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ABSTRACT

There are four chapters: two on general Topological Dynamical Systems and two on

the Dynamics of one-dimensional cellular automata (CA).

Chapter 1 has some results on Topological Dynamics. They are arranged in such a way

that the Chapter serves also as a general introduction. We highlight the main points:

1. For any n ∈ N, distinct continuous surjections f1, f2, . . . , fn : [0, 1] → [0, 1] are

constructed in such a way that any two are factors of each other but no two distinct

ones are topologically conjugate.

2. It is shown that for any interval map f : [0, 1] → [0, 1], if the set of sensitive points

of f is dense, then so are the set of points with finite orbit, and the set of points with

infinite orbit.

3. We demonstrate how to construct transitive maps on R, arbitrarily close to the

identity map or the reflection map x 7→ −x.

4. A transitive map with the set of visiting times between any two non-empty open

sets being syndetic is called syndetically transitive. It is proved that any syndetically

transitive map is either minimal or sensitive, from which it is easily deduced that

sensitivity is a redundant condition in Devaney’s definition of chaos.

5. If f : X → X is a transitive map of a compact metric space, then some properties

of the induced maps on certain hyperspaces (eg: hyperspace of all non-empty compact

subsets of X) are investigated. In particular, it is shown that certain induced maps

can never be transitive.

6. For k ∈ N, a rational approximation to
√

k with exponential rate of convergence is

given using a logistic map.

In Chapters 2, CA are studied as Topological Dynamical Systems. Some of the main

results on CA that we obtain are: (1) any minimal set is nowhere dense and of zero

measure, (2) any orbit is either dense or nowhere dense, (3) transitivity implies weak

mixing and hence maximal sensitivity, (4) product of transitive CA is transitive, (5)

the set of periodic points of each period is finite if and only if all periodic points are

shift-periodic, (6) recurrent points are residual for surjective CA, and (7) all surjective

CA are semi-open.
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Chapter 3 is devoted to the solution of a single problem: determining the set of periods

of additive CA in terms of the coefficients appearing in the linear expression of the CA.

For n ∈ N, let Fn be the collection of all additive CA where the addition is done modulo

n. Let p be any prime. The highlights are:

(1) For any F ∈ Fp, the set of periods can be determined using some simple conditions

on the coefficients in the linear expression of F .

(2) For any F ∈ Fp, the set of periods has only four possibilities: {1,m} for some m

where 1 ≤ m < p, N \ {pm : m ∈ N}, N \ {2pm : m ∈ N ∪ {0}} or the whole set N.

(3) If F ∈ Fp, then our proof actually calculates the cardinality of the set {x : F n(x) =

x}, which is shown to be a power of p except when F is a root of identity.

(3) Using our results, the set of periods of any additive CA, where the addition is done

modulo some square-free positive integer, is easily obtained.

In Chapter 4 we go back to the general theory of Topological Dynamics. We show that:

(1) Weak mixing implies mixing for all subshifts of finite type and many sofic shifts.

(2) Any transitive subshift of finite type, which is not a periodic orbit, has the property

that one of its powers has the full shift on two symbols as a factor.

(3) If (X, f) is a transitive system on [0,1], or a transitive CA, or a transitive subshift of

finite type, then any map which is a limit point of the enveloping semigroup of (X, f),

is nowhere continuous on X.

Chapter 4 is concluded by characterizing the ω-limit sets of the shift map in terms of

words.

Publications concerning this thesis:

1. T.K.Subrahmonian Moothathu, Homogeneity of surjective cellular automata, Dis-

crete and Continuous Dynamical Systems, 13(1), (2005), 195-202.

2. T.K.Subrahmonian Moothathu, Set of periods of additive cellular automata, Theo-

retical Computer Science, 352, (2006), 226-231.

Relevant Mathematics Subject Classification: 54H20, 37B15.
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Chapter 1

A flavor of Topological Dynamics

1.1 To start with...

Topological Dynamics is mainly concerned with the asymptotic behavior of the orbits

of continuous self maps of Hausdorff topological spaces. In olden days the focus was

on homeomorphisms. But now, the dynamics of non-invertible continuous maps has

well-founded theory [4], [14], [19], [23], [28], [34], [36], [51]. Most of this theory is

developed on compact metric spaces as compactness assures the existence of various

limiting objects.

In Topological Dynamics, the word chaos has become a password. A handful of non-

equivalent notions of chaos are available. Analyzing the terms involved in their def-

initions is one way to get into the theory. Another door of approach is to narrow

one’s attention to some special class of dynamical systems extensively studied in the

literature, such as interval maps [60] or subshifts [51]. We prefer a third approach,

where the concepts are introduced in such a way as to facilitate us to include some of

our contributions. Possibly there will be a little bit of awkwardness because of this

self-interest, and not all important concepts may find a place in what follows. For

example, we do not consider entropy [56] and expansivity [44], [46]. But we hope that

the content of this chapter has enough vitality to provide a few sparks of inspiration

for future researchers.
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CHAPTER 1. A FLAVOR OF TOPOLOGICAL DYNAMICS 10

We begin with basic definitions.

Phase space: this is a Hausdorff topological space X where dynamics is thought to

be happening. For us, X will be a compact metric space most of the time. Note that

Baire Category Theorem has life on compact metric spaces. This Theorem is invariably

invoked to get results of the following form: the set of points satisfying such and such

dynamical properties is a dense Gδ.

Rule of evolution: this is a continuous map f : X → X. In this case, the pair (X, f)

is called a discrete dynamical system or simply a dynamical system. The role

of f as a rule of evolution is to be imagined as follows. If x ∈ X, then f(x) is viewed

as the “new position” of x after one unit of time, f(f(x)) as the “new position” of x

after two units of time, and so on. For brevity, we denote f ◦ f by f 2. More generally,

for n ∈ N, we denote by fn, the n-fold composition of f with itself. If x ∈ X, then

(according to the context) the set or sequence {x, f(x), f 2(x), f 3(x), . . .} is called the

orbit of x under the action of f . Note that time is measured by N in discrete units

(hence the adjective discrete before dynamical systems), and that the rule f is assumed

to be invariant in time.

Study of asymptotic behavior: this is the investigation of questions like: what can

be said about the orbit {x, f(x), f 2(x), f 3(x), . . .} as n → ∞? Asymptotic analysis is

a unique feature of the theory, distinguishing it from many of its siblings, for instance,

from the theory of Group Actions. It should be mentioned that the term chaos first

appeared in the literature (in the work of Li and Yorke [50] in 1975) purely in connection

with the asymptotic aspects of orbits. In fact we feel like having a few more lines of

explanation. Assume that X is a compact metric space with a metric d, and let

f : X → X be continuous. A subset S ⊂ X with at least two points is called a

scrambled set (see also [7], [15], [45], [53]) for f if for every pair of distinct points

x, y ∈ S, one has that

lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) > 0.

The condition given above roughly means that, the orbits of x and y interact with
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each other in a complicated way, coming arbitrarily close together and then moving

away infinitely often, like a pair of fighting lovers. The presence of such pairs of points

certainly indicates some kind of complexity in the system. Originally, Li and Yorke

introduced the term chaos in the context of their work on interval maps. In modern

language, any compact dynamical system (X, f) possessing an uncountable scrambled

set is said to have Li-Yorke chaos. In Chapter 2, we deduce that any transitive

cellular automata is Li-Yorke chaotic.

Recurrence and other pointwise notions: the idea of a point x returning or

coming arbitrarily close to itself after many iterations by the rule f , is captured by

various definitions, see Section 1.4. A significant part of our work on cellular automata

deals with such points. Periodic point is the simplest where one has that fn(x) = x

for some n ∈ N. In the same box, one has minimal points, recurrent points and non-

wandering points (see also [19]). Even in very complex systems such points may be

found in abundance, and this can be perceived as an indication that, in many situations

what appears to be utter disorder is perhaps a mixture of various regularities at a

deeper level. Sometimes pointwise notions have a global effect also, as is exemplified

by the points having dense orbits. The existence of such points is closely related to the

indecomposability of the system.

Devaney chaos [28]: it is one of the most popular notions of chaos persisting in

the theory. It implies Li-Yorke chaos [38] but not the other way. The ingredients of

Devaney chaos are transitivity, sensitivity and denseness of periodic points - a rigorous

definition is given later. Transitivity [42] is basically the indecomposability of the

system, equivalent to the existence of a dense orbit in many natural settings, whereas

sensitivity [33] roughly means that even small differences between two starting points

in the phase space can lead to large deviations under repeated iterations by the rule

f . Theory of sensitivity is relevant to experimental scientists, where one has to worry

whether small errors in the initial conditions can be ignored or not in the long run.

Many systems which are complex in an intuitive sense satisfy the definition of Devaney

chaos. Another reason for the popularity of this notion of chaos is the sensational

discovery that sensitivity is redundant in the definition [8]. We give a proof for this
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result in Section 1.7. Also, we have a few results on transitivity and sensitivity, around

the corner.

Some classes of dynamical systems widely studied in the literature are:

• Interval maps [4], [19], [60].

• Subshifts [51].

• Rational maps of the complex sphere [11].

• Maps on the torus [5].

• Cellular automata [43], [49], [62].

Among these, the best-understood is perhaps the first one, or more precisely, the class

of continuous maps of the closed unit interval [0,1]. Connectedness and the available

linear order of the phase space are the keys controlling the dynamical behavior of maps

on [0,1]. Even as simple a tool as the Intermediate Value Theorem can do magics on

the dynamics there. Sarkovski’s Theorem (c.f. [19]) which gives the set of periods

for interval maps, and the result that transitivity implies Devaney chaos (for interval

maps) [13] , are examples of this magic. Among the classes listed above, the least

understood is perhaps that of cellular automata. We do not have a characterization

even for Devaney chaos in the land of cellular automata.

1.2 An elementary amusement

Before we move onto more involved topics, let us have an elementary amusement con-

cerning the orbits of the logistic map. The map x 7→ rx(1 − x) on [0,1] for a fixed

parameter r ∈ [0, 4] is called the logistic map. The family of logistic maps has been

under scrutiny in connection with the phenomena known as bifurcation, see [28], [36].

Exercise: Let f : [0, 1] → [0, 1] be f(x) = rx(1 − x), where r ∈ [2, 4] ∩ Q. Let

a + b
√

k ∈ [0, 1], where a, b ∈ Q, a ≤ 0 < b and k ∈ N is square-free. Then all terms in

the f -orbit of a + b
√

k are distinct.
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Solution:

f(a + b
√

k) = r(a + b
√

k)(1− a− b
√

k)

= r(a− a2 − b2k) + r(b− 2ab)
√

k

= a1 + b1

√
k, say.

Clearly, a1, b1 ∈ Q. Since a ≤ 0 < b, we have a1 = r(a − a2 − b2k) < ra and

b1 = rb(1− 2a) ≥ rb. Inductively, fn(a+ b
√

k) = an + bn

√
k for some an, bn ∈ Q, where

an+1 < ran ≤ 0 < rbn ≤ bn+1. Hence, fn(a + b
√

k) 6= fm(a + b
√

k) for n 6= m, since k

is square-free.

Amusement: All steps of the solution except the last are true for any k ∈ N. Therefore,

we can explicitly construct a rational approximation to
√

k for any k ∈ N as follows.

Let a0, b0 ∈ Q be such that a0 ≤ 0 < b0 and a0 + b0

√
k ∈ [0, 1]. For example,

take a0 = 0, b0 =
1

k
or a0 = −[integer part of

√
k], b0 = 1. Recursively define an+1 =

4(an−a2
n−b2

nk), bn+1 = 4(bn−2anbn). Then, an, bn ∈ Q for every n (if a0, b0 are integers,

then so are an, bn for all n). Also observe that an + bn

√
k = fn(a0 + b0

√
k), where

f(x) = 4x(1−x). Hence an + bn

√
k ∈ [0, 1] for every n and therefore

an

bn

+
√

k ∈ [0,
1

bn

]

for every n. Since bn+1 ≥ 4bn, we have that
−an

bn

→
√

k exponentially.

Problem: Can our reader think of similar constructions of rational approximations

using dynamical systems, say, to roots of polynomials?

1.3 Being factors of each other

In the family of logistic maps mentioned above, are all the maps different in their

dynamical behavior? This kind of classification problems are often highly non-trivial,

and beyond our scope. But we would like to make it precise what it means to say that

two dynamical systems are same or that they are different.

Topological conjugacy: this is the notion of equivalence for two dynamical systems.

Let (X, f), (Y, g) be dynamical systems. If there is a continuous surjection h : X → Y

such that h ◦ f = g ◦ h, then we say that (Y, g) is a factor of (X, f), or simply that g
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is a factor of f . If in addition, h is a homeomorphism, then the two systems (or simply

f and g) are said to be topologically conjugate. Being topologically conjugate is

an equivalence relation on the class of all dynamical systems, and systems in the same

equivalence class have the same dynamical behavior and for all practical purposes they

are considered to be the same.

Topological Dynamics has certain similarities to Ergodic Theory [67]. In the setting of

Ergodic Theory, examples of non-equivalent “dynamical systems” which are “factors”

of each other are given in the recent book ([32], p.157) using the polished tool “Rudolf’s

counterexamples machine”. Below we consider a similar task in Topological Dynamics.

Let (X, f) and (Y, g) be two dynamical systems. When (Y, g) is only a factor of (X, f),

not all properties of f are inherited by g. Now, consider the situation where f and g

are factors of each other. Does it follow that f and g have the same dynamical nature?

In other words, does it follow that f and g are topologically conjugate? We show that

the answer is no.

Here, our careful reader might ask: does one come across the situation where two

dynamical systems are factors of each other, often? We point out how abundant such

pairs are. Let f, g : X → X be continuous. Then, trivially, g ◦ (f ◦ g) = (g ◦ f) ◦ g and

f ◦ (g ◦ f) = (f ◦ g) ◦ f . Therefore, if f and g are surjective, then f ◦ g and g ◦ f are

factors of each other! Inductively one has the following:

Lemma 1.3.1. Let g1, g2, . . . , gn : X → X be continuous surjections and let α, β

permutations on {1, 2, . . . , n}. If α and β differ by a cyclic permutation, then gα(1) ◦
gα(2) ◦ · · · ◦ gα(n) and gβ(1) ◦ gβ(2) ◦ · · · ◦ gβ(n) are factors of each other.

It follows that if f, g : X → X are homeomorphisms, then f◦g and g◦f are dynamically

the same (topologically conjugate), even though f ◦ g 6= g ◦ f in general. That is, in a

“dynamical” sense, the group of self-homeomorphisms of X is “abelian”, which looks

pleasing.

Now, we show that for continuous self-maps of closed interval [0,1], the property of

‘being factors of each other’ is indeed far from equivalent to that of ‘being topologically
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conjugate’, by constructing examples. Observe the following two simple facts which we

will be using:

Lemma 1.3.2. (a) For a self-homeomorphism h of [0,1], one must have h({0, 1}) =

{0, 1}.
(b) If (X, f) and (Y, g) are topologically conjugate via the homeomorphism h : X → Y ,

and if x ∈ X has k pre-images under f , then h(x) ∈ Y has k pre-images under g.

Theorem 1.3.3. For each natural number n ≥ 2, there exist distinct continuous sur-

jections f1, f2, . . . , fn : [0, 1] → [0, 1] such that any two are factors of each other but no

two distinct ones are topologically conjugate.

Proof. Fix n ≥ 2. Choose points {aij : 1 ≤ j ≤ i ≤ n} in (0, 1) such that 0 < a11 <

a21 < a22 < · · · < an1 < an2 < · · · < ann < 1. One can find continuous functions

g1, g2, . . . , gn : [0, 1] → [0, 1] which satisfy:

(i) gi(1) = 1,

(ii) g−1
i (0) = {ai1, ai2, . . . , aii},

(iii) gi(x) < a11 for x ∈ [0, aii],

(iv) the graph of gi is linear on [aii, 1].

Note that, these conditions imply that if A is a finite subset of [a11, 1], then |g−1
i (A)| =

|A| for every i. Let f1 = g1◦g2◦· · ·◦gn, f2 = g2◦· · ·◦gn◦g1, . . . , fn = gn◦g1◦g2◦· · ·◦gn−1.

Then, by Lemma 1.3.1, any two of f1, . . . , fn are factors of each other. Now, note that

f−1
i (1) = {1} and |f−1

i (0)| = i for every i. Hence, it follows from Lemma 1.3.2 that fi

and fk are not topologically conjugate for 1 ≤ i < k ≤ n.

