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CHAPTER 1

Main theorems

1.1 Abstract

The thesis mainly consists of two subjects:

e Dynamics of McMullen maps.

In this part, we study the local connectivity of Julia sets for rational maps.
We develop Yoccoz puzzle techniques to study McMullen maps and show that
the boundary of the basin of infinity is always a Jordan curve if the Julia
set is not a Cantor set. This give a positive answer to a question posed by
Devaney. We also show the Julia set of McMullen maps is locally connected
except some special cases.

e Thurston’s theory on characterization of rational maps and extensions.

For this subject, we establish a ‘Decomposition Theorem’:

FEvery non-parabolic branched covering can be decomposed along a sta-
ble multicurve into finitely many Siegel maps or Thurston maps, such that
the combinatorics and rational realizations of these resulting maps essentially
dominate the original one.

These resulting maps can be considered as the renormalizations of the
original map. The motivation to establish such a theorem is to prove a
Thurston-type theorem for rational maps with Herman rings. The Decom-
position Theorem implies:

Thurston-type theorems for rational maps with Herman rings can be re-
duced to Thurston-type theorems for rational maps with Siegel disks.

According to Shishikura, a rational map with Herman rings admits finitely
many rational maps, with Siegel disks or without rotation domains, as renor-
malizations. The Decomposition Theorem extends this philosophy beyond
rational maps.

The Decomposition Theorem enables us to extend Thurston’s Theorem to
many poscritically infinite cases and give characterizations of rational maps
with attracting cycles, Siegel disks and Herman rings. On the other hand, it
allows us to construct many branched coverings without Thurston obstruc-
tions but not equivalent to rational maps.
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Besides these two parts, the thesis also includes two short articles. One
concerns the classification of rational maps admitting meromorphic line fields
(Chapter 3) while the other concerns the parameter plane of a special family
of rational maps (Chapter 4).

All of these parts are self-contained.

1.2 Dynamics of McMullen maps

The local connectivity of Julia sets for rational maps is a central problem in
complex dynamical systems. It is well studied for classical type of rational
maps, for example: hyperbolic and semihyperbolic maps, geometrically finite
maps, see |CJY[,[M1],[TY]. In polynomial case, it is also known a lot, see
[DH2],|GS],|Kiwi],|Ly],[M2]. For quadratic polynomials, Yoccoz proved that
the Julia set is locally connected provided that all periodic points are repelling
and the map is not infinitely renormalizable, see [Hu|,[M2|. Douady exhibited
striking example of infinitely renormalizable quadratic polynomial with non
locally connected Julia set, see [M2]|. For general polynomial with connected
Julia sets and without irrationally neutral cycles, Kiwi shows in [Kiwi| that the
local connectivity of Julia set is equivalent to the non existence of wandering
continua.

The powerful tool to study the local connectivity of Julia sets for polyno-
mials is the so-called ‘Branner-Hubbard-Yoccoz puzzle’ techniques, which is
introduced by Branner-Hubbard and Yoccoz, [BH]. It has a natural way of
construction, which is induced by finite periodic external rays together with
an equipotential curve.

However, for general rational maps, things are different. The construction
of Yoccoz puzzle becomes quite involved, even impossible. Up to now, the
only known rational maps which admit Yoccoz puzzle structures are the cubic
Newton maps, whose Yoccoz puzzles are constructed by Roesch. In [Rol], by
Yoccoz puzzle techniques, Roesch shows striking differences between rational
maps and polynomials. The method also leads to the local connectivity of
Julia sets except some specific cases.

In this part, we use Yoccoz puzzle to study another family of rational
maps, known as McMullen maps, of the form

iz 2"+ A" AeC =C\{0}, n>3.

Dynamics of this family have been studied by Devaney and his group, see
[D1],[D2],[DK],[DLU].
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The difference of the Yoccoz puzzles between cubic Newton maps ([Rol])
and McMullen maps is as follows: For cubic Newton maps, the ingredient
of the Yoccoz puzzle is an converging ray that intersects the Julia set in a
countably many points while for McMullen maps, the element to construct
Yoccoz puzzle is a Jordan curve that intersects the Julia set in a Cantor set
of points. This kind of Jordan curve is induced by some particular angle and
can be viewed as an extention of the corresponding external ray.

We denote by B, the immediate attractive basin of co. The topology of
0B, is of special interest. Based on Yoccoz puzzle techniques and combinato-
rial and topological analysis, we prove:

Theorem 1.2.1. (Cantor or Jordan) For any n > 3 and any complex
parameter A, if the Julia set J(fy) is not a Cantor set, then OB, is a Jordan
curve.

This affirmatively answers a question posed by Devaney at the Snowbird
Conference on the 25th Birthday of the Mandelbrot set, see [DK]|. For the
higher regularity of 0B), we show that 0B, is a quasicircle except two special
cases.

Theorem 1.2.2. Suppose the Julia set J(fy) is not a Cantor set, then OB, is
a quasicircle if it contains neither parabolic point nor recurrent critical point.

Here, a recurrent critical point ¢ on the Julia set of a rational map f is a
critical point such that ¢ € w(c), where w(c) is the w-limit set of ¢, defined as
{z € C; there exist n, — oo such that z = lim f™(c)}. In fact, we can show
that if 0B, contains a parabolic point, then 0B, is not a quasicircle by Leau-
Fatou-Flower Theorem (|M2]). The question whether 0B, is a quasicircle
when 0B, contains a recurrent critical point is still unknown.

For the topology of the Julia set, we show

Theorem 1.2.3. Suppose f\ has no Siegel disk and the Julia set J(f)\) is
connected, then J(fy) is locally connected in either of the following cases:

1. The critical orbit does not accumulate on the boundary 0B,.

2. The map fy is neither renormalizable nor x—renormalizable.

3. The parameter X is real and positive.

Here are the definitions of renormalization and *—renormalization: If there
exist a critical point c of fy, an integer p > 1 and two disks U and V' containing
¢ such that

eff:U—-V

is a quadratic like map whose Julia set is connected (here ¢ € {£1} is a
symbol), then we say fy is p-renormalizable at ¢ if ¢ = 1 and fy is p-*-
renormalizable at c if ¢ = —1.
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Theorem 1.2.3 implies that the Julia set is locally connected except some
special cases. In fact, it’s stronger than the following statement:

Theorem 1.2.4. Suppose fy has no Siegel disk and the Julia set J(fy) is con-
nected, then J(f\) is locally connected if the critical orbit does not accumulate
on the boundary 0B,.

Theorem 1.2.4 is an analogue of Roesch’s Theorem [Rol|:

Theorem 1.2.5. (Roesch) A genuine cubic Newton map, without Siegel
disks, has a locally connected Julia set provided that the orbit of the non-fized
critical point does not accumulate on the boundary of any invariant basin of
attraction.

1.3 Decomposition theorem and Thurston-type
theorems

Let f : S? — S? be an orientation preserving branched covering of degree at
leat two. We denote by deg(f, ) the local degree of f at € S?. The critical
set 2y of f is defined by

Q= {z € 5% deg(f,z) > 1},

and the postcritical set Py of f is defined by

P = ().

n>1

We say that f is postcritically finite (also called ‘critically finite’) if Py is
a finite set. Such a map is always called a Thurston map. For a Thurston
map, we define a function vy : S — N U {oc} in the following way: For each
z € 52, define vy(z) (may be co) as the least common multiple of the local
degrees deg(f™,y) for all n > 0 and all y € S? such that f*(y) = . (Notice
that ve(x) = 1if x ¢ Py). We call Oy = (5%, ;) the orbifold of f.

In 1980s, Thurston proved the following theorem:

Theorem 1.3.1. (Thurston) Let f : S* — S? be a critically finite branched
covering. Suppose that Oy does not have signature (2,2,2,2). Then f is
combinatorially equivalent to a rational function R if and only if for any f-
stable multicurve I', we have A(I', f) < 1. The rational function R is unique
up to Mobius conjugation.
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The detailed proof of Thurston’s theorem is given by Douady and Hubbard
[DH1|.

Thurston’s theorem has connection with a number of related areas such
as Teichmuller theory, quasiconformal surgery, dynamics of several complex
variables, transversality, group theory, algorithm, etc.

There are many applications of Thurston’s theorem. Here is an incomplete
list: Douady’s proof of monotonicity of entropy for unimodal maps [Dou2|,
Kiwi’s characterization of polynomial laminations [Kiwi| (using previous work
of Bielefield-Fisher-Hubbard [BFH] and Poirier |Poi]), Mikulich’s classification
of postcritically finite Newton maps, McMullen’s work on rational quotients
[McM1], Pilgrim-Tan’s cut-and-paste surgery along arcs ([PT1]), Rees’ de-
scriptions of parameter spaces [Rees2|, Rees, Shishikura and Tan’s studies on
matings of polynomials (|[Reesl|,[ST]|, [Tanl], [Tan2]), ...

Over the years, there are several various attempts to generalize Thurston’s
theorem beyond postcritically finite rational maps. For example, David Brown
[Bro|, supported by the previous work of Hubbard and Schleicher [HS], has
succeeded in extending the theory to the uni-critical polynomials with an
infinite postcritical set (but always with a connected Julia set), and pushed
it even further to the infinite degree case, namely the exponential maps. We
would also like to mention a recent work of Hubbard-Schleicher-Shishikura
[HSS] extending Thurston’s theorem to postcritically finite exponential maps.
Cui-Tan|CT1]|, and Jiang-Zhang [JZ], independently, using different methods,
extend Thurston’s theorem to hyperbolic rational maps. Furthermore, Cui
and Tan [CT2| extend Thurston’s theorem to geometrically finite rational
maps. Meanwhile, Zhang [Zh2] extends Thurston’s theorem to a class of
rational maps with Siegel disks.

In this work, we aim to extend Thurston’s theorem to a large class of
branched covering, namely ‘non-parabolic’ branched covering. Roughly speak-
ing, a ‘non-parabolic’ branched covering is a proper branched covering for
which each critical point either has finite orbit or is attracted to an attracting
cycle, or is eventually mapped to the closure of some rotation domain (rota-
tion disk or rotation annulus, formal definition can be found in Section 6.1).
A non-parabolic map with rotation disks and poscritically finite outside the
closure of these rotation disks is called a Siegel map. Our main result is

Theorem 1.3.2. (Decomposition Theorem) Let (f, P) be a non-parabolic
map, then there exist a (f, P)-stable multicurve T’ and a collection of Siegel
maps or Thurston maps, say {(hg, Py),k € A}, where A is a finite index set,
such that

1. (Combinatorial part) (f, P) has no Thurston obstructions if and only
if NM(T', f) < 1 and for each k € A, (hg, Py) has no Thurston obstructions.
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2. (Surgery part) (f, P) is q.c-equivalent to a rational map if and only if
MT, f) <1 and for each k € A, (hg, Py) is q.c-equivalent to a rational map.

3. (Analytic part) (f, P) is q.c-equivalent to a unique rational map up to
Mobius conjugation if and only if N(I', f) < 1 and for each k € A, (hy, Px)
q.c-equivalent to a unique rational map up to Mobius conjugation.

From the viewpoint of ‘reduction’, the theorem implies that Thurston-
type Theorem for every non-parabolic branched covering can be reduced to
Thurston-type Theorem for finitely many Siegel type branched coverings. In
particular, Thurston-type Theorem for rational maps with Herman rings can
be reduced to Thurston-type Theorem for rational maps with Siegel disks.

The ‘Decomposition Theorem’ provides a mechanism to produce Thurston
type Theorems for non-parabolic maps. Thus it has many applications.
For example, it can reduce Thurston-type Theorem for hyperbolic maps to
Thurston’s Theorem for postcritically finite maps (This is the idea of Cui-
Tan’s work [CT1]) and thus generalizes Cui-Tan and Jiang-Zhang’s work. As
another application, it enables us to give a characterization of a class of ra-
tional maps with Herman rings based on Zhang’s work [Zh2], as follows:

Theorem 1.3.3. Let (f, P) be a non-parabolic map, with only one rotation
annulus cycle which is of period one and has rotation number of bounded type,
and without rotation disk. Then (f, P) is c-equivalent to a rational map (R, Q)
if and only if (f, P) has no Thurston obstructions. Moreover, the Lebesque
measure of the Julia set J(R) is zero, and (R,Q) is unique up to Mdbius
conjugation.

There is no reason to believe that the absence of Thurston obstruction
is always equivalent to rational realization for postcritically infinite branched
covering, even if the equivalence is true for hyperbolic case (|[CT1], [JZ]),
some Siegel cases [Zh2]| and Herman cases (Theorem 1.3.3). The mating of
two quadratic Siegel polynomials fy(2) = 22+ ¢ and f_4(2) = 2°+ c_g, where
Co = 62;rm(l — 627;&), provides a non-parabolic map g = fy Ll f_4 for which
the equivalence is false. As a supplement to the Decomposition Theorem,
following the same idea as Shishikura’s construction [Shl] of rational maps

with prescribed numbers of non-repelling cycles and Herman rings, we can
construct many such examples by surgery:

Theorem 1.3.4. Given nonnegative integers na, nrp,Ngra,d satisfying
nA—i-nRD—i—ZnRA S 2d—2, 1 §nRA Sd—Q, NRD + NRrA 22.

There exists a non-parabolic map (f, P) of degree d, such that
1. na(f) = na,nerp(f) = nrp,nra(f) = nra, and the rotation number of
each rotation cycle is of bounded type.
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2. (f, P) has no Thurston obstructions.
3. (f, P) is not c-equivalent to a rational map.

1.4 Other topics

A line field supported on a subset E of the complex sphere C is the Beltrami
differential © = p(z)dz/dz supported on E with |u| = 1. We say p is mea-
surable if u(z) is a measurable function. Let f be a rational map of degree
deg(f) > 2. We say f admits an invariant line field if there is a measurable
line field . supported on a set in C with positive measure such that f*u = p
a.e. (refer to [McM1]).

A meromorphic line field is a line field of the form y = ¢/|$|, where ¢ is
a nonzero meromorphic quadratic differential defined on C. We say f admits
a meromorphic invariant line there is a meromorphic line field p such that
= p.

In Chapter 3, we classify the rational maps admitting meromorphic line
fields:

Theorem 1.4.1. Let f be a rational map of degree deg(f) > 2. Then f admits
a meromorphic invariant line field if and only if f is conformally conjugate
to one of the following maps:

1. Integral Lattes map.

2. Power map z v+ 24, for d € Z and |d| > 2.

3. £T,,n > 2, where T, is the n-th Chebyshef polynomial defined by
T, (2cos z) = 2cos(nz).

In Chapter 4, We consider a family of rational maps

24+ A—1 2
224+ N—2/"

T\(2) = (

where A is a complex parameter. This family is indeed the family of renor-
malization transformations of 2-dimensional diamond-like hierachical Potts
models in statistical mechanics. In 1983, Derrida et al show that the Yang-
Lee zeros of the A—state Potts model on the diamond hierachical lattice are
dense in the Julia set J(T)) of the map Ty (See [DDI]). Since then, much
interest has been devoted to this family since it exhibits a connection between
statistical mechanics and complex dynamics (See [EL],|O],|QG],|QL]).

For this family, note that when A = 0, the map 7\ degenerates to the
quadratic polynomial Ty(z) = (2 + 1)?/4; when A € C* = C\ {0}, 1 and oo
are two supperattracting fixed points for the map T while 0 is a critical value.
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The non-escape locus M associated to this family is defined by:

M={X e CT{(0) »n-00o 1 and T (0) 0o 00} U {0}.

Figure 1.1: The non-escape locus M

This part includes two results:
For the parameter plane, we have the following:

Theorem 1.4.2. The non-escape locus M is connected.
For the Julia set, we have the following:

Theorem 1.4.3. If the Julia set J(T\) is a quasi-circle, then the Hausdorff
dimension of J(Ty) satisfies:

HD(J(Ty)) < 1+ |p(0)*/2,

where ¢y is the Bottcher map of T defined near the supperattracting fived
point 1.

The exponent 2/3 in Theorem 1.4.3 is sharp.



CHAPTER 2

Background materials

This chapter presents some basic knowledge of complex analysis and conformal
geometry, which are used in the thesis.

2.1 Spherical derivative

Let f : C — C be a rational function, d(-,-) be the spherical metric. We
define the spherical derivative of f by

A @), f(z) 1+ ]aP
d(w, z) 1+1f(2)

It’s obvious that || f/()]| : C — [0, +00) is a continuous function. The area

element of the sphere is dS = (

I£)] = Jim 2l @l

g
T||2> dzdy, by calculation
z

/C /()28 = / £(dS) = deg(f) / 1S = 4 deg(f).

By mean value theorem, for any rational function f, there is & € C, such

that [|/(E)|] = v/deg(f).

The spherical derivative relates to the normality of rational family:

Theorem 2.1.1. Let F be a family of rational maps. Then F is normal if
and only if there is a constant C' = C(F) such that

1f'(z)| < C, V(f,z) € F xC.
As an immediate consequence, we have:

Corollary 2.1.1. Let f be a rational map of degree at least two, then the
Julia set J(f) is not empty.

Proof. 1f not, then F = {f™;n > 1} is a normal family. By Theorem 2.1.1,
there is a constant C such that for any n > 1 and any z € C, ||(f")'(2)]| < C.
On the other hand, by the mean value theorem, for any n > 1, there is z, € C,

such that ||(f™)(z.)|| = deg(f)™?. Contradiction. O
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2.2 The modulus of an annulus

It’s known that a two connected domain is conformally equivalent to Ar =
{z € C;1 < |z] < R}, D\ {0}, or C\ {0}. For the former case, we define the
modulus of Ar to be == log R. In the latter two cases, we define the moduli

2
of D\ {0} and C\ {0} to be co. The modulus is a conformal invariant.

Theorem 2.2.1. (McMullen Inequality) Let U,V be two simply connected
planner domains, such that U C V # C, and let A =V \U. Then the modulus
of A and the Euclidean areas of U,V satisfy:

e47rmod(A) < (M”GCL(V)'
~ area(U)

Equality holds if and only if OU and OV are concentric circles.

Proof. We assume A is conformally isomorphic to Ag = {z € C;1 < |2| < R},
then mod(A) = 5-log R. Take a conformal map ¢ : Ap — A, preserving
the boundary order of A. Suppose that ¢ has Laurant expansion: ¢(z) =
Y nez nz". It follows from area formula that

area(V) = WZn|an|2RQ", area(U) = ﬁZn\an\z.

nez nez

area(V) — R*area(U) = WZn|an|2(R2” — R?) > 0.(x)

neEL
So we have
647rmod(A) —_ P2 CL’I"G(I(V)
~ area(U)’
From (%) we see that equality holds if and only if for all n € Z\ {0, 1}, a,, = 0.
In this case, p(2) = ag + a1z and OU,0V are concentric circles. O]

Theorem 2.2.2. 1. (Monotonicity) Let Ay, Ay be two annuli, Ay C As,
and Ay separates the two boundary curves of As, then mod(A;) < mod(Ay).
Equality holds if and only if A1 = As.

2. (Subadditivity) Let Aq, Ay, A be annuli. Ay, Ay C A, and Ay N Ay =
(). We assume A, and Ay separate the two boundary curves of A. Then
mod(A;) + mod(A2) < mod(A). FEquality holds if and only if Ay, Ay, A are
standard annuli with A; U Ay = A.

Proof. We only prove the ‘monotonicity’. The proof of the ‘subadditivity’
follows from the same argument. Since the modulus is conformal invariant,
we may assume Ay = {1 < |z| < R}. We denote by U, V' the simply connected
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planar domains bounded by the inner boundary and outer boundary of Aj.
By McMullen Inequality

1 area(V) 1 T R?
< — — ) < — — | = .
mod(A;) < ym log (area(U)) < i log( . ) mod(As)

The left equality holds if and only if the two boundaries of A; are concentric
circles, and the middle equality implies that A; = As. O

In the rest of this section, we introduce Grétzsch constant and discuss its
relationship with modulus. This constant is called Grotzsch defect in Buff and
Epstein’s paper |BE].

We say that a compact set K C C is equatorial if C — K consists of two
simply connected components, say U and V. Choose two base points p, ¢
with p € U,q € V, and then take o € Aut(C), which maps p,q to 0,00
respectively. Let @ : (D,0) — (a(U),0) and ¢ : (C — D, 00) — (a(V), o0)
be two Riemann mappings. Suppose that

wo(z) = Zanz”,z eD; po(() = angn,g cC-D.

n>1 n<l

We define the Grotzsch constant (K, p,q) of K about p,q by:

One may verify that (K, p, q) is well-defined (independent of the choices of
a, Yo, 9000> :

Example 2.2.1. Let S the unit circle, choose two points p,q € C, with |p| <
1,|q| > 1, we have

_ 1y lp—ql?
V5P q) = 5 log ((1 TP 1>)'

Theorem 2.2.3. The Grotzsch constant satisfies:

1. For any B € Aut(C), v(B(K), B(p), B8(q)) = (K, p, q). B

2. v(K,p,q) > 0. v(K,p,q) = 0 if and only if there is 5 € Aut(C), such
that B maps S, 0,00 to K, p,q, respectively.

3. If the interior of K is an annulus A, then v(K,p,q) > mod(A). Equal-
ity holds if and only if there exist 3 € Aut(C), R > 1, such that 3 maps
{1 <|z] < R},0,00 to K, p,q, respectively.

4. (Reverse Grétzsch Inequality) For any R > 1,0 <r <1, let A(R,r) be
the annulus bounded by oo({|z] = r}) and v ({|C| = R}), A, be the annulus




12 CHAPTER 2. BACKGROUND MATERIALS

bounded by po({|z] = r}) and 0a(U), Ag be the annulus bounded by @ ({|(| =
R}) and 0a(V'). Then for any R > 1,0 <r < 1, we have

mod(A(R,r)) < mod(Ag) + mod(A4,) + v(K,p,q).

Equality holds for some pair (R,7) if and only if there is 3 € Aut(C), L > 1
such that 3 maps {1 < |z| < L},0,00 to K, p,q, respectively.

Remark 2.2.1. The ‘Reverse Grotzsch Inequality’ is first introduced in [C],
see also [CT1]. In [CT1], Cui Guizhen and Tan Lei use it as an analytic tool
to prove a Thurston-type theorem for hyperbolic rational maps. In chaper 6,
we will also use it to prove the ‘Decomposition Theorem’.

