topological entropy,

1

n
logFn(f) −→ log 2 = h(f).
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The Artin-Mazur zeta function for the map f is

ζ(z) = exp
∞∑

n=1

zn

n
(2n − 1)|2n − 1|3,

and so the radius of convergence is exp(−h(f)) = 1/2.

From the bound in (14) we can see that the number of periodic points for the circle

doubling map is only polynomially larger than the number of periodic points for f .

This makes a real difference though unlike the circle doubling map, a hyperbolic case,

Fn+1(f)
Fn(f)

does not converge as n→ ∞.

We will see that the dynamical zeta function of f has a natural boundary and so

cannot be meromorphically continued, and has a natural boundary at |z| = 1/2.

Proposition 5.1. The dynamical zeta function of f has a natural boundary at |z| =

1/2.

Proof. Let ξ(z) =
∑∞

n=1
zn

n
(2n − 1)|2n − 1|3 so ζ(z) = exp(ξ(z)).
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ξ(z) = z +
z2

2
+

7z3

3
+

5z4

4
+

31z5

5
+

7z6

6
+

127z7

7
+

85z8

8
+ . . .

= (z +
7z3

3
+

31z5

5
+

127z7

7
+ . . .) + (

z2

2
+

5z4

4
+

7z6

6
+

85z8

8
+ . . .)

=
∞∑

n=0

z2n+1

2n+ 1
(22n+1 − 1) +

∞∑

n=1

z2n

2n
(22n − 1)|22n − 1|3

=

∞∑

n=0

z2n+1

2n+ 1
(22n+1 − 1) +

∞∑

n=1

z2n

2n
(22n − 1) −

∞∑

n=1

z2n

2n
(22n − 1) +

∞∑

n=1

z2n

2n
(22n − 1)|22n − 1|3

=

∞∑

n=1

zn

n
(2n − 1) − 1

2

∞∑

n=1

z2n

n
(22n − 1) +

∞∑

n=1

z2n

2n
(22n − 1)|22n − 1|3

=

∞∑

n=1

(2z)n

n
−

∞∑

n=1

zn

n
− 1

2

∞∑

n=1

(4z2)n

n
+

1

2

∞∑

n=1

(z2)n

n
+

∞∑

n=1

z2n

2n
(22n − 1)|22n − 1|3

= − log(1 − 2z) + log(1 − z) + log(1 − 4z2)1/2 − log(1 − z2)1/2 +
∞∑

n=1

z2n

2n
(22n − 1)|22n − 1|3

= log

(
1 − z

1 − 2z

)
+

1

2
log

(
1 − 4z2

1 − z2

)
+

∞∑

n=1

z2n

2n
(22n − 1)|22n − 1|3.

Write 1
6
ξ1(z) for the term

∑∞
n=1

z2n

2n
(22n − 1)|22n − 1|3, so

ξ1 = 3

∞∑

n=1

z2n

n
(4n − 1)|4n − 1|3

=

∞∑

n=1

z2n

n
(4n − 1)|n|3

by (13). The following shows that ξ1(z) has infinitely many logarithmic singularities

on the circle |z| = 1
2
. Each of these zeros correspond to a zero of ζ(z). Recall from
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Section 1.1 that 3a ‖ n means that 3a | n but 3a+1 - n. Notice that 3a ‖ n if and only

if |n|3 = 3−a. This means we can split up ξ1 in terms of |n|3 since

ξ1 =

∞∑

j=0

1

3j

∑

3j‖n

z2n

n
(4n − 1)

=

∞∑

j=0

1

3j
η

(4)
j (z),

where

η
(a)
j (z) =

∑

3j‖n

z2n

n
(an − 1).

Then

η
(a)
0 (z) =

∑

30‖n

z2n

n
(an − 1)

=
∞∑

n=1

z2n

n
(an − 1) −

∞∑

n=1

z6n

3n
(a3n − 1)

= log

(
1 − z2

1 − az2

)
− 1

3
log

(
1 − z6

1 − a3z6

)
,

η
(4)
1 (z) =

∑

31‖n

z2n

n
(4n − 1) =

∑

30‖n

z6n

3n
(43n − 1) =

1

3
η

(43)
0 (z3),

η
(4)
2 (z) =

1

9
η

(49)
0 (z9),

and so on. Therefore

ξ1(z) = log

(
1 − z2

1 − (2z)2

)
+ 2

∞∑

j=1

1

9j
log

(
1 − (2z)2×3j

1 − z2×3j

)
,

so we have

|ζ(z)| =

∣∣∣∣
1 − z

1 − 2z

∣∣∣∣ ·
∣∣∣∣
1 − (2z)2

1 − z2

∣∣∣∣
1/2

·
∣∣∣∣

1 − z2

1 − (2z)2

∣∣∣∣
1/6

·
∞∏

j=1

∣∣∣∣∣
1 − (2z)2×3j

1 − z2×3j

∣∣∣∣∣

1/3×9j

.

So the series defining ζ(z) has a zero at all points of the form 1
2
exp(2πij/3r). Thus

|z| = 1
2

is a natural boundary for ζ(z).
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By Section 4.4, a function that has a natural boundary such as ζ(z) cannot be ana-

lytically continued. Section 4.2 explains that for Waddington’s Prime Orbit Theorem

proof to work it is necessary for the dynamical zeta function to be meromorphically

continued beyond the radius of convergence. As this is not possible for our function

f we are unable to use this method.

5.2 Numerical Evidence

Since we were unable to find an asymptotic using Waddington’s methods it was

necessary to study the actual numerics of the number of orbits in the map φ : x→ 2x

on the dual of the ring Z[1
3
].

For this we had to use the orbit counting method described in Section 2.4 . To count

the number of orbits for the function f we use the formula

∑

n≤x

1

n

∑

d|n
µ
(n
d

)
(2d − 1)|2d − 1|3.