Problem: Is it possible to produce an infinite/uncountable family of continuous self

maps of [0,1] such that any two of them are factors of each other but no two distinct

members are topologically conjugate?

1.4 Definitions and other basic material

Below we list some more definitions, and a few known results that we need to proceed

further. In this section, if a result is left alone without any reference or proof, it means
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the result is elementary and can easily be proved. In other cases, we provide either a

reference or a proof, choosing the easier option.

Let (X, f) be a dynamical system. A subset Y ⊂ X is said to be f-invariant if

f(Y ) ⊂ Y . Note that for any x ∈ X, the f -orbit of x, which we denote by Of (x), is

f -invariant. For Y ⊂ X and n ∈ N, f−n(Y ) is the set {x ∈ X : fn(x) ∈ Y }.

Let (X, f) be a dynamical system. A point x ∈ X is said to be:

1. periodic if fn(x) = x for some n ∈ N [the smallest such n is the period of x].

2. eventually periodic if fn+k(x) = fk(x) for some n, k ∈ N [note that this is

equivalent to saying that Of (x) is finite].

3. recurrent if fnk(x) → x for some increasing sequence (nk) of natural numbers.

4. non-wandering if for any open set U containing x, there is n ∈ N such that

U ∩ f−n(U) 6= ∅.

Let P (f), E(f), R(f), and Ω(f) denote respectively the sets of all periodic points,

all eventually periodic points, all recurrent points and all non-wandering points of f .

Note that among these sets, Ω(f) is a closed set whereas the other sets are not closed

in general [19]. In any dynamical system (X, f) we have P (f) ⊂ E(f) and P (f) ⊂
R(f) ⊂ Ω(f).

Let (X, f) be a dynamical system. We say f is:

1. transitive if for any two non-empty open sets U, V ⊂ X, there is n ∈ N such

that fn(U) ∩ V 6= ∅.

2. totally transitive if fn is transitive for every n ∈ N.

3. weak mixing if f × f on X ×X is transitive.

4. mixing if for any two non-empty open sets U, V ⊂ X, there is n ∈ N such that

fk(U) ∩ V 6= ∅ for every k ≥ n.
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Proposition 1.4.1. [31] Let (X, f) be a dynamical system. Then, f is weak mixing if

and only if for any two non-empty open sets U, V ⊂ X, the set {n ∈ N : fn(U)∩V 6= ∅}
is thick (that is, it contains arbitrarily large blocks of consecutive numbers).

Proposition 1.4.2. For all systems, mixing ⇒ weak mixing ⇒ total transitivity ⇒
transitivity.

Proposition 1.4.3. For a dynamical system (X, f), the following are equivalent:

(1) f is transitive.

(2) For any non-empty open set V ⊂ X,
⋃∞

n=0 f−n(V ) is dense in X.

(3) Any f -invariant set Y ⊂ X is either dense or nowhere dense in X.

For a dynamical system (X, f), let D(f) = {x ∈ X : the f -orbit of x is dense in X}.
The relation between D(f) and transitivity is as follows:

Proposition 1.4.4. If D(f) 6= ∅ and if X has no isolated points, then f is transitive.

In the other direction, if f is transitive and if X is a compact metric space, then D(f)

is a dense Gδ subset of X.

Proof. The first part is left as an exercise. Now, suppose that f is transitive and X is

a compact metric space. Let {Bk : k ∈ N} be a countable base of (non-empty) open

sets. Let Uk =
⋃∞

n=0 f−n(Bk). Then, Uk is open. Since, f is transitive, Uk is dense in

X. Put U =
⋂

k∈N Uk. Then U is a Gδ set. By Baire Category Theorem, U is dense in

X. It is a matter of direct checking that x ∈ U if and only if the orbit of x visits every

Bk. Since {Bk : k ∈ N} is a base, it follows that U = D(f).

Proposition 1.4.5. Let (X, f) be totally transitive. Then, D(fn) = D(f) for every

n ∈ N.

Sets which are minimal in a natural sense among f -invariant sets are important in the

theory, see [20] and references therein. The formal definition runs as follows. Let (X, f)

be a dynamical system. A subset M ⊂ X is called a minimal set for f if M is

(i) non-empty,

(ii) closed,

(iii) f -invariant, and
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(iv) there is no proper subset of M satisfying (i), (ii) and (iii).

It may be noted that (iv) could be replaced by (iv’): for any x ∈ M , the f -orbit of x

is dense in M .

In a dynamical system (X, f), if the closure of the f -orbit of a point x ∈ X is a minimal

set, then x is called a minimal point. It is a folklore result that x ∈ X is a minimal

point if and only if for every neighbourhood U of x, the set {n ∈ N : fn(x) ∈ U} is

syndetic (which means, an infinite set with bounded gaps). If the closure of the f -

orbit of a minimal point is the whole of X, that is if X itself is a minimal set for f , then

(X, f) is called a minimal system or f is called a minimal map. It is easy to see

that every minimal map is syndetically transitive, where f is said to be syndetically

transitive if for every non-empty open sets U, V ⊂ X, the set {n ∈ N : fn(U)∩ V 6= ∅}
is syndetic.

Let (X, f) be a dynamical system, where assume that X is a compact metric space. By

an abuse of terminology, we say f is equicontinuous [2], [54] if the family {fn : n ∈ N}
is equicontinuous in the usual sense. On the other extreme we have the notion of

sensitivity. An element x ∈ X called a point of sensitivity for f if x fails to be a

point of equicontinuity for the family {fn : n ∈ N}. That is, x is a point of sensitivity

if there is some δ > 0 with the property that for any neighbourhood U of x, there exists

n ∈ N such that diam[fn(U)] > δ.

Let S(f) and Sδ(f) denote respectively, the set of all sensitive points of f and the set

of all δ-sensitive points of f . Note that S(f) =
⋃

δ>0 Sδ(f). If Sδ(f) = X for some

δ > 0, then f is said to be sensitive. We remark that it can happen that S(f) = X

but Sδ(f) 6= X for any δ > 0. We say f is maximally sensitive if for every positive

δ < diam[X], Sδ(f) = X. Also observe that S(fn) = S(f) for every n ∈ N.

Proposition 1.4.6. For any dynamical system (X, f), where X is a compact metric

space, weak mixing implies maximal sensitivity.

We have two main notions of chaos when (X, d) is a compact metric space and f : X →
X is continuous: Li-Yorke chaos and Devaney chaos, the first bieng defined already.
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(X, f) is said to be Devaney chaotic if f is transitive, sensitive and has a dense set

of periodic points.

Theorem 1.4.7. [8] Let (X, f) be a dynamical system, where X is an infinite compact

metric space. If f is transitive and has a dense set of periodic points, then f is sensitive

and hence Devaney chaotic.

A more general version of this result is given in Section 1.7.

Theorem 1.4.8. [13] Any transitive f : [0, 1] → [0, 1] is Devaney chaotic.

Theorem 1.4.9 (c.f. [42], [60]). Any transitive f : [0, 1] → [0, 1] possesses a periodic

point of period 6.

We conclude this section by stating the classic Theorem of Sarkovski (c.f. [19]). The

Sarkovski ordering of natural numbers is as below:

3 B 5 B 7 B · · ·B 2.3 B 2.5 B 2.7 B · · ·B 22.3 B 22.5 B 22.7 B · · ·
B 2n.3 B 2n.5 B 2n.7 B · · ·B 2n+1.3 B 2n+1.5 B 2n+1.7 B · · ·B · · ·B 23 B 22 B 2 B 1.

Theorem 1.4.10 (Sarkovski’s Theorem). Let f : [0, 1] → [0, 1] be continuous. Let

n,m ∈ N such that n B m in the ordering above. If f has a periodic point of period n,

then f has a periodic point of period m.

For instance, the Theorem says that the existence of period 3 implies the existence of

all other periods for an interval map. Moreover, since Sarkovski’s ordering is a total

order, it follows that only countably many subsets of N can arise as the set of periods

of interval maps.

1.5 Sensitivity on [0,1]

Let f : [0, 1] → [0, 1] be continuous throughout this section. Recall from the previous

section that D(f), S(f), P (f) and E(f) denote respectively, the set of points with

dense orbit, the set of sensitive points, the set of periodic points and the set of eventually

periodic points. It is known (for interval maps) that the denseness of D(f) implies that

of P (f), and that D(f) ⊂ S(f) [∵ Theorem 1.4.8]. Below we show, among other things,

that the denseness of S(f) implies that of E(f).
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Theorem 1.5.1. If S(f) is dense in [0, 1] (in particular, if f is sensitive), then both

E(f) and its complement, E(f)c, are dense in [0, 1].

Proof. Recall that S(fn) = S(f) for every n ∈ N. We show E(f) is dense. Let

J ⊂ [0, 1] be an open interval. Choose x ∈ J ∩ S(f). Then, there exist δ > 0 and

infinitely many n such that diam[fn(J)] > δ. Since fn(J)’s are intervals, we can find

r, s ∈ N such that

f r(J) ∩ f r+s(J) 6= ∅.

Since S(f) is dense, f cannot collapse an interval to a singleton. Therefore by induction,

f (k−1)s(f r(J)) ∩ fks(f r(J)) 6= ∅ for k = 1, 2, . . . .

Put g = f s and L =
⋃∞

k=0 gk[f r(J)]. Then L is an interval and g(L) ⊂ L.

Case 1 : gn(y) = y for some y ∈ L and n ∈ N. Then, y = fks+r(z) for some z ∈ J and

z ∈ E(f).

Case 2 : gn(y) 6= y for every y ∈ L and n ∈ N. Then, either g(y) > y for every y ∈ L

or g(y) < y for every y ∈ L. It follows that the g-orbit of any point of L is a monotone

sequence and hence converges to a point of L \ L, which must be a fixed point of g.

Hence L cannot contain any sensitive point, contradicting our assumption that S(f) is

dense.

Now we show E(f)c is dense. If E(f)c is not dense, there is a closed interval J contained

in E(f). For m,n ∈ N, define Am,n = {x ∈ J : fm+n(x) = fm(x)}, which is a closed set.

Therefore, each Am,n is closed and J =
⋃

m,n∈NAm,n. By Baire Category Theorem, for

at least one pair (m,n), Am,n contains a non-trivial interval, say L. Then, fm(L) is also

a non-trivial interval (f cannot collapse intervals since S(f) is dense) and fn restricted

to L is the identity map. Therefore, fn has no point of sensitivity in the interior of L,

and hence S(fn) = S(f) cannot be dense. Thus we have a contradiction.

Question: Let f : [0, 1] → [0, 1] be continuous. If both E(f) and E(f)c are dense,

does it follow that S(f) is also dense?

On a general compact space the analogue of the above Theorem need not hold:
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Example 1.5.2. Consider X = [0, 1]× S1, where S1 is the unit circle. Let t : [0, 1] →
[0, 1] be the tent map t(x) = 1 − |1 − 2x| and g : S1 → S1 be an irrational rotation

g(e2πiθ) = e2πi(θ+α) for some fixed irrational α. Since E(g) = ∅, we get that E(t×g) = ∅.
But t× g is sensitive because t is sensitive.

By imitating the second part of the proof of Theorem 1.5.1, it can be shown that if

S(f) is dense for a dynamical system (X, f), where X is any compact metric space,

then E(f)c is dense.

S(f) can be dense even when f is not surjective.

Example 1.5.3. Consider the map f : [0, 1] → [0, 1] defined by

f(x) =





2x, if 0 ≤ x ≤ 1
4

1− 2x, if 1
4

< x ≤ 1
2

x− 1
2
, if 1

2
< x ≤ 1.

Any non-trivial interval is mapped into [0, 1
2
] as a non-trivial interval. And f restricted

to [0, 1
2
] is a copy of the tent map x 7→ 1 − |1 − 2x| (which is known to be sensitive).

Therefore f is sensitive on [0, 1].

Surjectivity of f is a necessary condition for D(f) to be dense. Even with surjectivity,

the denseness of S(f) does not imply the denseness of D(f). This can be seen by slightly

modifying the last example. On the region 1
2

< x ≤ 1 redefine f as f(x) = 2x − 1.

Then f is surjective and sensitive but it can be easily argued that D(f) = ∅.

For interval maps we know that, period 3 implies Li-Yorke chaos [50], and that tran-

sitivity of f implies the existence of period 3 for f 2 [∵ Theorem 1.4.9]. It may be

interesting to investigate the possible relation between sensitivity and period 3. A

combination of existing results yields the following answer.

Proposition 1.5.4. (i) If Sδ(f) has non-empty interior for some δ > 0, then fn has

a periodic point of period 3 for some n ∈ N.
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(ii) Even if f has a periodic point of period 3, it can happen that Sδ(f) has empty

interior for every δ > 0.

Proof. (i) Since Sδ(f) has non-empty interior, by the result in ([60], p.22), there exist

closed subintervals I0, I1, . . . , In−1 of [0, 1] such that f(Ij) = Ij+1(mod n) and f restricted

to
⋃n−1

j=0 Ij is transitive. It follows that fn : I0 → I0 is transitive. Then, by Theorem

1.4.9, f 2n has a point of period 3.

(ii) We give a continuous map f such that f has a periodic point of period 3, but Sδ(f)

has empty interior for every δ > 0. Our map f is piecewise linear having three linear

pieces with values at the turning points specified by f(0) = 1
2
, f(1

4
) = 1, f(3

4
) = 1 and

f(1) = 0. That is,

f(x) =





2x + 1
2
, if x ∈ [0, 1

4
],

1, if x ∈ [1
4
, 3

4
],

4(1− x), if x ∈ [3
4
, 1].

Clearly, 0 7→ 1
2
7→ 1 7→ 0 is a periodic orbit of period 3.

Now, f is a constant map on [1
4
, 3

4
]. Therefore, any sensitive point of f must be con-

tained in [0, 1
4
]∪ [3

4
, 1]. Let if possible, δ > 0 be such that Sδ(f) has non-empty interior.

Then, by ([60], p.22), there exist closed subintervals I0, I1, . . . , In−1 of [0, 1] such that

f(Ij) ⊂ Ij+1(mod n) and f restricted to
⋃n−1

j=0 Ij is δ-sensitive. By the observation above,

each Ij is contained in [0, 1
4
] ∪ [3

4
, 1]. Next, note that the slope of the graph of f is 2

on [0, 1
4
] and -4 on [3

4
, 1]. Therefore, for any Ij, we have |f(Ij)| ≥ 2|Ij|. Thus we get

|fn(I0)| ≥ 2n|I0|, and hence fn(I0) is not contained in I0, a contradiction. Therefore,

for any δ > 0, the set of δ-sensitive points of f must have empty interior.

1.6 Transitive maps on R

In 1937, Besicovitch gave a construction of a transitive homeomorphism of the plane

R2 (c.f. [59]). Other constructions of transitive maps on non-compact manifolds are

available in [3], [24] and [57]. Still, such constructions are either not very common or

not very easy. Below we demonstrate how to construct transitive maps on R, arbitrarily
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close to the identity map or the reflection map x 7→ −x.

Lemma 1.6.1. A continuous map f : R → R satisfying the following five properties

is transitive:

(1) The set C = {· · · < c−1 < c0 < c1 < · · · } of critical points of f is bounded neither

above nor below,

(2) sup{ck+1 − ck : k ∈ Z} is finite,

(3) The set of periodic points of f has a subset B = {· · · < b−1 < b0 < b1 < · · · } such

that f(B) = B and ck < bk < ck+1 for every k ∈ Z,

(4) there is α > 2 such that |f ′(x)| ≥ α for every x ∈ R \ (B ∪ C),

(5) [ci−1, ci+2] ⊂ f([ck, ck+1]) whenever f(bk) = bi.

Proof. If J ⊂ [ck, ck+1] is a non-degenerate interval, then (2) and (4) imply that there

is a natural number n such that fn(J) contains at least two critical points. Hence, to

prove transitivity, it is enough to show the following: given k ∈ Z, there are n1, n2 ∈ N
such that [ck−1, ck] ⊂ fn1([ck, ck+1]) and [ck+1, ck+2] ⊂ fn2([ck, ck+1]).

Consider [ck, ck+1] for some k ∈ Z. If bk is of period l, then by the choice of B and the

property (5), we see that [ck−1, ck+2] ⊂ f l([ck, ck+1]). Take n1 = n2 = l.