Proof. One may verify 1 by definition, we omit the details. The proofs of
2 and 3 are based on the area formula. Since (K, p,q) is invariant under
Mobius transformation, we may identify K, p,q with «(K),0,00. It follows
from area formula that

area(U) = ﬂZn|an| area(C —V) = W2n|b 2.
n>1 n<1

Since U ¢ C -V, 7|ay|* < area(U) < area(C — V) < 7|by|?. This means
|b1| > |ai|. Equivalently, v(K,p,q) > 0. |bi| = |ay| if and only if for any
n > 2,a, =0, and for any n < —1, b, = 0. So U = |a1|S, 9V = |b1|S + bo.
Since U NV = (), we have that by = 0 and OU = 9V = |a4S.

If the interior of K is an annulus A, then it follows from McMullen In-
equality that

area(C — V) 1 7|by|?
areal>— V")) « = ) = :
area(U) ) ~ 4w lo (7r|a1|2 1K p. )

Equality mod(A) = v(K, p, ¢) holds if and only if the two boundary curves of
A are concentric circles, moreover ¢y(z) = a1z, pso(() = b1¢ + by. One can
verify that in this case, there is 3 € Aut(C) such that 8 maps {1 < |z| <
e?mmed()Y 0 oo to K, p, q, respectively.
Here, we give two different proofs of the ‘Reverse Grotzsch Inequality’.
The first is based on the McMullen Inequality. The bounded component of
C—wo({|z] = r}) is denoted by U,, the bounded component of C — ., ({|¢| =

R}) is denoted by Vg. It follows from area formula that
area(U,) = W2n|an|2 o area(Vg) = ﬂ2n|b >R,

n>1 n<1

1
<
mod(A) < gy log <

By McMullen Inequality,
1 1 2 D2
mod(A(R.1)) < (area V&) ) 1 (7?|b 1°R )

47r area( 47r |ay |>r?

= mod(Ag) + mod (A;) +v(K,p,q).
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One may easily verify the condition when the equality holds.
Here is another proof of the ‘Reverse Grotzsch Inequality’, based on Koebe
distortion Theorem: we consider the function

f(R,r) =mod(A(R,7)) — mod(Agr) —mod(4,), 0 <r<1,R>1.

It follows from Grotzsch inequality that f > 0 and for any 0 < ry < r; <
1,Ry > Ry > 1, we have f(Ry,71) < f(Ra,r2). This implies the limit
limpg_ oo r—0 f(R,7) exists. By Koebe Theorem, when r is small enough,
wo({|z| = r}) looks like a round circle of radius a;7; when R is large enough,
oo ({|¢| = R}) looks like a round circle of radius by R. It turns out that

1, |nR(1+O(1/R))
mod(A(R,r)) = 2t arr(1+O(r))
1 R 1 by
on 108 + 5 log | + O(1/R) + O(r)
So we have
lim  f(R.r) = o log| 2| = 4(K.p.q)
o fim ,T) = or og a1 =7 Py q)-

This means, for any 0 <r < 1,R > 1, f(R,r) < (K, p,q). Moreover, the
constant (K, p, q) is sharp. ]

2.3 Distortion Theorems
Here are some distortion theorems used in the thesis.

Theorem 2.3.1. (Koebe) Let f: D — C be a univalent function. Then for
all z € D,

||

T S - 101 < 1Ol

Let U € C be a simply connected planar domain and z € U. The shape
of U about z is defined by:

h = — inf |x — z|.
Shape(U, z) xselg?]hc z|/x1€r(19U|x z|

It’s obvious that Shape(U,z) = oo if and only if U is unbounded, and
Shape(U, z) = 1 if and only if U is a round disk centered at z. In all other
cases, 1 < Shape(U, z) < oo.
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Let K be a connected and compact subset of U, containing at least two
points. For any 21, 25 € K, define the turning of K about z; and 2, by:

A(K; 2y, 29) = diam(K) /|21 — 2o,

where diam(-) is the Euclidean diameter. It’s obvious that 1 < A(K; 21, 29) <
oo and A(K; z1, 29) = oo if and only if 27 = 25.

Theorem 2.3.2. For i € {1,2}, let (V;,U;) be a pair of simply connected
planar domains with U; C V; C C. g : Vi — Va is a proper holomorphic map
of degree D, Uy is a component of g~ (Us) and let d = deg(gly,). Then

1. We have the following modular distortion:

dmod(V; \ U;) < mod(V, \ Uy) < Dmod(V; \ Uy).

2. Suppose further mod (Vs \ Us) > m > 0, then
2.1. (Shape distortion) There is a constant Co(D, m) > 0 such that for all
z € Uy,
Shape(Uy, z) < Co(D, m)Shape(Us, g(2)).

2.2. (Turning distortion) There is a constant C1(D,m) > 0 such that for
any connected and compact subset K of Uy with #K > 2 and any 2z, 20 € K,

A(K; 21, 22) < Ci(D,m)A(g(K); g(21), 9(22))-

Proof. The proof of the first statement (modular distortion) can be found in
[KL].

Proof of the Shape distortion. The proof presented here is borrowed from
Zhai’s Thesis |Zhai|. Fix some point z € Uj, take two Riemann mappings
&1 : (Vi,2) — (D,0) and 6y : (Vs, 9(2)) — (,0), then the map G = ¢ 0 g o
7' : D — D is a proper map, and G(0) = 0. By modular distortion, we have
mod(V; \ Uy) > m/D. By Koebe Theorem and Grétzsch Theorem, there are
two constants C; = Cy(m/D) and Cy = Cy(m) such that

Cy 'Shape(¢1(U1),0) < Shape(Uy, z) < CiShape(¢:(U1),0),
Cy 'Shape(¢y(Uy), 0) < Shape(Uy, g(2)) < CaShape(¢z(Uz), 0).
In the following, we will show that there is a constant C3 = C3(D) > 0

such that
Shape(qzﬁl(Ul), O) S C'gShape(gbg(Ug), 0)

Let

Ly = maxgeop, () 2], 11 = mingeoq, 0y) |7/,

Ly = maxyepp,wy) [y], l2 = mingepg,w,) |yl-
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By Schwarz Lemma, l; > [5. If Ly > %, then

Shape(é1 (1), 0) = 22 < = < 222 _ 9Ghane(s (1), 0).

ll ll 2

Now we consider the case Ly < 1. Let Doy, = {z € C;|z] < 2L} and W
be the connected component of G~'(Dy;,) that contains 0. By the maximum
modulus principle, W is simply connected. Let ¢ : (W,0) — (D,0) be a
Riemann mapping.

Then the map F = ﬁG op!:D — Dis a proper map, with F(0) = 0.
Since Fopog,(U;) = ﬁng(Ug) and MaxX,eoropos, (17) |W| = 3, by the previous
argument,

Shape(p o ¢1(Ut),0) < 2Shape(¢a(Uz),0).

Notice that mod(W\¢1(U1)) > 5= log 2, we have that mod(W\Us) > 525 log 2.
By Koebe Theorem and Grotzsch Theorem, there is a constant C' = C(D)
such that

Shape(¢1(Ut),0) < CShape(p o ¢1(U1),0).

Then the conclusion follows immediately.

Proof of the Turning distortion. We assume that g(z1) # g(z2). For else,
A(g(K);9(z1),9(22)) = oo and the conclusion follows. Let p(z,y) be the
hyperbolic distance in V5 and let By, By be the hyperbolic disks both centered
at g(z1), with radii maxecqx) p(g(21),¢) and p(g(z1), g(22)) respectively. Let
¢ : Vo — D be the Riemann mapping with ¢(g(z1)) = 0 and let W = ¢(Us).
Since mod(ID \ W) = mod(V, \ Us) > m, we conclude by Grétzsch Theorem
that there is a constant r(m) € (0,1) such that W C D, (), here we use D,
to denote the disk {z; |z| < r}.

Note that ¢(B;),p(B2) are two round disks centered at 0, say Dpg
and D, respectively. By Koebe distortion, there exist three constants
Ci(m),Cy(m), C3(m) > 0 such that

Shape(B1, g(z1)) < C1(m), Shape(Bz, g(z1)) < Ca(m),

Rjr < Cs(m) max |g(z1)=Cl/]g(z1)—g(22)| < C5(m)A(g(K); g(z1), 9(22)).
¢eg(K)NOBy
For i € {1,2}, let W; be the component of g~!(B;) that contains z;. By the
Maximum Principle, W; and W5 are simply connected. We may assume that
K C W (for else, we can replace B; by §1, a hyperbolic disk centered at g(z1)
with radius € + maxccq(x) p(9(21), (), where € is a small positive constant, and
then let € — 0%). Thus diam(K) < diam(W;) < 2supgcap, |¢ — 21| Consider
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the location of z, by Maximum Principle, either zo € W5 or zy € Uy \Wg.
In either case, |21 — 22| > infeeow, | — 21]|. Thus by Shape distortion,

A(K;21,29) < 2 sup |¢— 2|/ inf |¢ — 2]
ceowy CEOWs

= 2Shape(W1, z1)Shape(Ws, 21)Q(W1, Wy, 1)
< Ci(D,m)Shape(By, g(21))Shape(Ba, g(21))Q(W1, Wa, 21)
S 02(D7m>Q(W17W2a21)

where Q(Wy, Ws, 21) = infecow, | — 21|/ supeegw, |¢ — 21|- In the following,
to finish, we show that there is a constant ¢(m) > 0 such that

Q(W1, Wy, z1) < e(m)A(g(K); g(21), g(22))-

In fact, we just need consider the case Q(Wi, Ws,21) > 1. In this case,
the annulus Wy \ Wy contains the round annulus {w € C;supcow, [¢ — 21| <
|w — 21| <infeeow, | — 21|} It turns out that

1 — — 1
-— lOg Q(Wl, WQ, 2'1) S mod(W1 \ WQ) S mod(31 \ BQ) = — lOg E
21 2T T
1
< 5 log (Cs(m)A(9(K): 9(21), 9(22)))
The conclusion follows. O]

2.4 Quasiconformal maps

Let f : X — Y be a homeomorphism between two Riemann surfaces. We
say that f is a K-quasiconformal map (K > 1) if in the distribution sense,
0f/0z,0f/0z € L2, (X), and the Beltrami coefficient

loc

pr(z) = g%gz

satisfies ||pf|loo < k, where k = (K —1)/(K + 1).
A mapping f is 1-quasiconformal map if and only if f is a conformal map
in the normal sense.

Theorem 2.4.1. (Measurable Riemann Mapping Theorem) For any
€ L®(C) with ||p]|eo < 1, there is a unique quasiconformal map ¢ : C — C,
which fizes 0,1, 00 and satisfies j1g = ft.

Moreover, for any p € L*(C) with ||p|leo < 1, there exist a unique family
of quasiconformal maps ¢y : C — C,|t| < 1, which fiz 0,1,00 and satisfy
te, = ti. Then ¢(z) is holomorphic with respect to t € D for each z € C.
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A quasicircle is the image of the unit circle S under a quasiconformal map.

Theorem 2.4.2. (Ahlfors) A Jordan curve S C C is a quasicircle if and
only if there is a constant C' > 0, such that for any p,q € S, we have

min{diam(S;;), diam(S,,)} < Clp — 4,

where diam is the FEuclidean diameter and S;I,SI;I are two components of
S —Ap,q}.

Given a quasiconformal map ¢ : C — C, Astala [Ast] showed that the
Hausdorff dimension of the quasicircle ¢(S) is less than 1 + ||pe[|c. He also
conjectured that the upper bounded can be improved by 1 + ||ug||%. This
conjecture is resolved by Smirnov [Smi.

Theorem 2.4.3. (Smirnov) Let ¢ : C — C be a quasiconformal map, then
the Hausdorff dimension of ¢(S) is bounded above by 1+ ||y,

2.5 Holomorphic motion
Let D be the unit disk and E be a subset of C.

Definition 2.5.1. A map h : D x E — C is called a holomorphic motion of
E parameterized by D and with base point 0 if

1. h(0,2) =z for all z € F,

2. For every c € D, z — h(c, z) is injective on E, and

3. For every z € E, ¢+ h(c, z) is holomorphic for ¢ € D.

In fact, D can be replaced by any simply connected hyperbolic domain.
Here is the well-known ‘Holomorphic Motion Theorem’ see [Slo|, [GJW]:

Theorem 2.5.1. (Slodkowski) Let E be a compact subset of C, h: Dx E —
C be a holomorphic motion of E parameterized by D and with base point
0. Then there is a holomorphic motion H : D x C — C, which extends h.
Moreover, for any fized c € D, H(c,-) : C — C is a quasiconformal map, with
dilatation

K(H(c,-)) <

We can use Slodkowski’s Theorem and Smirnov’s Theorem to estimate
the Hausdorff dimension of Julia set when it is a quasicircle. The following
example illustrates how the methodology works.
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Example 2.5.1. Given a quadratic polynomial f.(z) = 2*> + ¢, suppose that
c lies in the cardioid O of the Mandelbrot set. Then the Julia set J(f.) is
a quasicircle and J(fo) = S. By the characterization of stability ([McM1],
Theorem 4.2), there is a holomorphic motion h : QO x J(fy) — C of J(fo) =S
parameterized by O and with base point 0, such that h(c,S) = J(f.) for all
c € ©. By Slodkowski’s Theorem, h admits an extension H : Q x C — C, and
for any c € Q, H(c,-) is a quasiconformal map with dilatation

1+ 1 —+v1—4¢
1—1—+1—4c|

where do is the hyperbolic metric in Q. Notice that H(c,S) = J(f.) for all
c € Q, it follows from Smirnov’s Theorem that the Hausdorff dimension d. of

J(f.) satisfies:
d, <1+|1—=+V1—4c? ceQ.
This implies d. = 1 + O(|c|*) when |c| is small. One may compare this
estimate with Ruelle’s expansion of d. when |c| is small ([Ru):
el®

4log?2

K(H(c,)) < exp(do(0,¢)) =

de =1+ +o(|c[?)

Example 2.5.2. In chapter 4, we consider the quadratic family:

h(z2) = (%)2 NeC— {0}

By the same method, we can show that when the Julia set J(t)) is a quasi-
circle, the Hausdorff dimension dy of J(t\) satisfies:

dy < 1+ [¢2(0)*,

where ¢y is the Bottcher map of T\ = ty oty defined near the supperattracting
fixed point 1. For more details, see the proof of Theorem /.1.2.

2.6 Extremal quasiconformal conjugacy

Let f.(z) = z®+cand M be the Mandelbrot set, B, be the Bottcher coordinate
of f. defined in a neighborhood of co. Douady and Hubbard [DH2| showed
that the map defined by

JC-M—-C-D
| e~ B.(c)

is a conformal isomorphism.
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Let p(-,-) be the hyperbolic distance in C — M. For any ¢;,¢o € C — M,
one may verify that

i (2822

Log®(c1) — Log®(c2)
Log®(cy) 4+ Log®(cs) 7

where Logz := log|z| + argz and the branch of Log is chosen such that
|arg @(c1) — arg P(co)| < 7. Let Q(cq,¢2) be the set of all quasiconformal
conjugacies between f., and f.,. That is, for any ¢ € Q(cy,¢2), ¢ : C — C is
a quasiconformal map and ¢ o f,, = f., o ¢.

Theorem 2.6.1. Given c¢1,co € C— M, there is ¢ € Q(cy, o) such that

H:U“¢|| = inf{”ﬂg&”? p e Q(cth)} — tanh <p<012a 62))‘

Proof. Step 1. For any ¢ € Q(cq,c2),

plc,c
Il > ant (2122))

We may assume ¢; # o, otherwise the conclusion follows immediately.
First notice that f (1,) = p1,. For A € D, let oy solve the Beltrami equation

dpx ,0pn .
E E = )\Nso/||ﬂso||7

with 0,1, oo fixed. ¢, is holomorphic with respect to A € D and ¢y = id.

The map @yo f., 0y " is the quadratic polynomial of the form a(\)z2+b()\).
Let ¢x = a(A)py, then ¢y o f., o ¢, ' is the quadratic polynomial 22 + ¢()),
where ¢ : D — C — M is a holomorphic map, with ¢(0) = ¢1, ¢(||pty||) = c2. By
Schwarz Lemma, we have

1+ [l

p(c1, ca) = p(c(0), e(||po])) < d(0, |pp) = log T el

Equivalently,
Il > ann (2122))

Step 2. For any ¢, € C — M with arg ®(c;) = arg ®(c,), there is ( €
Q(c1,¢.), such that

el = tann (211

log |®(c1)| — log [®(c.)| ‘
log |®(c1)[ 4 log [®(c.)| |
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The proof is based on Thurston algorithm and the fact that J(f.,) has
zero Lebesgue measure. Here is the detail:

For i € {1,x}, let B; be the Bottcher coordinate of f., Q; = {z €
F(fe,); [Bi(2)] > |Bi(ci)| = |®(c))[} and D; = {w € C;fw| > |®(c;)[}. We
define a quasiconformal homeomorphism ¢ : £; — €, such that the following
diagram commutes

Q,—2-0Q,

Bll iB*

l)rlw zlo_)*

where « satisfies |®(c;)|* = |®(c.)|. We can extend ¢ to a quasiconformal
map (; : C — C. Then we can get a quasiconformal map ¢; such that
fe. oG = (oo fo, and (i|g, = . By Thurston algorithm, there is a sequence
of quasiconformal maps ¢, : C — C such that f., o (1 = Cuo fo, for n >0
and (4 is isotopic to , rel f"(€21). One can verify that

€555 01 ) g (2)] = €550 o i ()]

For n > 1, the quasiconformal dilatation K((,) of (, is bounded above by
K(¢p), so {¢,} is a normal family. This implies that there is a limit map
(oo = lim (,, which is in fact a q.c conjugacy between f., and f.,. Since J(f,,)
has zero Lebesgue measure, the Beltrami coefficient of (. satisfies

el = esssup.crqy e (2)] = lim esssup. ey lic. (2)
= lim esssup,c s lie, (2)] = e5S.5Up.cq i (4)
— ess.sup 16(2)] = a—1 _ log |®(c1)| — log |®(c. )|
a 11| [log[®(cy)| + log ()|

Step 3. The proof of the theorem.
We may replace co, ¢ by ¢, ( respectively in Step 1. Then the map
c:D — C— M satisfies: ¢(0) = ¢, ¢(||pe||) = c«. By Step 2,

ples, ex) = p(e(0), e[l e ) = do (0, llpeID-
Thus ¢: D — C — M is a covering map. One can write explicitly
c(\) = & H(D(cy)153), A € D.
For any ¢, € C— M, we can chose A € ¢™!(¢3) such that dp(0, \) = p(c1, c2).
The quasiconformal map ¢, conjugate f., to f.,, and

]l = 13 = tanh (2E22)Y,

as required. O
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Remark 2.6.1. Given two quadratic polynomials f..(z) = 2>+ ¢;, i = 1,2.
Suppose that ¢y and cy lie in the same hyperbolic component of the Mandelbrot
set M and neither of f., is postcritically finite. Let A(c;) be the multiplier of
the attracting cycle of f.,, Q(c1, c2) be the set of all quasiconformal conjugacies
between f., and f.,. Then by the same method (based on Thurston algorithm
and the fact that J(f.,) has zero Lebesgue measure) as in Theorem 2.6.1, one
can show that there is ¢ € Q(c1, ¢2) such that

LogA(c1) — LogA(c2)

— inf ip € Qeg, )} = TooN |
]| = inf{|| 1o ]l; ¢ € Qlen, )} Logh(c1) + Logh(ca)

where the branch of Log is chosen such that |arg A(c1) — arg A(c2)| < 7.






CHAPTER 3
On meromorphic invariant line

fields

3.1 Introduction

A line field supported on a subset E of the complex sphere C is the Beltrami
differential © = p(z)dz/dz supported on E with |u| = 1. We say p is mea-
surable if u(z) is a measurable function. Let f be a rational map of degree
deg(f) > 2. We say f admits an invariant line field if there is a measurable
line field  supported on a set in C with positive measure such that f*u = p
a.e. (refer to [McM1]).

We are mostly interested in the invariant line fields which are carried on
the Julia sets for rational maps. One example ever known is so called ‘integral
Lattés map’, which is constructed via torus endomorphism. The construction
is as follows. Let X = C/A be a complex torus, and o be a complex number
such that |a] > 1 and oA C A. The multiplication by « induces an endo-
morphism F : X — X. Let p : X — C be the Weierstrass function. Since
©(—2) = (2), the endomorphism F can induce a rational map f : C — C
such that f(p(2)) = p(F(z)). Such a map f is called a Lattes map. If « is
an integer, then F' admits an invariant line field on X. This line field has the
form €dz/dz and can descend to an invariant line field for f (see [McMT1]).
On the other hand, we can verify that if f admits an invariant line field, then
this line field can lift to an invariant line field for ' and a turns out to be an
integer. In this case, we say f is an integral Lattés map.

One of the central problems in complex dynamics is the following:

Conjecture. (No invariant line fields) A rational map f of degree
deg(f) > 2 carries no invariant line fields on its Julia set, except when f is
an integral Lattes map.

The conjecture implies the density of hyperbolic maps in the space Raty
of all rational maps of degree d (see [McM1]). Much study has been devoted
to special families of rational maps, especially quadratic polynomials of the
form f.(z) = 2? + ¢ for ¢ € C. However, even for the quadratic family, the
conjecture is still unsolved.
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Fortunately, if we require the line field u to be ‘good’, we can classify all
the rational maps which leave p invariant. Here, a ‘good’ line field means
that it can be written in the form y = ¢/|¢|, where ¢ is a nonzero mero-
morphic quadratic differential defined on C. In this case, formally, we call
1 a meromorphic line field, dual to ¢. Correspondingly, we say f admits a
meromorphic invariant line field if f*u = pu.

Now we can formulate our main theorem:

Theorem 3.1.1. Let f be a rational map of degree deg(f) > 2. Then f admits
a meromorphic invariant line field if and only if f is conformally conjugate
to one of the following maps:

1. Integral Lattes map.

2. Power map z v+ 2%, for d € Z and |d| > 2.

3. +T,,n > 2, where T,, is the n-th Chebyshef polynomial defined by
T, (2cos z) = 2cos(nz).

This theorem is deeply inspired by a theorem in [McM1] which states that
if a rational map f admits an invariant line field which is holomorphic on a
nonempty open set contained in the Julia set, then f is an integral Lattes
map. Moreover, three examples are provided in [McM1]. One is the power
map z + 2%, for which the line field is dual to dz?/2?; another is the integral
Latteés map, for which the line field is dual to

dz? ‘
(z = p1)(z = p2)(z = p3)(2 — pa)’

the third is the quadratic polynomial f(z) = 2% — 2, for which the line field is
dual to dz?/(2? — 4). So it is a natural question to figure out whether these are
all examples which admit meromorphic invariant line fields. These examples
motivate our study.