The pattern of this sequence using the GP/Pari program was studied and compared

to that of
∑

n≤x

1

n

∑

d|n
µ
(n
d

)
(2d − 1),

the number of orbits less than x for the circling doubling map from Example (1)

Section 2.1, whose asymptotics are well-known.

Let

πf (x) =
∑

n≤x

1

n

∑

d|n
µ
(n
d

)
(2d − 1)|2d − 1|3

and

πg(x) =
∑

n≤x

1

n

∑

d|n
µ
(n
d

)
(2d − 1),
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where πa(x) is the number of orbits of a map a with length up to a given number x.

It appears that while πg(x) grows very steadily, πf (x) is very erratic in its growth.

By comparing πf(x) to the asymptotic 2(x+1)

x
we can see that a pattern emerges. The

values alternate between high and low values, so appear not to converge. Numeri-

cally, πf (x)/
2(x+1)

x
has its lowest value of approximately 0.41 and a highest value of

approximately 0.79. The following graph shows a sample of values from x = 0 to 100.

We see that the lowest values occur when x is even and the higher values occur when

x is odd.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4
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1

Figure 1: Graph of (πf (x) ∗ x)/2(x+1)

5.3 Prime orbit theorem: one prime

Since we could not use Waddington’s methods we looked for other ways to see how we

could approximate πf(x). We looked at Tchebyshev’s Prime Number Theorem and

how he obtained upper and lower bounds. From Section 5.2 we expect upper and
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lower limits.

The first theorem shows some asymptotic bounds for πf (x). The results for this

are reached by comparing this function with the asymptotics for the circle-doubling

map from Section 2.1. This we already understand from Parry and Pollicott. In the

circle-doubling map g, let Fn(g) = 2n − 1, On(g) = 1
n

∑
d|n µ(n/d)(2d − 1), and (12)

in Section 4.5 shows that

πg(x) =
∑

n≤x

1

n

∑

d|n
µ(n/d)(2d − 1) ∼ 2x+1

x
. (15)

Theorem 5.2. Let f be the endomorphism dual to x→ 2x on Z[1
3
]. Then

πf (x) ≤ πg(x) for all x ≥ 1,

and

lim sup
x→∞

x · πf(x)

2x+1
≤ 1, lim inf

x→∞

x · πf(x)

2x+1
≥ 1

3
.

Proof. Let Fn(g) = 2n − 1 and let Fn(f) = (2n − 1)|2n − 1|3, so

πg(x) =
∑

n≤x

On(g) =
∑

n≤x

1

n

∑

d|n
µ(n/d)Fd(g)

and

πf (x) =
∑

n≤x

On(f) =
∑

n≤x

1

n

∑

d|n
µ(n/d)Fd(f).

We first claim that

πf(x) ≤ πg(x) for all x ≥ 1, (16)

When n is odd, Fn(f) = Fn(g) so On(f) = On(g), since all factors of n are odd.
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Now assume that n is even and note that

∑

d|n,d<n

(2d − 1) ≤ 2

3
(2n − 1), for all n ≥ 1. (17)

It follows that

Ln(f) =
∑

d|n
µ(n/d)Fd(f)

≤ Fn(f)

≤ 1

3
Fn(g)

≤ Fn(g) −
∑

d|n,d<n

Fd(g)

≤
∑

d|n
µ(n/d)Fd(g) = Ln(g).

Thus, On(f) ≤ On(g) for all n ≥ 1 so (16) is proved and hence the upper bound is

proved.

Now, turning to the lower bound, we know from (16) above that On(f) ≤ On(g).

Therefore πf(x) + ∆x = πg(x), hence, πg(x) − ∆x = πf(x), where

∆x =

∣∣∣∣∣
∑

n≤x

(On(g) − On(f))

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

2|n≤x

(On(g) −On(f))

∣∣∣∣∣∣
≤
∑

2|n≤x

On(g).

How big is
∑

2|n≤xOn(g)? Notice that

∑

2|n≤x

On(g) =
∑

n≤[x/2]

O2n(g) ≤ 1

2

∑

n≤[x/2]

On(g
2), and

O2n(g) =
1

2n

∑

d|2n

µ(2n/d)Fd(g), so

O2n(g) =
1

2n

∑

d|2n

µ

(
2n

d

)
(2d − 1) and Fn(g2) = 22n − 1 = 4n − 1.
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Since g2 is the map x→ 4x mod 1 on the circle and is hyperbolic, we have

∑

n≤x

On(g
2) ∼ 4(x+1)

3x
.

By Lemma 4.2

On(g2) =





2O2n(g) +On(g) if n is odd ;

2O2n(g) if n is even.

So,

O2n(g) =





(On(g2)−On(g))
2

if n is odd ;

On(g2)
2

if n is even.

Hence,

∑

n≤x

O2n(g) =
∑

2-n≤x

1

2

(
On(g

2) − On(g)
)

+
∑

2|n≤x

1

2

(
On(g2)

)

=
∑

n≤x

1

2

(
On(g2)

)
−
∑

2-n≤x

1

2
(On(g)) .

Since
∑

n≤xOn(g2) ∼ 4(x+1)

3x
,

∑

n≤x

O2n(g) ∼ 1

2
· 4(x+1)

3x
−
∑

2-n≤x

1

2
(On(g)).

The last term, On(g) ∼ 2x+1

x
, is of lower order and as it will not effect the term of

higher order, we can for our purposes ignore it. It follows that,

∑

n≤x

O2n(g) ∼ 1

2
· 4(x+1)

3x
=

2

3
· 4x

x

so
∑

2|n≤x

On(g) =
∑

n≤[x/2]

O2n(g) ∼ 2

3
· 4x/2

x/2
=

2

3
· 2x+1

x
.

Thus, we have

∑

n≤x

On(g) −
∑

2|n≤x

On(g) ∼ 2x+1

x
− 2

3
· 2x+1

x
=

1

3
· 2x+1

x
≤
∑

n≤x

On(f) = πf(x).
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So we have

lim sup
x→∞

x · πf (x)

2x+1
≤ 1, lim inf

x→∞

x · πf (x)

2x+1
≥ 1

3
,

the required result.