Example 1.6.2. Consider the two functions f1, f2 : R→ R defined by:

f1(n) =





n, if n is even

n + 4, if n ≡ 1(mod 4)

n− 4, if n ≡ 3(mod 4)

and the graph of f1 is linear on [n, n + 1] for each n ∈ Z;

f2(n) =





−n, if n is even

−n + 4, if n ≡ 1(mod 4)

−n− 4, if n ≡ 3(mod 4)

and the graph of f2 is linear on [n, n + 1] for each n ∈ Z.

It is easy to see that f1 and f2 satisfy the conditions of the Lemma (C = 2Z + 1 and

take B = 2Z). Hence both are transitive.
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The “scaled” versions of f1 and f2 approximate the identity map and the reflection

map respectively.

1.7 More on transitivity

Some recent works (see [2], [37], [39], and references therein) on transitive maps involve

associating interesting subsets of natural numbers (IP sets, syndetic sets, sets with

positive upper density, etc.) to dynamical systems. If (X, f) is a transitive dynamical

system and if U, V are non-empty open subsets of X, one considers the set N(U, V ) =

Nf (U, V ) := {n ∈ N : fn(U) ∩ V 6= ∅}. The basic idea is that certain stronger forms

of transitivity can be characterized or distinguished in terms of these N(U, V )’s. In

fact, an old result of Furstenberg [31] already says that f is weak mixing if and only if

N(U, V ) contains arbitrarily large blocks of consecutive numbers for every non-empty

open U, V ⊂ X.

Some simple observations about N(U, V )’s are given in the Proposition below - probably

they are already known, but we could not find a reference.

Proposition 1.7.1. Let f : X → X be transitive. Then,

(1) For every non-empty open U ⊂ X and every k ∈ N(U,U), there exist infinitely

many arithmetic progressions of length 3 and common difference k, contained in N(U,U).

(2) For every non-empty open U ⊂ X and every k ∈ N(U,U), there exists a sequence

(an)n∈N ⊂ N(U,U) such that a1 = k and a1 + a2 + · · ·+ an ∈ N(U,U) for every n ∈ N.

(3) For every non-empty open U0, U1, . . . , Un ⊂ X there exists non-empty open W ⊂ X

such that N(W,W ) ⊂ ⋂n
i=0 N(Ui, Ui). In particular,

⋂n
i=0 N(Ui, Ui) 6= ∅.

Proof. Let U ⊂ X, k ∈ N(U,U) and let V = U ∩f−k(U). Then, N(V, V )−k, N(V, V )

and N(V, V ) + k are contained in N(U,U). This proves (1). A repeated application

of this idea gives (2). To obtain (3), observe that using transitivity, inductively we

can find j1, j2, . . . jn ∈ N such that U0 ∩ f−j1(U1) ∩ · · · ∩ f−jn(Un) 6= ∅. Take W =

U0 ∩ f−j1(U1) ∩ · · · ∩ f−jn(Un).

The third statement of the Proposition says that if U is varied over all non-empty

open subsets of X, then N(U,U)’s form a filter-base [see some Topology book for the
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definition of a filter ]. Hence we can talk about the filter associated to a transitive

system. It can be seen that if (Y, g) is a factor of (X, f), then (g is also transitive, and)

the filter associated to g is contained in the filter associated to f . Therefore the filter

associated to a transitive system is a dynamical invariant. To our knowledge these

filters have not been studied in the literature.

Question: Is there anything interesting about these filters?

For n ∈ N, let Xn = X × · · · ×X︸ ︷︷ ︸
n−times

and fn = f × · · · × f︸ ︷︷ ︸
n−times

.

Proposition 1.7.2. Let (X, f) be a transitive system. Then, for every n ∈ N,

(1) The filter associated to (Xn, fn) is the same as the filter associated to (X, f).

(2) (Xn, fn) is non-wandering (that is, all points in Xn are non-wandering).

(3) (Xn, fn) has a dense Gδ set of recurrent points, whenever X is a complete metric

space.

Proof. The first two statements follow from part (3) of the previous Proposition. To

get (3), use Proposition 2.8.2 from Chapter 2.

Now, let (X, d) be a compact metric space and let XH be the space of all non-empty

compact subsets of X, with the Hausdorff metric dH . If f : X → X is continuous,

then it induces a continuous map fH : XH → XH in the natural way. Comparing the

dynamics of f and fH has become fashionable among some researchers recently. One

interesting thing is that the transitivity of f need not imply that of fH . In fact, fH is

transitive if and only if fH is weak mixing if and only if f is weak mixing [10]. But we

have the following:

Proposition 1.7.3. If f : X → X is transitive, then fH is non-wandering and hence

has a dense Gδ set of recurrent points.

Proof. Consider a collection U = {U0, U1, . . . , Un} of non-empty open subsets X. Let

UH = {K ∈ XH : K ⊂ ⋃n
i=0 Ui and K ∩ Ui 6= ∅ for every i}. Sets of the form UH form

a base for the topology on XH . Given a basic open set UH , by part (3) of Proposition

1.7.1, we can find n ∈ N such that U ∩ f−n(U) 6= ∅ for every U ∈ U. Let xU ∈ U be
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such that fn(xU) ∈ U . Let A = {xU : U ∈ U}. Then, A, fn
H(A) ∈ UH and hence fH is

non-wandering. Now, appeal to Proposition 2.8.2.

Question: What are the similarities between the dynamics of (Xn, fn) and that of

(XH , fH)?

Question: Is there any use in considering induced maps of still higher levels, such as

(fH)H? [here, it may be noted that fH is a factor of (fH)H via the set union map from

(XH)H to XH ].

Now, let (X, d) be a compact, connected metric space. Consider the following closed

subspaces of XH :

CkX := {A ∈ XH : A has at most k connected components}, k ∈ N.

These spaces have been objects of interest in the hyperspace theory [52]. For a continu-

ous map f : X → X, let fk : CkX → CkX be the induced map given by fk(A) = f(A).

Note that this is well-defined. We show that it is impossible to induce transitive maps

on certain CkX’s.

Proposition 1.7.4. Let X be a compact subspace of R2 such that X intersection the

closed unit disc equals [−1, 1]. Let f : X → X be continuous. Then for every k ∈ N,

fk : CkX → CkX fails to be transitive.

Proof. Fix k. Suppose that fk is transitive and we will find a contradiction. Let

A ∈ CkX be such that the fk-orbit of A is dense. Then, it is easily argued that A

must have exactly k components and that no component of A is a singleton. Let ε > 0

be very small and let B =
⋃k

i=1 Ji, where Ji = [4iε, (4i + 2)ε]. Then, B ∈ CkX. Find

n < m such that dH(B, fn(A)) < ε and dH(B, fm(A)) < ε. Then, by the choice of B,

we must have fn(A) ∩ fm(A) 6= ∅. Therefore we can make the following assumption:

there are A ∈ CkX and n ∈ N such that the fk-orbit of A is dense and A∩ fn(A) 6= ∅.

Choose an element b ∈ X such that fn(b) 6= b. Let α = 1
3
d(b, fn(b)). Let β ∈ (0, α)

be such that d(b, c) ≤ β implies d(fn(b), fn(c)) < α for every c ∈ X. Now for some

m ∈ N, dH({b}, fm
k (A)) < β. Then, for every a ∈ A, d(b, fm(a)) < β < α and
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d(fn(b), fm+n(a)) < α. Hence fm(A) ∩ fm+n = ∅. This contradicts the previous

assumption that A ∩ fn(A) 6= ∅.

Note that [0, 1], S1, or more generally trees and graphs are homeomorphic to the space

mentioned in the hypothesis of the Proposition. Also, in the proof we used only the

fact that [−1, 1] sits inside the space in a particular way. So the above result extends to

more spaces, not necessarily embedable in R2. We stop our discussion on hyperspace

here.

Next, recall the definition of syndetically transitive map from Section 1.4, where we

noted that any minimal map is syndetically transitive.

Proposition 1.7.5. Let (X, f) be a dynamical system where X is a compact metric

space. If f is syndetically transitive, then f is minimal or sensitive (may be both).

Proof. Let d be an admissible metric for X. Assume f is not minimal and we will

show that f is sensitive. Let p be a point whose orbit is not dense. Find a δ- ball

B(q, δ) for some q ∈ X and some δ > 0 such that the orbit of p does not enter

B(q, δ). Let V = B(q, δ/4). Now, given any non-empty open set U ⊂ X, since

{n ∈ N : fn(U) ∩ V 6= ∅} is syndetic, there exists k ∈ N such that for each n ∈ N,

fn+j(U) ∩ V 6= ∅ for some j ∈ {1, 2, . . . , k}. By transitivity and continuity of f , find

w ∈ U and n ∈ N such that d(fn+j(w), f j(p)) < δ/4 for every j ∈ {1, 2, . . . , k}. Let

y ∈ U and j ∈ {1, 2, . . . , k} be such that fn+j(y) ∈ V . Then it follows from triangle

inequality that d(fn+j(y), fn+j(w)) > δ/2. Since y, w ∈ U , this proves sensitivity.

Recall that f is said to be equicontinuous when the family {fn : n ∈ N} is equicontin-

uous.

Corollary 1.7.6. If X is a compact metric space and f : X → X syndetically transi-

tive, then f is either sensitive or equicontinuous.

Proof. It is known that a minimal system on a compact metric space is either sensitive

or equicontinuous [6].

Many familiar systems such as irrational rotations, shift map, tent map, are indeed

syndetically transitive. It is easy to see that transitivity together with denseness of
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periodic points gives syndetical transitivity. Also, a minimal system containing a peri-

odic orbit must be finite. Hence from Proposition 1.7.5, we are able to conclude that

in Devaney’s definition of chaos, sensitivity is a redundant condition:

Theorem 1.7.7. Let f : X → X be continuous, where X is an infinite compact metric

space. If f is transitive and has a dense set of periodic points, then f is sensitive.

1.8 Topological properties of classes of maps

We conclude this chapter by making a few observations on the topological status of

certain classes of maps. Let X be a compact metric space, {Bn}n∈N be a countable base

of open balls for X and let C(X) = {continuous maps f : X → X} with supremum

metric. Then,

1. {transitive maps in C(X)}

=
⋂

n∈N

⋂

m∈N

⋃

k∈N
{f ∈ C(X) : fk(Bn) ∩Bm 6= ∅},

a Gδ set.

2. {totally transitive maps in C(X)}

=
⋂

p∈N

⋂

n∈N

⋂

m∈N

⋃

k∈N
{f ∈ C(X) : fpk(Bn) ∩Bm 6= ∅},

a Gδ set.

3. {weakly mixing maps in C(X)}

=
⋂

n1,n2∈N

⋂

m1,m2∈N

⋃

k∈N
{f ∈ C(X) : fk(Bnj

) ∩Bmj
6= ∅ for j = 1, 2},

a Gδ set.

4. {mixing maps in C(X)}

=
⋂

n∈N

⋂

m∈N

⋃

k∈N

∞⋂

j=k

{f ∈ C(X) : f j(Bn) ∩Bm 6= ∅},

an Fσδ set.
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5. {minimal maps in C(X)}

=
⋂

n∈N

⋃

m∈N

⋂

k∈N
{f ∈ C(X) : bk ∈

m⋃
j=0

f−j(Bn)},

an Fσδ set, where bk is the centre of the ball Bk.

6. {sensitive maps in C(X)}

=
⋃

m∈N

⋂

n∈N

⋃

k∈N
{f ∈ C(X) : diam[fk(Bn)] >

1

m
},

a Gδσ set.

7. {equicontinuous maps in C(X)}

=
⋂

m∈N

⋃

p∈N

⋂

Bn∈Bp

⋂

k∈N
{f ∈ C(X) : diam[fk(Bn)] ≤ 1

m
},

an Fσδ set, where Bp = {Bn : diam[Bn] < 1
p
}.

8. {maps in C(X) with all points non-wandering}

=
⋂

n∈N

⋃

k∈N
{f ∈ C(X) : fk(Bn) ∩Bn 6= ∅},

a Gδ set.

9. {maps in C(X) with periodic points dense}

=
⋂

n∈N

⋃

k∈N
{f ∈ C(X) : fk has a fixed point in Bn},

an Fσδ set.

10. {maps in C(X) with eventually periodic points dense}

=
⋂

n∈N

⋃

m∈N

⋃

k∈N
{f ∈ C(X) : fk has a fixed point in fm(Bn)},

an Fσδ set.



Chapter 2

Dynamics of cellular automata

“This elephant is like a pillar”, said the one who had hugged its leg.

“No, the elephant is like a broom”, said the one who had caught hold of its tail.

Cellular automata (CA) are described by different people using different languages.

So, it may be necessary to state in the beginning itself what is our point of view and

what we do not include in our perception. We work in a purely mathematical set up,

considering one-dimensional cellular automata as Topological Dynamical Systems.

We do not consider the computational aspects of CA. Nor do we consider the relation of

CA to formal language theory. Application of CA to other fields like Physics, Biology, is

also not our present concern. We shall not ponder over the visual patterns emerging in

the space-time diagram of the evolution of states. And, there will not be any empirical

study involving numerical parameters.

To get a flavor of certain aspects of CA that we exclude here, search for the works of

K.Culik, J.Kari, A.Salomaa, K.Sutner, S.Wolfram, etc.. About the history of CA, we

content ourselves by making two remarks: it all started with von Neumann in 1950s,

with some of his adventures on self-reproducing machines, and a solid mathematical

foundation for CA theory was laid down by G.A.Hedlund [35]. Details of historical and

mathematical developments of CA theory are described in the excellent surveys [43],

[49] and [62], which are, by the way, available on the internet.

30
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We confess that this dissertation does not contain any profound theory which might

advance the pace of CA research. We were less ambitious in our endeavors and the

nature of our work could be better phrased as “pushing forward inch by inch”. Almost

all our results are on well-established concepts already existing in the literature. For

the better or worse, formulating new definitions in order to have better perspectives

and new discoveries, is something we have refrained from in general.

By definition (one-dimensional) CA are maps on sequence spaces, expressible in terms of

local rules. Because of Hedlund’s characterization, CA can also be viewed as continuous

maps commuting with the shift map acting on sequences. Thus we have two approaches

for attacking problems. The local rule based approach is elementary, but requires a

lot of combinatorial skills and often gets out of hand. The shift based approach is

suitable for applying topological and measure theoretical techniques, but it is rather

like catching fish with a single sweep and is not always delicate enough to discover the

intricate structures. A combination of the two approaches seems to be profitable in

some situations.

As one starts investigating the Topological Dynamics of CA, sooner or later one realizes

that there is a lack of sufficient tools. One difficulty in CA theory is the complicatedness

created by the overlapping of the arguments when the local rule is being applied. Due

to this overlapping phenomena, generally CA do not yield to techniques involving

morphisms. One way to avoid this difficulty is to restrict one’s attention to a subclass

such as additive CA which are group homomorphisms. A second difficulty is that the

phase space of CA is homeomorphic to the Cantor set, a space with so much freedom,

and therefore this phase space (unlike as in the case of interval maps) puts almost no

restriction on the dynamical behavior.

Such difficulties are highly challenging and they constitute the intractability of CA.

Researchers have been striving for decades hoping to unveil the mysteries in the field.

Those who get attracted by the apparent simplicity of CA are soon forced to face a

universe of utter complexity often beyond their measure. At present, our knowledge

of CA is limited in many ways that even a simple question such as, whether every
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surjective CA has a dense set of periodic points or not, is open.

Our principle was to work things out from the scratch, and somehow we could extract

a number of significant results from very basic definitions. Some of the main results

on CA that we obtain in this chapter are: (1) any minimal set is nowhere dense and

of zero measure, (2) any orbit is either dense or nowhere dense, (3) transitivity implies

weak mixing and hence maximal sensitivity, (4) product of transitive CA is transitive,

(5) the set of periodic points of each period is finite if and only if all periodic points are

shift-periodic, (6) recurrent points are residual for surjective CA, and (7) all surjective

CA are semi-open.

2.1 The domain space of CA

Let A be a finite set with at least two points. Let us call the set A, the alphabet. For

n ∈ N, any w = w1 · · ·wn ∈ An will be called a word. The length of a word w will

be denoted by |w|. That is, |w| = n if w ∈ An. Let A+ :=
⋃∞

n=1 An be the collection

of all non-empty words over the alphabet A. Next, consider the infinite product AZ

which is the set of all two-sided sequences with entries in A. For x ∈ AZ and j ∈ Z,

xj will denote the jth coordinate of x. If j ≤ k are integers then x[j,k] means the word

xjxj+1 · · · xk. The space AZ can be given a topological structure as well as a measure

theoretical structure.