It is interesting to compare our classification theorem with another tri-
chotomy theorem from the viewpoint of ‘permutable maps’. Motivated by
[M3], we call a rational map f is permutable if it commutes with another
rational map g, f o g = go f, where both f and g have degree at least two,
and no iterate of f is equal to an iterate of g.

Theorem 3.1.2. (Ritt and Eremenko) A rational map [ of degree
deg(f) > 2 is permutable if and only if it is a finite quotient of an affine
map; that is if and only if it is either a Lattes, Chebyshef, or power map.

This theorem was first proved by Ritt [Ritt] in 1923, and by Eremenko [Ere]
using a quite different method in 1989. For higher dimensional analogues, see
[DS].
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This chapter has been published as [W|. The same result is obtained by
Rempe and van Strien in [RvS] using the orbifold theory, where they use
it to prove the absence of invariant line fields on the Julia set of a class of
transcendental meromorphic functions.

3.2 Proof of the Main Theorem

First, we need some notations. Let M(C) be the set of all meromorphic
quadratic differentials defined on C. For ¢ € M(C), let Z(¢) and P(¢) be

the zero set and the pole set of ¢ respectively. The order of ¢ € M(C) at a
point zg, denoted by ord,,(¢), is defined as follows. If z; is a zero of ¢ of order
n, set ord,, (¢) = n; if zo is a pole of ¢ of order n, set ord,,(¢) = —n; for other
cases, zp is called a regular point of ¢, set ord,,(¢) = 0. For a rational map

f, let C(f) be the set of all critical points,

P(H= J o

c€C(f),n>0

be the postcritical set. The backward orbit of a point z, under iteration of f
is denoted by orb™(2) = J,5o f7"(2). Let deg(f, 2) be the local degree of f
at z.

Proof of the Main Theorem. Let f be a rational map of degree
deg(f) > 2 and p = ¢/|¢| be a meromorphic invariant line field of f for
some ¢ € M(C).

The ‘if” part of the theorem is easy to verify. The proof for the ‘only if’
part is organized in five steps:

Step 1. f*(¢/]0]) = ¢/|¢| if and only if there is a positive constant C' such
that f*¢ = C'¢. This constant C' is uniquely determined by f. Moreover, any
other meromorphic invariant line field of f must have the form € u for some
0 € R.

Note that the relation f*(¢/|¢|) = ¢/|¢| is equivalent to

fro/o=11¢l/l9l. (3.1)
This indicates that the well-defined holomorphic map f*¢/¢ : C — C takes
only positive value, thus equation (3.1) holds if and only if f*¢/¢ is a positive
constant by open map theorem.
Now suppose j1; = ¢;/|és] (i = 1,2) are two meromorphic invariant line
fields for f. Above argument shows f*¢; = Ci¢;, i = 1,2. Since ¢1/¢p is a
well-defined holomorphic map from C to itself, denoted by R, the relation

J o1 _ Cio1
f*oa Cogo
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implies that Ro f = (C1/Cy)R. Comparing the degree of Ro f and f, we
conclude R is a nonzero complex constant, and C; = Cs. Therefore p; is
identical to us up to a rotation.

From now on, we may write ¢, C' as ¢y, Cy, since they are determined by
f. To find all rational maps which admit meromorphic invariant line fields
is equivalent to find all solutions (f,¢s,C;) € Raty x M(C) x R* to the
indeterminate equation

[ or = Croy,
where Rat] is the space of all rational maps of degree at least two. In local
coordinate, ¢; = ¢(2)dz?, the indeterminate equation has the form

o1 (f(2))f'(2)" = Croy(2). (3.2)

Moreover, for any z € C, comparing the order of f*¢s and ¢ at the point z,
we have the following identity

ord, (f*¢f) = deg(f, z)(2 + ordf(z)(@)) — 2 = ord,(¢y). (3.3)

Step 2. Z(¢y) = 0.

For else, let zy € Z(¢f) # 0. We can conclude from equation (3.2) that
orb™(29) C Z(¢y). Since Z(¢;) is a discrete subset of C, #orb™(2y) < co and
# /" (orb™(29)) > #orb™(2). On the other hand,

f (orb™ Uf 0) C orb™(zp).

n>1

So we have f~!(orb™(z0)) = orb™(zp). It is easy to see that all points in
orb™(zp) are superattracting periodic points. If #orb™(z9) > 3, by Montel’s
Theorem, the set C\orb™ () is completely invariant and lies in the Fatou set
F(f). This indicates that the Julia set J(f) = (), which is a contradiction.
Thus #orb™ (zg) can only be 1 or 2.

If #orb™(z9) = 2, then f is conformally conjugate to the power map
2+ 2%, for some d € Z. But as is known that any meromorphic invariant line
field of the power map must be dual to C'dz%/2? (see the previous and Step
1), which has no zeros. So this leads to a contradiction.

If #orb™(29) = 1, then f~'(29) = {20}, deg(f,20) = deg(f). By identity
(3.3), we have

Ordzo (f*(bf) = deg(f) (Ordzo (¢f) + 2) —-2= OlndZo (¢f)

But this is also impossible since ord,,(¢;) > 1,deg(f) > 2.
Step 3. f is critically finite, that is #P(f) < oo. Moreover P(f) = P(¢y).
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For any ¢ € C(f), equation (3.2) implies that f(c) € P(¢y). For else ¢ will
be a zero of ¢, which is already ruled out in step 2. Replacing f by f", we
have f"(c) € P(¢y), thus

U () c P(gy).

n>0

This means f is critically finite, since P(¢y) is a finite set. Moreover

P(f) € P(oy).
If P(os)\P(f) # 0, taking zo € P(¢)\P(f), we have from equation (3.2)
that
orb™ (20) C P(¢y), #orb™ (zo) = o0,

which is a contradiction. This ends the proof of step 3.
By the Riemann-Roch theorem,

deg(¢y) = #2(o¢r) — #P(¢5) = —#P(¢5) = —4.

This means that ¢y has four poles (counting the multiplicity). Since f is
critically finite, each periodic cycle of f is either repelling or superattracting
(See [McM1] or [M1]).

Step 4. If f has no superattracting cycle, then f is an integral Lattés map.
The proof in this step is due to McMullen, compare [McM1|. For com-

pleteness, we include it here.
We first show that ¢ has four simple poles. That is, up to a constant,
dz?
(z=p1)(z —p2)(z = p3)(2 —pa)

¢ =

Indeed, if ¢; has a pole py of order two or more, that is ord,,(¢s) < —2,
then we can conclude from the identity (3.3) by induction that for any z €
orb™ (py), ord,(¢f) < —2, therefore orb™ (pg) C P(¢¢). The similar argument
as in step 2 indicates that f~'(orb™(pg)) = orb™(po) and #orb™ (py) = 1 or
2. It turns out that f is conjugate to a power map or a polynomial. In either
case, f has a superattracting cycle. But this will contradict the assumption.

Now we consider the orbifold Oy of f. Recall that the orbifold Oy of the
critically finite map f is a pair (C, Ny), where N; : C — NU{oc} takes values
greater than one only on a discrete set of C. It is defined as follows:

(a) N¢(z) =1, when z € C\P(f),

(b) Nf(z) is the least common multiple of the local degrees in the set
{deg(f",y): f(y) = w,n > 1} for z € P(f),

(c) N¢(x) = oo if the local degrees in the set {deg(f™,v); f"(y) = z,n > 1}
are unbounded.
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We claim that O = (C, (2,2,2,2)). In fact, it’s easy to see that N¢(x) = 1
when @ € C\P(f). For z € P(f), it is obvious N(z) > 2. Let z € f™(z) for
n > 1. Note that (f")*¢; = C}¢y, by identity (3.3), we have

Ordz((fn)*¢f) - deg(fn’ Z) (2 + Ordm(¢f)) —2= Ordz(¢f)'

Since P(f) = P(¢y) and every pole of ¢ is simple in this case, ord,(¢f) = —1.
Therefore ord,(¢y) has only two choices 0 or —1 and deg(f", z) can only be
1 or 2. Thus Ny(z) < 2. The above argument shows that for any x € P(f),
Ny¢(x) = 2. This proves the claim.

By Theorem A.5 in [McM1], if O; = (C,(2,2,2,2)), then f is a Lattés
map. By assumption, f admits a meromorphic invariant line field, so f is
an integral Lattes map. Moreover, since ¢ is integrable over C, we have
Cy = deg(f) from the following identity

L1561 = dests) [ 1o

Step 5. If f has a superattracting cycle, then f is either conjugate to a
power map or conjugate to a Chebyshef polynomial.

Let zg be a superattracting point of f with period p. From the identity
(3.3), we have

ord., ((f7) ) = deg(f”, 20) (2 + ord,(¢y)) — 2 = ord.,(¢y).

Since deg(f?, z9) > 2, we have ord,,(¢s) = —2. Thus z; is a pole of ¢; of
order two. Moreover by identity (3.3) and induction, all preimages of z, are
poles of ¢ of order two. There are two possibilities:

(P1) 29 is a fixed point of f and f~'(2) = {20}

(P2) 2 is of period two and f~1(z) = {¢}, f71(¢) = {20}

For (P1), there are two choices for ¢; up to a constant:

dz?
Case 1. ¢y = R s

dz?

(2 — 20)2(z — 21)(2 — 29)

Case 2. ¢y =

In case 1, take v € Aut(C), the automorphism group of C, such that
¥(0) = z1, y(00) = z9. Then v*¢; = Cdz?/z* for some constant C' and
F =~7'o foyis a polynomial such that F*(y*¢;) = Cyy*¢;. By conjugation,
we may assume [ is a polynomial and ¢y = dz?/2z?. The equation f*¢; = Cy¢;
is equivalent to

(f'(2)/f(2))* = Cy/2" (3-4)



3.2. PROOF OF THE MAIN THEOREM 29

Comparing the leading coefficients in both sides of (3.4), we have Cf =
deg(f)?. It’s easy to find the general polynomial solution f(z) = Az? | where
A is a nonzero complex constant and d = deg(f). In this case, f is conjugate
to a power map.

In case 2, take v € Aut(C), such that v(co) = 2y, Y(—2) = 21, 7(2) = 2.
It is easy to show v*¢; = C'dz?/(z* — 4) for some constant C' and F' =~ o
f o~ is a polynomial. Thus as in case 1 we assume that f is a polynomial and
¢y = dz?/(z* — 4). The equation f*¢; = C¢; is equivalent to

f1(2)%(2% —4) = Cp(f(2)* — 4). (3.5)

We want to find all polynomial solutions to this equation. First note that
f(2) = 2 or =2 if we set z = 2. Comparing the leading coefficients in both
sides, we have Cy = deg(f)?. To solve the equation (3.5), we need a little

trick. Let . .
w p(w)

where ¢(w) is required to be a holomorphic map, it need only to be defined in

some open set U in C. Indeed, since the map w — w+w~" is locally injective

when |w| is large, we can always do this. Calculation shows

=4n, we/U,

where n = deg(f). This new equation has general solution ¢(w) = Cw™ or
o(w) = (Cw™)~! for some undeterminate constant C, so we have

f(w—irl) :C’w"%—L, w e U.
w Cuwn

This relation in fact holds for all w € C by identity theorem of holomorphic
maps. If f(2) =2, then C' =1, in this case f(2cosz) = 2cos(nz) if we write
w = ¢e% so f =T, If f(2) = =2, then C = —1, in this case f = —T,.
Therefore in case 2, f is conjugate to a Chebyshef polynomial 7}, or —7},.

Up to now, the only remaining case is (P2). In this case, we can easily
show that C; = deg(f)? ¢y = d2*/((z — 20)*(z — ¢)?) and f is conjugate to
the power map 2z +— 2%, for d € Z and d < —2. We omit the details here.

The proof is completed.
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Remark 3.2.1. For convenience, we list all solutions to the indeterminate
equation f*¢; = Cyoy in the following table:

(z —20)%(2 — 21)(z — 22)

f is conjugate to oF Cy Oy
dz? —
Integral Lattés map de C,(2,2,2,2
! G )=y | “H) ) (5222
z _
Power map = 20)2(22 " deg(f)?| (C, (00, 00))
+ Chebyshef polynomial dz deg(f)?| (C,(2,2,00))

We can see that for all cases Oy is a parabolic orbifold, \/|¢s| is an orbifold

metric on Opf.




CHAPTER 4

A Non-escape Locus

4.1 Introduction

It is well known that the famous Mandelbrot set of the quadratic polynomials
fe(z) = 2% 4 ¢ is defined by

M = {c € C; f*(0) remains bounded as n — oo}.

The Mandelbrot set is the connected locus for the quadratic family. It is a
central object of study in complex dynamics since it exhibits a rich geometric
and combinatorial structure, with many intriguing details and many remaining
mysteries. One of most interesting results about M is that it is a connected
set, which was obtained by Douady and Hubbard in 1982 by constructing a
Riemann mapping from the exterior of M to C\ D, see [DH3]. This result
leads to numerous further study of M, especially the study of its topological
and combinatorial properties, using the method of ‘parameter external rays’
and ‘puzzle’ techniques.
In this chapter, we deal with a family of rational maps

21 A-1)\2
22 4+\—2) "

Ti(z) = (
where A is a complex parameter. This family is indeed the family of renor-
malization transformations of 2-dimensional diamond-like hierachical Potts
models in statistical mechanics. In 1983, Derrida et al show that the Yang-
Lee zeros of the A\—state Potts model on the diamond hierachical lattice are
dense in the Julia set J(T)) of the map Ty (See [DDI]). Since then, much
interest has been devoted to this family since it exhibits a connection between
statistical mechanics and complex dynamics (See [EL],[O],|QG],|QL]).

For this family, note that when A = 0, the map T\ degenerates to the
quadratic polynomial Ty(z) = (2 + 1)?/4; when A € C* = C\ {0}, 1 and oo
are two superattracting fixed points for the map 7% while 0 is a critical value.

The non-escape locus M (an analogue of Mandelbrot set) associated to
this family is defined by:

M = {\ € C5TH0) oo 1 and T2(0) .o 00} U {0}
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Figure 4.1: The parameter plane for Ty (A € C)

Figure 4.1 shows the picture of the non-escape locus M in the parameter
plane for this family. The non-escape locus M can be identified as the complex
plane minus infinitely many ‘bubbles’, which we will call ‘capture domains’
formally. An elementary property of M is that it is compact and symmetric
about the real axis. Moreover, the intersection M N R is contained in the
closed interval [0, 3], with the boundary points 0 and 3 lying in M (See [QL]).
Many small copies of quadratic Mandelbrot set M are visible in the parameter
plane. It is an amazing fact that the small copies of quadratic Mandelbrot set
M are dense in M. This is the a philosophy of ‘universality of the Mandelbrot
set’, which was proved by McMullen, see [McM2].

For the non-escape locus M, we have the following:

Theorem 4.1.1. The non-escape locus M is connected.
For the Julia set, we have the following:

Theorem 4.1.2. If the Julia set J(T\) is a quasi-circle, then the Hausdorff
dimension of J(Ty) satisfies:

HD(J(Ty)) <1+ [¢a(0)]?,

where ¢y is the Bottcher map of Ty defined near the superattracting fixed point
1.

This chapter is organized as follows: in Section 4.2, we discuss the location
of the critical points and decompose the parameter plane into the non-escape
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locus M plus infinitely many capture domains; in Section 4.3, we parameter-
ize all the capture domains by constructing a Riemann mapping from every
capture domain to the unit disk D and prove Theorem 4.1.1; in Section 4.4, we
prove Theorem 4.1.2 by using Smirnov’s Theorem and Slodkowski’s Theorem.

This chapter has been published as [WQYQG]. T felt depressed when
I found that some of our results had already been included in Aspenberg
and Yampolsky’s paper [AY] after I finished writing this part two years ago.
Anyway, there are some differences between our argument and Aspenberg-
Yampolsky’s, so I include it here as a part of the thesis.

This chapter in fact deals with a special quadratic family. For more dis-
cussions of the quadratic family, see also |[T] and [Rees3|.

4.2 Critical points and capture domains

For A € C*, let C(Ty) be the set of all critical points for 7. Easy calculation

shows 4(2_1)(24_}\_1)@2—1—)\—1)‘

(2z+ A —-2)3

Ty\(2) =
Thus we have
C(Ty) ={1,00,1 = A\, V1 =\ 1—)\/2}.

Moreover Ty '(00) = {oo,1 — A\/2}, Ty 1(0) = {£v1—A}. Let A\(1) and
Ay (00) be the immediate basins of attraction for the superattracting fixed
points 1 and oo respectively.

First, we introduce an interesting property of the map T):

Splitting Principle For A € C*, we have Ty = t) oty, where

th(z) = (

It’s easy to see that ¢, permutes 1 and oo, ¢, (Ay(c0)) = Ax(1). The orbits of
++v/1 — X and 1 — X under iterations of T) in fact lie interlacedly in the same
orbit under iterations of ¢:

z—1+)\>2
z—1 '

Lemma 4.2.1. The Julia set J(Ty) is connected for all A € C.

Proof. It A =0, Ty(2) = (2 +1)?/4 is conformally conjugate to z — 2%+ 1/4,
whose Julia set is connected. If A # 0, by Splitting Principle, J(7)) = J(t)).
It is known from Yin (See [Yin|) that the Julia set for a quadratic rational
map is either connected or a Cantor set, thus J(¢,) is connected since ¢, has
two superattracting periodic points 1 and oc. O]
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Lemma 4.2.2. For A € C*, the following conditions are equivalent.
1. J(T)) is a quasicircle.
PARVARESD WS A)\(l).
8. —V/1—=Xe A\1).
4. 0€ .A)\<1).
5 1—=Xe Ay(0).
6. 1— )\/2 € A)\(OO)

Proof. First we show 1 = 2+3+445+6. Suppose J(T)) is a quasicircle, the
Fatou set F'(T)) decomposes into two completely invariant components Ay (1)
and Ay (00). It is obvious that 1 — A\/2 € A,(o0) and £+v/1 — X lie in the same
Fatou component. By Riemann-Hurwitz formula, {£v1 — \,0} C A,(1) and
1-Xe A)\(OO)

It is obvious that 2 = 4, 3 = 4 since T\(£v1 — A) = {0} and T, fixes
Ax(1). 5 = 4 follows from the fact that ¢)(Ax(c0)) = Ax(1) and 5 (1—X) = 0.

Now we show 4 = 1. Suppose 0 € Ay(1). Since T} '(0) = {£v1— A},
the pair {#+/1 — A} has two possibilities of location: either both lie in A, (1)
or only one lies in A,(1). By Lemma 4.2.1, every Fatou component is simply
connected. We see that the latter is ruled out by Riemann-Hurwitz formula.
Thus {+v1— A} C Ax(1). Moreover C(Ty) N Ax(1) = {1,£v1— A} and
A,(1) is completely invariant.

Note that 1 — X € Ty '(Ax(00)), since Ty (1 — ) = £,(0) € Ay(cc). For the
critical points 1 —\ and 1—\/2, either both lie in A, (c0) or at most one lies in
Ay (00). Also by Riemann-Hurwitz formula, the former is the only choice. So
we have {1 — X\, 1 —\/2} C A,(o0) and Ay (o0) is completely invariant. Thus
F(T\) = A\(1)UA\(00). Since T} is a hyperbolic map, J(T)) is a quasicircle.
Thus 4 = 1.

To conclude, we show 6 = 5. Suppose 1 — A/2 € A,(co), this means
Ax(00) is completely invariant since Ty '(00) = {oo,1 — A/2}. It turns out
that 1 — A € A,(o0) by Riemann-Hurwitz formula. O

Lemma 4.2.3. For any A\ € C*, we have 0 ¢ A(c0) and 1 — X ¢ A,(1).

Proof. 1f 0 € Ay(o0), then any critical point in the set {£v/1 — A\, 1—\/2} will
lie in some component of T} '(Ay(00)). Since every Fatou component of F(T))
is simply connected by Lemma 4.2.1, this is impossible by Riemann-Hurwitz
formula.

Since t;1(0) = {1 — A} and ¢, '(Ax(00)) = Ax(1), 0 ¢ Aj(oco) indicates
1—-X¢ A\(1). O

Since t) permutes 1 and oo, we can describe the non-escape locus in another
way:

M ={X e C15"(0) #p0o 1 and 571(0) -, 1} U {0}
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Now we consider the parameters outside of the non-escape locus M.
Let A be such a parameter, the critical value 0 is eventually mapped into
A, (1)U Ay (c0) under iterations of ty. This observation leads to the following
definition:

Definition 4.2.1. Let
Ho={) € C"0e€ A\(1)},
H, = {\ € C*t5(0) € Ax(1),t771(0) ¢ Ax(c0)},n > 1,
a component of H,, is called a capture domain of level n for n > 0.

Lemma 4.2.4. The parameter plane has the following decomposition:
C= M L (l—lnEOHn)a
where U denotes the union of mutually disjoint sets.

Proof. First we show that the sets in {H,;n > 0} are mutually disjoint. If
not, suppose A € ‘H,, N'H,, for m > n > 0. Then by definition

t5(0) € Ax(1), £5(0) € Ax(1), £77(0) & Ax(o0).

We see that 7' "(Ax(1)) = Ax(1), so m —n is even and m —n > 2. It follows
that t71(0) = ¢ "1 (¢2(0)) € Ax(oc0). But this is a contradiction.

Now we prove that for any A\ € C\ M, X\ must lie in H,, for some n >
0. Indeed, by definition of M, for any A € C\ M, either #3"(0) — 1 or
£3"1(0) — 1 as n — oo. So there is a minimal integer m > 0 such that
t7(0) € Ax(1). If m = 0, then A € Hy. If m = 1, Lemma 4.2.3 shows that
0 ¢ Ay(c0), so A € Hy. If m > 2, we can conclude that t'(0) ¢ Ay (c0), for
else £, (Ax(00)) = Ay (1) indicates ] 2(0)€.A,(1), which will contradict the
choice of m. Thus in this case we also have A € 'H,,. O

Remark 4.2.1. [t is easy to verify that forn > 1,
Hon = {X€CHTY(0) € Ax(1),T771(0) ¢ Ax(1)}
IAeCH T (1 —A) € Ay(c0), T{(1 — \) ¢ Ax(o0)},
{A € T T3(0) € Ax(00), T 1(0) & Ax(c0)}
= DeCHTI( - N) € A1), TN - A) ¢ AvD))

Lemma 4.2.5. For any A € C*\ 'Hy, we have

A1) N C(Ty) = {1}, Ax(o0) NC(Ty) = {oo}.
Proof. 1t is obvious that 1 — A/2 ¢ A,(1). By Lemma 4.2.2, A,(1) does not

0

H2n—1

contain v/1 — X or —v/1 — X while A, (c0) does not contain 1 — A or 1 — \/2.
By Lemma 4.2.3, {£v/1 — A}NA\(c0) = 0 and 1 -\ ¢ A,(1). The conclusion
follows. [
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4.3 Proof of Theorem 4.1.1

In this section, we parameterize all the capture domains in the parameter
plane. We show that every capture domain is simply connected by construct-
ing a Riemann mapping from the capture domain to the unit disk D, and this
will lead to the connectivity of the non-escape locus M.