Is the lim sup is greater than the lim inf? The numerics in Section 5.2 certainly

suggest that this is the case and moreover that the sequence
(

x·πf (x)

2x+1

)
x≥1

has more

than two limit points. However, I have been unable to provide a proof of this, and at

this stage can only show that this appears to be true from the graph, see Figure 1,

Section 5.2.

Theorem 5.2 has an analogue for any prime p and the proof can be adapted

accordingly. In general,

Theorem 5.3. Let f be the endomorphism dual to x→ 2x on Z[1
p
]. Let

πg(x) =
∑

n≤x

1

n

∑

d|n
µ
(n
d

)
(2d − 1)

and

πf(x) =
∑

n≤x

1

n

∑

d|n
µ
(n
d

)
(2d − 1)|2d − 1|p

then

πf (x) ≤ πg(x) for all x ≥ 1,

and

lim sup
x→∞

xπf
(x)

2x+1
≤ 1, lim inf

x→∞

xπf
(x)

2x+1
≥ 1 − 2(p−2)

2(p−1) − 1
.

For a finite set of primes we would expect similar results to hold with different

constants, but the arguments become much more complex.
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5.4 Prime orbit theorem: infinitely many primes

The maps in Section 5.3 are small perturbations of the circle doubling map in the sense

of [33]. At the opposite extreme, if S contains all the primes, then the corresponding

map f has πf (x) = 1 for all x. A small perturbation of this (highly non-hyperbolic)

map includes all but one prime.

Consider the map φ : x → 2x on the ring Z[1
2
, 1

5
, 1

7
, 1

11
, . . .] = Z(3), see Defini-

tion 1.1. Write X = ̂Z[ 1
2·5·7·11··· ] for the dual (character) group, and h = φ̂ for the

dual map. By Theorem 3.11, the topological entropy is log 2. The number of points

of period n under h is calculated as follows:

n 1 2 3 4 5 6 7 8 9 10

2n − 1 1 3 7 15 31 63 127 255 511 1023

|2n − 1|5 1 1 1 1/5 1 1 1 1/5 1 1

|2n − 1|7 1 1 1/7 1 1 1/7 1 1 1/7 1

|2n − 1|11 1 1 1 1 1 1 1 1 1 1/11

...
...

(2n − 1)|2n − 1|5|2n − 1|7 · · · 1 3 1 3 1 9 1 3 1 3

So the number of periodic points is (2n − 1)|2n − 1|5|2n − 1|7 · · · = |2n − 1|−1
3 , as

all values are reduced by powers of all other primes.

This can be thought of as an extension of the circle doubling map by a cocycle

taking values in Z2×Z5×Z7×Z11× . . .. This extension kills all periodic orbits except

those of period n = 2 · 3k. From the table above we expect that

Fn(h) =





1 if n is odd

3k for k > 0 if n is even.

The following example shows this.
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Example 5.4. Let Fn = |2n − 1|−1
3 and On = 1

n

∑
d|n µ

(
n
d

)
|2d − 1|−1

3 then when

n = 2 · 3k, On = 1.

Proof. When n is odd, n = 2k − 1 for some integer k, so

2n − 1 = 22k−1 − 1

=
1

2
· 4k − 1

=
1

2

(
(3 + 1)k

)
− 1

=
1

2
(1 + 3k +

k · (k − 1)

2
32 + . . .) − 1

=
1

2
(3c1) −

1

2

=
1

2
(3c1 − 1), for some integer c1.

Since 1
2
(3c1 − 1) is not a multiple of 3, |2n − 1|−1

3 = 1 for all odd n. So

O2k−1 =
1

2k − 1

∑

d|2k−1

µ

(
2k − 1

d

)
|2d − 1|−1

3 =
1

2k − 1

∑

d|2k−1

µ

(
2k − 1

d

)
= 0,

by Section 2.4.

When n is even, but not equal to 2 · 3k, then n = 2k, for some integer k.

2n − 1 = 22k − 1

= 4k − 1

=
(
(3 + 1)k

)
− 1

= (1 + 3k +
k · (k − 1)

2
32 + . . .) − 1

= 3c2 for some constant c2.

So when n is even, |2n − 1|−1
3 ≥ 3 and by Section 2.4 the sum over the divisors all

cancel each other out, so On = 0.
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When n = 2 · 3k for some integer k,

O2·3k =
1

2 · 3k

∑

d|2·3k

µ

(
2 · 3k

d

)
|2d − 1|−1

3

=
1

2 · 3k

(
µ(3) · 3k + µ(1) · 3k+1

)
, by Section 2.4,

=
1

2 · 3k

(
−1 · 3k + 1 · 3k+1

)

=
1

2 · 3k

(
3k(−1 + 3)

)

=
2 · 3k

2 · 3k
= 1.

The sum of the orbits grows very slowly. This meant that we could find an explicit

formula for the number of orbits, as they only change when n = 2 · 3k.

The following theorem shows the formula for the number of orbits less than x for

the above system.

Theorem 5.5. Let h be the endomorphism dual to x→ 2x on Z[1
2
, 1

5
, 1

7
, 1

11
, . . .]. Then

πh(x) =
∑

n≤x

1

n

∑

d|n
µ
(n
d

)∏

p 6=3

(2d − 1)|2d − 1|p

=
∑

n≤x

1

n

∑

d|n
µ
(n
d

) 1

|2d − 1|3

and

∣∣∣∣πh(x) −
log(x

2
)

log 3

∣∣∣∣ ≤ 2.

Proof.

Let On(h) =
1

n

∑

d|n
µ
(n
d

)∏

p 6=3

(2d − 1)|2d − 1|p
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=
1

n

∑

d|n
µ
(n
d

) 1

|2d − 1|3

then On(h) =





1 n = 1 ;

0 if n 6= 2 · 3k ;

1 if n = 2 · 3k .