Topological structure on AZ: Consider A as a discrete space and provide AZ with

the product topology. Then, AZ becomes a compact, totally disconnected space without

isolated points, homeomorphic to the Cantor set. An admissible metric on AZ is given

by

d(x, y) =
∑

j∈Z

ρ(xj, yj)

2|j|

where ρ is the discrete metric on A. There is a natural countable base of clopen sets,

called cylinders, for the topology on AZ. A cylinder is a set of the form {x ∈ AZ :

x[−k,k] = w} where k ∈ {0, 1, 2, . . .} and w ∈ A2k+1. It will be denoted by Uw. In

particular if a ∈ A, then Ua = {x ∈ AZ : x0 = a}.
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Measure structure on AZ: The cylinders mentioned above generate the Borel σ-

algebra on AZ. There is a natural Borel probability measure µ on this Borel σ-algebra.

For any cylinder Uw, we have µ[Uw] = |A|−|w| and this determines uniquely the measure

of other Borel sets. Note that µ is simply the product measure obtained after assigning

the natural probability measure on subsets of A. The measure µ has full support, which

is to say µ[U ] > 0 for every non-empty open set U ⊂ AZ.

Group structure on AZ: Since the alphabet set A is finite and discrete, it does not

matter which finite set we choose. We may as well take A = {0, 1, . . . , m− 1} for some

integer m ≥ 2, and then AZ becomes an abelian group with coordinatewise addition

modulo m. In fact, this group structure is friendly with the topological structure on

AZ so that AZ becomes a topological group. Then, the Borel measure mentioned above

turns out to be the normalized Haar measure on the Borel σ-algebra of AZ. The group

structure on AZ is relevant only when we consider a special class of CA known as

additive CA.

2.2 The shift map

Usually denoted by the symbol σ, the shift map on AZ is defined by [σ(x)]j = xj+1

for x ∈ AZ and j ∈ Z. That is, it shifts any sequence x = · · ·x−2x−1x0x1x2 · · · to

the left by one position. This shift map is measure-preserving in the sense that

µ[σ−1(B)] = µ[B] for every Borel set B ⊂ AZ. This is equivalent to saying that

µ[σn(B)] = µ[B] for every Borel set B and every n ∈ Z, since σ is a homeomorphism.

Also, for every n ∈ Z \ {0}, σn is ergodic: if Y ⊂ AZ is measurable and if σn(Y ) = Y ,

then either µ[Y ] = 0 or µ[Y ] = 1.

If AZ is given the group structure mentioned above, then σ is also a group isomorphism.

For our possible need, some more well-known properties of the shift map are listed in

the Theorem below; there may be some redundancy among the statements.

Theorem 2.2.1. (1) σn is transitive for every n ∈ Z \ {0}.
(2) σ is mixing and hence weak mixing.

(3) {x ∈ AZ : Oσ(x) is dense in AZ} is a dense Gδ set with full measure.
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(4) σ has a dense set of periodic points. The set of points satisfying σn(x) = x has

cardinality |A|n.

2.3 Cellular automata

For us, CA always means one-dimensional CA, where d-dimensional CA is something

whose phase space is AZ
d
. There are two equivalent definitions for a CA. One definition

is in terms of the shift map and the other in terms of the “local rule”. That the two

definitions are equivalent, is Hedlund’s observation [35].

Definition 2.3.1. Any continuous map F : AZ → AZ which commutes with the shift

map (that is, F ◦ σ = σ ◦ F ) is called a cellular automata.

Definition 2.3.2. A function F : AZ → AZ is called a cellular automata if there

exist r ∈ N and a map f : A2r+1 → A known as the local rule such that [F (x)]j =

f(xj−r, . . . , x0, . . . , xj+r) for every x ∈ AZ and j ∈ Z.

In the above definition, r is referred to as the radius of the local rule of the CA. It

is known that any CA is equivalent to (more precisely, topologically conjugate to) a

CA (on possibly a different alphabet set) having a local rule of radius 1, see Alphabet

Lemma in section 2.9. Thus, practically it may suffice to consider CA whose local rules

are maps from A3 to A.

Note that the shift map itself is a CA as it trivially satisfies the first definition. A local

rule for σ is given by f : A3 → A, f(a, b, c) = c. As another example of a CA, consider

the map F : {0, 1}Z → {0, 1}Z defined by [F (x)]j = xj + xj+1 (mod 2). Observe that

this CA is also a surjective group homomorphism of {0, 1}Z. On the other hand, the

CA defined by [F (x)]j = 1 − xj on {0, 1}Z is not a group homomorphism. CA which

are also group homomorphisms are called additive CA (also known as linear CA in

some parts of the literature).

A map F : {0, 1, . . . , m−1}Z → {0, 1, . . . , m−1}Z is an additive CA if and only if F has

the expression [F (x)]j =
∑k

i=−k aixj+i (mod m′) for fixed quantities k ∈ {0, 1, 2, . . .},
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m′ ∈ {0, 1, 2, . . . , m} and ai ∈ Z. The dynamics of additive CA is reasonably well-

understood. Many of their properties could be characterized in terms of the coefficients

ai appearing in the linear expression [25], [55]. We will have occasion to deal with

additive CA in more detail in the next chapter.

2.4 Minimal sets

It is possible to deduce many dynamical properties of a CA just from the first definition,

where a CA is thought of as a continuous map commuting with the shift. Let F : AZ →
AZ be a CA throughout this section.

The notion of a minimal set is fundamental in the theory of dynamical systems. It is

known that a continuous self map of a compact metric space has at least one minimal

set. The idea of the proof is to apply Zorn’s lemma, to find a minimal element of

the collection of all non-empty closed invariant subsets of the phase space, ordered by

inclusion. The minimal set can be as small as a periodic orbit or can be the entire space

as in the case of any irrational rotation of the unit circle. Now, we ask: how “big” can

be a minimal set of a CA? We show that it has to be very small both topologically as

well as measure theoretically.

Theorem 2.4.1. Any minimal set of F is a nowhere dense set of zero measure.

Proof. Let M be a minimal set for F . Note that by definition M is closed. Since the

measure has full support, it is enough to show that M is of zero measure. Assume that

M has positive measure, and we will find a contradiction.

Since σ is measure-preserving homeomorphism, we have that µ[σn(M)] = µ[M ] for

every n ∈ Z. One cannot have infinitely many pairwise disjoint sets of equal positive

measure inside a finite measure space (has our reader seen a proof of Poincare’s

Recurrence Theorem?). Therefore, σn(M)’s cannot be pairwise disjoint. Since σ

is a homeomorphism, this implies that there exists n ∈ N such that M ∩ σn(M) 6= ∅.
Moreover, using the fact that F ◦ σ = σ ◦ F , it is easily verified that σn(M) is also a

minimal set for F . Any two minimal sets of F are either identical or disjoint - this is
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because, if their intersection is non-empty, then the intersection is also a minimal set.

Hence we have that σn(M) = M .

By the ergodicity of σn, M must have full measure. But the measure µ has full support

and M is a closed set. Therefore, M = AZ. Thus to complete the proof, it is enough

to show that AZ is not a minimal set for F . This is easy. The set of fixed points of σ

is a non-empty, finite (hence closed), F -invariant subset properly contained in AZ.

The result may be the best possible since we cannot say that minimal sets should be

small in the sense of cardinality. The shift map, which is a CA, has minimal sets which

are uncountable; see topics like Toeplitz shift and substitution shift in the literature

[23], which we do not discuss here.

Problem: Find out some non-trivial minimal sets for additive CA (other than the

shift).

A stronger result regarding the topological part in the above Theorem is:

Theorem 2.4.2. Any F -orbit is either dense or nowhere dense in AZ.

It seems advantageous to have a more general version from which Theorem 2.4.2 could

be deduced.

Theorem 2.4.3. Let X be a compact metric space and let f, g : X → X be continuous

maps such that f ◦ g = g ◦ f . Assume that gn is transitive for every n ∈ N. Then, any

f -orbit is either dense or nowhere dense in X.

Proof. Let x ∈ X and let K be the closure of {x, f(x), f 2(x), . . .}. Assume that K has

non-empty interior. We will show that K = X. The hypothesis that gn is transitive for

every n implies that there are no isolated points in X (except when X is a singleton).

Therefore, replacing x by some fn(x) if necessary, we may suppose that x ∈ int[K].

Since K has non-empty interior, and since g is transitive, there exists n ∈ N such

that the interior of K ∩ g−n(K) is non-empty. Then we can find m ∈ N such that

fm(x) ∈ K ∩ g−n(K).

Now, K is f -invariant from the definition and g−n(K) is f -invariant because f com-

mutes with g. Thus the closed set K ∩ g−n(K) is f -invariant. Therefore, the closure of
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the f -orbit of the element fm(x) is contained in K ∩ g−n(K). But, the closure of the

f -orbit of fm(x) is K since x ∈ int[K]. Hence we deduce that K ⊂ g−n(K) which is

to say gn(K) ⊂ K. Since gn is transitive and since K is assumed to have non-empty

interior, we conclude that K = X.

Now, to prove Theorem 2.4.2, take X = AZ, f = F and g = σ in Theorem 2.4.3.

2.5 Transitivity

In 1996, the article “Transitive Cellular Automata are Sensitive” appeared in American

Mathematical Monthly [26]. The proof of the title-result depends on analyzing the local

rule. That is, the authors view CA through the second definition. Below (in Corollary

2.5.2) we deduce the same result in a more elegant way using the first definition of CA.

In fact, our conclusion is much stronger. As we know, total transitivity, weak mixing

and mixing are three of the stronger forms of transitivity. Mixing implies weak mixing

and weak mixing implies total transitivity for all systems. Some or all of the reverse

implications may hold for special classes of maps. For instance, all the three notions

coincide for interval maps [19] and for subshifts of finite type (see Chapter 5). We do

not know whether weak mixing implies mixing for CA. But what we are able to say is:

Proposition 2.5.1. Any transitive F is weak mixing.

Proof. Let U1, U2, V1, V2 ⊂ AZ be non-empty open sets. We have to find n ∈ N such

that F n(U1) ∩ V1 6= ∅ and F n(U2) ∩ V2 6= ∅. Since σ is weak mixing, there exists

k ∈ N such that σk(U1) ∩ U2 6= ∅ and σk(V1) ∩ V2 6= ∅. Put U = σk(U1) ∩ U2 and

V = σk(U1)∩U2. Then, U, V are non-empty open sets (∵ σ is a homeomorphism). By

the transitivity of F , there exists n ∈ N such that F n(U) ∩ V 6= ∅. Since F commutes

with σ, this gives what we wanted.

This Proposition has some nice corollaries, the first of which is the promised one.

Corollary 2.5.2. Transitive cellular automata are maximally sensitive.

Proof. Weak mixing implies maximal sensitivity.

Corollary 2.5.3. Transitive cellular automata are Li-Yorke chaotic.
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Proof. Weak mixing implies Li-Yorke chaos [41].

Corollary 2.5.4. The product of any two transitive cellular automata is again a tran-

sitive cellular automata.

Proof. It is easy to see that the product of any two CA is again a CA. By definition,

an E-system is a transitive map of a compact metric space with an invariant Borel

measure having full support [39]. Transitivity on compact spaces implies surjectivity,

and surjective CA are known to be measure-preserving (c.f. [49]). Thus, transitive CA

are E-systems. It is known that any E-system is syndetically transitive and that the

product of a syndetically transitive system with a weak mixing system is transitive (c.f.

[39]). While considering the product of two transitive CA, think of one as an E-system

and the other as a weak mixing system.

2.6 Injectivity and surjectivity

The influence of the shift map on CA is evident in some more ways. Let Pn(σ) = {x ∈
AZ : σn(x) = x}. So Pn(σ) is the set of all periodic points of σ with period dividing

n. If F is a CA, then Pn(σ) is F -invariant since F commutes with σ. Consequently

any element of Pn(σ) has a finite orbit under the action of F since Pn(σ) is a finite set.

Therefore, if F happens to be injective, then all elements of Pn(σ) becomes periodic

points for F . The set P (σ) of periodic points of σ is the union of Pn(σ)’s. It follows

that P (σ) ⊂ P (F ), whenever F is an injective CA. But P (σ) is dense in AZ. This

leads to two conclusions about injective CA (c.f. [49]).

The first conclusion is that any injective CA has a dense set of periodic points, which is

clear from the above lines. The second conclusion is, any injective CA is surjective. This

is argued as follows. The range of any CA, being the continuous image of a compact

set, must be compact and hence closed. For an injective CA, the range contains a dense

subset of AZ, namely the set of periodic points.

A surjective CA need not be injective (examples are easy). But there is a result which

says that if a CA is surjective, then it is injective on a suitable dense subset of AZ (on
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the so called “finite configurations”). This is the famous Garden of Eden Theorem

(see [43]) into which we decide not to go. It is a long standing open question whether

every surjective CA has a dense set of periodic points or not. This is settled in the

affirmative for additive CA [30], and also for some other classes [18], [22]. The basic

tools to understand surjective CA come from Hedlund’s work. He connected surjectivity

of a CA to the number of pre-images of elements.

Theorem 2.6.1. [35] F is surjective if and only if |F−1(x)| < ∞ for every x ∈ AZ.

Actually, Hedlund’s work gives a more accurate statement: F is surjective if and only

if |F−1(x)| ≤ |A|2r for every x ∈ AZ, where r is the radius of the local rule of F . This

is deducible from the more refined statement he proved, where a characterization of

surjectivity for CA is given in terms of the local rule.

Assume that the local rule is f : A2r+1 → A. If n ∈ N, then we may suppose that f is

also defined on words w ∈ An+2r+1 as follows. Let w = w1w2 · · ·wn+2r+1 ∈ An+2r+1. We

define f(w) = f(w1w2 · · ·w2r+1)f(w2w3 · · ·w2r+2) · · · f(wn+1wn+2 · · ·wn+2r+1) so that

f(w) ∈ An+1. In this way f gets defined on all words w ∈ A+ having length ≥ 2r + 1.

If v ∈ A+, then f−1(v) is the set {w ∈ A+ : f(w) = v}. Note that if f(w) = v, then

|w| = |v|+ 2r so that f−1(v) = {w ∈ A|v|+2r : f(w) = v}.

Theorem 2.6.2 (Hedlund). Let F : AZ → AZ be a cellular automata given by a local

rule f : A2r+1 → A, r ∈ N. Then, the following are equivalent:

(i) F is not surjective.

(ii) There exist u ∈ A2r, and w, w′ ∈ A+, |w| = |w′|, w 6= w′ such that f(uwu) =

f(uw′u).

(iii) For some n ∈ N (n ≥ 2r + 1), there exist more than |A|2r words of length n with

the same f -image.

The Theorem does not give an explicit upper bound on the length of the words which

are to be considered for the testing. We show that Hedlund’s Theorem has the following

variant which comes up with some upper bounds.

Theorem 2.6.3. Let F : AZ → AZ be a cellular automata given by a local rule f :

A2r+1 → A, r ∈ N. Then, the following are equivalent:
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(i) F is not surjective.

(ii) There exist u, v ∈ A2r, and w, w′ ∈ A+, w 6= w′ such that |uwv| = |uw′v| ≤ |A|4r

and f(uwv) = f(uw′v).

(iii) For some n ≤ |A|4mr, there exist more than |A|2r words of length n with the same

f -image, where m is the smallest integer greater than 2r log2 |A|.

Proof. (i) ⇒ (ii): Let n ∈ N be the smallest such that there exist u, v ∈ A2r and

w,w′ ∈ A+, w 6= w′ such that |uwv| = |uw′v| = n and f(uwv) = f(uw′v). The

existence of n is guaranteed by Theorem 2.6.2. Our job is to show that n ≤ |A|4r.

For the convenience of arguing, write uwv = b1b2 · · · bn and uw′v = c1c2 · · · cn where

bi, ci ∈ A. Of course, b1 · · · b2r = c1 · · · c2r = u and bn−2r+1 · · · bn = cn−2r+1 · · · cn = v.

Claim-1: b2r+1 6= c2r+1 and bn−2r 6= cn−2r.

Proof: If b2r+1 = c2r+1, the pair (b2b3 · · · bn, c2c3 · · · cn) works as well in the place of the

pair (b1 · · · bn, c1 · · · cn), violating the minimality of n. Similarly, we have bn−2r 6= cn−2r.