To prove every capture domain of level n > 1 is conformally equivalent to
the unit disk D, we use the method of quasiconformal surgery and holomor-
phic motion theorem (See Proposition 4.3.2). The method of quasiconformal
surgery is classic, which was first used by Douady and Hubbard to param-
eterize the hyperbolic components of the quadratic Mandelbrot set M (See
[DH2]). This method is developed by Roesch to study the parameter plane of
cubic Newton maps and McMullen maps, see [Ro2[,[Ro3].

However, this method cannot be applied to Hy, since the Julia set for the
map in Hyp is a quasicircle and there is no way to construct quasiconformal
deformation. To deal with Hy, we divide the proof into several steps. First,
for two maps ty,, 1y, in Hy satisfying an ‘argument relation’, we construct a
quasiconformal conjugacy between the two maps elaborately using the philos-
ophy of so called ‘bootstrap argument’ (See Lemma 4.3.2). This construction
shows us an important relation between the Beltrami coefficient of the qua-
siconformal map and the Green functions of ¢), and t),. Furthermore, we
will see later that this quasiconformal map has an extremal property: its Bel-
trami coefficient achieves the minimal norm (See the concluding remark of
this section).

On the other hand, we show that the essential norm of the Beltrami coeffi-
cient can be bounded below by a constant depending on the Poincaré distance
between A\; and Ay in Hy (See Lemma 4.3.3). In this way, the Beltrami co-
efficient acts like a bridge connecting the Green functions with the Poincaré
distance. This yields an inequality between the two objects, which play a
crucial role in the parameterization for H, (See Proposition 4.3.1). It is an
amusing fact that once we prove H is conformally equivalent to the punctured
disk D*, we see that the inequality is actually an identity (See the concluding
remark of this section). This is again a philosophy of ‘bootstrap argument’.

As a consequence, we show the non-escape locus M has capacity equal to

In the following, we always use D to denote the unit disk. Let D* = D\ {0}
be the punctured disk and Dr = {z € C;|z| < R}. For a hyperbolic Riemann
surface S, let dg(z1, z2) be the hyperbolic distance for a pair (21, 22) € S X S.

For A € C*, the map T\ has two superattracting fixed points 1 and oo.
The Green functions Gy : Ax(1) — (0,00] and GY° : Ax(c0) — (0, 00] are
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defined as follows:

Galz) = - lim 2105 [T(2) ~ 1], = € Ay(1),
GYX(z) = klim 27" 1log |T¥(2)], 2 € Ax(oc0).

It is known that Gy and GS° are continuous and satisfy:

GroTy(z) = 2G\(2), z € Ax(1),
FoTi(z) = 2G(2), z € Ax(0).

Lemma 4.3.1. For A € C*, the Green functions satisfy:

Grotr(z) = GY(2), z € A\(c0),
Tota(z) = 2Ga(2), z € A\(1).

Proof. First suppose A € C* \ Hy. By Lemma 4.2.5, the only critical point
of T that lies in A,(1) is 1 itself, thus the Bottcher map ¢y : Ax(1) — D
defined by ¢, (z) = klim (T¥(z) — 1)>" is a conformal isomorphism. Similarly,
the only critical point of T) that lies in A, (00) is oo itself, the Béttcher map
% + Ax(0o) — C\D defined by ¢3°(z) = klim (T¥(2))*>" is also a conformal
isomorphism. Since t : A\(0c0) — A,(1) is a proper map of degree one, the
Bottcher maps satisfy:

prota(z) = (83(2)7", z € Ax(o0),
o ota(z) = (da(2)7% z € AND).

Thus the Green functions satisfy:

Grota(z) = —logloaotx(2)] =log|9F(2)] = GX(2), z € Ax(o0),
X ota(z) = log[oS ota(2)] = —2log|pa(2)] = 2Gi(2), 2 € Ax(1).

Now suppose A € Hj, the Bottcher maps ¢, and ¢$° can be defined in
neighborhoods of 1 and oo respectively, say Uy(1) and Uy (cc0). We may assume
that Uy(1) and Uy(oco) are small enough such that ty : Uy(co) — Ux(1) is a
conformal isomorphism. Thus we have

$rota(z) = (63°(2) 7, Grota(z) = GX(2), 2 € Ux(x0)

Let GOA(1) = U,>0 Ty "(1) and GOx(00) = 5015 "(00) be the grand
orbits of 1 and oo respectively. It is easy to check that ¢;'(GO(1)) =
GON(0), 1 (GOA(0)) = GOx(1). Note that G, is harmonic in
A\ (1)\GO,(1) and G is harmonic in Ay (00)\GO,(00). The function G oty
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is harmonic in ¢, (Ax(1)\GOx(1)) = Ax(c0)\GOx(c0). Comparing G o ty
and G°, we see that both Got, and G are equal to co in GO, (00), harmonic
in Ay (00)\GO,(00). Since the two coincide in Uy(00), by identity theorem of
harmonic functions, we have G ot)(z) = G(z), z € Ax(00). It follows that

io o t)\(z) =G,o T)\(Z) = QG)\(Z), A A)\<1)
]

Lemma 4.3.2. Let A\, A2 € Hy with arg ¢y, (0) = arg ¢,,(0), then there is a
quasiconformal map h with 0,1, 00 fized such that hoty, =ty, oh. Moreover,
the Beltrami coefficient p of h satisfies

o GA1(0> - GAz (0)

Proof. For A\ € Hy and n € Z, let Ex(n) be the component of {z €
A\(1); Ga(2) > 27"GA(0)} that contains 1 and ES°(n) be the component
of {z € A\(00); GP(2) > 27"G°(1 — A\)} that contains co. By Lemma 4.3.1,
we can verify by induction that:

For n € Z, Ex(n) CC Ex(n+1), E(n) CC ES®(n+1).

Unso £a(n) = Ax(1), U5 £3°(n) = Ax(00).

E\(n) and E{°(n) are simply connected for all n € Z.

ty: ES°(n) — Ex(n) is a proper map of degree one (if n < 0) or two (if
n > 1) while ¢) : Ex(n+ 1) — E°(n) is a proper map of degree two for all
n € 4.

Given A\, Ay € Hy with arg ¢y, (0) = arge,,(0), we define a quasicon-
formal map ¢ : Dy, ) — Dy, by §(re?) = re where a satisfies
|62, (0)|* = |¢x,(0)|. In complex coordinate, §(z) = z(@+D/2z(e=1/2 " The
Beltrami coefficient ps of ¢ satisfies

a—1z

po(2) = =72 lmsllee =

a—1 _ G/\l(o)_G)Q(O)
a—i_l‘_‘GM(O)—*—GAz(O) ‘

It is easy to check that d(2%) = 0(2)* for z € Dy, (o).

We first construct three quasiconformal maps hg : Ey, (0) — E),(0), kg :
ES(0) — E5(0) and hy @ By (1) — E),(1) such that hi|g, o) = ho and the
following diagram is commutative.

2%}

t
By, (1) = E2(0) == By, (0) — Dy, (o))

L

By, (1) e % (0) — E),(0) o Dig,, )]

t/\2
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Note that ¢y, : E),(0) — Dy, (o) is a conformal isomorphism for i € {1,2},
we can define a quasiconformal map hg : Ey, (0) — E,,(0) as follows:

ho(z) = ¢, 000 px,(2), 2 € Ex,(0).

By construction, ho(1) = 1 and hg o T),(z) = Th, o ho(z) for z € E, (0).
Moreover, the map hg can be extended to a homeomorphism from E),(0) to
E),(0) with the boundary point 0 fixed.

Since ty, : ES°(0) — E),(0) is a proper map of degree one for i € {1,2},

the map A : E5S(0) — E59(0) with oo fixed can be defined by

hit(z) = t;; ohgoty(z), z€ E(0).

Now we define hy. Since £y, : E, (1)\{1} — E5°(0)\{oo} is a covering map
of degree two, we can get a lifting of hi°, say hy : E, (1) \ {1} — E),(1)\ {1},
such that hy(0) = 0 and A o ty,(2) = ty, 0 hi(z), z € Ey (1) \ {1}. By
continuity, we can define (1) = 1. Now we show hi|g, (o) = ho. First note
that both h| Ex, (0) and hg are liftings of A via branch covering maps 73, and
T),. That is, the following diagram is commutative.

E>\1 (_1) T()) E>\2(_1>

where F' € {hi[g, (0),ho}. Since Ty, : Ey(0) \ {1} — Ex(—1) \ {1} is a
covering map of degree two and both h; and hy fix the boundary point 0 on
0E\, (0), we conclude hy|g, (o) = ho by uniqueness of lifting and continuity.

Suppose for some n > 0, we already get quasiconformal maps h, :
Ey (n) — Ex,(n), hyer E9(n) — EX(n) and hpyq @ By (n+1) — Ex,(n+1)
such that h,q| Ey,(n) = hy and the right part of the following diagram is
commutative.

[

t t t
By (n+2) =% E2(n+1) — By, (n+ 1) 2= E(n) —%> Ey, (n)

hn+2i h%o-‘_ll hn-Hl h%ol hnl

Ex(n+2) = EZ(n+1) —Ej,(n+ 1) — EX(n) —— E),(n)

1294 A2 Ag 2Y

We want to get extensions of hy° and hy,1, denoted by h2 ; and hy, o respec-

tively, such that the left part of the diagram is commutative.
We first construct b5 . Since ty, : E(n+1)\{1— X} — Ey,(n+1)\ {0}

is a covering map of degree two for i € {1,2}, there is a lifting of h,1, say
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hotr s EX(n+ 1)\ {1 =M} — EX(n+1)\ {1 — Az}, such that hg,(00) = o0
and hy, 1 0ty (2) =ty 0 hyo (2) for 2z € ESS(n+1) \ {1 — A} By continuity,
we can define h9% (1 — Ay) = 1 — Ay. Now we show h?+1‘E;’\<l’(n) = h°. By

assumption 1| By, (n) = hn, we have
hnoty (2) =ty 0F(2), z€ EY)(n), F € {h;’Lo+1|E§o1(n),h$L° :

Since ty, : E5°(n) \ {1 — \i} — E),(n) \ {0} is a covering map of degree one
(if n = 0) or two (if n > 1) for ¢ € {1,2} and h°,(c0) = h°(00) = o0, we
conclude A%, | B (n) = h2° by uniqueness of lifting and continuity.

We then construct h,12. Since ty, : Ex,(n+2) \ {1} — E(n + 1) \ {oo}
is a covering map of degree two for i € {1,2}, h2°, can be lifted to h,4s such
that h,12(0) = 0. We have just proved that h?fﬂ’E;‘; () = h2° , thus both
hn+2]EA1(n+1) and h,,, 1 satisfy

hrOLo Ot)\l(z> =1y 0 F<Z>> EAS Ekl(n + 1)7 Fe {hn+2|E,\1(n+1)ahn+1}’

Again by uniqueness of lifting and continuity, we have h,, o By, (n41) = Pyt

By induction, we finally get two sequences of quasiconformal maps {h,, :
Ey (n) — Ex(n); n > 0} and {hy? : EP(n) — E59(n); n > 0} such that
hyny1 and hyY , are extensions of h,, and h;° respectively for n > 0.

Up to now, we can define two quasiconformal maps [ : A,, (1) — Ay, (1)
and v : Ay (00) — Ay, (00) such that B|g, ) = hn,’Y’E;?(n) = hX for all
n > 0. It’s easy to check

o yoty(2) =ty 00(2), z€ Ay (1),

e o t>\1(z) =1y, 0 7(2), zZ € .A)\I(OO),

e The Beltrami coefficients of 5 and v, say pg and f, satisfy ||psllec =
£y oo = 1l426loc-

By Lemma 4.2.2, the Julia sets J(ty,) and J(t,,) are quasicircles, thus we
can get extensions of 3 and v, denoted by 3 and 7 respectively, such that 3 :
Ay (DU () = Ay (DU J(ty,) and 7 0 Ay, (00) U J (Ey,) — Ay, (00) U J(ty,)
are homeomorphisms (See [Ahl]). By continuity, we have

’7ot>\1(z) =tx, OB(Z)v Bot)q('z) =1 Oﬁ/(z), S J(t)\l)' (41)

In the following, we show BLWM) = ls(ts,)- Let Fix(R) be the set of all
fixed points for a rational map R. First note that for A € Hy, the set Fix(¢))
consists of three repelling fixed points and Fix(7)) = Fix(t)) U {1,00}. The
maps [ and 7 satisfy

T OT)\1(Z) = T)\2 OT<Z)7 z € ‘](t/\1>7 TE {67 P_Y}

Thus both 3 and 4 map Fix(Ty,) N J(ts,) = Fix(ty,) onto Fix(Ty,) N J(ty,) =
Fix(ty,). By (4.1), we have ﬁlFix(tM) = ’7|Fix(tﬁ). Let e(z) = 7' oq(z
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for z € J(t\,). The map e : J(t\,) — J(t,,) is an orientation preserving
homeomorphism with three fixed points and satisfies

eoty oe(z) =1ty (2), z € J(ty,). (4.2)

We show e is in fact the identity map by induction. For p € Fix(ty,),

e(p) = p. Suppose ;' (p) = {p,q}, by (4.2), we have t;'(p) = {p,q} =
{e(p),e(q)}, thus e(q) = g. Assume that for some n > 1, €|t;n(p) = id. For
1

any q € t;l("ﬂ)(p)\t;l"(p), there is p,, € t,"(p), such that ¢ € t;ll (pn) ={q,4'}.
By (4.2), we have {q,¢'} = {e(q),e(¢’)}. Since e is orientation preserving, the
triples {q, ¢, p.} and {e(q),e(q'), e(p,) = pn} have the same cyclic order, thus

e(q) = q, e(¢) = ¢. In this way, we have e|t7(n+1)(p) = id. By induction,
A1

€|Unzot§1"(1’) = id. Since J(ty,) = U,>ots, (p), we conclude that e is the

identity map by continuity. This means 3 and 7 coincide on the Julia set
J(ty,).

Now we define

Mz = {mz), 2 € AU (1),
¥(2), z€ Ay (00).

The map h : C — C is a homeomorphism with 0,1 and oo fixed such that
hoty (z) =ty 0h(z), z€C.

By construction, hlre, ) : F(tx) — F(ty,) is a quasiconformal map. Since
the Julia set J(t,,) is a quasicircle which is quasiconformally removable, the
map h : C — C is actually a quasiconformal map. Moreover, the Beltrami
coefficient p of h satisfies

G>\1 (0> — G>\2 (O)
GM (0) + G/\2 (0)

1(2)] = |1lloe = , a.e. z € C.

]

Lemma 4.3.3. For A\, \s € C*, suppose there is a quasiconformal map h
such that hoty, =ty, oh, then either A\ = Ay € OM or Ay and Ay lie in the
same component of C\OM. In the latter case, suppose \; and Ay lie in the
component U of C\OM, then

exp(du (M, A2)) — 1
exp(dy(Ar, o)) + 17

1tlloc >

where 1 1s the Beltrami coefficient of h.
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Proof. First note that h fixes 0,1 and oo. Since ), and ?), are quasiconfor-
mally conjugate via h, the Beltrami coefficient y1 of h satisfies 3 (1) = p.

If ||p|l« = O, then A is the identity map and A\; = A3. The conclusion
follows.

In the following, we assume ||u|l > 0. For ¢ € D, let f. solve the Beltrami
equation

We )9 — e/l
with 0,1, oo fixed. f. is holomorphic with respect to ¢ € D and fy = id.
The map R, = f.oty,of, ! is arational map since it preserves the standard
complex structure. It is of degree two and satisfies the following properties:
e R, is holomorphic with respect to c € D and Ry = t),;

e . permutes 1 and co. Moreover, 1 is a pole of R, of order two;
e R, has a zero of order two.
It is easy to check that

z— l—l—)\(c))2

RC(Z):chf,\lofgl(Z):< -1

= t)\(c) (2)7
where ¢ — A(c) is a holomorphic map from D to C and A(0) = A;. Since

tae) © fe(1 = A1) = feoty, (1= A1) = fo(0) =0,

we have 1 —A(¢) = fo(1—=XA;). Thus X has the expression A\(c) = 1— f.(1—A1).
It is obvious that A(||p]|oc) = A2 since f,.. = h-

First suppose A; € M. Note that ¢y has the same dynamical property
as ty, for all ¢ € D, the map A : D — C can not take values outside of the non-
escape locus M. By open map theorem, X is a constant map. In particular,
)\1 - )\2.

Now suppose A; € C\OM. In this case, the image A(D) under the map
A : D — C has no intersection with M by the previous argument, thus
A(D) must be contained in some component U of C\OM (U is a hyperbolic
Riemann surface since 9M NR contains at least three points: 0,3 and 32/27.
See [QL]). Since the map A : D — U is holomorphic, by Schwarz lemma,

dy(A1; A2) = dy(A0), A[| alloe)) < dp (0, [[loc) = log

Thus we have

||M||Oo Z eXp(du()\l,)\g)) — 1
exp(du()\l,)\g)) + 1

Lemma 4.3.4. H, is connected and HoU{oo} contains a neighborhood of co.
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Proof. First we make a coordinate change for the family {Ty; X € Ho}. Let
A =v3and p,(z2) = v*(z — 1). We can conjugate Ty to a new map S, =
¢, 0Ty o ;. Calculation shows

(20 +4°C + ¢?)
(1+20¢)?

SV(C) =

To prove Hy U {oo} contains a neighborhood of oo is equivalent to prove
0 € A)(1) when |A| is large. It’s also equivalent to prove

—v% = ,(0) € ¢, (AN(1)) = A,(0)

when |v| is small, where A4, (0) is the immediate basin of attraction for the
superattracting fixed point ( = 0 of the map S,. By continuity, there is a
small positive number § such that when |v| < 6, we have S, (IDy/5) C Dys.
This means Dy, lies in the Fatou set F(S,). Thus —v? € Dy C A, (0) when
|v| is small.

To conclude, we show Hy is connected. The map ® : Ho U {0} — D
defined by ®(\) = ¢,(0) for A € Hy and ®(o0) = 0 is holomorphic and locally
injective in a neighborhood V,, of oo (See the proof of Proposition 4.3.1).
Thus the image ®(Ho U {oco}) contains a neighborhood of 0. For any A € H,,
there is A\g € Vy \ {00} such that arg ¢,,(0) = arg ¢,(0). By Lemma 4.3.2,
tn and t), are quasiconformally conjugate. By Lemma 4.3.3, X\ and )\, lie in
the same component of Hy. Thus Hj is connected and it is the unbounded
component of C\ OM. O

Proposition 4.3.1. The map ® : Hy — D* defined by ®(\) = ¢,(0) is a
conformal isomorphism, where ¢y is the Bottcher map for T defined near
the fixed point 1.

Proof. We develop two methods to prove the proposition. The first is to prove
that the map ® is a proper map of degree one while the second is to prove the
map P preserves the Poincaré metrics. Lemma 4.3.2 and Lemma 4.3.3 play a
crucial role in both proofs.

First note that the map ® : Hy — D* has Laurent expansion

d(A) =221+ 0\ ?)

when |)| is large and oo is a removable singularity for . Thus we can define
P (00) = 0 such that ¢ : Hy U {oo} — D is holomorphic and locally injective
near co. Moreover, there exist a neighborhood V4, of oo and ¢ € (0, 1) such
that ® : V,, — D, is biholomorphic. We may assume 0V, is an analytic
simple curve by choosing € small enough.
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Proof 1. Given any A € Hy \ Vs, there is a unique \g € 9V, such that
arg ¢y, (0) = arg ¢(0). It follows from Lemma 4.3.2 and Lemma 4.3.3 that

exp(dry (A Ao) = 1 _ ‘GA(O) - GAO(O)‘ _ ‘GA(O) ~log(1/e)
exp(dry (M M) + 1 = | GA(0) + Gy (0)| | G(0) + log(1/2) |

From this inequality and by continuity of the function A +— G,(0) =
—log |®())|, we conclude G(0) < log(1/e) for all A € Hy \ V. Thus we
have
exp(dy, (N, 0Vs)) — 1 < exp(dp, (A, Ao)) — 1 < log(1/¢) — GA\(0)
exp(dry O 0V)) 1 = expldoeg (O A0) 71~ Tog(1/2) + Gr(0)’

where dy (A, OVs) = infeesy,, di, (A, ¢). This inequality indicates
GA(0) <log(1l/e) exp(—di, (A, V), A € Ho \ Voo-

From this we know that when A — A\* € CNIH,y, we have dy, (A, 0Vs) — 00,
G,(0) — 0 and |®(\)| — 1. This implies that ® : Hy U {oo} — D is a proper
map. Since ®71(0) = {oo} and P is locally injective near oo, ® is a conformal
isomorphism.

Proof 2. Given A\ € Vy \ {00}, there is an analytic arc 7 in V., passing
through A¢ such that arg ¢,,(0) = arg¢,(0) for all A € 7. By Lemma 4.3.2
and Lemma 4.3.3, we have

eXp(dH()()‘a )‘0)) —1 < ‘G)\(O) - G)\O(O) ‘ _ Hogq)()‘) - IOgCI)()\Q)’ = 7(4 3)
exp(dyy (A Ao)) + 1 7 [GA(0) + G2 (0) | [log |[P(A)] + log [@(Ao)]]’
Taking a limit A — \g along 7, we have
li 1 exp(dH()()‘v AO)) —1 . pH0<)‘0)
1m = —,
A—Xo ’)\ — )\0| eXp(dHO ()\, )\0)) +1 2
L Jlog®() —lor®(h) @'0)
A=20 [A = Ag| | log [D(A)] + log [ (Ao)]| 2/ (Ao)|log(1/]®(Ao)|)’

where dsy, = pr,(N\)|d)| is the Poincaré metric on Hy. By (4.3), we have

|2 (Ao)[ldA|
|[@(Ao)[log(1/]@ (X))

On the other hand, by Schwarz Lemma, ®*(dsp+)(Ag) < dsy, (o). Thus
we have ®*(dsp+)(Ag) = dsp,(Ao). This indicates the map @ : Hy — D* is
a covering map. Note that Hg is not simply connected since oo is a cusp,
H, is conformally equivalent to D* and ¢ is a proper map (See [F]). Since
® : Hy — D* has Laurent expansion ®(\) = —2A7! + O(A?) near oo, ® is a
conformal isomorphism. O

ds1iy (M) = prey (M) |dA] <

= & (dsp+) (o).
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Corollary 4.3.1. The non-escape locus M has logarithmic capacity equal to
2.