So, On(h) increases by 1 each time n = 2 · 3k. When x = 2 · 3k, k =
log(x

2
)

log 3
.

Define πh(x) =
∑

n≤xOn(h) then

πh(x) =





1 x = 1;

πh(x− 1) if x 6= 2 · 3k ;

k + 2 if x = 2 · 3k .

When x = 2, k = 0 hence πh(x) = k + 2. Since πh(x) is increasing,

when x 6= 2 · 3k, πh(x) = πh(2 · 3k−1) = k + 1 < k + 2. Hence |πh(x) − log(x
2
)

log 3
| ≤ 2.

5.5 Prime orbit theorem: finitely many primes

The maps in Sections 5.3 and 5.4 are the opposite extremes of perturbations of the

circle doubling map. What would happen if S contained a finite number of primes?

Consider, for example, the map φ : x → 2x on the ring Z[1
3
, 1

5
]. Write X = Ẑ[ 1

15
] for

the dual (character) group, and b = φ̂ for the dual map. Then the topological entropy

is log 2 and the number of points of period n under b is (2n − 1)|2n − 1|3|2n − 1|5.

This can be thought of as an extension of the circle doubling map by a cocycle taking

values in Z3 × Z5.

By applying the method used for the dynamical system in Section 5.3, with peri-

odic points (2n − 1)|2n − 1|3, a similar prime orbit theorem is expected.
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We can certainly say that

πb(x) ≤ πg(x) for all x ≥ 1,

where πg(x) is the same as in Section 5.3 and

lim sup
x→∞

xπb
(x)

2x+1
≤ 1,

the proof of which follows the same arguments as before. It is, however, more difficult

to obtain a lower limit bound for this case. The reason for this is because the method

used in the proof for one prime in Section 5.3 does not work well for finitely many

primes. In the proof for ‘one prime’ we are able to ‘ignore’ part of the calculation

as it is of lesser order and will not affect the end result. However, with more than

one prime, the parts of lesser order contribute too much to the result and we cannot

simply ‘ignore’ them as we did before. The numerics showed this and for this reason

we could not produce a result as before.
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Chapter 6

S-Integer Dynamical Systems:

Positive Characteristic

6.1 Prime orbit theorem for S-Integer systems of

positive characteristic: one isometric direction

We now look at S-integer systems for positive characteristic to see what form the

Prime Orbit Theorem takes in this setting.

We first consider a simple case that matched the criteria of Parry and Pollicott

i.e. a hyperbolic map.

Example 6.1. Let p be a prime, let k = Fp(t) and S = {t}. Define g to be the

endomorphism of R̂S = FZ
p dual to multiplication by t on Fp[t

±1]. The entropy of g is

h(g) =
∑

v≤∞
log+ |t|v = log p (18)

and the number of periodic points is given by

Fn(g) = |tn − 1|∞|tn − 1|t = pn. (19)
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In fact, g is the two-sided shift action on p symbols, so (18) and (19) are clear. The

map g is an expansive ergodic automorphism and fits the model in [23]. The dynam-

ical zeta function is rational: ζg(z) = 1
1−pz

. By using the same techniques in Parry

and Pollicott’s Prime Orbit Theorem, (9) in Section 4.2 gives

πg(x) ∼
1

p− 1

p(x+1)

x
,

where πg(x) is the number of orbits less than x.

So what happens if this dynamical system is perturbed slightly?

Example 6.2. Let k = Fp(t) and S = {t− 1}. Define f to be the endomorphism of

R̂S = Fp [̂t][
1

t−1
] dual to multiplication by t on Fp[t][

1
t−1

]. The entropy of f is log p and

the number of periodic points is given by

Fn(f) = |Fn(f)| = |tn − 1|∞|tn − 1|t−1 = pn−pordp(n)

.

The dynamical zeta function is irrational and is explained in Example 8.5 in [4].

To study the numerics for a particular case, let p = 2. Then the number of periodic

points in Example 6.1 is

Fn(g) = |tn − 1|∞|tn − 1|t = 2n,

so the dynamical zeta function ζg(z) = exp
∑∞

n=1
zn

n
· 2n = 1

1−2z
and the Prime Orbit

Theorem is

πg(x) ∼
2(x+1)

x
.

The number of periodic points in Example 6.2 is

Fn(f) = |tn − 1|∞|tn − 1|t−1 = 2n−2ord2(n)

.
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The dynamical zeta function ζf(z) = exp
∑∞

n=1
zn

n
2n−2ord2(n)

, which we know from

above that ζf is irrational and the topological entropy is log 2. We are therefore,

unable to use the same techniques in [23] or [29] to find a prime orbit theorem. The

table below compares the the periodic points and number of orbits for Examples 6.1

and 6.2 using the counting method described in Section 2.4.

n 1 2 3 4 5 6 7 8 9 10

Periodic points 2n 2 2 8 16 32 64 128 256 512 1024

Periodic points 2n−2ord2(n)
1 1 4 1 16 16 64 1 256 256

#Orbits 2n 2 1 2 3 6 9 18 30 56 99

#Orbits 2n−2ord2(n)
1 0 1 0 3 2 9 0 28 24

By using the GP/Pari program and comparing Example 6.2 with Example 6.1 whose

asymptotics are well known, the numerics suggest that πg(x) grows steadily but πf (x)

grows erratically. By plotting the graph of
πf (x)·x
2(x+1) you can see that it alternates in a

similar way to that in the example in Section 5.2. The lowest value is approximately

0.2 and the highest value is approximately 0.4. The following graph shows a sample

from x = 0 to 100. We see that the lowest values occur when x is even and the higher

values occur when x is odd.
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Figure 2: Graph of (πf (x) · x)/2(x+1)

This is certainly a smaller span than that in Section 5.2 but there is no evidence

of convergence. There are bounds for any prime p as shown in the following theorem.