Now, for 1 ≤ i ≤ n− 2r − 1, let αi = bi+1 · · · bi+2r and βi = ci+1 · · · ci+2r.

Claim-2: (αi, βi) 6= (αj, βj) for i 6= j.

Proof: Assume that (αi, βi) = (αj, βj) for some i < j. Then, in the place of the pair

(b1b2 · · · bn, c1c2 · · · cn) we can consider the pair (b1 · · · bibj+1 · · · bn, c1 · · · cicj+1 · · · cn),

again contradicting the minimality of n (here, to say that the words are distinct, use

Claim-1).

Claim-3: αi 6= βi for every i.

Proof: Suppose that αi = βi for some i. Since b2r+1 6= c2r+1, we have i > 2r.

Then, we may consider the pair (b1b2 · · · bi+2r, c1c2 · · · ci+2r) in the place of the pair

(b1 · · · bn, c1 · · · cn). A contradiction.

From Claim-2 and Claim-3, it follows that n−2r−1 ≤ |A|4r−|A|2r. Since |A|2r ≥ 2r+1,

we get that n ≤ |A|4r. (we have actually produced an upper bound slightly better than

|A|4r, but the difference is negligible compared to |A|4r).

(ii) ⇒ (iii): Let u, v, w, w′ be as given by (ii). Let B = {uwv, uw′v}. Then, for

any m ∈ N and y, z ∈ Bm, f(y) = f(z). So if m > 2r log2 |A| then we get more

than |A|2r elements in Bm with the same f -image. Any element of Bm has length



CHAPTER 2. DYNAMICS OF CELLULAR AUTOMATA 41

|uwv|m = |uw′v|m ≤ |A|4mr. (Here also, some slight improvements are possible on the

upper bound).

(iii) ⇒ (i) is included in Theorem 2.6.2.

Question: Is it possible to improve significantly the bounds given in the statements

(ii) and (iii) of Theorem 2.6.3? In each case, what is the optimal bound?

Remark: The bounds given are too big to be of practical use. To test surjectivity (or

injectivity) of a CA there are efficient algorithms which work in quadratic time [66].

2.7 Periodic points

For CA, if a dynamical phenomena is present locally, it is very likely to be present all

over the domain space in a fairly uniform manner. As an example, we remark that a

recent Theorem of Kurka [48] says that a CA either is sensitive or has a residual set of

equicontinuity points. Again, this is a consequence of commuting with the shift, which

we exploit further in this section to obtain some understanding on the nature of the

set of periodic points of a CA. Let F : AZ → AZ be a CA throughout. Note that the

set P (F ) of periodic points of F is σ-invariant.

Proposition 2.7.1. P (F ) is one of the following:

(i) the whole space (in this case, F n = Identity for some n ∈ N),

(ii) a dense set of first category and zero measure, or

(iii) a nowhere dense set of zero measure.

Proof. First we argue the topological part. Let Pn(F ) = {x ∈ AZ : F n(x) = x}.
Each Pn(F ) is closed and σ-invariant. Since σ is transitive, an invariant closed set

is either nowhere dense or the whole space. If Pn(F ) is the whole space for some n,

then F n = Identity and P (F ) = AZ. If Pn(F ) is nowhere dense for every n, then

P (F ) =
⋃∞

n=1 Pn(F ) is of first category. Again, by σ-invariance, P (F ) is dense or

nowhere dense.

Now, we consider the measure part. If µ[Pn(F )] > 0 for some n ∈ N, then Pn(F ) has

full measure since σ is ergodic. Then, Pn(F ) = AZ since Pn(F ) is closed. Therefore,
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if P (F ) 6= AZ, then Pn(F ) 6= AZ for every n and hence µ[P (F )] ≤ ∑∞
n=1 µ[Pn(F )] =

0.

Problem: Classify CA into the three classes mentioned in the above Proposition.

We have already observed that for the shift σ, Pn(σ) is finite for every n. Dynamical

systems where the set of periodic points of each period has finite cardinality, has been

of interest to researchers. Such systems yield to techniques involving zeta functions,

see for instance [23], p.60. We ask: can we characterize all CA F : AZ → AZ satisfying

|Pn(F )| < ∞ for every n ∈ N? Below, we provide a satisfactory answer. The necessary

and sufficient condition is that P (F ) ⊂ P (σ). The proof uses both definitions of CA.

Theorem 2.7.2. Let r be the radius of the local rule of F . Then, the following are

equivalent:

(i) |Pn(F )| ≤ |A|2nr for every n ∈ N.

(ii) |Pn(F )| < ∞ for every n ∈ N.

(iii) P (F ) ⊂ P (σ).

If F is surjective, the following condition is equivalent to the above three:

(iv) E(F ) = P (σ).

Proof. (i) ⇒ (ii) is trivial.

(ii) ⇒ (iii) : Let x ∈ P (F ). Then, F n(x) = x for some n ∈ N. It follows that

F n(σk(x)) = σk(x) for any k ∈ N. But |Pn(F )| < ∞. Therefore, σk+m(x) = σk(x) for

some k,m ∈ N. Since σ is injective, we get σm(x) = x.

(iii) ⇒ (i) : Assume that P (F ) ⊂ P (σ) and let r be the radius of the local rule of

F . Since P1(F
n) = Pn(F ) and since the radius of the local rule of F n is nr, we can

replace F n by F . Thus it is enough to show that |P1(F )| ≤ |A|2r. Let if possible

|P1(F )| > |A|2r. Then there are distinct x, y ∈ P1(F ) with x[1, 2r] = y[1, 2r]. Define

z = (zj)j∈Z ∈ AZ as zj = xj for j ≤ 2r, zj = yj for j ≥ 1. Since x, y ∈ P1(F ) ⊂ P (σ)

and x 6= y, we have that z /∈ P (σ). But F (z) = z, which is a contradiction.

Now, assume that F is surjective. (iv) ⇒ (iii) is trivial.
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(ii) ⇒ (iv) : Let x ∈ E(F ). Then, F k+n(x) = F k(x) for some k, n ∈ N. Let y = F k(x).

It follows that F n(σi(y)) = σi(y) for any i ∈ N. But |Pn(F )| < ∞. Therefore, as before

σi(y) = y for some i ∈ N. Now, for any m ∈ N,

F k(σmi(x)) = σmi(F k(x)) = σmi(y) = y.

Since F k is surjective, y ∈ AZ can have only finitely many pre-images under F k [∵
Theorem 2.6.1]. We conclude that σmi(x) = x for some m ∈ N. Thus, E(F ) ⊂ P (σ).

The reverse inclusion is true for all CA.

Note that Pn(σ) is a finite F -invariant set and Pm(σ) ∩ Pn(σ) = Pk(σ) where k =

g.c.d.(m,n). Suppose that F is surjective. Then, applying Theorem 2.6.1 to points

x ∈ P1(σ), we get that Pn(σ) \P1(σ) is also F invariant if n is a large prime. Since any

finite invariant set must contain a periodic point, F has a periodic point in Pn(σ)\P1(σ).

It follows that whenever F is surjective, P (F ) must be infinite. If we further assume

P (F ) ⊂ P (σ), then F has periodic points of arbitrarily large periods, by Theorem

2.7.2.

There are non-trivial surjective CA having infinitely many fixed points. The surjective

CA (Boyle et al, c.f. [49]) F : {0, 1, 2}Z → {0, 1, 2}Z given by

[F (x)]i =





xi + xi+1 (mod 2), if xi 6= 2

2, if xi = 2

has uncountably many fixed points. Indeed, any x ∈ {0, 2}Z is fixed by F .

Problem: Let F be an arbitrary CA. Is it possible to give some kind of structural

decomposition of F in terms of F1 and F2, where F1 is a CA such that |Pn(F1)| < ∞
for every n, and F2 is a CA such that F n

2 = Identity for some n?

2.8 Recurrent points

We have mentioned that it is not known whether every surjective CA has a dense set

of periodic points. But we can say something definite about a bigger set, namely the

set of recurrent points. First, in any dynamical system (X, f) where X is a metric
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space, with a metric say d, the set R(f) of recurrent points is a Gδ set since R(f) =
⋂∞

k=1

⋂∞
n=1

⋃∞
m=n{x ∈ X : d(x, fm(x)) < 1

k
}. Next, since all surjective CA are measure

preserving [35], by the topological version of Poincare Recurrence Theorem (c.f. [12]),

one gets that the set of recurrent points is of full measure. Since the measure has full

support, any set of full measure is a dense set. Hence we have the following, which

seems to be missing in the existing literature on CA.

Proposition 2.8.1. For any surjective CA, the set of recurrent points is a dense Gδ

set.

This Proposition can be derived in a slightly different way without resorting to Poincare’s

Theorem. In [49] it is shown that every point is non-wandering for surjective F : if Uw is

a cylinder, then Uw, F−1(Uw), F−2(Uw), . . . are sets having equal positive measure; since

the total measure is finite, two of the above sets, and hence Uw and some F−n(Uw),

must intersect.

Now, to derive Proposition 2.8.1, apply the following general result:

Proposition 2.8.2. Let (X, f) be a dynamical system where X is a complete metric

space. If the set Ω(f) of non-wandering points is the whole of X, then R(f) is a dense

Gδ set.

To prove Proposition 2.8.2, first we prove a simple lemma:

Lemma 2.8.3. Let (X, f) be a dynamical system and U ⊂ X be non-empty, open. If

all points of U are non-wandering, then for infinitely many n ∈ N, U ∩ f−n(U) 6= ∅.

Proof. There is n1 ∈ N with V1 := U ∩ f−n1(U) 6= ∅. Since Ω(f) ∩ V1 6= ∅, there is

n2 ∈ N such that V1 ∩ f−n2(V1) 6= ∅. This implies V2 := U ∩ f−(n1+n2)(U) 6= ∅. Next,

find n3 ∈ N such that V2 ∩ f−n3(V2) 6= ∅. This implies V3 := U ∩ f−(n1+n2+n3)(U) 6= ∅,
and so on.

Proof of Proposition 2.8.2. It is enough to establish that R(f) is dense. Let U ⊂ X

be non-empty, open. We will construct a decreasing chain of closed balls in U in a

particular way, with the diameters of the balls tending to 0. Completeness of the space
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ensures that the intersection of the balls is non-empty. We will show that the unique

point in the intersection is a recurrent point.

Let B1 be a (open) ball such that B1 ⊂ U and diam[B1] < 1. Since all points in B1

are non-wandering, there exists n1 ∈ N such that B1 ∩ f−n1(B1) 6= ∅. Choose a ball

B2 such that B2 ⊂ B1 ∩ f−n1(B1) and diam[B2] < 1
2
. Applying the Lemma to B2, we

can find n2 > n1 such that B2 ∩ f−n2(B2) 6= ∅. Now, assume that we have chosen balls

B1, . . . , Bk within U and natural numbers n1 < n2 < · · · < nk such that

(i) Bj+1 ⊂ Bj ∩ f−nj(Bj) for 1 ≤ j < k, and

(ii) diam[Bj] < 1
j

for i ≤ j ≤ k.

At the k + 1th step, choose a ball Bk+1 such that Bk+1 ⊂ Bk∩f−nk(Bk) and diam[Bk+1] <

1
k+1

. Applying the Lemma to Bk+1, find nk+1 > nk such that Bk+1∩ f−nk+1(Bk+1) 6= ∅.
Now,

⋂∞
k=1 Bk = {x} for some x ∈ X, since X is complete and since diam[Bk] → 0.

Note that for each k ∈ N, x ∈ Bk+1 ⊂ Bk ∩ f−nk(Bk) and hence fnk(x) ∈ Bk. Since

Bk’s form a decreasing chain with intersection {x}, one has that fnk(x) → x.

2.9 Forward image of open sets

How do we decide whether there are any periodic points in specified regions of the phase

space? For interval maps, one may use the Intermediate Value Theorem. For CA, at

present we do not have results which can be used to check the existence of periodic

points in specified regions. If we wish to make some progress in this direction, perhaps

the first step is to achieve an understanding of the structure of the forward images of

open sets for CA. The simplest question is, does the image of every non-empty open

set has non-empty interior? For surjective CA, the answer is going to be affirmative.

Note that if the CA is not surjective, then the forward image of the whole space itself

is a nowhere dense set because of σ-invariance.

A known technical lemma (for instance, see [27]) allows us to reduce many questions

concerning CA at the level of words to those at the level of the alphabet. We state it

in a suitable form:
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Lemma 2.9.1 (Alphabet Lemma). Let F : AZ → AZ be a CA with local rule

f : A2r+1 → A, r ∈ N. Let k ≥ r and let B = Ak. Define g : B3 = A3k → B = Ak

by g(w = w1w2 · · ·w3k) = a1a2 · · · ak where aj = f(wk+j−r · · ·wk+j · · ·wk+j+r), and the

cellular automata G : BZ → BZ by [G(y)]i = g(yi−1 yi yi+1), for y ∈ BZ, i ∈ Z. Then,

F is topologically conjugate to G. In fact, for any p ∈ Z, the map φp : AZ → BZ

defined as [φp(x)]i = x[ki+p, ki+p+k−1] is a homeomorphism and satisfies φp ◦F = G ◦φp.

This lemma has interesting consequences which are folklore. For instance, one can

easily deduce that any CA is topologically conjugate to a CA with local rule having

radius ≤ 1, any sensitive CA is topologically conjugate to a 1-sensitive CA, etc.. Also,

the Alphabet Lemma affords a simpler equivalent formulation of the open question as

to whether periodic points are dense in surjective CA:

Question: Let F : AZ → AZ be surjective and let a ∈ A. Does F always possess a

periodic point in which a occurs?

Let us continue our discourse on the nature of forward images of open sets. The key

observation is the following:

Lemma 2.9.2. Let F : AZ → AZ be a CA. Then, for any set D $ A, we have

F (DZ) 6= AZ.

Proof. Let f : A2r+1 → A be the local rule of F . Since |D| < |A|, for large n,

|D|n+2r < |A|n, so that there exists w ∈ An which cannot be the f -image of any word

over D.

Now, a combination of Alphabet Lemma and Baire Category Theorem suffices to es-

tablish that every surjective CA is semi-open:

Theorem 2.9.3. If F is surjective, then int[F (U)] 6= ∅ for any non-empty open set

U .

Proof. Since {Uw : w ∈ A2k+1, k ∈ N} (recall: Uw = {x ∈ AZ : x[−k,k] = w}) is a base

for the topology on AZ, it is enough to show that int[F (Uw)] 6= ∅ for any Uw. By the

grace of Alphabet Lemma, it is enough to show that int[F (Ua)] 6= ∅ for every a ∈ A.
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Let D = A \ {a}. Then, F (DZ) is a closed set, and by the previous Lemma, F (DZ) 6=
AZ. Therefore, int[F (AZ \ DZ)] 6= ∅ since F is surjective. But note that AZ \ DZ =
⋃∞

n=−∞ σn(Ua). That is,

∅ 6= int[F (
∞⋃

n=−∞
σn(Ua))] = int[

∞⋃
n=−∞

F (σn(Ua))].

Using Baire Category Theorem, we get that int[F (σn(Ua))] 6= ∅ for some n ∈ Z. Since

σ is a homeomorphism commuting with F , this implies that int[F (Ua)] 6= ∅.

Corollary 2.9.4. If F is surjective, F (Uw) = int[F (Uw)] for any cylinder Uw.

Proof. Since F is semi-open, one can easily show that F (U) ⊂ int[F (U)] for any non-

empty open set U . But F (Uw) is closed as well.

Problem: Let F : AZ → AZ be a surjective CA. Let Y be the collection of all x ∈ AZ

with the property that there exist a neighbourhood U of x and n ∈ N such that

F n(x) /∈ int[F n(U)]. From the semi-openness of F , it can be easily argued that Y is a

set of first category. Is it possible to provide more details on the structure of Y ?

Let (X, f) be a dynamical system, where X is a compact metric space. A point x ∈ X

is said to be backward recurrent if there exists a sequence (xk) in X converging to

x such that for each k, there is nk ∈ N with fnk(xk) = x. Recall from Topology that, a

subset Y of X is said to be residual if its complement is a set of first category. Note

that a dense Gδ set is residual.

Corollary 2.9.5. If F is surjective, then the set of backward recurrent points is resid-

ual.

Proof. Note that x is a backward recurrent point if and only if for any open set U

containing x, there exists n ∈ N such that x ∈ F n(U). Therefore,

{x ∈ AZ : x is not backward recurrent} =
⋃
w

(
Uw \

[⋃

n∈N
F n(Uw)

])
.