Proof. We know from Proposition 4.3.1 that the map ® : Hy — D* is a con-
formal isomorphism, thus the Green function for Hy is G5 (0) = —log |®(N)],
whose asymptotic behavior at oo is of the form

GA(0) = log |\ +7 + o(L),

where 7 = —log 2 is the Robin constant. Since CN0OHj is the outer boundary
of M, the capacity of M is equal to e™ = 2. H

Proposition 4.3.2. Let ‘H be a component of H,, for n > 1, the map Py :
H — D defined by P (N) = ¢A(t5(0)) is a conformal isomorphism, where ¢y
is the Bdottcher map for Ty defined throughout Ax(1).

Proof. The proof will be based on the following claim:

Claim :There is a holomorphic map X : D — H such that (A (C)) =
for all ¢ € D.

Once the claim is proved, we see that ®,; is surjective and admits a global
inverse map A. Thus &y : H — D is in fact a conformal isomorphism. Now
we will prove the claim via quasiconformal surgery and holomorphic motion
theorem.

Given any \g € H, let W), be the component of t;ol (Ay, (1)) other than
Ay, (00). By definition of H, ¢}:'(0) € W,. The Béttcher map ¢, can be
defined in the whole basin A, (1) since there is no critical point in A, (1) other
than 1 (By Lemma 4.2.5). Let (o = ¢y,(t3,(0)). For x > 0, let D({o,x) =
{C € D;dp(¢,(o) < K} be the hyperbolic disk centered at (, with radius
Fy Wagw = (taglwn,) ™" © &3, (D(Co, k) be the relatively compact subset of
Wy,- For any ¢ € D((p, ), we will define a map & : Wy, , — ¢;01(D(C0, K))
satisfying the following properties:

o 3¢, (2) =1ty (2) for all z € W)y, x;

o (15, 1(0)) = 63, ()

o 0¢ : Wiy — &5 (D(Co, 5)) s a quasiconformal map for any fixed ¢

e J; is holomorphic with respect to ( € D((p, k) for any fixed z € W), ..

Let £ = 0D((p, k) U{(o}. To construct such a map ., we first define a
map h : D({p, k) x E — D as follows:

o=z 2SR

It is easy to check that
o h((p,2) =2, z€ E,
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e for every fixed ¢ € D((p, k), z+— h((, z) is injective on E,

e for every fixed z € E, ( — h((, 2) is holomorphic in D((y, k).

Thus h : D((o,k) X E — D is a holomorphic motion parameterized by
D((o, k) with base point (5. By Slodkowski’s theorem (See Theorem 2.5.1
or [Slo]), there is a holomorphic motion H : D((y, k) x C — C extending h.
Moreover, for any fixed ¢ € D((y, k), H(C,-) : C — C is a quasiconformal map
with dilatation K(H(C,-)) < exp(dpc,x)(Co,())- In particular, H((p, ) is the
identity map. Let

0c(2) = dy, © H(C, 6 0 1y (2))
for z € Wy, . It is easy to check that . satisfies the required properties.
Now we define a quasiregular map

I (Z) _ (SC(Z), A W)\o,m
¢ t)\O(Z), z € C \ W)\o,n'

Let o be the standard complex structure, we can construct a complex structure
oc invariant under L. as follows:

() (650),  in £ (W) for m > 0,
¢ = 2 L
o, in C\ Um20 W (Wo.w)-

Let pe be the Beltrami coefficient for the complex structure o¢. Since L
is equal to ¢y, outside of W), ., it is easy to check that

el < BUHE)) =1 exPdbi (0, Q) — 1
Clloo = K(H(C,)) +1 = eXP(dD(COﬂ)(CO;C)) 1

for all ¢ € D((o, k). Moreover, p is holomorphic with respect to ¢ in the
distribution sense by Slodkowski’s theorem. By Ahlfors-Bers Theorem, there
is a quasiconformal map f; : C — C with 0,1 and oo fixed such that It (o) =
o¢. fc¢ is holomorphic with respect to ¢ and f., = id.

The map B¢ = feoL¢of: !is a rational map since it preserves the standard
complex structure o. It is of degree two and satisfies the following properties:

e R is holomorphic with respect to ¢ € D((p, k) and R, = tx;

e R permutes 1 and co. Moreover, 1 is a pole of R of order two;

e R. has a zero of order two.

From these information, we conclude

z— 1+)\H(()>2

z—1

<1

Re(2) = feo Lo f4(2) = ( —hao(x)  (44)

where ¢ — A.(() is holomorphic for ¢ € D((p, k) and A (¢y) = Ag. From (4.4),
we get

Me(€) = 1= fc(1 = X), ¢ € D(Go, k).
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This relation indicates that the map A, is determined by a slice of holomorphic
motion.

It is easy to check that the map fr : Ay (1) — A\, ()(1) is a conformal
isomorphism and the following diagram is commutative.

Ty,

A/\O(l) - AAo(l)

fgi 1

Ar.o(1) m«‘hn(o(l)

Thus the Béttcher maps for T), and T), ) satisfy the following relation

¢>\0<2) = ¢>\K(C) © fC(Z)7 zZ € "4/\0<1)'

For any ¢ € D(o, %), by definition of L¢, we see that 1§ . (0) € Aj,()(1)
and tzz&)(O) ¢ A )(00). Thus A (D(Co, k) C Hy. In fact, A\(D(Co,k))
is contained in H since \,(D({p,~)) is connected and A.((o) = Ao € H N
A (D(Cp, k)). For ¢ € D((p, k), we have

Py (A(€)) = Dani)(th.()(0)) = dan(c) © feo L o f71(0)
= Pa.() © feobcothH(0) = ¢, 08¢ oty (0) = .

Note that for Ky > ky > 0, both A\, and A, are local inverse of ®y
such that A (Co) = Axy(Co) = Ao, thus we have A |p(cyrs) = Asy. Since
U,=0 D(Co,x) = D, there is a holomorphic map A : D — H such that
AMbory = Ak for all K > 0 and Py (A(()) = ¢ for all ¢ € D. This ends
the proof of the claim. O

Proof of Theorem 4.1.1. First note that M is compact. To prove M
is connected is equivalent to prove every connected component of C \ M is
simply connected. By Lemma 4.2.4, a connected component of C\ M is either
Ho U {oo} or a capture domain of level n > 1. These components are simply
connected by Proposition 4.3.1 and Proposition 4.3.2.
O

An concluding remark: extremal property of Beltrami coefficient

At the end of this section, we give a remark about Lemma 4.3.2. Given
A1, A2 € Ho with arg ¢y, (0) = arg¢,,(0), let QC(A1, A2) be the set of all
quasiconformal maps ¢ : C — C such that ¢ o ty, = t,, o ¢. We will show in
the following that the map h constructed in Lemma 4.3.2 has the following
extremal property:

tlloo = mf{[g]loc; € QC (A1, A2)},
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where p and p, are the Beltrami coefficients of h and ¢ € QC(Aq, A2) respec-
tively.

Indeed, from Proposition 4.3.1 we know that the map ¢ : Hy — D* is a
conformal isomorphism. We may assume |® ()| < |®(\2)[, thus we have

[0 gy G, (0)
= dp (P 0] = —— =1 ! .
dHo()‘ly)Q) d]D) ( ()‘1)7 (AQ)) /<I>()\1)| rlog(l/?“) 08
By Lemma 4.3.3, for any ¢ € QC(\1, \2),
eXp(dHo()\ly)Q)) —1 _ ‘GM(O) - G)\Q(O) _ ||ljl||
exp(dHO()\l, )\2)) + 1 G,\l (0) + G)\Q (0) o

1t ]lo0 =

Here is a more general result on extremal quasiconformal conjugacy: Let
‘H be a capture domain of level n > 0, A\;, A\ € H be two parameters such
that each ty, is not postcritically finite. We still use QC(A1, \2) to denote the
set of all quasiconformal maps ¢ : C — C such that ¢ oty, = ty, o 9. Then
there exists ¢ € QC (A1, Ay) such that

Loggn, (13, (0)) — Logoa, (13, (0))
Logax, (13, (0)) + Logoa, (13, (0))

where the Log is chosen such that |arg ¢y, (£} (0)) — arg ¢y, (t%,(0))| < 7.

ol = inf{{l el o € QA1 A2)} =

)

4.4 Proof of Theorem 4.1.2

It is known from the previous section that when A € Hy, J(¢,) is a quasicircle.
There are two natural questions:

1. What’s the asymptotic behavior of J(t)) when |A| — 0o ?

2. How to estimate the Hausdorff dimension of J(ty) for all X € Hy?

It is observed by Hu and Lin (See [HL]) that J(¢,) becomes larger and
more circular as the real parameter A — oo. In 1995, Osbaldestin shows that
the Hausdorff dimension HD(J(ty)) of J(t,) has the following expansion (see

[0]):

’ |—2/3

HD(J(ty)) =1+ ;\10? +O(IA™

when the real parameter A — oo. This expansion also holds for A € C when
|A| is large.

Theorem 4.1.2 provides an answer to the second question. In the following,
we prove Theorem 4.1.2. It’s equivalent to prove the following inequality:

HD(J(ty)) <14 [®N)[*3, XeH,
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where ® : 'Hy — D* is the map that constructed in Proposition 4.3.1. The
proof of Theorem 4.1.2 will be based on Smirnov’s theorem ([Smi|, See also
Theorem 2.4.3) and Slodkowski’s theorem ([Slo], See also Theorem 2.5.1).
Proof of Theorem 4.1.2. Let ¢ be a quasicircle, the dilatation K[¢] of ¢ is
defined by

K[f] = inf{K(¢); ¢ : C — C is a quasiconformal map such that ¢(S') = ¢}.

By Smirnov’s theorem, we have

K[J(t5)] )2
HD(J(ty)) <1+ , AEH
In the following, we prove
L+ [®(N)[/3
< — .
K[J(ty)] < 1 — [D(\)[1/3’ A€ Ho

Recall that under the coordinate change in Lemma 4.3.4, the family
{T\; \ € Ho} becomes to {S,;v € Vi = W\{0}}, where V), is a neigh-
borhood of 0 such that the map v — X\ = v~2 is a proper map of degree
three from Vj to Hy. It is easy to check that under coordinate change,
K[J(ty)] = K[J(S,)], HD(J(ty)) = HD(J(S,)). Let ¢ : Vy — D be a
Riemann mapping with ¢(0) = 0. The map ® and ¢ satisfy

DN =d(v3) =), v e,

where 6 is a real constant.
Given a pair of compact sets (X,Y), recall that the Hausdorff distance
o (X,Y) between X and Y is defined by

on(X,Y) = max{rge%?(a(x,Y), r;g;(a(X, Y},
where (-, ) denotes the spherical distance.

We claim og(J(S,),S') — 0 as v — 0. Indeed, using basic analysis, we
can verify that for any ¢ € (0,1), there is a small positive number § such
that when |v| < §, we have S,(D;_.) C D;_., S,(C\Dy.) C C\ Dyye.
Thus both D;_. and C\ Dy, lie in the Fatou set F(S,). It turns out that
o (J(S,),S') < 2e. This means the Julia set J(S,) moves continuously at
v = 0 in Hausdorff topology.

It is obvious that the Julia set J (.S, ) moves continuously on Vj in Hausdorff
topology. Thus by adding an new map Sp(¢) = ¢* to the family {S,;v € V;},
we see that the Julia set J(.S,) moves continuously on V; in Hausdorff topology.
By characterizations of stability (see [McM1|, Theorem 4.2), the Julia set
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J(S,) moves holomorphically on Vy. So there is a holomorphic motion A :
Vo x S' — C parameterized by V, with base point 0 such that h(0,-) = id
and h(v,S') = J(S,) for all v € V,. By Slodkowski’s theorem (see [Slo]),
there is a holomorphic motion H : Vy x C — C extending h. Moreover for
any fixed v € V,, H(v,-) : C — C is a quasiconformal map with dilatation
K(H(v,-)) < exp(dy,(0,v)). Since H(v,S') = J(S,), we have

K[J(t)] = K[J(S)] < K(H(v,-)) < exp(dy, (0,v))

_ _ L4l _ 14 [eW[
OB = T T T e

U
A concluding remark We remark that the exponent 2/3 in Theorem 4.1.2
is sharp in the following sense:

2
max{t; HD(J(ty)) <1+ |[®(\)|", VA € Ho} = 3

Moreover,
. HD(J(ty)) -1 1
lim = .
A—oo [D(N)[#/3 28/3]og 2
This follows from Osbaldestin’s result on the asymptotic behavior of
HD(J(ty)) near oo.




CHAPTER 5

Dynamics of McMullen maps

5.1 Introduction

The local connectivity of Julia sets for rational maps is a central problem in
complex dynamical systems. It is well studied for classical type of rational
maps, for example: hyperbolic and semihyperbolic maps, geometrically finite
maps, see |CJY[,[M2],[TY]. In polynomial case, it is also known a lot, see
[DH2],|GS],|Kiwi],|Ly],[M2]. For quadratic polynomials, Yoccoz proved that
the Julia set is locally connected provided that all periodic points are repelling
and the map is not infinitely renormalizable, see [Hu|,[M2|. Douady exhibited
striking example of infinitely renormalizable quadratic polynomial with non
locally connected Julia set, see [M2]|. For general polynomial with connected
Julia sets and without irrationally neutral cycles, Kiwi shows in [Kiwi| that the
local connectivity of Julia set is equivalent to the non existence of wandering
continua.

The powerful tool to study the local connectivity of Julia sets for polyno-
mials is the so-called ‘Branner-Hubbard-Yoccoz puzzle’ techniques, which is
introduced by Branner-Hubbard and Yoccoz, [BH|. It has a natural way of
construction, which is induced by finite periodic external rays together with
an equipotential curve.

However, for general rational maps, things are different. The construction
of Yoccoz puzzle becomes quite involved, even impossible. Up to now, the
only known rational maps which admit Yoccoz puzzle structures are the cubic
Newton maps, whose Yoccoz puzzles are constructed by Roesch. In [Rol|, by
Yoccoz puzzle techniques, Roesch shows striking differences between rational
maps and polynomials. The method also leads to the local connectivity of
Julia sets except some specific cases.

In this article, we exhibit Yoccoz puzzle structure for another family of
rational maps, known as McMullen maps, of the form

iz 2"+ A" AeC =C\{0}, n>3.

Dynamics of this family have been studied by Devaney and his group, see
[D1],[D2],[DK],[DLU].
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The difference of Yoccoz puzzle between cubic Newton maps and McMullen
maps is as follows: For cubic Newton maps, the ingredient of the Yoccoz puzzle
is an converging ray that intersects the Julia set in a countably many points
while for McMullen maps, the element to construct Yoccoz puzzle is a Jordan
curve (will be called ‘cut ray’) that intersects the Julia set in a Cantor set of
points. This kind of Jordan curve is induced by some particular angle and
can be viewed as an extention of the corresponding external ray (see Section
5.3).

We denote by B, the immediate attractive basin of co. The topology of
0B, is of special interest. Based on Yoccoz puzzle techniques and combinato-
rial and topological analysis, we prove:

Theorem 5.1.1. (Cantor or Jordan) For any n > 3 and any complex
parameter A, if the Julia set J(fy) is not a Cantor set, then OB, is a Jordan
curve.

This affirmatively answers a question posed by Devaney at the Snowbird
Conference on the 25th Birthday of the Mandelbrot set, see [DK]|. For the
higher regularity of 0B), we show that 0B, is a quasicircle except two special
cases.

Theorem 5.1.2. Suppose the Julia set J(fy) is not a Cantor set, then OB, is
a quasicircle if it contains neither parabolic point nor recurrent critical point.

Here, a recurrent critical point ¢ on the Julia set of a rational map f
is a critical point such that ¢ € w(c), where w(c) is the w-limit set of ¢,
defined as {z € C; there exist ny — oo such that z = lim f™(c)}. It follows
from Proposition 5.7.5 that if 0B, contains a parabolic point, then 0B, is
not a quasicircle by Leau-Fatou-Flower Theorem, see [M2]. The question
whether 0B, is a quasicircle when 0B, contains a recurrent critical point is
still unknown.

For the topology of the Julia set, we show

Theorem 5.1.3. Suppose f\ has no Siegel disk and the Julia set J(f\) is
connected, then J(f\) is locally connected in either of the following cases:

1. The critical orbit does not accumulate on the boundary 0B.

2. The map fy is neither renormalizable nor x—renormalizable.

3. The parameter X is real and positive.

Here, the definitions of renormalization and x—renormalization can be
found in Section 5.5. Theorem 5.1.3 implies that the Julia set is locally con-
nected except some special cases. In fact, it’s stronger than the following
statement:
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Theorem 5.1.4. Suppose f\ has no Siegel disk and the Julia set J(fy) is con-
nected, then J(fy) is locally connected if the critical orbit does not accumulate
on the boundary OB.

Theorem 5.1.4 is an analogue of Roesch’s Theorem [Rol]:

Theorem 5.1.5. (Roesch) A genuine cubic Newton map, without Siegel
disks, has a locally connected Julia set provided that the orbit of the non-fixed
critical point does not accumulate on the boundary of any invariant basin of
attraction.

This chapter is organized as follows:

In Section 5.2, we present some basic results on McMullen maps.

In Section 5.3, we construct the ‘cut rays’, a kind of Jordan curves that
cut the Julia set into two different parts. We first construct a Cantor set of
angles on the unit circle which is used to generate ‘cut rays’. Then we discuss
the construction of ‘cut rays’ based on the work of Devaney.

In Section 5.4, basic knowledge of Yoccoz puzzles, graphs and tableaux
are presented. The aim of this section is to find a Yoccoz puzzle with a
non-degenerate critical annulus (See Section 5.4.2). A natural construction of
‘modified puzzle piece’ is discussed (See Section 5.4.3).

In Section 5.5, we discuss the renormalizations of McMullen maps from
the viewpoint of puzzle piece.

In Section 5.6, we present a criterion of local connectivity. We introduce
a ‘BD condition” on the boundary of immediate basin of attraction. Such
condition can be considered as ‘local semi-hyperbolicity’. We show that ‘BD
condition” implies good topology.

In Section 5.7, we study the local connectivity of 9B, in all possible cases
and show that 0B, enjoys higher regularity except two special cases.

In Section 5.8, we study the local connectivity of the Julia set J(fy) based
on the ‘Characterization of Local Connectivity” and the ‘Shrinking Lemma’.

5.2 Preliminaries and Notations

In this section, we present some basic results and notations for the family of
rational maps:

Hz) = 2"+ \/2"

where A € C* and n > 3. This kind of map is known as ‘McMullen map’
since it is first studied by McMullen. McMullen proved that when |A| is small
enough, the Julia set of z — 2% + \/2? is Cantor set of circles, see [McMa3).
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For any A € C*, the map f) has a superattracting fixed point at oo. The
immediate basin of oo is denoted by B), and the component of f,° '(B,) that
contains 0 is denoted by 7. The set of all critical points of fy is {0,000} UC},
where Cy = { ¥/ w;w?" = 1}. Besides oo, there are only two critical values
for fy: v = 2/ X and vy = —2v/X. In fact, there is only one critical orbit
(up to asign). Let P(fy) = U, »; [¥(Cy) U {oo} be the posteritical set.

The Béttcher map ¢, for f) is defined in a neighborhood of co by ¢, (z) =
]}Lr{)lo(f/]\“(z))"fk The Bottcher map is unique if we require ¢)(oc0) = 1. It is
known that the Bottcher map ¢, can be extended to a domain Dom(¢,) C B,
such that ¢y : Dom(¢,) — {z € C: |z| > R} is a conformal isomorphism for
some smallest number R > 1. In particular, if B, contains no critical point
other than oo, then Dom(¢,) = By; if B contains a critical point ¢ € {0}UC),
then by ‘The Escape Trichotomy’ (Theorem 5.2.1), the Julia set J(f)) is a
Cantor set.

The Green function G : By — (0, 00] is defined by

Gi(2) = lim n~*log | fy(2)]-

By definition, G\(f\(2)) = nGi(z) for z € By and G)(z) = log|¢x(2)| for
z € Dom(¢y). The Green function G, can be extended to Ay = J,, f5 " (By)
by defining -

GA(2) = n FGA(fR(2)) for z € £ ¥ (B)).

In the following, for a set E in C and a € C, let aE = {az;z € E},
a+E={a+z2¢€E}, E*={z2 € E}, E be the closure of E and int(E)
be the interior of F.

Lemma 5.2.1. (Symmetry of the Dynamical Plane) Let w satisfy w** =
1, then

1. wJ(f,\) = J(f)\)

2. Ga(wz) = Gy(2) for z € Aj.

3. wDom(¢y) = Dom(¢y), and ¢(wz) = wdy(z) for z € Dom(ey).

Proof. For 1, since Ay = {z € C; f¥(2) tends to infinity as k — oo} and
fi(wz) = £ fF(2) for k > 1, f¥(w2) tends to infinity if and only if f¥(2) tends
to infinity as & — oo. Thus wA, = A,. The conclusion follows from the fact
that J(f\) = 0A,.

2. By the definition of G,.

3. Since Dom(¢,) is the connected component of {z € By;G\(z) > log R}
that contains oo, we conclude that wDom(¢,) = Dom(¢,). Note that ¢y (wz)
and we)(z) are two Riemann mappings from Dom(¢,) onto {z € C;|z| > R}
with the same derivative at oo, we have ¢)(wz) = wor(z) by the uniqueness
of Riemann mapping theorem. O
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The Mandelbrot set for this family is defined by
M = {\ € C*; fX(vy) does not tend to infinity as k — co}.

Lemma 5.2.2. (Symmetry of the Parameter Plane) The Mandelbrot set
M satisfies:

1. M*=M.

2. vM = M with v" 1 = 1.