Theorem 6.3. Let f be the endomorphism of R̂S = Fp
̂[t][ 1

t−1
] dual to multiplication

by t on Fp[t][
1

t−1
], and let g be the endomorphism of R̂S = FZ

p dual to multiplication

by t on Fp[t
±1]. Then

πf (x) ≤ πg(x) for all x ≥ 1,

and

lim sup
x→∞

xπf
(x)

px
≤ p

p− 1
, lim inf

x→∞

xπf
(x)

px
≥ 1

p− 1
− pp−1

pp − 1
.

For p = 2 as above, lim sup ≤ 2 and lim inf ≥ 1 − 2
3

= 1
3
.

Proof. Let πg(x) =
∑

n≤xOn(g) and πf (x) =
∑

n≤xOn(f), where

On(g) =
1

n

∑

d|n
µ
(n
d

)
pd
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and

On(f) =
1

n

∑

d|n
µ
(n
d

)
pd−pordp(d)

.

First consider, πf(x) ≤ πg(x) for all x ≥ 1. When p - n, ordp(n) = 0, so pordp(n) = 1.

Therefore,

On(f) =
1

n

∑

d|n
µ
(n
d

)
pd−1 =

1

n

∑

d|n
µ
(n
d

) 1

p
pd =

1

p
On(g).

When p | n then n = pk that is not a power of p or n = pk for some k ≥ 1.

Consider n = pk, the divisors of n are d = p0, p1, . . . , pk.

Therefore,

On(f) =
1

n

∑

d|n
µ
(n
d

)
pd−pordp(d)

=
1

n

∑

d|n
j=0,...,k

µ
(n
d

)
ppj−pj

=
1

n

∑

d|n
µ
(n
d

)
= 0.

When n = pk, p | n at least once.

Hence,

On(f) =
1

n

∑

d|n
µ
(n
d

)
pd−pordp(d)

≤ 1

n

∑

d|n
µ
(n
d

)
pd−p

=
1

pp

∑

n≤x

1

n

∑

d|n
µ
(n
d

)
pd

=
1

pp
On(g).

So, πn(f) ≤ 1
ppπn(g) < 1

p
πn(g) < πn(g).

Therefore, πn(f) ≤ πn(g).

By Parry and Pollicott [23], πn(g) ∼ ( p
p−1

)px

x
and hence

lim sup
x→∞

x · πf(x)

px
≤ p

p− 1
.
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Consider the lower bound. We know

∑

n≤x

On(f) ≤ 1

p

∑

n≤x

On(g)

⇒ 1

p

∑

n≤x

On(g) −4x =
∑

n≤x

On(f)

⇒ 4x =

∣∣∣∣∣∣
1

p

∑

p|n≤x

On(g) −
∑

p|n≤x

On(f)

∣∣∣∣∣∣

≤ 1

p

∑

p|n≤x

On(g),

since when p - n,
∑

n≤xOn(f) = 1
p

∑
n≤xOn(g).

How big is 1
p

∑
n≤xOn(g)?

∑

p|n≤x

On(g) =
∑

n≤[x/p]

Opn(g)

Now gp is the full shift on p symbols and in a similar way to Theorem 5.2, we can

apply Parry and Pollicott’s prime orbit theorem. So by [23],

∑

n≤x

On(gp) ∼ pp(x+1)

(pp − 1)x
,

and

On(g
p) =





pOpn(g) +On(g) if n 6= pk;

pOpn(g) if n = pk

Hence,

∑

n≤x

Opn(g) =
1

p

∑

p-n≤x

On(gp) −
∑

p-n≤x

On(g) +
1

p

∑

p|n≤x

On(g
p)

=
∑

n≤x

1

p
On(g

p) −
∑

p-n≤x

1

p
On(g).
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Since,
∑

n≤xOn(gp) ∼ pp(x+1)

(pp−1)x
,

∑

n≤x

Opn(g) ∼
1

p

pp(x+1)

(pp − 1)x
−
∑

p-n≤x

1

p
On(g).

The last term is of lower order and so for our purposes we can ignore it.

It follows that

∑

n≤x

Opn(g) ∼
1

p

pp(x+1)

(pp − 1)x
=

p(p−1)

(pp − 1)
· (pp)x

x
.

So,
∑

p|n≤x

On(g) =
∑

n≤[x/p]

Opn(g) ∼
p(p−1)

(pp − 1)
· (pp)x/p

x/p
=

pp

(pp − 1)

px

x
.

Hence, 1
p

∑
p|n≤xOn(g) ∼ p(p−1)

(pp−1)
· px

x
.

So,

1

p

∑

n≤x

On(g) − 1

p

∑

p|n≤x

On(g) ∼
(

1

p− 1
− p(p−1)

(pp − 1)

)
px

x
.

Thus,

lim sup
x→∞

x · πf(x)

px
≤ p

p− 1
, lim inf

x→∞

x · πf (x)

px
≥ 1

p− 1
− pp−1

pp − 1
.

6.2 Prime Orbit Theorem: infinitely many

isometric directions

Now look at the other extreme where S = {all irreducible polynomials except (t−1)}.

Example 6.4. Let

k = Fp(t) and S = { all irreducible polynomials except (t− 1).
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Define α to be the endomorphism of

R̂S = Fp
̂[t][ all irreducible polynomials except (t− 1)] dual to multiplication by t on

Fp[t][ all irreducible polynomials except (t − 1)}]. The entropy of α is log p and the

number of periodic points is given by

Fn(α) = |Fn(α)| = |tn − 1|∞
∏

q 6=t−1

|tn − 1|q = ppordp(n)

.

Again the ζα function is irrational and α is not expansive, the growth rate of the

orbits is very slow and we can obtain an asymptotic.

Theorem 6.5. Let

k = Fp(t) and S = {all irreducible polynomials except (t− 1)}.

Let p be any prime and let α to be the endomorphism of

R̂S = Fp
̂[t][ all irreducible polynomials except (t− 1) dual to multiplication by t on

Fp[t][ all irreducible polynomials except (t− 1)], then

lim sup
x→∞

x · πα(x)

px
= 1 and lim inf

x→∞

x · πα(x)

px
= 0.