Thus, it is enough to show that for each w, Uw \
[⋃

n∈N F n(Uw)
]

is nowhere dense.

Since recurrent points are dense in AZ, Uw ∩
[⋃

n∈N F n(Uw)
]

is dense in Uw. Moreover,

⋃

n∈N
F n(Uw) =

⋃

n∈N
int[F n(Uw)] ⊂

⋃

n∈N
int[F n(Uw)].
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This implies that the open set Uw ∩
[⋃

n∈N int[F n(Uw)]
]

is dense in Uw. Hence Uw \[⋃
n∈N F n(Uw)

]
is nowhere dense.

For a dynamical system (X, f) and x ∈ X, the backward orbit of x is {y ∈ X :

fn(y) = x for some n ∈ N}. Backward orbits are relevant, for instance, in the study of

Julia sets [11]. Moreover, it is known that in the case of systems such as the tent map

and the irrational rotation, every point of the phase space has a dense backward orbit

(c.f. [42]).

Corollary 2.9.6. If F is transitive, then the set of points having dense backward orbit,

is residual.

Proof. Since F is transitive, for any cylinder Uw,
⋃

n∈N F n(Uw) is dense and

⋃

n∈N
F n(Uw) =

⋃

n∈N
int[F n(Uw)] ⊂

⋃

n∈N
int[F n(Uw)].

Therefore, Vw :=
⋃

n∈N int[F n(Uw)] is open and dense. Hence V =
⋂

w Vw is a dense

Gδ set. It can be seen that any point of V has a dense backward orbit.

For a transitive CA, there may exist points whose backward orbit is not dense. For

example consider the shift map and one of its fixed points. On the other hand, it is

easy to verify that for F : {0, 1}Z → {0, 1}Z given by [F (x)]j = xj + xj+1 (mod 2),

every point has a dense backward orbit (essentially use: F is both left permutive and

right permutive).

Problem: Characterize those transitive CA having the property that every point has

a dense backward orbit.

2.10 Appendix: Cell maps

There is this overlapping phenomena when one applies the local rule of a CA which

creates so much complication. Just for curiosity we ask: what if we rearrange matters

so that there is no overlapping? Of course, this means we are no longer working with

CA, but with a different class of continuous maps. For want of a better name, let us

call the new class of maps, cell maps. Similar to CA, the cell map is also defined
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with respect to a local rule, but without the overlapping of arguments. A cell map

F : AZ → AZ is defined in such a way that the value of xi will affect the value of

[F (x)]j for only one j. Hence its behavior is expectedly more easily understandable in

terms of the local rule. For example, we can characterize sensitive maps and transitive

maps among cell maps.

Definition 2.10.1. A map F : AZ → AZ is a cell map if there is an integer r ≥ 0 and a

map f : A2r+1 → A such that [F (x)]i = f(x(2r+1)i−r, . . . , x(2r+1)i, . . . , x(2r+1)i+r) for x ∈
AZ, i ∈ Z.

Example: Let f : A3 → A be f(abc) = c. Then the corresponding cell map F : AZ →
AZ is given by F (x) = (x3i+1)i∈Z.

Properties of cell maps: We will be very brief. Assume that A = {0, 1, . . . , m− 1}
and the cell map F : AZ → AZ is given by the local rule f : A2r+1 → A. Here r is

called the radius of the local rule.

1. A cell map F commutes with the shift map if and only if r = 0.

2. A cell map F is injective (surjective) if and only if f is injective (surjective).

3. If F is not injective, there exists y ∈ AZ with {x ∈ AZ : F (x) = y} uncountable.

4. If F is a cell map, define A0 ⊃ A1 ⊃ A2 ⊃ · · · inductively as: A0 = A and

Aj = f(A2r+1
j−1 ) for j ∈ N. Put Ã =

⋂
j≥0 Aj. Let n, j ≥ 0. For α ∈ A(2r+1)n

, if

k is given by the relation 2k + 1 = (2r + 1)n, define U j
α = {x ∈ AZ : x[−k,k] =

α and xi ∈ Aj if |i| > k} and Ũα = {x ∈ AZ : x[−k,k] = α and xi ∈ Ã if |i| > k}.
Write U0

α as Uα. Then:

(i) {Uα : α ∈ A(2r+1)n
, n ∈ N} is a clopen base for AZ.

(ii) for α ∈ A(2r+1)n
, F j(Uα) = U j

β for some β ∈ A(2r+1)n−j
, for each j ∈

{0, 1, . . . , n}.

(iii) for j > 0, U j
β = Uβ if and only if F is surjective. If U j

β 6= Uβ, then U j
β is a

nowhere dense subset of Uβ.

(iv) diam[U j
β] = 0 if |Aj| = 1, and diam[U j

β] = diam[Uβ] if |Aj| > 1.
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(v) If |Ã| = 1, then |Aj| = 1 and hence F j is a constant map for some j < m.

(vi) If r = 0, then F satisfies d(F (x), F (y)) ≤ d(x, y) for every x, y ∈ AZ.

(vii) If r > 0, then, for any non-empty open set U ⊂ AZ, there exists n ∈ N such

that F n(U) ⊃ Ũi for some i ∈ A = {0, 1, . . . , m− 1}.

5. A cell map is surjective if and only if it is an open map [∵ (i), (ii), (iii) of (4)].

6. A cell map F is sensitive if and only if r > 0 and |Ã| > 1 [∵ (iv), (v), (vi), (vii)

of (4)]. In particular, every surjective cell map with r > 0 is sensitive.

7. A cell map which is not sensitive is equicontinuous.

8. Every cell map has a dense set of eventually periodic points [∵ Pn(σ2r+1) := {x ∈
AZ : σ(2r+1)n(x) = x} is F -invariant].

9. Every transitive cell map is sensitive.

10. A surjective cell map need not have a dense set of periodic points. Let A = {0, 1}
and the local rule f : A3 → A of the cell map F be f(abc) = 0 if and only if

abc = 000. Then, F is onto but the open set {x ∈ AZ : x−1x0x1 = 101} contains

no periodic points.

11. Recall from (4) that for 0 ≤ i ≤ m − 1, Ui = {x ∈ AZ : x0 = i}. If F is a

surjective cell map, then, with respect to U0, U1, . . . Um−1, F is a ‘Markov map’

in the sense that for any i ∈ {0, 1, . . . , m − 1}, F (Ui) is a non-empty union of

finitely many sets from {U0, U1, . . . , Um−1}. Hence we can associate a matrix MF

called a ‘Markov matrix’ to F . It is an m×m square matrix with entries 1 or 0.

The (i, j)th entry is 1 if F (Ui) ⊃ Uj, and 0 otherwise. From the theory of Markov

maps and (vii) of (4), we obtain: a surjective cell map F with r > 0 is transitive

if and only if the corresponding Markov matrix MF is irreducible (this means,

for every (i, j), there exists n such that the (i, j)th entry of Mn
F is positive). F is

totally transitive if and only if Mk
F is irreducible for every k ∈ N.

12. There exist transitive cell maps which are not totally transitive and hence not

weakly mixing (unlike CA).
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Question: What is the necessary and sufficient condition for a cell map to have a

dense set of periodic points?



Chapter 3

Set of periods of additive cellular

automata

3.1 Introduction

Calculating the set of periods of dynamical systems has often been an interesting area

of research, a classical result in this direction being Sarkovski’s Theorem about interval

maps. All possible sets of periods of continuous self-maps on zero-dimensional metric

spaces, compact subsets of R and convex subsets of Rn are described in [61].

In this section, we determine completely the set of periods for a large class of one-

dimensional additive CA. We do not deal with the topological aspects here. Our

arguments are rather combinatorial in nature, and our proofs are built upon nothing

heavier than some basic properties of primes.

Let N = {1, 2, 3, . . .}. For n ∈ N, let Fn be the collection of all additive CA where the

addition is done modulo n. Let p be any prime. The highlights are:

(i) For any F ∈ Fp, the set of periods can be determined using some simple conditions

on the coefficients in the linear expression of F .

(ii) For any F ∈ Fp, the set of periods has only four possibilities: {1, m} for some m

where 1 ≤ m < p, N \ {pm : m ∈ N}, N \ {2pm : m ∈ N ∪ {0}} or the whole set N.

52
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(iii) If F ∈ Fp, then our proof actually calculates the cardinality of the set {x : F n(x) =

x}, which is shown to be a power of p except when F is a root of identity.

(iv) Using our results, the set of periods of any additive CA, where the addition is done

modulo some square-free positive integer, is easily obtained.

3.2 Basic Lemma

Let f : X → X be a map (X can be just a set; the topological structure on X is not

needed). Let Per(f) = {n ∈ N : there is a periodic point x for f whose period is n}.
Let Pn(f) := {x ∈ X : fn(x) = x} = {x ∈ X : the period of x is a divisor of n}. We

have the following simple result, which will be used many a time.

Lemma 3.2.1. Let f : X → X be a map and let |Pn(f)| denote the cardinality of

Pn(f). If
∑

d|n and d<n |Pd(f)| < |Pn(f)|, then n ∈ Per(f). On the other hand, if

|Pd(f)| = |Pn(f)| < ∞ for some proper divisor d of n, then n /∈ Per(f).

Let m ≥ 2 be an integer and let A = {0, 1, . . . , m − 1}. Recall that an additive CA

is a map F : AZ → AZ which has the form F (x)i =
∑k

j=−k ajxi+j (mod m′) for some

fixed natural number m′ ≤ m, fixed k ≥ 1 and fixed integers aj. Since we are interested

only in the periodic points of F , and since these periodic points lie in the range of F ,

without loss of generality we may assume m′ = m.

3.3 Using the binomial coefficients

We require a technical result about the divisibility of the integer coefficients of a certain

polynomial by a prime. The proof of this technical result uses an elementary property

of binomial coefficients, which is given below. The binomial coefficient
n!

j!(n− j)!
is

denoted by nCj.

Lemma 3.3.1. Let p be a prime, n ∈ N and let m be the largest integer such that pm

divides n. Then, the smallest j ≥ 1 such that nCj is non-zero modulo p, is j = pm.

The following simple technical result, which has a somewhat complicated appearance,

might be known. A proof is provided for the sake of completeness.



CHAPTER 3. SET OF PERIODS OF ADDITIVE CELLULAR AUTOMATA 54

Lemma 3.3.2. Let p be a prime, let k ∈ N, and let a0, a1, . . . , ak be integers such that

a0 and ak are non-zero modulo p. Also, let l ≥ 1 be the smallest integer such that al

is non-zero modulo p. Fix n ∈ N and write n = pmr, where m ≥ 0 and p - r. Let βt

be the coefficient of xt in the polynomial (a0 + a1x + · · ·+ akx
k)n. Then, the smallest

integer t ≥ 1 such that βt is non-zero modulo p, is t = lpm.

Proof. For the convenience of writing, put q = pm so that n = qr. Now,

(a0 + a1x + · · ·+ akx
k)n =

[
(a0 + a1x + · · ·+ akx

k)q
]r

≡ [aq
0 + aq

1x
q + · · ·+ aq

k(x
q)k]r (mod p)

since z 7→ zp is a morphism modulo p. By the choice of l in the hypothesis, it is clear

that the smallest non-zero power of x occurring in the above expression is (xq)l, whose

coefficient is ra
q(r−1)
0 aq

l . Hence the required t is t = ql = pml.

For later use, observe that that βt =
∑

ar1ar2 · · · arn , where the sum is taken over all

n-tuples (r1, r2, . . . , rn) of non-negative integers such that r1 + · · ·+ rn = t.

3.4 Per(F ) for F ∈ Fp, where p is prime

Convention for this entire section: p is a prime, A = {0, 1, . . . , p−1}, k ∈ N, aj ∈
Z for −k ≤ j ≤ k and F : AZ → AZ is an additive CA given by F (x)i =

∑k
j=−k ajxi+j

(mod p). It is allowed that aj ≡ 0 (mod p).

To determine Per(F ), first we compute |Pn(F )|. The idea behind the computation of

|Pn(F )| can be explained with a few words. Observe that

F n(x)i =
kn∑

t=−kn

( ∑
r1+r2···+rn=t

ar1ar2 · · · arn

)
xi+t (mod p), where rj ∈ {−k, . . . , 0, . . . , k}.

Note the similarity between the coefficient of xi+t in the above expression, and the

coefficient βt mentioned in Lemma 3.3.2, which we will exploit soon. From the above

expression, it is clear that [F n(x) − x]i has a linear expression involving xi+t’s for

−kn ≤ t ≤ kn, where some coefficients may vanish modulo p. Assume for the moment
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that there is at least one non-vanishing coefficient. Let t0, t1 be respectively the smallest

and greatest t such that the coefficient of xi+t is non-zero modulo p in the linear

expression for [F n(x)− x]i. Note that t0 and t1 are independent of i, but they depend

on n and aj’s (and of course on p). We wish to conclude that |Pn(F )| = pt1−t0 .

This is argued as follows. When we look for an element x satisfying F n(x) = x, or

equivalently [F n(x)−x]i = 0 for every i, we note that any t1−t0 consecutive positions of

x can take arbitrarily values of A, and any fixed collection of values for one set of t1−t0

consecutive positions of x determines uniquely the values for all other positions of x in

a recursive manner using the conditions [F n(x)−x]i = 0. This is a simple consequence

of the fact that if q ∈ A \ {0} = {1, 2, . . . , p − 1}, then {qr (mod p) : r ∈ A} = A.

Thus, we have that |Pn(F )| = |A|t1−t0 = pt1−t0 .

For the convenience of writing let us make the following definitions. We say F is of

(i) type-1 if aj ≡ 0 (mod p) for all j 6= 0.

(ii) type-2 if ∃l ∈ {1, . . . , k} such that a−k, al are non-zero modulo p and aj ≡ 0 (mod

p) for l < j ≤ k.

(iii) type-3 if ∃l ∈ {1, . . . , k} such that al, ak are non-zero modulo p and aj ≡ 0 (mod

p) for −k ≤ j < l.

(iv) type-4 if ∃l ∈ {1, . . . , k} such that a0, al, ak are non-zero modulo p and aj ≡ 0

(mod p) for −k ≤ j < 0 and 0 < j < l.

Note that for any F , either F or its mirror image (obtained by interchanging aj and

a−j) has to belong to one of the above types. Therefore, it is enough to calculate

Per(F ) for the four types of F mentioned above. If F is of type-1, then F is either

identically zero or F is a root of the identity. Therefore, in this case Per(F ) can be

determined directly.

Theorem 3.4.1. If F is of type-1, that is if F has the form F (x)i = a0xi (mod p),

then Per(F ) = {1,m} for some m ∈ {1, . . . , p− 1}.
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Proof. For any additive CA, 1 ∈ Per(F ) since the element · · · 000 · · · is fixed by F . If

a0 ≡ 0 (mod p), then Per(F ) = {1}. If a0 6≡ 0 (mod p), then Per(F ) = {1, m}, where

m ∈ {1, . . . , p− 1} is the smallest such that am
0 ≡ 1 (mod p).

For the other types, we have to calculate |Pn(F )| first. If F is of type-2 or type-3, then

this calculation is easy.

Proposition 3.4.2. If F is of type-2, then |Pn(F )| = p(k+l)n for every n. If F is of

type-3, then |Pn(F )| = pkn for every n.

Proof. If F is of type-2, then the smallest (greatest) t such that the coefficient of xi+t

in the linear expression for [F n(x)− x]i is non-zero modulo p, is same as the smallest

(greatest) t such that the coefficient of xi+t in the linear expression for [F n(x)]i is non-

zero modulo p. But the linear expression for F n(x)i starts with the term an
−kxi−kn and

ends with an
l xi+ln and therefore |Pn(F )| = p(k+l)n.

If F is of type-3, then the linear expression for [F n(x)−x]i starts with −xi ≡ (p− 1)xi

(mod p) and ends with an
kxi+kn so that |Pn(F )| = pkn.

This gives:

Theorem 3.4.3. If F is of type-2 or type-3, then Per(F ) = N.

Proof. In both the cases, |Pn(F )| is of the form prn for some constant r ≥ 1. We have

already noted that 1 ∈ Per(F ) always. So let n ≥ 2. Then,
∑

d|n and d<n |Pd(F )| =
∑

d|n and d<n prd ≤ ∑rbn/2c
j=0 pj < prn/2+1 ≤ prn = |Pn(F )|. Hence by Lemma 3.2.1,

n ∈ Per(F ).