3. For any line { € {eR;e?" 2 =1}, M is symmetric about (.

Proof. 1. Since fi(Z) = fx(z), the critical orbit of f\ and the critical orbit of
fx are symmetric under the map z — z. They either both remain bounded or
both tend to infinity. Thus M* = M.

2. Let v = /(=1 and ¢(z) = €™/ V2. For k > 1,

Lo 5 o p(z) = {(—1) fA(z), nodd,

@p "o o
VA fR(z), n even.

Thus the critical orbit of f) tends to infinity if and only if the critical orbit of
fux tends to infinity. Equivalently, A € M if and only if vA € M.
3. It follows from 1 and 2. m

From Lemma 5.2.2, f) and f,.2xi/n-1) have the same dynamical property
and their Julia sets are identical up to a rotation. Thus the fundamental
domain of the parameter plane is {\ € C*;arg X € [0, -25)}.

The following theorem due to Devaney, Look and Uminsky gives a classi-
fication of Julia sets with different topological type, see [DLUJ.

Theorem 5.2.1. (Devaney-Look-Uminsky) We have the following ‘Es-
cape Trichotomy’:

1. If vy € By, then J(fy) is a Cantor set.

2. If vy € T\ # By, then J(fy) is a Cantor set of circles.

8. If f¥(vi) € Ty # By for some k > 1, then J(fy) is a Sierpinski curve,
which is locally connected.

In all other cases, the critical orbits remain bounded and the Julia set J(fy)
s connected.

For n > 3, it is known that the unbounded component of C* — M consists
of the parameters for which the Julia set is a Cantor set, this region is called
Cantor set locus, see Figure 5.1. The component of C* — M that contains
a punctured neighborhood of 0 is the region where the Julia set J(f)) is a
Cantor set of circles; this is the McMullen domain, as it is McMullen who
first discovered this type of Julia set. The complement of these two regions is
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Figure 5.1: Parameter plane for McMullen maps when n = 3.

the connected locus. The small copies of quadratic Mandelbrot set correspond
to the renormalizable parameters while the ‘holes’ in the connected locus are
always called Sierpiniski holes according to Devaney. These regions correspond
to the parameters for which the Julia set is a Sierpinski curve.

We will see later that when the critical orbit tends to co, the boundary
0B, is a quasicircle if it is connected. So this case is already well studied. For
this reason, throughout the paper, all discussions are based on the following:

Hypothesis: The critical orbit remain bounded, or equivalently, CxNA) =

0.

At the end of this section, we give some notations. We restrict our at-
tention to the parameters A € H = {\ € C*argA € (0,-2%5)} because of
the symmetry of the parameter plane. The real positive parameters will be
considered separately in Section 5.7.3.

Let ¢y = co(A) = X/X be the critical point that lies on Rt when A € R*
and varies analytically as A ranges over H. Let ¢, = coe*™/™ for 1 < k < 2n—1.
The critical points ¢ with k even are mapped to vy = 2v/\ while the critical
points ¢ with £ odd are mapped to vy, = —2V/\.

Let {x = c¢xRT be the straight line connecting the origin with oo and
passing through ¢, for 0 < k£ < 2n — 1. We call ¢, a critical ray. The closed
sector bounded by /¢ and f;,; is denoted by S, for 0 < k£ < n. Define
S =-S5 for 1 <k <n-—1. So the sectors are arranged in counterclockwise
order about the origin as S, S1,- -, Sn, S—1,-+ , S_(n-1)

The critical value vy always lies in Sy since argcy < arg vy < arge; for all
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S1

S

Figure 5.2: Sectors in the dynamical plane when n = 3.

A € 'H. Correspondingly, the critical value vy lies in S,,. It’s easy to check
that the image of ¢; under f, is a straight ray connecting one of the critical
values to oo, this ray is called critical value ray. As a consequence, f), maps
the interior of each sectors of {Sy1,- -, 91 —1)} univalently onto a region Ty
which can be identified as the complex sphere C minus two critical value rays.

Let P denote the set of all components of |J,~, 5 "(By). For U € P and
v > 0, let e(U,v) = {z € U;Gx(2) = v} be the equipotential curve. The
annulus bounded by e(B,,v) and e(T),v) is denoted by A,. We may choose
v large enough such that 0A, intersects with every critical ray at exactly two
points. The bounded component and unbounded component of C \ e(By,v)
are denoted by V(v) and U(v), respectively.

Now, we define radial rays of U for every U € P\ {B,}. Under Hypothesis,
we see that there is a unique Riemann mapping ¢, : T\ — I such that

o1,(2) " = oa(fa(2), = € Toi o1, (0) = 1/ /A

The radial ray Rr, (6) of angle 6 is defined as ¢7.'((0,1)e*™®). For U € P\
{By, Ty}, there is a smallest integer k£ > 1 such that f¥ : U — T is a conformal
map. The radial ray Ry () is defined as the pull back of Ry, (/) under f}.

Let I = {0,n,£1,...,4+(n — 1)} be an index set. I, = A, NS, for k € I
and I = U, cp 0.y Ie- The set of all points whose orbits remain in I under all
iterations of f, is denoted by A,. Obviously Ay = [, f5"(I) and A, is a
subset of the Julia set J(f)). -

For any k € I\ {0,n}, f\ : int(Sk) — T, is a conformal map, and the
inverse is denoted by Ay : T\ — int(Sk).
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Given a point z € Ay, suppose f¥(z) € S,, for k > 0, define the itinerary
of z by sx(z) = (so, 51, 2, - - - ). The itinerary is always well defined in the set
A, since if some iteration f§(z) lies on the boundary of two adjacent sectors,
then the next iteration fy*'(z) will lie inside Sy U S,,.

Let ¥ = {s = (s0, 51, S2, -+ ); s, € [\{0,n} for every k& > 0} be the space of
one-sided sequences of the symbols +1,...,+(n—1). Fors = (sq, 1,82, ) €
¥, the shift map o : ¥ — X is defined by o(s) = (s1,82,---). We denote
(S0, 51,52, -+) by (50, -, 5p-1) if Sg4p = s for k > 0.

It’s obvious that s)(f\(2)) = o(sx(z)) for z € A,.

Lemma 5.2.3. The set Ay is a Cantor set and the itinerary map sy : Ay — 2
1s bijective.
Proof. First note that for any A € H, I is a compact subset of T,. With

respect to the hyperbolic metric of T, and by Schwarz Lemma, there is a
number ¢ € (0, 1) such that for any s = (sg, 51, $2,-++) € X and any m > 0,

Hyper.diam< ﬂ f/\_k(Isk)) < Hyper.diam(I) - §™.

0<k<m

Thus (V50 fx *(1,,) consists of a single point, say z;. This implies that Ay
is a Cantor set and the map sy : Ay — X defined by s,(z5) = s is bijective. [

5.3 Cut Rays in the Dynamical Plane

In this section, we will construct the ‘cut rays’, a kind of Jordan curves that
cut the Julia set into two different parts. The construction is due to Devaney
[D2]. We give some more properties which will be used in our paper.

We first construct a Cantor set of angles on the unit circle which is used to
generate ‘cut rays’ in [D2|. These angles can be considered as a combinatorial
invariant when the parameter A ranges over H.

To begin with, we identify the unit circle S = R/Z with (0,1]. We say
three angles satisfy t; < to < t3 on S if ty,19,t3 are in the counterclockwise
order.

5.3.1 A Cantor set on the unit circle

In the following, we construct a subset © of (0,1]. The set © is a Cantor set
and is used to generate ‘cut rays’ in the next section.

First, define a map 7 : (0,1] — (0,1] by 7() = nf mod 1. Let O =
(%,kglnl] for 0 < k <nand ©O_;, = O —|—% for 1 < k < n — 1. Obviously,

(0,1] = User O+
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Define a map x : I — N by

k, if 0 <k<n,
x(k) = .
n—=k if —(n—-1)<k<-1

For k € I, we have

ro) o {Um O Ry i cven,
Uj:l @—j, if x(k) is odd.

For 6 € (0,1], suppose 7%(6) € ©,, for k > 0, define the itinerary s(f) of ¢
by s(6) = (so, $1, 82, )-

Let © be the set of all angles # € (0,1] whose orbit remains in & =

"~ 1(© U ©_}) under all iterations of 7. The set © can be written as © =
Niso ™ F(E) = Niso ™ F(E). One can easily verify that © is a Cantor set.

‘The image of © under the itinerary map is denoted by o = {s(#);0 € ©}.
One can easily verify that ¥j is a subspace of ¥ that consists of all elements
s = (sg, 81,82, +-) € ¥ such that for £ > 0, if x(sx) is even, then s;,; €
{1,--- ,n—1}; if x(sx) is odd, then sx4q € {—1,---, —(n —1)}.

The itinerary map s : O — Y, is bijective since for any s =
(S0, 51, S, ) € X, the intersection (), 7 *(Os,) consists of a single point.
In the following, we first construct an inverse map for s (Lemma 5.3.1).

Let s = (sg, $1, 82, -+ ) € %, define a map « : ¥ — (0, 1] by

(s) = %(x(;o) Ly T';i)

k>1

Lemma 5.3.1. x(X) = © and x(s(0)) =0 for all 6 € O.

Proof. First, we show r(s(f)) = 6 for 6 € ©. Let s(0) = (so, 51,2, +) and
0 = r(s(0)). It suffices to show s(f) = s(f) since s : © — X is bijective.
It follows that 6 € ©,, since

X(so)  ~ 1 (x(s0) n—1 X(0) 1
2n — 2 ( n * Zk>1 nk+1 2n * 2n

For k > 1,

@y = Laclso) Flsal e Flsiaal) 4 5 o 7 Bl ifnis odd,
|Sk 41 Z]>k n]|s£+1, if n is even.

Since s(0) = (so, 1, S2, -+ ) € Lo, we have for 7 > 1,

lsil _
2

(x(s;) = x(sj—1)) mod 1, if n is odd,

x(s;) mod 1, if n is even.

N= N
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and
X sl Xs9) gy
2 2n 2n
Thus we have

Kooy X(se—1) 1 sl x(sk) | 1 B
0= 2 * 2 Z ni—k+l — 2p i 2 Z ni—k+1’
Jjzk Jj>k+1

This means 7%(d) € ©,, for k > 1. So § and # have the same itinerary.

In the following, we show k(%) = ©. First, by the previous argument, © =
k(X0) C Kk(X). Conversely, for any s = (sq, 51, 82, -+ ) € X, there is a unique
sequence of symbols €1, &9, - - - € {£1}, such that s* = (s, €181, 282, -+ ) € .
Thus x(s) = k(s*) € O. O

Remark 5.3.1. For any s = (S, 51,82, -+ ) € ¥, one can verify that
k1 (k(s)) = {(s0, £51, £89, )}

Lemma 5.3.2. The set © satisfies:
1. 7(©) = ©.
2.0+4=0.

3. Periodic angles are dense in ©.

Proof. 1. Tt is obvious that 7(©) C ©. 7 is surjective since 771 (0) N E # O for
all 0 € ©.

2. First note that £ + 3 = & mod 1. For k > 1, since 77(§ + 3) = 7%(6)
when n is even and 7%(0+ 3) = 7%(6) 4+ 5 when n is odd, we have 7#(0+3) € £
if and only if 7%(¢) € £. Thus 6 € © if and only if 0 + ; € ©.

3. Let 6 € © with itinerary s(0) = (sg, s1,S2,---). For any k > 1, either
(50,7, 8k) € X, or there is a symbol s;,, € {£1,---,%(n — 1)} such that
(50,7 SkySpyq) € 2o- If (S0, -+, 8%) € Xo, let O = k((50,--,5%)). Else, let
Or = k((S0," ", Sks S54q)). 1t's obvious that 6 is periodic. By Lemma 5.3.1,
0, € © and

10— 0, < Cn)n ™ (—0 as k — o00),

where C'(n) is a constant, depending only on n. This implies that periodic
angles are dense in O. O

Remark 5.3.2. The Hausdorff dimension of © is 260=1

logn

For A € H and k € T, let 0) = 0, + argco =0, + arg;\ mod 1. Recall
that for A € H, arg \ € (0 —~T). It’s easy to Check that

Ui, ! o7, if x(k) is even,
U=, © if x(k) is odd.

—j
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As before, we define ©* as the set of all angles in (0, 1] whose orbits remain
in £ = |J;Z; (63 U©*,) under all iterations of 7. Thus ©* = (., 7 *(E).
For § € (0,1], suppose 77(¢) € ©} for k > 0, define the itinerary of 6 by
s*(6) = (s, 81,82, -+ ). It’s easy to show that the itinerary map s* : ©* — ¥
is bijective.

Lemma 5.3.3. (Combinatorial invariant) ©* = © and for any 6 € ©,
s*(0) = s(0).

Proof. Tt suffices to show that if s*(a) = s(3) for « € ©* and 8 € O, then
a=p.

First note that ©2 N Oy # 0 for any k € 1. Suppose s*(a) = s(3) =
(S0, 51,82, ), and let Ay = Mo 7 (O, N O,,) for m > 0. By induction
argument, we see that A,, is a connected interval of the form (a,,, b,,] with
i1 > Qmy Oma1 < by, and n(bypy1 — @me1) = by — ap, for m > 0. Thus
Api1 C A C Ay and s Am = Moo Am consists of a single point, say
0. On the other hand, - -

01 =N A= (N 74©)) N (N 70.) = {a} {5,

k>0 k>0 k>0

Thus we have a = 3 = 0. n

5.3.2 Cut rays

In this section, for any A\ € H and any # € O, we will construct a Jordan
curve, say €29, that cuts the dynamical plane of fy into two parts. The curve
will meet the Julia set J(fy) in a Cantor set of points. This kind of Jordan
curve 2 will be called a cut ray of angle §. In the following, we devote to
construct such rays, but with a slightly different presentation from Devaney’s
in [D2].

Recall that the itinerary map sy : Ay — X is bijective from a Cantor set
onto a symbolic space. We first extend the definition of sy to a larger set.
Let Ex = (>0 f;k(Uje]I\{O,n} S;) be the set of all points in the dynamical
plane whose orbits remain in |J jenfo.ny O under all iterations of fy. The
map sy : Ay — X can be extended to s\ : E), — X as follows: For any
z € Ey, suppose f¥(z) € S, for k > 0, then the itinerary of z is defined by
sx(z) = (so, 51,82, -+). One can see that the map s, : Ey — X is not well-
defined for the points that are eventually mapped to co. For example, under
this definition, the itinerary of 0 or oo can be defined as any element of 3.
Even though there is some confusion of definition on the set ExNUg>of k(oo),
it’s allowed to define the itinerary of p € Ey N Upsofy *(00) as any element
(50,51, 89, -+ ) € X provided that f¥(p) € S, for any k > 0.
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Given an angle § € © with itinerary s(f) = (so, s1, 52, ), it’s easy to
check that when n is odd, s(6 + 1/2) = (—s¢, —$1, —S2,- -+ ) = —s(6); when n
is even, s(0 + 1/2) = (—sp, 51, S2, - - - ). We consider the set of all points in E,
whose itinerary is of the form (sg, 45y, £89,---). This set is denoted by w§.
By definition, w§ contains 0 and co. Moreover,

Wi = {2z € Ex;s\(2) = (80,51, £59,- -+ )} = {2z € Ey; k(sa(2)) = 6}.

According to Devaney, the set w§ is called a full ray of angle . Let
Qf =wi U wiﬂ/z, we call the set Qf a cut ray of angle 6 (or 6 + 1/2). It’s

obvious that

O = {z € Bxisa(2) = (Es0, 1,80, )} = [ 1 F(Se, USy,).

k>0

We first give an intuitionistic description of the cut ray Q4. For m > 0, let

A= [ /(S US,)

0<k<m

Note that the set € ; is a union of two closed sectors S, and S_. Q‘?\J is a
string of four closed disks that lie inside Q?\,o' Inductively, Q?\’m is a string of
2m+1closed disks that are contained in Qimfl, and each of these disks meets
exactly two others at the preimages of co. Hence Qf  is a connected and
compact set. One can show that € | converges to Qf = M=, in Hausdorff
topology as m — oo (This is because a shrinking sequence of compact sets
always converges in Hausdorff topology). Roughly speaking, the set Qim
becomes thinner when m becomes larger and Q?\’m finally shrinks to Q5. So
it is believed that Qf is a Jordan curve(A rigorous proof of this fact will be
given in Proposition 5.3.3).

By construction, the cut ray satisfies:

o Of =-0F8.

e 09\ {0,00} is contained in the interior of Sy, US_,.

o £ — 0¥ is a two-to-one map.

Lemma 5.3.4. Let A\ € H, then there is a constant v > 0 such that for any
0 e 0o,

Ry\O)NU(w) ={z€ ExNU(v);sx(z) =s(0)}.
Proof. The proof is based on ¢)(co) = 1 and Lemma 5.3.3. We omit the

detail since it’s easy. m

Proposition 5.3.1. For any A\ € H and any 0 € O, the external ray Ry (0)

lands at OBy and Ry\(0) = {z € Ey;s\(2) =s(0)}.
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Proof. Suppose s(8) = (sg,s1,82,--+). Let l\(v,0) = {z € Ryx(0);v <
Gi(z) < nv} be the portion of Ry (6) that lies between two equipotential curves
e(B,,v) and e(By,nv). By Lemma 5.3.4, we may assume v large enough such
that for any § € ©, R\(6) N U(v) = {z € Ex N U(v);sA(z) = s(8)}. By
pulling back £y(v,7(6)) by fi' to Sy, we can extend the portion of Ry (6),
say 70 = Rx(0) N U(v), to a longer one v; = hg, (¢x(v,7(6))) U~p. Obviously,
7 C Ss,NRA(F). Continuing inductively, suppose we have already constructed
a portion v, of Ry(f), then we add a segment hy, o --- o hy, (€x(v, 7"71(0)))
to 1 and get Yep1 = Y& U hg, © -+ 0 by, (€x(v, 7871(6))). By construction,
one can check that hy, o -+ o hy (€x(v, 7*71(6))) C S,, N RA(9) and for any
2 € hgy o+ 0 hy, (Ux(v, 781(0))), sa(z) = (80,51, 82, -+ ). It turns out that
Ry\(0) C {z € E);sa(2) =s(0)} and

)\ 0 = | hoo 0 -+ 0 b (0a(v, 751(0))).

k>0

In the following, we show the external ray R,(f) lands at 0B,. Since
hi, : Ty — T, contracts the hyperbolic metric py of T for any k& € I'\ {0,n},
there is a constant 6 € (0, 1) such that

pA(hk<I>7hk<y)) < 5p)\(l’,y), vxhy S V(”“)m (UjEH\{O,TL} Sj)7Vk S ]I\{O,TL}

Thus with respect to the hyperbolic metric of Ty, we have
Hyper length (h,, o - - - o hy ({r(v, 771(6)))) = O(5").

This implies that Ry (#)\7o has finite hyperbolic length in T, thus the external
ray R)(0) lands at 0B,. Let py(#) be the landing point. It’s easy to check
that s)(pA(6)) = s(6) and px(0) € OB, N A,.

To finish, we show Ry(f) D {z € Ey;s\(2) = s(f)}. For any = € {z €
E);s\(2) =s(0)} \ {oo}, we consider the orbit of .

If the orbit of x remains bounded, then by Lemma 5.2.3, we have x € A,.
Since sy|a, : Ax — X is bijective and sy(z) = sx(pa(f)) = s(6), we conclude
T = p,\(e) S R)\(Q)

If the orbit of = tends to oo, then by Lemma 5.3.4, there is an integer M > 1
such that f{(2) € Ry\(t(0)). Note that for any k > 1, hy,_, (RA\(7%(0))) =
Ry(7*1(0)) and h,,  (ff(2)) = fF7(2), we have z € Ry(f). Thus Ry(f) D
{z € Ey;sa(2) =s(0)}.

Proposition 5.3.2. For any A € H and any 0 € O with itinerary s(0) =
(50,51, 892, ), the cut ray Qf satisfies

1. Q8 meets the Julia set J(fy) in a Cantor set of points. More precisely,
BN J(fr) = (kosala) ' ({0,0+ 3}).

O
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itinerary (n even) wf o itinerary (n odd)

(So: Sy Sz, 83, Sy --2) / (So» S1» S5 Sgr Sy ovv)
(S0+ 81+ %1753, 84 ) (S0+S1+ 753,754 --)
(S0, 81,782,783, 84 ) (So: 817825 3, 84 -+2)
(S0: 81,752, 83, Sy, ) (S0, $11752,783,7S4, ---)
(S0:°81:-%, 83, 84 ---) (S0:7S1+ S2, S S4s +-2)
(S0:781 52,783, S45 ---) (S0:7S1+ S2,7S3,7S4, ---)
(S0:7S1+ 82,783, Sy, ) (S0:781,-521 83, 8y, )

(So--S1: S2: Sg: Sas ) U (017515283754, -+2)
0

Figure 5.3: Combinatorial structure of a full ray w§ with s(6) = (so, 51, 52, - ).

2. Of meets the Fatou set F(fy) in a countable union of external rays and
radial rays, together with the preimages of oo that lie in the closure of these
rays. More precisely,

QB NBy = Rx0)URxO+ ) {00}

W - {hsowr(e))) Uhao(RA(r(8) + 3)) U0}, if n is odd,
g hoo (RA(T(0) + 3)) Uh_g (RA(T(0) + 5)) U{0},  if n is even.

For any U € P\{By,Th} withUNQS # 0, U is of the form hy,o0---ohy,_, (Ty),
where k> 1 and (by, - ,br—1) € {(£S0, -+ ,£Sk—1)}. Moreover

QAU =hy o ohy (2 DNT)

Ty © -+ © Py, (s (RA(TFH1(6)) U D, (RA(TH1(0) + 5)) U {0 })
hg © -+ 0 by, (B (BA(THHH(0) + 3)) U b, (RA(TH1(0) + 3)) U {0}>7

See Figure 5.3 for the combinatorial structure of a part of a cut ray.

Proof. 1. For z € Qf, first note that z € Q N J(fy) if and only if the orbit of
z remains bounded, if and only if z € Ay and s)(z) € {(£s0, 51, £S89, -+)} =
k1({0,6 + 3}). Thus we have Q§ N J(f)) = (kosy|a,) ({0,0 + 1}).