Proof. Let On(α) = 1
n

∑
d|n µ(n

d
)ppordp(d)

and πα(x) =
∑

n≤xOn(α).

Then

On(α) =





p if n = 1 ;

0 if n 6= pk;

1
n
(pn − p(n

p
)) if n = pk

Now, πα(x) only increases when x = pk, so we only need to consider this case since

for all other x, πα(x) ≤ px

x
. When x = pk,

πα(x) = πα(pk) = πα

(
pk

p

)
+

1

pk

(
ppk − p(pk

p
)

)
= πα(pk−1) + p(pk−k) − p(pk−1−k).
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Now πα(pk−1) and p(pk−1−k) will contain terms of smaller order than p(pk−k), and

for our purposes we can ignore these as x→ ∞.

When x = pk, px

x
= ppk

pk = p(pk−k).

Hence as x→ ∞, πα(x) ∼ px

x
.
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Chapter 7

Mertens’ Theorem

7.1 Mertens’ Theorem for prime numbers

For primes p the following asymptotic formula

∏

p≤x

(
1 − 1

p

)
∼ e−γ

log x
,

where γ is Euler’s constant, is known as Mertens’ theorem of analytic number theory.

An elementary proof of this can be found in [10, pages 351-353]. The logarithmic

equivalent of Mertens’ theorem is

∑

n≤x

1

p
= log log x+B1 +O

(
1

log x

)
,

where Mertens’ constant B1 = γ+
∑

p{log(1− 1
p
)+ 1

p
} has the value 0.2614972128 . . . .

7.2 Mertens’ Theorem for orbits

Sharp shows an analogy between the closed orbits of Axiom A flows and Mertens’

theorem for prime numbers in [26]. Let φ be an Axiom A flow, let τ be a closed orbit
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for φ and let λ(τ) be its least period. Let N(τ) = ehλ(τ) where h is the entropy of φ.

Then for an Axiom A flow ϕ,

∏

N(τ)≤x

(
1 − 1

N(τ)

)
∼ e−γ

Res(ζϕ, 1) log(x)

where ζϕ is the Ruelle zeta function for ϕ. The proof of this in [26] relies on symbolic

dynamics and follows analogous methods to the proof of Mertens’ theorem for prime

numbers in [10, pages 351-353].

This formula also holds for Axiom A diffeomorphisms like hyperbolic automor-

phisms of the finite dimensional torus.

Noorani [22] later extended Sharp’s results to ergodic (not necessarily hyperbolic)

toral automorphisms, (see Section 3.5) and provided the following theorem.

Theorem 7.1. Let A be an ergodic (not necessarily hyperbolic) toral automorphism

and let h be the topological entropy of A and for each closed orbit τ of A, let λ(τ) be

its period. Also let ζ(z) be the zeta function of A. Then

∏

λ(τ)≤x

(
1 − 1

ehλ(τ)

)
∼ e−mγ

xm
v, as x→ ∞

where m = 2d/2, d is the number of eigenvalues of A of modulus 1, γ is Euler’s

constant and v is the value of the non-zero and analytic function ζ(z)(1 − ehz)m at

z = e−h.

The proof is modelled on Sharp’s paper which in turn is analogous to the num-

ber theoretic proof. The result for the toral automorphism can be derived directly

without the need for symbolic models unlike the Axiom A diffeomorphisms which

rely on the associated symbolic dynamics and zeta functions. This is because the

corresponding zeta function, the Artin-Mazur zeta function, has a closed form that

is readily understood.
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Again using Example (1) from Section 2.1, the circle doubling map, we have the

analogue of Mertens’ theorem in Noorani’s paper.

Firstly we have to write the formula

∏

λ(τ)≤x

(
1 − 1

ehλ(τ)

)
(20)

from [22] in a way that we can apply our counting method using the Möbius Inversion

Formula.

For a hyperbolic toral automorphism A, let h be the topological entropy, let τ be

a closed orbit of A, λ(τ) its least period and ζ(z) the dynamical zeta function. If On

is the number of orbits of length n, then there are On number of τ ′s with λ(τ) = n.

Therefore we can express (20) in the form

∏

n≤x

(
1 − 1

ehn

)On

. (21)

For computational purposes it is easier for us to use the logarithmic equivalent of

Mertens’ theorem, which from the formula above is

∑

n≤x

On

ehn
= log(x) +O(1). (22)

So, for the circle doubling map, let On(g) = 1
n

∑
n≤∞ µ(n

d
)(2d − 1) and h = log 2. So

(22) becomes
∑

n≤x
On(g)

2n = log(x) +O(1).

7.3 Mertens’ Theorem in Zero Characteristic

Our purpose is to extend this analogue of Mertens’ theorem to S-integer dynamical

systems. However, we know the Artin-Mazur zeta function is typically irrational for
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these systems from Section 5.1 unlike the Axiom A flows and toral automorphisms.

So, again, I look for other methods to find upper and lower asymptotics.

So again we want to look at what happens to Mertens’ Theorem when a sequence

like 2n−1 is perturbed slightly. We look at the 3-adic example from Section 4.2. The

theorem depends a lot on how ‘well-behaved’ the number of orbits are. From previous

experience we are already aware of how badly behaved the sequence (2n − 1)|2n − 1|3
is and as a consequence the orbits behave in a similarly erratic way.

Theorem 7.2. Let f be the endomorphism dual to x → 2x on Z[1
3
] and let g be the

endomorphism dual to x→ 2x on Z. Let On(g) = 1
n

∑
d|n µ(n

d
)(2d − 1) and

On(f) = 1
n

∑
d|n µ(n

d
)(2d − 1)|2d − 1|3. Then

1

2
log(x) +O(1) ≤

∑

n≤x

On(f)

2n
≤ log(x) +O(1)

Proof. From [26] we know that
∑

n≤x
On(g)

2n = log(x) + c, where c is a constant. We

can write this as
∑

n≤x
On(g)

2n = log(x) + O(1). Since we know from Theorem 5.2 in

Section 5.3 that On(f) ≤ On(g) for all n ≥ 1, we can say that

∑

n≤x

On(f)

2n
≤
∑

n≤x

On(g)

2n
= log(x) +O(1).