In computing |Pn(F )|, there is some difficulty when F is of type-4. Here, the linear

expression for [F n(x)]i starts with the term an
0xi. So if n is such that an

0 ≡ 1 (mod p)

then, the coefficient of xi in the linear expression for [F n(x) − x]i vanishes modulo p,

and hence to determine the first non-vanishing coefficient, we have to resort to more

refined techniques. For this purpose we will use Lemma 3.3.2 proved in the previous

section.

Proposition 3.4.4. If F is of type-4, then |Pn(F )| = pα(n), where
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α(n) =





kn, if an
0 6≡ 1 (mod p)

kn− lpm, if an
0 ≡ 1 (mod p) and if n = pmr where p - r.

Proof. Note that the coefficient of xi+t in [F n(x)]i is precisely βt mentioned in Lemma

3.3.2.

Thus we can have:

Theorem 3.4.5. Suppose that F is of type-4. Then,

(i) if l = k and a0 ≡ 1 (mod p), then Per(F ) = N \ {pm : m ∈ N}.
(ii) if l = k, a0 6≡ 1 (mod p) and a2

0 ≡ 1 (mod p), then Per(F ) = N \ {2pm : m ∈
N ∪ {0}}.
(iii) in all other cases, Per(F ) = N.

Proof. Again note that 1 ∈ Per(F ) always.

Proof of (i): From Proposition 4.1.2, we have |Pn(F )| = pα(n), α(n) = k(n− pm) for

every n, where n = pmr, p - r. If r = 1, then n = pm so that |Pn(F )| = pk(n−pm) =

p0 = 1. Hence pm /∈ Per(F ) for m ≥ 1 by Lemma 3.2.1. If r ≥ 2, then without much

difficulty we can see that for proper divisors d of n, we have that α(d)’s are distinct and

α(d) ≤ k(bn/2c − 1). Hence
∑

d|n and d<n |Pd(F )| ≤ ∑k(bn/2c−1)
j=0 pj < pkn/2 ≤ |Pn(F )|,

and therefore n ∈ Per(F ).

Proof of (ii): Since a0 > 1 (mod p), p must be an odd prime. We have |Pn(F )| = pα(n),

where α(n) as given in Proposition 4.1.2. Let n = pmr, where p - r. We note that

α(n) = kn if r is odd and hence n ∈ Per(F ) in this case by Lemma 3.2.1, since
∑

d|n and d<n |Pd(F )| ≤ ∑kbn/2c
j=0 pj < pkn/2+1 ≤ pkn = |Pn(F )|. If r ≥ 4 is even, then

(n− pm) ≥ 3n/4 so that
∑

d|n and d<n |Pd(F )| < pkn/2+1 ≤ p3kn/4 ≤ |Pn(F )|, and hence

n ∈ Per(F ). In the remaining case, r = 2 so that n = 2pm. Then, |Pn(F )| = pk(n−pm) =

pkn/2 = |Pn/2(F )| and hence 2pm /∈ Per(F ) for m = 0, 1, 2, . . ., by Lemma 3.2.1.

Proof of (iii): Here, we have three subcases. For the arguments below, let n = pmr,

p - r.

Subcase-1: Suppose that l = k, a0 6≡ 1 (mod p) and a2
0 6≡ 1 (mod p). In particular p

must be an odd prime. We have that α(n) = kn if r = 1 or 2, and hence n ∈ Per(F ) in
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these cases by the typical argument since α(d) ≤ kd for every divisor d of n. If r ≥ 3 and

n ≥ 6, then,
∑

d|n and d<n |Pd(F )| < pkn/2+1 ≤ p2kn/3 ≤ |Pn(F )|, and hence n ∈ Per(F ).

The possibly remaining cases are n = 2, 3, 4, 5. We can show that 2, 3, 4, 5 ∈ Per(F )

from the data |P1(F )| = pk, |P2(F )| = p2k, |P3(F )| ≥ p2k, |P4(F )| ≥ p3k, |P5(F )| ≥ p4k,

using Lemma 3.2.1.

Subcase-2: Suppose l < k and a0 ≡ 1 (mod p). If r = 1, then α(n) = (k − l)pm >

(k − l)pm−1 = α(n/p). Hence pm ∈ Per(F ) for every m. If r ≥ 2, then kr/2 > l

so that
∑

d|n and d<n |Pd(F )| < pkn/2+1 ≤ ppm(kr/2+1) ≤ ppm(kr−l) ≤ |Pn(F )|. Therefore,

n ∈ Per(F ).

Subcase-3: Suppose l < k and a0 6≡ 1 (mod p). If r = 1, then α(n) = kpm >

kpm−1 = α(n/p). Hence pm ∈ Per(F ) for every m. If r ≥ 2, then as above,
∑

d|n and d<n |Pd(F )| < pkn/2+1 ≤ ppm(kr−l) ≤ |Pn(F )|. Therefore, n ∈ Per(F ).

We have two corollaries combining some of the results we obtained in this section:

Corollary 3.4.6. Let F be an additive CA, where the addition is done modulo a prime

p. If F is not a root of identity, then |Pn(F )| is a non-negative integral power of p for

every n.

Proof. Proposition 3.4.2 and Proposition 4.1.2.

Corollary 3.4.7. Let F be an additive CA, where the addition is done modulo a prime

p. Then, Per(F ) has only four possibilities: {1,m} for some m where 1 ≤ m < p,

N \ {pm : m ∈ N}, N \ {2pm : m ∈ N ∪ {0}} or the whole set N.

Proof. Theorem 3.4.1, Theorem 3.4.3 and Theorem 3.4.5.

3.5 Per(F ) for F ∈ Fn, where n is square-free

For this section, let An = {0, 1, . . . , n − 1} for n ∈ N. Note that An is a group with

addition modulo n. If n is square-free, n = p1 · · · pt for distinct primes pj. Basic group

theory tells that the map m 7→ (m1, . . . , mt), where mj is m (mod pj), is a group

isomorphism from An onto Ap1×· · ·×Apt . This group isomorphism induces a bijection

(in fact, a group isomorphism) Φ : AZn → AZp1
× · · · × AZpt

.
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For F ∈ Fn, if we associate Fj ∈ Fpj
by declaring Fj(x)i to be F (x)i (mod pj), then it

is not difficult to verify that Φ ◦F = (F1× · · · ×Ft) ◦Φ. From the previous section we

know Per(Fj) for every j. Therefore, we feel that it should be possible to determine

Per(F ) also. The following two simple results, whose proofs are omitted, help us to

say that our guess is correct.

Lemma 3.5.1. Let f : X → X and g : Y → Y be maps. If h : X → Y is a bijection

such that h ◦ f = g ◦ h, then Per(f) = Per(g).

Lemma 3.5.2. For self-maps of spaces, if f = f1 × · · · × ft, then we have Per(f) =

{l.c.m.(r1, . . . , rt) : rj ∈ Per(fj)}, where ‘l.c.m.’ stands for ‘least common multiple’.

Therefore, we have the following tool to determine Per(F ) for F ∈ Fn, when n is

square-free.

Theorem 3.5.3. Let n = p1 · · · pt be a product of distinct primes and let F ∈ Fn. For

1 ≤ j ≤ t, let Fj ∈ Fpj
be as given above. Then, Per(F ) = {l.c.m(r1, . . . , rt) : rj ∈

Per(Fj)}.

We illustrate the use of this Theorem with an example.

Example 3.5.4. Let F : AZ6 → AZ6 be given by F (x)i = 5xi + xi+1 (mod 6). Since

6 = 2.3, define F1 : AZ2 → AZ2 and F2 : AZ3 → AZ3 by declaring F1(x)i to be F (x)i

(mod 2) and F2(x)i to be F (x)i (mod 3). Then, F1(x)i = xi + xi+1 (mod 2) and

F2(x)i = 2xi + xi+1 (mod 3). By Theorem 3.4.5(i), Per(F1) = N \ {2m : m ∈ N},
and by Theorem 3.4.5(ii), Per(F2) = N \ {2.3m : m ∈ N ∪ {0}}. By Theorem 3.5.3,

Per(F ) = {l.c.m.(r1, r2) : r1 ∈ Per(F1) and r2 ∈ Per(F2)}. Hence, Per(F ) = N \ {2}.

Remark: Let p be a prime. Determining Per(F ) for F ∈ Fpm , where m > 1, seems

to be difficult. The essential reason is the following. While considering F ∈ Fp, to

compute |Pn(F )| we used the fact that if A = {0, 1, . . . , p− 1} and if q ∈ A \ {0}, then

{qr (mod p) : r ∈ A} = A. The corresponding result is no longer true of we replace p

with pm, m > 1.
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3.6 On Pn(F )

Fine, we have determined the possibilities for the set of periods. But, what about

the periodic points themselves? Can we say anything about the periodic points of an

additive CA? At present we do not have much to say.

Problem: Is it possible to determine completely the sets Pn(F ) = {x : F n(x) = x}
when F is an additive CA?

Some elementary hints are given below. Let A = {0, 1, . . . , m−1} and let F : AZ → AZ

be an additive CA.

1. Since Pn(F ) is the kernel of the group homomorphism Identity−F n, it follows that

Pn(F ) is a subgroup of AZ, for each n.

2. We can write F as F =
∑k

j=−k ajσ
j where σ is the shift map. Then it quickly

follows that any two additive CA on the same phase space commute with each other.

Therefore, if G is any additive CA having the same phase space as that of F , then

Pn(F ) must be G-invariant for every n. This considerably reduces the choices for the

the subgroup Pn(F ).

3. It is possible that if |Pn(F )| < ∞, then this cardinality has some relation to m = |A|.
For instance, we ask: is it true that if |Pn(F )| < ∞, then any prime dividing |Pn(F )|
must divide m? A non-trivial example where Pn(F ) is infinite for an additive F is the

following: let F : ZZ4 → ZZ4 be F (x)n = xn + 2xn+1 (mod 4). Then, every element of

{0, 2}Z is fixed by F and hence P1(F ) is uncountable.

3.7 Set of periods of a general CA

Once we drop the additivity requirement from a CA, the calculation of the set of periods

seemingly becomes almost impossible. We can consider a weaker question.

Problem: Let S = {M ⊂ N : M = Per(F ) for some cellular automata F}. Is it

possible to describe S completely? That is, which subsets of N can arise as the set of
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periods of some CA?

Some partial answers are given below:

1. S is countable as there are only countably many CA.

2. N = Per(σ) ∈ S and for every k ∈ N, {k} = Per(Γk) ∈ S, where Γk is the CA

whose local rule is a k-cycle on an alphabet of k symbols. Also, kN = Per(σ×Γk) ∈ S.

3. If M1,M2 ∈ S, then M1 ∪M2 ∈ S.

This is proved as follows. For i = 1, 2, let Fi be a CA with local rule fi : A3
i → Ai

such that Per(Fi) = Mi. Let k ∈ M1 and let A3 = {0, 1, . . . , k − 1}. We may assume

that A1, A2, A3 are pairwise disjoint. Let B =
⋃3

i=1 Ai. We define G : BZ → BZ in

such a way that G|AZi = Fi for i = 1, 2, G|AZ3 = Γk and G has no periodic points in

BZ \ [⋃3
i=1 AZi

]
. Then, it will follow that Per(G) = M1∪M2. To achieve our objective,

the local rule of G, g : B3 → B, is defined as below:

g(abc) =





fi(abc), if abc ∈ A3
i for i ∈ {1, 2},

b + 1(mod k), if abc ∈ A3
3,

0, otherwise.

To see that G has no periodic points in BZ \ [⋃3
i=1 AZi

]
, we argue as follows. If x ∈

BZ\[⋃3
i=1 AZi

]
, then there exist m ∈ Z and i, j ∈ {1, 2, 3}, i 6= j such that xm ∈ Ai and

xm+1 ∈ Aj. Then, we have [Gn(x)][m, m+1] ∈ A2
3 for every n ∈ N. But x[m, m+1] /∈ A2

3 by

the choice of m. Hence Gn(x) 6= x.

4. Every (non-empty) finite subset of N belongs to S [∵ 2 and 3].

5. N \ {1, 2, . . . , k} ∈ S for every k ∈ N.

The proof is as follows: Let A = {0, 1, . . . , k} and B be a finite set of k + 1 elements,

disjoint with A. Put C = A ∪ B. We define F : CZ → CZ in such a way that F |AZ
is Γk+1 and F |BZ is almost like σ except that there will not be any periodic point
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of period ≤ k. Also, as done before, we take care that F has no periodic points in

CZ \ [
AZ ∪BZ]. The local rule f : C2k+1 → C of F is given by:

f(c−k · · · c0 · · · ck) =





c0 + 1(mod k + 1), if c−k · · · c0 · · · ck ∈ A2k+1,

c1, if {ci : −k ≤ i ≤ k} = B,

0, otherwise.

Then, it is not difficult to see that Per(F ) = N \ {1, 2, . . . , k}.

6. Every cofinite subset of N belongs to S [∵ 3, 4 and 5].

7. If M ∈ S and k ∈ N, then kM ∈ S.

We proceed as follows. Let F : AZ → AZ be such that Per(F ) = M . Also, let

f : A3 → A be the local rule of F . Note that Per(F × Γk) may not be equal to

kM . So we have to make some slight modification. Since the idea is simple, we do

not insist on notational rigor. Let n ∈ M . Let A0, . . . , Ak−1 be k-copies of A and let

Ak = {0, 1, . . . , n − 1}. Let B be the disjoint union
⋃k

i=0 Ai. To obtain G : BZ → BZ

with Per(G) = kM , we define its local rule g : B3 → B as:

g(abc) =





b ∈ Ai+1, if abc ∈ A3
i for some i ∈ {0, 1, . . . , k − 2}

f(abc) ∈ A0, if abc ∈ A3
k−1

b + 1(mod n), if abc ∈ Ak

0 ∈ Ak, otherwise.

8. For any k ∈ N, every cofinite subset of kN belongs to S [∵ 6 and 7].

Some “vague feelings” are presented as questions:

Question-1: Is it true that if M ∈ S is infinite, then M contains a multiple of every

natural number (and hence for example, the set {1, 3, 5, 7, . . .} cannot belong to S)?

Question-2: Is it true that every infinite M ∈ S has positive upper density?



Chapter 4

Added flavor on Topological

Dynamics

4.1 Weak mixing and mixing

Any closed invariant subsystem of the shift dynamical system is called a subshift.

Subshifts of finite type and sofic shifts are two major classes of subshifts [51].

They appear as useful tools in many branches of Mathematics such as the study of

hyperbolic flows and coding theory. In this section we show that weak mixing implies

mixing for all subshifts of finite type and many sofic shifts.

For comparison, one may recall that (1) transitivity implies weak mixing for CA and

(2) total transitivity implies mixing for interval maps.

Let A, B be finite sets with|B| ≤ |A|, let φ : A → B be a surjection and let G be

a directed graph with A as the vertex set. EG will stand for the edge set and we

will write ij ∈ EG to mean that there is an edge from vertex i to vertex j in the

directed graph G, where i, j ∈ A. Let XG = {x ∈ AZ : xmxm+1 ∈ EG for every m}
and Y φ

G = {y ∈ BZ : there exists x ∈ XG such that φ(xm) = ym for every m}. The

dynamical system obtained by restricting the shift map σ to XG, or simply (XG, σ),

is called a subshift of finite type and similarly the pair (Y φ
G , σ) is called a sofic

shift. [Strictly speaking, what we mean is that any subshift of finite type or sofic shift

63
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can be realized in the above fashion. For original definitions and equivalence to our

description, see [23], [51].]

Note that the map Φ : XG → Y φ
G given by [Φ(x)]m = φ(xm) is a continuous surjection

and that Φ ◦ (shift on XG) = (shift on Y φ
G ) ◦ Φ. That is, (Y φ

G , σ) is a factor of (XG, σ)

via the factor map Φ.

Many of the dynamical properties of (XG, σ) and (Y φ
G , σ) can be expressed in terms of

the directed graph G. We are mainly interested in the formulation of three properties:

transitivity, weak mixing and mixing. It is known that

Proposition 4.1.1. [9] A compact dynamical system which is totally transitive and

has a dense set of periodic points is weak mixing.

For i, j ∈ A we define N(i, j) to be the collection of all n ∈ N such that there is a

path of length (= number of edges) n from vertex i to vertex j in the directed graph

G. Then without much effort one can conclude the following facts (see also [23], [51]).

Recall that by a thick subset of N we mean a subset containing arbitrarily large blocks

of consecutive numbers.