2. Let U be a Fatou component such that U N QY # (. Then by 1, U is
eventually mapped onto B,.

if n is odd,

if n is even.
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Case 1: U = B),. By Proposition 5.3.1, Q5 N By D Rx(0) U R\(0 +
2)U{oo}. On the other hand, for any z € (Qf \ By) \ {co}, there is a integer
M > 1 such that f}(2) € U(v), where v is a positive constant chosen by
Lemma 5.3.4. Since s\(f(2)) € {(£sum, £Sar11, £Sare2, -+ )}, we conclude

that the itinerary of f(z) must be identical as an itinerary of some angle
£ € ©O. Thus

(fM(Z)) o {(5M73M+17--.) or (—31\4,—81\J+1’...)7 if nis Odd,
2 =

(Sars Sart1s -+ ), if n is even.

Case 1.1: n is odd. By Proposition 5.3.1, fM(2) € Ry(7(0)) U
BA(r(0) + ). Note that [ (R(r"(6)) 1 (Shy, U S0y ) 0 By =
R (0). 1y (Ba(r(8) + 1) (Suy US_ay ) 1By = Ralr(6)+ ).
We conclude f{/7'(z) € R\(™71(0)) U R\(vM71(6) + 1). It turns out
that z € Ry(0) U R\(0 + 3) by induction. So in this case, Qf N By, =
RA(0) U Rx(0 + 3) U {oo}.

Case 1.2: n is even. By Proposition 5.3.1, fM(z) € Ry(7™(0)). Since
F AT (8))) 0 (Ssyy , US_ay, 1) 0 By = Ra(r1(8) U By(71(6) + 1),
we have f{'7'(z) € R\(7M71(0)) U R\(M~1(0) + 1). If M = 1, then = €
Ry\(0) U R\(0+ 1) and the proof is done. If M > 1, then we claim f{'~'(2) €
R\(TM71(6)). This is because fy '(R\(TM71(0)+3))N(Ss,, ,US_s,, ,)NBy =
0. Again by induction, we have z € R\(6) U R,(f + 1) in this case.

Case 2: U = T). In this case, if n is odd, then f,(Q5 NT\NS,,) =
OONByNS_,, = Ra(r(0)+1)Ufoo} and f(NTANS ) = Q1 NBNS,, =
R(7(0)) U{oc}. So Q4 NTy = hoy, (RA(7(0))) U hso (RA(T(0) + 3)) U{0}; if m
is even, then f,(Q NThNS,,) = A NTANS_,) =AY "B NS, =
RA(T(0)+3)U{o0}. So QNTy = hyy(RA(T(0))+5)Uh_s (RA(T(0)+3))U{0}.

Case 3: U € P\ {B,,T\}. In this case, there is a smallest integer k£ > 1
such that f¥(U) = Ty. Since f¥ : U — T is a conformal map and for any
0<j<k—-1, ff\(U ) lies inside some sector Si,, we conclude U must take the
form hy, o -+ 0 hy,_, (1)) for some (bg,--- ,bp—1) € {(£s0, -, Esk—1)}. By
pulling back AU N Q%) = QL @ N Ty via fF, we have Q VU = hy, 0o
he,_, (Q;k(a) N T)). The conclusion follows by case 2. O

Proposition 5.3.3. For any X € H and any 0 € O, the cut ray QS is a
Jordan curve.

Proof. Suppose s(0) = (s, S1, S2, -+ ). For k > 0, define

Ark(0 k(0 FaY e,
Q,\,o( ) = Q,\ @ UISk UI—sw Qi,k = ﬂ f,\](QA,(S )>-

0<j<k
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3/4

Figure 5.4: Cut rays with angles 1/4,1/3,1/2 when n = 3.

The set ng is connected and compact and it contains Q. It’s easy to
check that ng ) Qf’\’kﬂ and (Vs Q?\’k = Q4. Let D} be the component of
C\ ﬁgk that contains vy” and D, be the component of C \ ﬁgk that contains
vy. Let DL = ;oo D and D = U, Dy, then DL UD_UQf =C.

We first construct a Cantor set on S = R/Z. Let Fy = (5/24,13/24), E5 =
(17/24,25/24) be two open intervals on S and ¢ be the map ¢ — 3t mod Z. By
definition, ¢(E;) D By U Ey. Let Ty = Nycj 7 (B1 U Ey). Then T D Tip
and T}, has 2¥*! components. The intersection Ni>o Ix is denoted by T.
Since Thy = MNyog ¢ (B U Ey) = Nyso ¢ F(Er U Ey), we conclude that Th, is
a Cantor set.

Now, we define two sequences of Jordan curves {7, : S — 9D/}, {v :
S — 0D, } in the following way: for k > 0,

L vialsvn = % s\ = % ls\ie = Ve sy

2. VH(S\T) = QS noD; =8 NoD;, =, (S\ T).

3. v (Thr) = 0D \ 5, v, (Tir) = 9D \ 5.

In the following, we show that each sequence of maps {7/ : S —
oD}, {7, 'S — 0D, } converges in the spherical metric. By construction,
Yialsvr, = 75 ls\r, and for any component W of Ty, Vi (W) and ~f (W) are
contained in the same component of (o< [y (I, UI,). Since the spher-
ical metric and the hyperbolic metric are comparable in any compact subset
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of Ty, we conclude by Lemma 5.2.3 that
max dists (1 (0), 74 (1)) = O(6"),

where distz is the spherical metric and 6 € (0,1) is a constant. Thus the
sequence {7} has a limit map 75 : S — dDZL which is continuous and
surjective. Similarly, the sequence {; } also has a limit map v :S — 0D,
continuous and surjective. The limit maps 7} and 7 satisfy 7L|s\r, =
Yools\1.- By continuity, 7% and ~_ are identical on S. This implies that
ODL = 0D, = Qf and Qf is locally connected.

To finish, we show Qf is Jordan curve. Let ® : D — DI be a Riemann
mapping. Since D7 is locally connected, ® has an extension from D to DZ.
If two distinct radical segments ®((0,1)e?™) and ®((0,1)e*2) converge
to the same point p, then the Jordan curve ®((0,1)e2™1) U &((0, 1)e* 2) U
{®(0), p} separates a section of the boundary dDZT from D_ . But this is a
contradiction since DY and D_ share a common boundary. ]

Proposition 5.3.4. For A € H and 0 € ©, all periodic points on Q§ N J(f»)
are repelling.

Proof. Suppose s(0) = (sg,81,82,-+). Let z € Qf N J(f\) be a periodic
point, with period p. Then the itinerary of z is of the form (ag, a1, -+, ap_1),
where a; € {#£s;} for 0 < j < p—1. Let a = @k mod p for £ > 0 and
Liga. = Nocpes f57(1s,) - By Lemma 5.2.3, the hyperbolic diameter of I,,.....
is O(0%) when s is large. So we can choose N large enough such that »e

int(Tag-ay) — int(Ia,ay) = int(lag..ay_,) is a conformal map. Since z €
int(Iog.ay) C Tageay € int(Isgeay_,), we conclude |(f})'(2)] > 1 by Schwarz
Lemma. Thus z is a repelling periodic point. O

Proposition 5.3.2 tells us the combinatorial structure of the cut ray .
The following proposition shows that the iterated preimages of 4 have the
same combinatorial structure as Q§ provided that Q§ doesn’t meet the critical
orbit.

Proposition 5.3.5. For A € H and 0 € ©, suppose the cut ray Q5 doesn’t
meet the critical orbit, then for any a € J,~, 77k(0), there is a unique ray W$
such that

1. w is a continuous curve connecting 0 with oo.
a+1/2 @

2. w)y = —wy.

3. fwg) = wi@ U@

4. w§ N By = Ry(a) U{oo}.

For this reason, we still call w§ a full ray of angle o, and Q§ = w§ U wi‘H/ 2

a cut ray of angle a(or a + 1).
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Proof. The proof is based on induction argument. Suppose o € (J;~ 77(0)
is an angle such that the full ray wy and the cut ray €1 satisty 1,2,3,4. Then
for 3 € 771(a), we define w)\ by lifting Q¢ in the following way:

Awd) =98, winBy=Ry\(B)U{cc}.

This ray w is unique since we require wi N By = Ry(6) U {oo}. Also by

uniqueness of lifting maps, we conclude war% = —w)\ by the fact Ry(8+ 3 )
—Ry(f) and Qf = —Q3.

In the following, we show that wf connects oo and 0. If not, then wf
must be a curve connecting oo with itself, hence a Jordan curve. This implies
that wf doesn’t meet with 0. Since Qf = —QF, all curves in the set C =
{eFmilng - Hy (b7 wf);0 < k < 2n} are preimages of Qf, where Hy(z) =
(‘/X/ z. Since 2§ doesn’t meet the critical orbit, we conclude that for any
T,72 € C with 71 # 72, 71 and -, are disjoint outside {0,00}. This means
#C = 4n. But this is a contradiction since the degree of f, is 2n. m

Recall that for any 0 € © with itinerary s(0) = (so, s1, S2, - - - ), the cut ray
Q) contains at least two points: 0 and oo, and Q4 \ {0, 00} is contained in the
interior of Sy, U S_g,. Now given two angles a, 3 € © with QY # Qf, suppose
s(a) = (sg, 59,53, ), s(8) = (sh,s7,s5,---). Let J(a, 3) be the first integer
k > 0 such that |s2| # |s’|. Note that the intersection Q§ N QY consists of at
least two points 0 and oo. If furthermore J(o, 8) = 0, then Q% ﬂQf ={0,00}.
The following proposition tells us the number of intersection points in general
case.

Proposition 5.3.6. Let a, 3 € © with Q2§ # Qf, then the intersection Qi‘ﬂQf
consists of 22+ points.

Proof. We consider the orbit of Q2§ N Qf under fy:

A NQl - @l .l >mQ;“‘”‘”<5>
Note that for any 0 < k < J(«, 8) =1, fi : ﬂQ Qf\kﬂ(a) OQKHI(B)
is a two-to-one map, thus we have
#(Q2N00) = 24(QIONQTD) = ... = Iy T @OAQTI )y _ gIlas)1
O

Remark 5.3.3. From the proof of Proposition 5.3.6, we know that any two
different cut rays 2§ and Qf intersect at the preimages of oo. More precisely,
QNQY Uo<k<ss 1 fF(00), and for 2 < k < J(a, B)+1, the intersection

QN Q7N % V(0) consists of 2671 points.
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5.4 Puzzles, Graphs and Tableaux

5.4.1 The Yoccoz Puzzle

Let Xy = C\{z € By;Gx(2) > 1} = V(1). Given N periodic angles 6y, -- , 0y
that lie in different periodic cycles of ©, let

(01,08 = (Q;k("l) Ul Q;kwm)

k>0

Obviously, ga(61,---,0xn) is fi-invariant. The graph Gy(6;,--- ,0n) gener-
ated by 0y, --- , 0y is defined as following:

G\(6y, - ,0n) =0X U <XA Ngx(fy,--- ,91\7))-

The Yoccoz Puzzle induced by the graph G (61, --- ,0y) is constructed in
the following way: The Yoccoz Puzzle of depth zero consists of all connected
components of X, \ G(01,---,0y), and each component is called a puzzle
piece of depth zero. The Yoccoz Puzzle of greater depth can be constructed
by induction: If PCEI), e ,Pém) are the puzzle pieces of depth d, then the
connected components of the set f,° ! (chi)) are the puzzle pieces chi)l of depth
d+1. One can verify that the puzzle pieces of depth d consists of all connected

components of f5 (X, \ Gx(fy,---,0x)) and each puzzle piece is a disk.
To make the puzzle well-defined, we should avoid the situation that the
critical orbits touch the set Gy(6y,---,0y). If the critical orbits touch the

graph G(01,--- ,0x), we say the graph G,(6y,--- ,0y) is touchable. In this
case, since there are infinitely many periodic angles in ©, we can change
the N-tuple (0y,--- ,60y) to another N-tuple (6}, -- ,0%) to make the graph
not touchable. So in the following discussion, we always assume the graph
G.(61,- -+ ,0x) is not touchable.

Let Jy be the set of all points on the Julia set J(f\) whose orbits eventually
meet the graph G(01,- -+ ,0x). Then Jo = U, S (GO, -+, 0n)NT(fL)).
For any z € C\ (AU Jy), there is a unique sequence of puzzle pieces Py(z) D
Pi(z) D Py(z) D -+ which contain z. By Proposition 5.3.4, if f\ has a non-
repelling cycle in C, say C = {z, fA(2),---, f{(z) = z}, then this cycle must
avoid the graph Gy(6y,---,0y). This implies that C € C\ (A, U Jy). Thus
for any d > 0 and any x € C, the puzzle piece Py(x) is well defined.

Lemma 5.4.1. Suppose the graph G(0y,--- ,0y) is not touchable, then for
any z € C\ (A U Jy), the puzzle pieces satisfy:

—Py(2) = Py(—2); wPy(2) = Py(wz2), w* =1, d > 1.
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Figure 5.5: A graph with Yoccoz puzzle to depth one (n = 3 and G, =
Gi(1/2)).

Proof. By definition of the graph Gy(6y,---,0y) and the symmetry of the
Green function G : Ay — (0,+00] (See Lemma 5.2.1), we have X \
GA(01, - ,0n) = =X\ \ GA(01, -+ ,0n). Thus —Py(z) = Py(—z). Suppose
that for some d > 0,

f)\_d<X>\ \ GA(QD T 701\7)) = _f)\_d(X% \ G/\(‘917 T 791\7))'

Since fi(wz) = £fi(2) and Gy(wz) = Gi(z), we have fr(2) € fy*(Xx\
G,\(Ql, s ,‘9]\/)) if and OIlly if f,\(wz) S f;d(X)\ \ G)\(el, s ,9]\/)). Thus

SN GG, 00)) = w i TGN GaB, -, O)).
The conclusion follows by induction. O]

Lemma 5.4.2. Suppose the graph G(0y,--- ,0y) is not touchable, then for
any d > 0 and any puzzle piece Py of depth d, the intersection Py J(fy) is
connected.

Proof. It’s equivalent to prove that every connected component of C \ (P4 N
J(fx)) is simply connected. Since the Julia set J(fy) is connected, every
component of C\ (PyNJ(f)) that lies inside Py is simply connected. So we just
need consider the components of C\ (PyNJ(fy)) that intersect with P;. Note
that the puzzle piece Py is bounded by finitely many cut rays, say Qé\}l, R Q/fs,
together with finitely many equipotential curves e(Uy,v), - -+ ,e(U, v). By the
structure of cut rays (Proposition 5.3.2), there is exactly one component of



5.4. PUZZLES, GRAPHS AND TABLEAUX 71

C\ (P4NJ(fy)) that intersects with the boundary OP;. This component is the

union of C \ P, and countably many Fatou components that intersect with
the cut rays Q*fl, e ,Qfs. Thus it’s also simply connected. n

5.4.2 Admissible graphs

Given a point z € C\ (A U Jy), the difference set Ay(2) = Py(2) \ Piy1(2)
is an annulus, either degenerate or of positive modulus. Here, d is called the
depth of Ay4(z). For d > 1 and ¢ € C), the annulus A4(z) is called off-critical,
c-critical or c-semi-critical if Py(z) contains no critical points, P;1(z) contains
the critical point ¢ or A4(z) contains the critical point ¢, respectively.

Since the critical annuli play a crucial rule in our discussion, we will devote
ourself to finding a graph such that with respect to the Yoccoz puzzle induced
by such a graph, the critical annulus A4(c) is non-degenerate for some d >
1. By Lemma 5.4.1, if some critical annulus Ay(c) of depth d > 1 is non-
degenerate, then all critical annuli of the same depth are non-degenerate.
The graph that satisfies this property is of special favourite.

Definition 5.4.1. We say the graph Gx(01,--- ,0xn) is admissible if with
respect to the Yoccoz puzzle induced by Gy(01,--- ,0n), there exists a non-
degenerate critical annulus Aq(c) for some critical point ¢ € Cy and some
depth d > 1. Else, we say the graph Gx(61,--- ,0x) is non-admissible.

The following remark tells us that a graph may be non-admissible in some
cases.

Remark 5.4.1. There exist non-admissible graphs. For example, for any
n > 3, suppose fy is 1-renormalizable at co(See Section 5.5 for definition),
then the graph G (1) is non-admissible since Aq(co) is degenerate for all depths
d > 1, see Figure 5.5.

However, even if there are non-admissible graphs, we can always find an
admissible graph by an elaborate choice. The aim of this section is to prove
the existence of admissible graphs for n > 3.

Proposition 5.4.1. For any n > 3 and any A € H, if f\ is not critically
finite, then there always exists an admissible graph.

The proof is divided into three lemmas: Lemma 5.4.3, Lemma 5.4.4 and
Lemma 5.4.5. In fact, these lemmas enable us to prove much more: when
n > 5, there exist infinitely many admissible graphs without the assumption
of the critical finiteness of f) (See Lemma 5.4.5); when n = 4, there exists at
least one admissible graph without the assumption of the critical finiteness of
fx (See Lemma 5.4.4); when n = 3, there exists at least one admissible graph
except some particular critically finite cases (See Lemma 5.4.3).
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Lemma 5.4.3. When n = 3, there exists an admissible graph except when the
critical orbit of f\ eventually lands at a repelling cycle of period one or two.
More precisely,

1. If neither Gx(1/4) nor G(1/2) is touchable, then at least one of the
graphs G(1/4), Gx(1/2), GA(1/4,1/2) is admissible.

2. If G5(1/2) is touchable, then either G(1/4) is admissible or the critical
orbit of f\ eventually lands at a repelling cycle of period two.

3. If G\(1/4) is touchable, then either Gx(1/2) is admissible or the critical
orbit of f\ eventually lands at a repelling fixed point.

Proof. First note that
M =/ oo o) ) = o uatuat

1. In this case, the full rays w/l\/ 2 and wi/ % decompose S, into four domains:
Dy, Dy, D3 and Dy, see Figure 6. If neither G(1/4) nor G,(1/2) is touchable,
then the graphs G,(1/4), GaA(1/2), Gx(1/4,1/2) are all well-defined. Now,

we consider the location of the critical value vy, there are four possibilities:

Case 1: v) € D;. In this case, the annulus Ag(vy") = Py(vy) \ Pi(v)) is
non-degenerate with respect to the Yoccoz puzzle induced by either of the
graphs G,(1/4), G(1/2) and G,(1/4,1/2). It turns out that the critical
annulus A;(c) is non-degenerate for all ¢ € C\. Thus, in this case, all the
graphs G (1/4), G,(1/2), G,(1/4,1/2) are admissible.

Case 2: vy € Dy. The annulus Ay(vy) = Py(vy) \ Pi(vy) is non-
degenerate with respect to the Yoccoz puzzle induced by the graph G, (1/4).
So all critical annuli A;(c) are non-degenerate. Thus the graph G,(1/4) is
admissible.

Case 3: v) € D;. The annulus Ay(v)) is non-degenerate with respect to
the Yoccoz puzzle induced by the graph Gy(1/4,1/2). So all critical annuli
A;(c) are non-degenerate and the graph G,(1/4,1/2) is admissible.

Case 4: v € D,. Similar argument as above, we conclude the graph
G.(1/2) is admissible.

2. In this case, the graph G (1/4) is necessarily non-touchable. First note
that the cut ray Qi/u decomposes Q}\/Z into four parts: Qi/2(2, 2), Q}\/2(2, —2),
0/%(—2,2) and QY?(—2, —2), where

Q}\/Q(é‘o,el) ={z ¢ Qi/z;sk(z) = (g0,61,12,+2,-- )}, (e0,€1) € {(£2,£2)}.
Moreover, for any z € (Qi/z(Q, 2)U 91/2(—2, —2)) N J(fy), the annulus Ay(z)

is non-degenerate with respect to the Yoccoz puzzle induced by the graph
G.(1/4).
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va

3/4

Figure 5.6: Candidates for admissible graph when n =3 .

Since G (1/2) is touchable, there is an integer p > 1 and a critical point
c € C) such that f}(c) € Q}\/z. Consider the itinerary of f3(c), say sx(f3(c)) =
(S0, S1, 82, -+ ). There are two possibilities:

Case 1. Thereis an integer n > 0 such that (s,, s,+1) = (2,2) or (=2, —2).
In this case, fy7(c) € (91/2(2, 2)U Qi/Q(—Q, —2)) N J(fy), thus the annulus
Ao(f7P(c)) is non-degenerate. It turns out that the critical annulus A,,(c)
is non-degenerate. So the graph G (1/4) is admissible.

Case 2. For any integer n > 0, (s,,Sn41) = (2,—2) or (—2,2). In
this case, either sy(fY(c)) = (2,-2,2,-2,---) = (2,-2) or s\(f3(c)) =
(=2,2,-2,2,--+) = (—2,2). By Proposition 5.3.4, f¥(c) lies in a repelling
cycle of period two.

3. The proof is similar as 2. In this case, the graph G,(1/2) is necessarily
non-touchable. First note that the cut ray Qi/ ? decomposes Qi/ * into four
parts: 91/4(1, —1), 91/4(1, 1), 91/4(—1, —1) and 91/4(—1, 1), where

0V (e0,21) = {2 € O/ is0(2) = (c0, 61, £1,£1,--)}, (e0,61) € {(£1,£1)}.

Moreover, for any z € (Qi/zl(l, 1)U Qi/4(—1, 1)) N J(fr), the annulus Ay(z)
is non-degenerate with respect to the Yoccoz puzzle induced by the graph
G.(1/2).

Since G (1/4) is touchable, there is an integer p > 1 and a critical point
c € Cy such that f}(c) € Q}\M. Consider the itinerary of f3(c), say sx(f3(c)) =
(S0, S1, 82, -+ ). There are two possibilities:
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Figure 5.7: Candidates for admissible graph when n =4 .

(1,—1). In this case, [77(c) € (Q/*(1,—1) UQY*(=1,1)) N J(f), thus the
annulus Ao(fy 7 (c)) is non-degenerate. It turns out that the critical annulus
A,+,(c) is non-degenerate. So the graph G (1/2) is admissible.

Case 2. For any integer n > 0, (sp,Spt1) = (1,1) or (=1, —1). In this
case, either sy(fY(c)) = (1,1,---) = (1) or sx,(fY(c)) = (-1,-1,---) = (-1).
By Proposition 5.3.4, f(c) is a repelling fixed point. O

Case 1. There is an integer n > 0 such that (s,,s,11) = (—1,1) or

Lemma 5.4.4. When n = 4, if G\(1/3) is not touchable, then Gx(1/3) is
admissible; if Gx(1/3) is touchable, then G(2/3,1) is admissible.