To get a lower bound, note that

∑

n≤x

On(f)

2n
=
∑

2-n≤x

On(f)

2n
+

∞∑

j=0

∑

2.3j‖n≤x

On(f)

2n
≥
∑

2-n≤x

On(g)

2n
= A(x).

Now, A(x) +
∑

2|n≤x
On(g)

2n =
∑

n≤x
On(g)

2n = log(x) +O(1).
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Consider
∑

2|n≤x
On(g)

2n =
∑

m≤x/2
O2m(g)

22m , then by Lemma 4.2

2
∑

2|n≤x

On(g)

2n
= 2

∑

m≤x/2

O2m(g)

22m

=
∑

2-m≤x/2

On(g2) − On(g)

22m
+

∑

2|m≤x/2

Om(g2)

22m

=
∑

m≤x/2

Om(g2)

22m
−

∑

2-m≤x/2

Om(g)

22m

≥ log
x

2
+O(1) = log x+O(1)

since
∑

2-m≤x/2

Om(g)

22m
≤
∑

m≤x/2

Om(g)

22m
<∞

because
∑

m≤x/2

Om(g)

2m
= log x+O(1),

so
∞∑

m=1

1

2m
· Om(g)

2m
converges.

7.4 Mertens’ Theorem: Zero Characteristic,

infinitely many primes

Again, in a similar way to the Prime Orbit Theorem we want to look at maps at the

other extreme of the section above, if S contains all but one prime.

So consider the map from Section 5.4, i.e. φ : x→ 2x on the ring

Z

[
1

2
,
1

5
,
1

7
,

1

11
, . . .

]
= Z(3).
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Write X = ̂Z[1
2
, 1

5
, 1

7
, 1

11
, . . .] for the dual (character) group, and f = φ̂ for the dual

map. The topological entropy, h = log 2 and the number of points of period n under

f is 1
|2n−1|3 .

Theorem 7.3. Let On(f) = 1
n

∑
d|n µ(n

d
)(2d − 1)

∏
p 6=3 |2d − 1|p. Then

∏

n≤x

(
1 − 1

ehn

)On(f)

≤ 1

2
for all x.

Proof. Let On(f) = 1
n

∑
d|n µ(n

d
)(2d − 1)

∏
p 6=3 |2d − 1|p

then from Section 5.4, On(f) = 1
n

∑
d|n µ(n

d
) 1
|2d−1|3 and,

On(f) =





1 if n = 1 ;

0 if n 6= 2 · 3k;

1 if n = 2 · 3k.

The prime orbit equivalent to Mertens’ Theorem is

∏

λ(τ)≤x

(
1 − 1

ehλ(τ)

)
=
∏

n≤x

(
1 − 1

2n

)On(f)

.

Now

(
1 − 1

2n

)On(f)

=





1
2

if n = 1 ;

1 if n 6= 2 · 3k;

(1 − 1
2n ) if n = 2 · 3k

So,

∏

n≤x

(
1 − 1

2n

)On(f)

=
∏

2·3k≤x

(
1 − 1

22·3k

)O
2·3k (f)

· 1

2

=
∏

2·3k≤x

(
1 − 1

43k

)
· 1

2

=
∏

k≤ log(x/2)
log(3)

(
1 − 1

43k

)
· 1

2

<
1

2
.
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7.5 Mertens’ Theorem: Positive Characteristic -

one isometric direction

In a similar way to the Prime orbit theorem, we now want to look at S-integer systems

for positive characteristic to see what form Mertens’ theorem for orbits takes in this

setting.

Example 7.4. We first look at a case that will match the setting of Sharp [26].

Consider Example 6.1 from Section 6.1 where the number of periodic points is given

by

|Fn(α)| = |tn − 1|∞|tn − 1|t = pn.

and the dynamical zeta function is rational: ζα(z) = 1
1−pz

.

Let On(g) = 1
n

∑
n≤x µ(n

d
)pd. From previous experience we know that in this particular

case On(g) is a smooth growing function and lends itself well to Noorani’s theorem.

Let p = 2 and On(g) = 1
n

∑
n≤x µ(n

d
)2d then the logarithmic equivalent of Mertens’

theorem says that
∑

n≤x
On(g)

2n = log(x) +O(1).

We want to see what happens for Example 6.2 in Section 6.1.

Let |Fn(θ)| = |tn − 1|∞|tn − 1|t−1 = pn−pordp(n)
as in Section 6.1, and consider the case

where p = 2, so |Fn(θ)| = 2n−2ord2(n)
.

Then we know from Section 6.1 the growth of the periodic points is very erratic and

hence so is the growth of the orbits. This has a big effect on the analogue of Mertens’

theorem and again, we are unable to find an asymptotic growth rate.
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Theorem 7.5. Let f be the endomorphism of R̂S = Fp
̂[t][ 1

t−1
] dual to multiplication

by t on Fp[t][
1

t−1
], and let g be the endomorphism of R̂S = FZ

p dual to multiplication

by t on Fp[t
±1]. Then

1

4
log(x) +O(1) ≤

∑

n≤x

On(f)

2n
≤ log(x) +O(1).

Proof. Let On(g) = 1
n

∑
d|n µ(n

d
)(2d) and On(f) = 1

n

∑
d|n µ(n

d
)(2d−2ord2(d)

). We know

that
∑

n≤x
On(g)

2n = log(x)+O(1), and since
∑

n≤x
On(f)

2n ≤∑n≤x
On(g)

2n we can say that
∑

n≤x
On(f)

2n ≤ log(x) +O(1).

Now for the lower bound.

When n is odd

On(g) = 2On(f).

When 2k ‖ n,

On(g) ∼ 22k

On(f).