Proposition 4.1.2. Let (XG, σ), (Y φ
G , σ) and N(i, j) be as described above. Then,

(a) (XG, σ) is transitive if and only if N(i, j) 6= ∅ for every i, j ∈ A.

(b) (XG, σ) is weak mixing if and only if N(i, j) is thick for every i, j ∈ A.

(c) (XG, σ) is mixing if and only if N(i, j) is cofinite for every i, j ∈ A.

(d) If (XG, σ) is transitive, then the set of periodic points of σ is dense in XG.

(e) If (XG, σ) is transitive, totally transitive, weak mixing, or mixing, or has a dense

set of periodic points, then so is the case with (Y φ
G , σ).

Now, consider i, j, k ∈ A and assume that in the directed graph G, there is a path of

length n from vertex i to vertex j and a path of length m from vertex j to vertex k.

Then by juxtaposition, we get a path of length n + m from i to k. This yields:

Lemma 4.1.3. For every i, j, k ∈ A, N(i, j) + N(j, k) ⊂ N(i, k). In particular, if

n ∈ N(i, i), then nN ⊂ N(i, i).

Theorem 4.1.4. If a subshift (XG, σ) of finite type is weak mixing, then it is mixing.
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Proof. Consider i, j ∈ A. By hypothesis and Lemma 4.1.3 we have that nN ⊂ N(i, i)

for some n ∈ N, N(i, j) is thick and N(i, i)+N(i, j) ⊂ N(i, j). Hence N(i, j) is cofinite.

Thus, by Proposition 4.1.2(c), (XG, σ) is mixing.

Corollary 4.1.5. For a subshift of finite type, “total transitivity = weak mixing =

mixing”.

Proof. Proposition 4.1.1, Proposition 4.1.2(d) and Theorem 4.1.4.

Transitive subshifts of finite type which are not totally transitive can be easily con-

structed. For example, take A = {a, b, c, d, e, f} and EG = {ab, bc, cd, de, ef, fa, ad}.

As we know, the shift map is mixing, and we have seen that a transitive subshift of

finite type need not be mixing. But we have the following compensation.

Theorem 4.1.6. Let (XG, σ) be a transitive subshift of finite type, which is not a

periodic orbit. Then, for some n ∈ N, the full shift on two symbols is a factor of

(XG, σn).

Proof. Since (XG, σ) is transitive and XG is infinite, there exists a cyclic path C in the

directed graph G which omits at least one vertex. Also, transitivity tells us that there

must be a path from some vertex of C to the omitted vertex. Using this, we can find

vertices a 6= b in G such that for some k ∈ N, there are paths Paa and Pab of length k

from a to a and a to b, respectively. Again, by transitivity, there must be a path Pba

from b to a. Let l be its length. We show that for n = 2k + l, there are paths of length

n from a to a, a to b, b to a and b to b.

Using the symbol “+” for the juxtaposition of paths, the required paths are given

below:

a to a: Pab + Pba + Paa.

a to b: Pab + Pba + Pab.

b to a: Pba + Paa + Paa.

b to b: Pba + Paa + Pab.
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This gives that the full shift ({a, b}Z, σ) is a factor of (XG, σn), where a factor map

Ψ : XG → {a, b}Z can be defined as follows:

[Ψ(x)]m =





xnm, if xnm ∈ {a, b},
a, otherwise.

A sufficient condition for a transitive subshift of finite type to be totally transitive (=

mixing) is given below:

Proposition 4.1.7. Let (XG, σ) be a transitive subshift of finite type. If N(i, i) con-

tains finitely many (≥ 2) integers with no common factor (in particular, if 1 ∈ N(i, i))

for some i ∈ A, then (XG, σ) is mixing.

Proof. Consider j, k ∈ A. By transitivity, N(j, i) and N(i, k) are non-empty. Since

N(i, i) is closed under addition by Lemma 4.1.3, if N(i, i) contains finitely many (≥
2) integers with no common factor, then N(i, i) is cofinite. Again by Lemma 4.1.3,

N(j, i) + N(i, i) + N(i, k) ⊂ N(j, k). Hence N(j, k) is cofinite and thus (XG, σ) is

mixing.

Now, we turn our attention to sofic shifts. We will make use of the factor map Φ :

XG → Y φ
G which intertwines the dynamics in (XG, σ) and that in (Y φ

G , σ). The trick is

to translate the problem into (XG, σ) and then to work with N(i, j)’s.

Theorem 4.1.8. Let (Y φ
G , σ) be a Sofic shift. Assume that N(i, i) 6= ∅ for every

i ∈ A(= vertex set of G) and that (Y φ
G , σ) is weak mixing. Then, (Y φ

G , σ) is mixing.

Proof. Recall that the continuous surjection Φ : XG → Y φ
G defined by [Φ(x)]m = φ(xm)

satisfies Φ ◦ (shift on XG) = (shift on Y φ
G ) ◦ Φ, where φ : A → B is a surjection.

Let s ∈ B2l+1, t ∈ B2k+1 be such that s, t appear in some y, y′ ∈ Y φ
G respectively. Since

the topology on Y φ
G is the subspace topology inherited from BZ, to show that (Y φ

G , σ)

is mixing, it is enough to show that the following set is cofinite: NB(s, t) = {n ∈ N :

there is y ∈ Y φ
G such that y[−l, l] = s and [σn(y)][−k, k] = t}.

For the map φ : A → B given above and for any v = v1v2 · · · vn ∈ An, we put φ(v) =

φ(v1)φ(v2) · · ·φ(vn). Now, let J = J(s, t) be the (finite) collection of all ordered pairs
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(v, w) such that v ∈ A2l+1, w ∈ A2k+1, φ(v) = s, φ(w) = t and NA(v, w) 6= ∅, where

NA(v, w) = {n ∈ N : there is x ∈ XG such that x[−l, l] = v and [σn(x)][−k, k] = w}.
Then, NB(s, t) =

⋃
(v,w)∈J NA(v, w), which is thick since (Y φ

G , σ) is assumed to be weak

mixing. For (v, w) ∈ J , let iv ∈ A be the rightmost letter of v and let jw ∈ A be the

leftmost letter of w. Then, NA(v, w) \ [N(iv, jw) + l + k] is finite. We conclude that
⋃

(v,w)∈J [N(iv, jw) + l + k] =
[⋃

(v,w)∈J N(iv, jw)
]

+ l + k is thick.

Hence, Z :=
⋃

(v,w)∈J N(iv, jw) is also thick. If we show that Z is cofinite, then the

steps can be retraced to establish the cofiniteness of NB(s, t), completing the proof.

By hypothesis on (XG, σ), N(iv, iv) 6= ∅. Therefore, by Lemma 4.1.3 there exists nv ∈ N
such that nvN ⊂ N(iv, iv). Let n =

∏
(v,w)∈J nv. Then, nN ⊂ N(iv, iv) for every v such

that (v, w) ∈ J . Also, N(iv, iv)+N(iv, jw) ⊂ N(iv, jw) by Lemma 4.1.3. Thus, we have

nN+ Z ⊂ Z. Since Z is thick, we get that Z is cofinite.

Corollary 4.1.9. Let (Y φ
G , σ) be a sofic shift, which is a factor of the subshift of finite

type (XG, σ) and assume that (XG, σ) has a dense set of periodic points. Then, for

(Y φ
G , σ), “total transitivity = weak mixing = mixing”.

Proof. Since the set of periodic points is dense in XG, N(i, i) 6= ∅ for every i ∈ A.

Now, use Proposition 4.1.1, Proposition 4.1.2(e) and Theorem 4.1.8.

Remarks: (i) Note that we have not assumed the transitivity of (XG, σ) in the hy-

pothesis of Theorem 4.1.8. (Y φ
G , σ) can be transitive even if (XG, σ) is not. (ii) We do

not know whether the assumption “N(i, i) 6= ∅ for every i ∈ A” can be dropped from

the hypothesis of Theorem 4.1.8. More generally, we do not know whether there is a

Sofic shift which is totally transitive but not mixing.

4.2 Continuous maps in the enveloping semigroup

The idea of the enveloping semigroup is due to Ellis (see [29], [47], [58]). With the help

of the enveloping semigroup, properties regarding the asymptotic behavior of dynamical

systems can be expressed as neat algebraic statements. For instance, a surjective dy-

namical system is equicontinuous if and only if the corresponding enveloping semigroup

is a group of homeomorphisms [2].
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Let (X, f) be a dynamical system, where X is a compact metric space. Consider

XX , the collection of all maps (need not be continuous) from X to X. Equip XX

with product topology, which is same as the topology of pointwise convergence. Now,

{fn : n ∈ N} is a subspace of XX . The closure of {fn : n ∈ N} in XX is called the

enveloping semigroup of (X, f), and it will be denoted by Env(X, f) or Env(f). It

is indeed a semigroup under the composition of maps.

In this section we investigate the continuity property of maps which are the limit points

of the enveloping semigroup of certain dynamical systems. The enveloping semigroup

is in general not metrizable, and hence for arguments involving limit points one has to

use nets instead of sequences.

Lemma 4.2.1. Let X be a compact metric space, f : X → X be continuous and

g ∈ Env(f). Then, P (f) ⊂ P (g).

Proof. First note that any g ∈ Env(f) commutes with f . Let {nα} be a net such that

fnα → g, and let x ∈ P (f). Now, {fnα(x) : nα} is finite and fnα → g. Therefore,

g(x) = f j(x) for some j. If fn(x) = x, then since g commutes with f , gn(x) = f jn(x) =

x. Thus, x ∈ P (g).

Let (X, f) be a compact dynamical system with an admissible metric d. A point y ∈ X

is said to be an asymptotically periodic point for f if there is a periodic point x ∈ X

such that d(fn(x), fn(y)) → 0 as n →∞.

Lemma 4.2.2. Let X be a compact metric space, f : X → X be continuous and

g ∈ Env(f) be a limit point. If x ∈ X is an asymptotically periodic point of f , then,

g(x) ∈ P (f).

Proof. Similar to the previous proof.

Lemma 4.2.3. [25] Let σ : AZ → AZ be the shift map. If F : AZ → AZ is a surjective

CA, then F−1(P (σ)) ⊂ P (σ).

Proposition 4.2.4. Let σ be the shift map. If F ∈ Env(σ) is continuous, then F = σn

for some n ∈ N.
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Proof. Let F ∈ Env(σ) be continuous. Then, F is a CA. Since σ is surjective, it is

easy to see that F is also surjective. Now, σ has asymptotically periodic points which

are not periodic. Therefore, by the last two Lemmas, F cannot be a limit point of

Env(σ).

Lemma 4.2.5. Let X, Y be compact metric spaces, and let f : X → X, g : Y → Y ,

h : X → Y be maps such that h ◦ f = g ◦ h. If f, h are continuous and if h is onto,

then g is continuous.

Proof. We show that pre-image of closed sets are closed. Let K ⊂ Y be closed. Then,

L := (g ◦ h)−1(K) = (h ◦ f)−1(K) is closed in X since f, h are continuous. Since h is

onto, g−1(K) = h(L). Since X, Y are compact and h is continuous, h(L) is closed in

Y .

Proposition 4.2.6. Let f : [0, 1] → [0, 1] be a continuous map having a periodic point

of period different from a power of 2. If g ∈ Env(f) is continuous, then g = fn for

some n ∈ N.

Proof. By the hypothesis on f , there exist k ∈ N and closed, fk-invariant set X ⊂ [0, 1]

such that the shift map σ (on two symbols) is a factor of (X, fk) (c.f. [60]). Let h be

a factor map connecting fk|X to σ.

Since g ∈ Env(f), fnα → g for some net {nα}. We may assume that there is j ∈
{0, 1, . . . , k − 1} such that nα = mαk − j for every α. Also, by the compactness of

Env(σ), we may assume that {σmα} converges to some F . Then, we have h ◦ [g ◦ f j] =

F ◦ h. Therefore, by Lemma 4.2.5, F must be continuous, and hence by the previous

Proposition, F = σn for some n. Thus, mα must be eventually n since σn is not a limit

point of Env(σ). It follows that nα is eventually nk − j. Hence, g = lim fnα = fnk−j.

Thus g is not a limit point.

For a periodic orbit P of (X, f), let Asy[P ] be the collection of all y ∈ X such that

there is x ∈ P with d(fn(x), fn(y)) → 0 as n →∞.

Proposition 4.2.7. Let X be a compact metric space and let f : X → X be continuous.

If f has distinct periodic orbits P, Q such that Asy[P ], Asy[Q] are both dense in X,

then any g ∈ Env(f) which is a limit point, is nowhere continuous on X.
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Proof. Let g ∈ Env(f) be a limit point, and let x ∈ X. Then, g(x) /∈ P or g(x) /∈ Q.

Assume that g(x) /∈ P . Find a net {xα} in Asy[P ] converging to x. Then, for each α,

g(xα) ∈ P by Lemma 4.2.2, and hence limα g(xα) 6= g(x).

Corollary 4.2.8. Let X be a compact metric space and let f : X → X be transitive.

If f has two distinct periodic orbits, then any g ∈ Env(f) which is a limit point, is

nowhere continuous on X.

Proof. It is not difficult to verify (using the abundance of points with dense orbits)

that the hypothesis of the previous proposition is satisfied.

Corollary 4.2.9. Let (X, f) be one of the following:

(i) a transitive system on [0,1],

(ii) a transitive CA, or

(iii) a transitive subshift of finite type.

Then any g ∈ Env(f) which is a limit point, is nowhere continuous on X.

Proof. In each case, verify the hypothesis of the previous corollary.

4.3 ω-limit sets of the shift map

Let (X, f) be a dynamical system with X a compact metric space. For x ∈ X, the ω-

limit set of x is the set of limit points of the f -orbit of x. It is denoted by ω(f, x). Note

that y ∈ ω(f, x) if and only if there is an increasing sequence (nk) of natural numbers

such that fnk(x) → y. The set ω(f, x) is closed and f -invariant. See for instance [1] to

know more about ω-limit sets. In this section we characterize the ω-limit sets of the

shift map σ : AZ → AZ in terms of words over A.

If Y ⊂ AZ, let WY = {w ∈ A+ : w appears in some y ∈ Y }. For x ∈ AZ, let us call

x0x1x2 . . . the right part of x. It is clear that

Lemma 4.3.1. If Y = ω(σ, x), then w ∈ WY if and only if w appears in the right part

of x infinitely often.

Now, the characterization runs as follows.
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Theorem 4.3.2. Let Y ⊂ AZ be non-empty and closed. Then the following are equiv-

alent.

(i) Y = ω(σ, x) for some x ∈ AZ.

(ii) For every u,w ∈ WY and every n ∈ N, there exists v ∈ A+ such that any subword

of uvw of length ≤ n belongs to WY .

Proof. (i) ⇒ (ii): Let u,w ∈ WY and n ∈ N be given. Then, the right part of x can

be written as v1uv2wv3uv4w · · · , where vj ∈ A+. We claim that for some even j, any

subword of uvjw of length ≤ n belongs to WF . Suppose not. Then, for every even j,

there is sj ∈ An \WY such that sj is a subword of uvjw. Since sj varies over a finite

set, some sj must repeat infinitely often, call it s. Then, s appears in the right part of

x infinitely many times, but by choice s /∈ WF , which is a contradiction.

(ii) ⇒ (i): Write WY = {w1, w2, w3, . . .} so that |wn| ≤ |wn+1| for every n. For each

n, find sn ∈ A+ such that any subword of wnsnwn+1 of length ≤ |wn| belongs to WY .

Then, one has that for each n, any word of length ≤ |wn| appearing in the sequence

wnsnwn+1sn+1wn+2sn+2 · · · belongs to WY - call this observation (∗).

Let x ∈ AZ be such that the right part of x is w1s1w2s2w3s3 · · · . We claim that

Y = ω(σ, x).

Let y ∈ Y and let k ∈ N. Then, y[−k,k] ∈ WY so that y[−k,k] = wn for some n. Hence by

(∗), the word y[−k,k] appears in the right part of x infinitely often. Since k is arbitrary,

we get y ∈ ω(σ, x). Thus, Y ⊂ ω(σ, x).

To establish the reverse inclusion, let y /∈ Y . Since Y is closed, there is k ∈ N such

that y[−k,k] /∈ WY . Because of (∗), the word y[−k,k] can appear only finitely many times

in the right part of x. Therefore, y /∈ ω(σ, x).

Problem: Characterize the ω-limit set of additive CA in terms of words.
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