So

∑

n≤x

On(f)

2n
=
∑

2-n≤x

On(f)

2n
+

∞∑

k=1

∑

2k‖n≤x

On(f)

2n
∼ 1

2

∑

2-n≤x

On(g)

2n
+

1

22k

∑

2k‖n≤x

On(g)

2n
.

So
∑

n≤x

On(f)

2n
≥ 1

2

∑

2-n≤x

On(g)

2n
.

Now
∑

2-n≤x

On(g)

2n
+
∑

2|n≤x

On(g)

2n
=
∑

n≤x

On(g)

2n
∼ log(x) +O(1).

What is
∑

2|n≤x
On(g)

2n ? First,

∑

2|n≤x

On(g)

2n
=
∑

n≤x/2

O2n(g)

22n
.
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Again using Lemma 4.2 from Section 4.3,

On(g2) =





2O2n(g) +On(g) if n is odd ;

2O2n(g) if n is even.

In a similar way to the zero characteristic case,

∑

2|n≤x

On(g)

2n
=

1

2

∑

n≤x/2

On(g2)

22n
+O(1) =

1

2
log(x/2) +O(1) =

1

2
log(x) +O(1).

So
∑

2-n≤x

On(g)

2n
=

1

2
log(x) +O(1)

and so

1

2

∑

2-n≤x

On(g)

2n
=

1

4
log(x) +O(1).

Hence,
∑

n≤x

On(f)

2n
≥ 1

4
log(x) +O(1).

7.6 Mertens’ Theorem: Positive Characteristic

and infinitely many isometric directions

So we now look at the other extreme where

S = {all irreducible polynomials except (t− 1)}.

We use the same case as in Section 6.2. So we have that the number of periodic points

is given by

Fn(α) = |Fn(α)| = |tn − 1|∞
∏

q 6=t−1

|tn − 1|q = ppordp(n)

.

77



Let p = 2 then Fn(α) = 22ord2(n)
, and

On(α) =





2 if n = 1 ;

0 if n 6= 2k;

1
n
(2n − 2(n

2
)) if n = 2k.

Theorem 7.6. Let α to be the endomorphism of R̂S = F2
̂[t][ 1
t2+t+1

. . .] dual to mul-

tiplication by t on F2[t][
1

t2+t+1
. . .], then

∏

n≤x

(
1 − 1

2n

)On(α)

≤ 1

4
.

Proof. Let On(α) = 1
n

∑
d|n µ(n

d
)22ord2(d)

(
1 − 1

2n

)On(α)

=





1
4

if n = 1 ;

1 if n 6= 2k;

1
n
(2n − 2(n

2
)) if n = 2k

So,

∏

n≤x

(1 − 1

2n
)On(α) =

∏

1<2k≤x

(1 − 1

22k )O
2k (α) · 1

4

=
∏

1<2k≤x

(1 − 1

4k
)O

2k (α) · 1

4

≤ 1

4
.
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Chapter 8

Infinite-dimensional Groups

All our work relates to endomorphisms of finite dimensional groups. What would

happen for (say), automorphisms of T∞. By [11] these are never expansive, so it is

not reasonable to expect good asymptotics. In addition, there is a subtle problem with

them: Lind [17] has shown that there exists an ergodic automorphism of an infinite

torus with finite entropy if and only if there exists for every ε > 0 an automorphism

of a finite dimensional torus with entropy < ε. Thus the expected answer to Lehmer’s

(open) problem suggests all ergodic automorphisms of T∞ have infinite entropy (see

[35]). The next example shows that it is impossible to seek general results on orbit-

counting for automorphisms of infinite-dimensional groups.

Theorem 8.1. Given any sequence a1, a2, . . . in N, there exists an automorphism T

of an (infinite-dimensional) compact connected group with

an ≤ Fn(T ) <∞ for all n ≥ 1.

Proof. We need to construct an automorphism T such that

an < Fn(T ) <∞, for all n > 1.
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We first construct maps Vk that can be used as building blocks for T .

First we fix k and find a map Vk such that

F1(Vk) = 1

F2(Vk) = 1

...

Fk−1(Vk) = 1

∞ > Fk(Vk) > 1

so that

T = (V1 × V1 × · · ·V1)︸ ︷︷ ︸
enough terms to make ∞>F1(T )>a1

× (V2 × V2 × · · ·V2)︸ ︷︷ ︸
enough terms to make ∞>F2(T )>a2

× . . . .

For the case k = 1, let V1 be the map ×3 on Ẑ, then F1(V1) = 2 > 1, and we are

done.

For k = 2, let V2 be the map ×2 on Ẑ, then F1(V2) = 1, F2(V2) = 3 > 1.

For k = 3, let V3 be the map ×3 on Ẑ[1
2
], then

F1(V3) = 1, F2(V3) = 1, F3(V3) = (27 − 1)· | 27 − 1 |2= 26 · 1
2

= 13 > 1.

By the classical Zsigmondy Theorem we can say that

{p | (p | 3n − 1) for some n ≤ k} ( {p | (p | 3n − 1) for some n ≤ k+1} unless k = 1.

So let V4 be ×3 on Ẑ[1
2
, 1

13
], i.e.inverting the set of all earlier primes.

Similarly, Vk will be ×3 on ̂Z[ 1
s1
, . . . , 1

st
], where

{s1, . . . , st} = {all primes already used}.

So

F1,2,3,...,k−1(Vk) = 1 and Fk(Vk) > 1,
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because it will be divisible by a new prime.

So all but finitely many terms in this product are 1, showing that Fn(T ) is always

finite but exceeds an.

The construction above is quite profligate, and with a little more effort a more

precise kind of statement can be made – at the expense of passing to compact groups

that are not connected.

The following result appears in [35].

Theorem 8.2. For any C ∈ [0,∞], there is a compact group automorphism T with

|Fn(T )| <∞ for all n and with

1

n
log |Fn(T )| −→ C.

What kind of constructions are possible for automorphisms of the infinite torus is

less clear.
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