Proof. First note that s(1/3) = (2,2,---) = (2), s(2/3) = (-1,-1,---) =
(=1) and s(1) = (=3, —3,---) = (=3). Thus /> € S,US5_5, 0* c S,US_,
and Q) C S3US_3, see Figure 7. It’s easy to verify

f)\_l(QiB) _ Qi/m U Qi/m U Qi\/3 U 911/24'

If the graph G,(1/3) is not touchable, then with respect to the Yoccoz
puzzle induced by G(1/3), the puzzle piece P;(vy) is a subset of the domain
bounded by wi/ > and w/z\?’/ ** together with the equipotential curves e(By, 1/n)
and e(T),1/n). Thus the annulus Ag(vy) is non-degenerate. It turns out
that all critical annuli A;(c) are non-degenerate. So the graph G,(1/3) is
admissible. If the graph G,(1/3) is touchable, then there exist an integer

p > 1 and a critical point ¢ € C) such that f{(c) € Q}\/g. Note that the
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Figure 5.8: Candidates for admissible graph when n > 5 .

preimage of Qi/ % that lies in So U S_s is Qf\/ ** and the preimage of 2} that lies
in SoUS 5 is Qi/ ® In this case, with respect to the Yoccoz puzzle induced by
the graph G,(2/3, 1), the puzzle piece P;(f}(c)) is bounded by €2, /24 and 93/8
thus the annulus Ag(f}(c)) is non-degenerate. So all critical annuh A,(c) are
non-degenerate and the graph G,(2/3,1) is admissible. O

Lemma 5.4.5. When n > 5, there are infinitely many periodic angles 6 € ©
such that the graph G (0) is admissible.

Proof. Let © = Ujzo 77’ < Us<ren_2(Or U G_k)> be the set of all angles in ©
whose orbits remain in (Jyc;<,,_»(Or U ©_) under all iterations of 7 and let

(:)per be the set of all periodic angles in o. S1m1lar argument as Lemma 5.3.2,
we can show that @per is a dense subset of ©. By Lemma 5.3.1, one can check
that the set 9per can be written as

Oper = U{/@ (50, ,Sp—1) € g and sq, -+, Sp—1 € {£2,-- ,£(n—2)}}

p>1
and any angle 0 € (:)per is of the form

1 (x(s0) [50] n” |54
0= - .
2( n +n(np—1)+np—1znk+1

1<k<p
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We can choose an angle 6 € (:)per such that the critical orbit avoids the
graph G, (6)(Note that there are infinitely many such choices of angle ).
Then with respect to the Yoccoz puzzle induced by the graph Gy(6), P (vy)
is a proper subset of Py(vy), thus the graph G,(6) is admissible. See Figure
8. O

In the rest of this section, we prove an important property of the cut rays
that are used to generate admissible graphs. Let

11

4792 n = 37
@ad: {%7%71}7 TL:4,
Oper, n > 5.

Note that for any admissible graph Gy(6y,--- ,0xy) constructed by Lemma
5.4.3, Lemma 5.4.4 and Lemma 5.4.5, {0, -+ ,0n} C O4q. In the following,
we will prove

Proposition 5.4.2. For any 0 € Oy, the intersection Q?\ N OB, consists of
two points.

The proof is based on the following

Lemma 5.4.6. Suppose § € © and 0 satisfies one of the following conditions:

C1. There are two sequences {0} }x>1, {0y }i>1 C © such that for allk > 1,
0, <0 <0, and J(0;,0) = J(0, ,0) — o0 as k — oco.

C2. There is a sequence {0 }r>1 C © such that 0; < 0y < 03 < ... (or
0y >0y >03>...)and J(0k,0) =k for any k > 1.

Then the intersection Q5 N OBy consists of two points.

Proof. 1. Suppose 0 satisfies C1 and s(0) = (so, $1, 82, -+ ). By Proposition

0 %y 1 Of JOF0)+1 1o
5.3.6, the cut ray Q)" (or Q) intersects with Q at 2 % points, hence
decomposes Qf into 29 O+ parts:

Q§\<507€17 o 76,](9:70))7 (507517 e 75,](0;5,9)) = (:l:307 Z|:$1, T 7:|:SJ(9;L,9))7
where
Q?\(so, €1,--,&p) ={z € Qi; sx(2) = (0,61, + s €py ESpr1, £Spra, -+ )}

By the structure of the cut rays (Proposition 5.3.2), since
the angle 6 satisfies condition C1, we conclude that among these
20 O+ parts, only two intersect with By: Qf(sq,s1,- - - ,S3(070)) and

Qf (=50, (=1)"sq, - - - ,(—1)”SJ(9279)). Moreover, for any k > 1

Q% N By € D (sg, 51, ,SJ(elj’e)) U Q4 (=50, (—=1)"sq, -, (—1)”8_](9;79)).
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It turns out that

Q?\ NB, C ﬂ (Qi(SOJ Sty 73J(91j,9)) U Qi(_‘sOa (=1)"s1,- -+, (‘1)n3J(eg,e))>
E>1
= {z¢€ Q?\;S/\(Z) = (s0,51,82,-+) or (—sp,(—1)"s1,(—=1)"sq,---)}
= RA(O)URLO+1/2).

By Proposition 5.3.2, the intersection Q2§ N @B, consists of two points.
These two points are the landing points of the external rays Ry (0) and Ry (0 +
1/2).

2. Now we suppose 0 satisfies C2 and s(0) = (so, 51, S2, -+ ). We only prove
the case when n is odd. The argument applies equally well to the case when
n is even. Let {0 }r>1 C O be the sequence such that 6; < 0y < 03 < ... and
J(0y,0) =k for any k > 1. The following facts are straightforward:

Fact 1. Let z € Qf. If the itinerary sy(z) is of the form
(€0, ", Eky Skt1, Sty ) OF (€0, ) Epy —Sk41, —Sk+a, - ) for some k > 0,
then z lies in the closure of some external ray or radial ray Ry (6y) for U € P.
(By Proposition 5.3.2)

Fact 2. For any k > 1, B, has no intersection with any bounded compo-
nent of C \ Ui<j<r Qij. (By Proposition 5.3.1 and 5.3.2)

Fact 3. The sections of 4 that intersect with the unbounded component
of C\ Ui<j<r Qij are as follows:

Qi(‘SU? e 7816)7 Qﬁ(_s(b ) _Sk>;

[ (% .
Q)\(S())"' y Sy TSj41y 7_Sk)7 Q)\(_507"' y TS5y Si41, ask)a 0 S] < k.

Let &, be the collection of these sections.

By Fact 2 and Fact 3, we have By N Qf C Ugee, E for any k > 1. It

follows that By N} C N1 Upee, £ = {2z € 9, s1(2) is of the form =+ s(6)
or £ (Sg,81, ", Sk, —Skt1, —Sk+2, ) for some k > 0}.

By Fact 1, for any z € By N QY, either z € Ry () U R\(6 + 1/2) or there
exist U € P\ {B,} and an angle 0y such that z € Ry (fy). In the following,
we show that the latter is impossible. In fact, if 2 € By N Q4§ N Ry (fy), then
z € 0B, NIU. Let p > 0 be the first integer such that f{(U) = Ty.

After iterations, we see that f}(z) € 0B, N 90T\ and f}(z) is the landing
point of the radial ray Ry, (67,) = f2(Ry(fy)). On the other hand, f77'(z)
is the landing point of the external ray Ry(6)) = f2*'(Ry(6y)). This implies
fY(2) is also a landing point of some external ray R\(5), 3 € 77(6,). Since
both Rr, (07,) and RA(8) land at fY(z), and fi(Rrn (01,)) = fr(RA(B)) =
Ry\(0)), fX(z) is necessarily a critical point in C).

But this is a contradiction since for any o € O, the cut ray €2 avoids the
critical set C).
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Now we are in the situation By N Qf C Ry(0) U R\(6 + 1/2) and the
conclusion follows. O

Proof of Proposition 5.4.2. 1t suffices to verify that for any § € ©,4, 0 satisfies
either C1 or C2 by Lemma 5.4.6.

When n = 3, s(1/4) = (1,—1), s(1/2) = (2). Define two sequences of
angles {ay }x>1, {0k bi>1 C © such that:

S(al) = (1’_2a_1a17_]—717"')7 S(ﬁl) = (2a17_]—727272a"')7
S(OQ) = (17_172717_1717”')7 S(ﬁ?) = (272717_172727”')7
S(a?)) = (17_1717_27_171”.)7 S(ﬁB) = (27272717_1727“')7

Then oy > ag > ag > -+ and J(ay,1/4) =k for any k > 1; /) < By < (3 <
- and J(Bk, 1/2) = k. Thus both 1/4 and 1/2 satisfy condition C2.

When n = 4, s(1/3) = (2), s(2/3) = (1), s(1) = (=3). Define three
sequences of angles {ag }r>1, { Bk tr>1, {7 e>1 C © such that:

s(a) = (2,1,-2,2,2,---), s(f) = (—1,-3,-1,—-1,---),8(m) = (—

3
S(Oég) = (272717_2727"')7 S(ﬁQ) = (_17_17_37_17”')75(72) = (_37_37_
3,—3

S<O43> = (272727 =2 )7 S(ﬁi’)) = <_1> -1,-1,-3,- ")75(73) = (_

Then oy < ay < az < --- and J(ay,1/3) = k; 1 > P > 3 > .-+ and
J(Br,2/3) = k; 1 < v <3 < -+ and J(,1) = k. Thus 1/3,2/3,1 all
satisfy condition C2.

When n > 5, we can prove that for any 6 € Ch @per, 0 satisfies condition
Cl1, as follows. Suppose s(0) = (sg, $1,S2,-++). For any k > 1, we choose
sp,sp € {£1,£(n—1)} and s, sf,; € I\ {0,n} such that

() Isi] < I3l < Ist,

(2) (807"' 7Sk—17$];78];+1a8k+27'“)7(507”' 78143—1)8;:78;;_175’6%-27"') €
20. Let
9;—: = R((Sm"‘ 78k—1,8$75§+1,8k+2,8k+3,"'))7
0]; = I{((SCH"' 7Sk—1aS]:7S];+17Sk+27Sk+3a"'))‘
It’s easy to check that 6, < 6 < 6, and J(6;,60) = J(0,,0) = k — oo as
k — oo. O

5.4.3 Modified puzzle piece

Following the idea of ‘thickened puzzle piece’ in [M2] to study the quadratic
Julia set, we construct the ‘modified puzzle piece’ for McMullen maps. The



5.4. PUZZLES, GRAPHS AND TABLEAUX 79

Figure 5.9: An example of ‘modified puzzle pieces’, to depth one.

‘modified puzzle piece’ can be applied to study the local connectivity of J(fy)
in the non-renormalizable case (See Lemma 5.7.1). It is also used to define
renormalizations (See Remark 5.5.1).

Given an angle 6 € © with itinerary s(6) = (s, s1, S2, - - - ), recall that the
cut ray € is identified as Qf = (N, fr " (S5, US_s, ). As is known that Q5 can
be approximated by the sequence of compact sets {0, = No<p<m /5" (S5, U
S_s)}m>o in Hausdorff topology. Now we consider the set C \ Qf,,- The
open set C \ Qf,,, consists of two connected components and the boundary
of each component is a Jordan curve. Denote these two boundary curves
by Yam(0) and 3, (0). Let Vi (0) = 74,,(0) N 73,,(0) be the intersection
of these two curves. It is obvious that V},(#) consists of finite points and
Vin(0) = Q8 N <U0§k§m+1 f;k(oo)) For any v € V,,(6), let D(v) be the
connected component of {z € Ay;Gx(z) > 1} that contains v. Obviously,
D(v) is a disk.

In the following, we construct ‘modified puzzle piece’. For the Yoccoz
puzzle induced by the graph G (61, - ,0x), recall that each puzzle piece Py
of depth zero is contained in a unique component of C\ gx(6y,- - ,0x). This
component is simply connected and is denoted by ()y. We may choose m large
enough such that for any o, 5 € {7%(6;);1 < j < N,k > 0} with Q # Qf,

05, NQY,, =05Nay.

The disk @)y is bounded by some collection of cut rays, say {2%;a € A(Qo)},
where A(Qp) is an index set induced by Qy. For any o € A(Qy), choose a
curve y(@) € {74 ,,(@), 7, (@)} such that v(a) N Qy = 0. Let Qo be the
connected component of C\ Uaea(gy) 7(@) that contains Qo and let V(Qo) =

Uaea(go)(Vm(@) M 0Qp). The modified puzzle piece Py of P, is defined as
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follows:

ﬁoZ@o— U D(v).

veV(Qo)

Roughly speaking, we can get Py from (o by thickening Qo near 0Qy \ V(Qo)
and truncating Qo near the points in V(Qy). The puzzle piece P, is not
contained in ]30, that is the reason why we call 160 the ‘modified puzzle piece’
of P, rather than the ‘thickened puzzle piece’ of F.

The modified puzzle pieces of greater depth can be constructed by the
usual inductive procedure: If ﬁéj ) is the modified puzzle piece of depth d,
then each component of f, l(ﬁéj )) is the modified puzzle piece of depth d + 1,
see Figure 5.9.

The virtue of these modified puzzle pieces is: If a puzzle piece Pd(j ) contains

Pd(_]?l, then the modified puzzle piece ﬁéj ) contains ﬁéi)l. This can be easily
proved by induction. In other words, this construction replace all of our annuli
by non-degenerate annuli.

For z € C\ (A, U Jy), let Py(z) be the modified puzzle piece of Py(z). We
will only make use of modified puzzle pieces which are small enough to satisfy
the following added restriction: If Py(z) contains a critical point, then Py(z)
must already contain this critical point. Note that if the graph G (61, - ,0x)
is not touchable, then this requirement is easily satisfied for any bounded value
of depth d by choosing m large enough, and this will suffice for applications.

By construction, the puzzle piece P;(z) and the modified puzzle piece ﬁd(z)
satisfy the following relation:

Py(2) € Pa(2) U Ay, () Pa(z) C ﬂﬁd(z)'

d>0 d>0

The modified puzzle pieces also satisfy the following symmetry properties:
For any z € C\ (A\ U Jp),

~ ~ ~

—Py(z) = Po(—2); wPy(z) = Py(wz), w?* =1, d> 1.

5.4.4 Tableaux

In this section, we present some basic knowledge of tableaux based on Milnor’s
Lecture [M2]. The applications of tableaux analysis combined with puzzle
techniques can be found in [BH|, [Hu], [M2], [PQRTY], [QY], [Rol] and [RY]
and many other papers.

Recall that Jj is the set of all points on J( f\) whose orbits eventually meet
the graph G (61, --- ,0x). For z € C\ (A\U.Jp), the tableau T'(z) is defined as
two dimensional array (Py;(x))a,>0, where Py(z) = fi(Pi(z)) = Pa(fi(x)).
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The position (d, 1) is called critical if P,;(x) contains a critical point in C). If
P,,(x) contains a critical point ¢ € C), the position (d, ) is called a c-position.
We call T'(x) a critical tableau if x € C,.

For any # € C\ (A U Jy), the tableau T(z) satisfies the following three
rules:

(T1) For each column [ > 0, either the position (d,!) is critical for all d > 0
or there is a unique integer dy > 0 such that the position (d, 1) is critical for
all d < dy and not critical for d > dj.

(T2) If Pyy(z) = Py(y) for some y € C\ (A\U Jp), then P,y i(z) = Pi;(y)
for 0 <i+j <d.

(T3) Let T'(c) be a critical tableau. Assume

() Pyy1-11(c) = Pyy14(c’) for some critical point ¢ € Cy, 0 <1 < d, and
P,_;i(c) contains no critical points for 0 < i <,

(b) Pym(z) = Py(c) and Pyy1m(x) # Pir1(c) for some m > 0,

Then PdJrlfl,erl(x) # Pd+1fz(0/)-

Remark 5.4.2. The tableau rule (T3) is based on the fact that every puzzle
piece of depth d > 1 contains at most one critical point in C).

Definition 5.4.2. 1. The tableau T'(z) is non-critical if there is an integer
do > 0 such that (dy, j) is not critical for all j > 0. Otherwise, T(x) is called
critical.

2. The tableau T(x) is called pre-periodic if there exist two integers | > 0
and p > 1 such that Py,(x) = Pyy(z) for all d > 0. In this case, if | =0,
T(x) is called periodic and the smallest integer p > 1 is called the period of
T(x).

3. Let Row.(d) be the d-th row of the critical tableau T'(c), we say Row.(d+
) with I > 0 is a child of Row.(d) if there is a critical point ¢ € C\ such that
Aqg(fL(e)) = Ag(¢) and fL: Agu(c) — Aq(c) is a degree two covering map.

4. (following 3) For d > 1, we say Row,(d) is excellent if Aq(fi(c)) is not
semi-critical for all I > 0.

Remark 5.4.3. By Lemma 5.4.1, and the fact f¥(wz) = £f¥(2) for k >
1,w?" =1, we have

1. If (d,l) is a critical position for some critical tableau, then (d,l) is a
critical position for every critical tableau.

2. If some critical tableau T'(c) is critical, non-critical or pre-periodic, then
every critical tableau 1s critical, non-critical or pre-periodic, respectively.

3. If Row.(d) is excellent or has a child Row.(d + [) for some critical
point ¢ € Cy, then for every ¢ € C\, Rowy(d) is excellent or has a child
Row. (d + 1), respectively.



82 CHAPTER 5. DYNAMICS OF MCMULLEN MAPS

Lemma 5.4.7. Suppose some critical tableau T(c) is critical but not pre-
periodic, then

1. For every d > 1, Row.(d) has at least one child.

2. If Row.(d) is excellent, then Row.(d) has at least two children.

3. If Row.(d) is excellent and Row.(d + 1) is its child, then Row.(d +1) is
also excellent.

4. If Row.(d) has only one child, say Row.(d + 1), then Row.(d + 1) is
excellent.

Proof. 1. By hypothesis, for every d > 1, we can find a smallest integer
[ > 0, such that the annulus A4(fi(c)) is -critical for some ¢ € Cy. The
map fi : Aayi(c) — Aq(d) is a degree two covering map. This implies that
Row.(d + 1) is a child of Row.(d).

2. (following 1) There exists d’ > d such that the annulus Ay (fi(c)) is -
semi-critical. Since Row.(d) is excellent, by tableau rule (T3), Ag_,(fi(c))
is either off-critical or semi-critical for 0 < ¢t < d' — d. In particular,
Ag(fi¥=4(c)) is off-critical. Hence, we can find a smallest integer ' > [+d'—d
such that the annulus Ay4(f} (c)) is critical, so Row,.(d 4 1') is another child of
Row.(d).

3. If Row.(d + ) is not excellent, then there is a column [’ > [ such
that Az (fL(c)) is semi-critical. By tableau rule (T3), A4(f(c)) is also
semi-critical, which contradict the fact that Row.(d) is excellent.

4. Tf Row,(d+1) is not excellent, then as in (3), Ag(fi(c)) is semi-critical
for some I’ > [. Suppose " > [ is the smallest integer. We can find a smallest
integer ¢ > I’ + [ such that A4(fi(c)) is -critical for some ¢ € C\. Then
Row.(d + t) is also a child of Row.(d), which is a contradiction. O

Lemma 5.4.8. Suppose the critical tableau T'(c) is critical and pre-periodic.
1. If n is odd, then there exist exactly two critical points ¢ € C\ such
that T(c') and T(—c") are periodic.
2. If n is even, then there is a unique critical point ¢ € C such that T'(¢)
18 periodic.

Proof. Since T'(c) is critical, there exist a smallest integer p > 1 and a unique
critical point ¢ € C) such that (d,p) is a ¢-position for all d > 0.

1. nis odd. There are two possibilities, either fy(c) = fi(c') or fi(c) +
() =0.

If f(c) = fa(¢), then the critical tableaux T'(¢’) and T'(—¢’) are periodic
with period p. In this case, there is an integer dy > 0 such that for any
d > dy,0 <l < p, the position (d,[) is not critical. It’s easy to check that for
any ¢ € C) \ {£c}, the tableau T'(¢) is strictly pre-periodic. In particular,
if p = 1, then Py(c') = Pi(fa(c)) for all d > 0. This means that for any
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d >0, d and f\(¢') lie in the same puzzle piece of depth d. Thus we conclude
{£d} ={co,cn}-

If fx(c)+ fa(d) = 0, then the critical tableau T'(¢') and T'(—¢) are periodic
with period 2p. Consider the tableau T'(¢), there is an integer dy > 0, such
that for any d > dy,0 < I < p, the position (d,1) is not critical and for any
d > 0 the position (d,p) is (—c)-critical. It’s easy to check that for any
¢ € C\\ {£d}, the tableau T'(¢) is strictly pre-periodic. In particular, if
p =1, then Py(—c) = Py(fa(¢)) for all d > 0. This means that for any d > 0,
—c and fy(¢) lie in the same puzzle piece of depth d. Thus we conclude
{£d} ={c1,cnin}-

2. n is even. In this case, by the fact that fy(v)) = fi(vy) for all
k > 1, we conclude the tableau T'(f\(c)) is periodic with period p and the
tableau T'(—f\(¢)) is strictly pre-periodic. Thus there is a unique critical
point ¢ € f; ' (fx(c')) such that T(¢) is periodic. For this tableau, there is an
integer dy > 0 such that for any d > dy,0 < | < p, the position (d,[) is not
critical. It’s easy to check that for any ¢’ € C) \ {¢}, the tableau T'(¢”) is
strictly pre-periodic. In particular, if p = 1 and T'(vy") is periodic, then é = cy;
if p =1 and T'(vy) is periodic, then ¢ = ¢,41. O

5.5 Renormalizations

In this section, we discuss the renormalizations of McMullen maps from the
viewpoint of puzzle piece.

Definition 5.5.1. If there exist a critical point ¢ of fr, an integer p > 1 and
two disks U and V' containing ¢ such that

eff:U—-V
is a quadratic like map whose Julia set is connected (here ¢ € {1} is a
symbol), then we say fy is p-renormalizable at ¢ if ¢ = 1 and f\ is p-*-
renormalizable at ¢ if ¢ = —1. In the former case, the triple (f,U,V) is

called a p-renormalization of fi at c. In the latter case, the triple (—f3, U, V)
1s called a p-x-renormalization of fy at c.

In the following, we use K., = {z € U;(efY)*(z) € UV k > 0} =
Niso(EfY)7F(U) to denote the small filled Julia set of the (-)renormalization
(ef2,U,V). By straightening theorem of Douady and Hubbard [DH3], if
(efY,U, V) is a p-(*-)renormalization of fy, then % is conjugate by a quasi-
conformal map o to a unique quadratic polynomial p,(z) = 2% + p in a neigh-
borhood of filled Julia set K.. Let § be the f-fixed point (i.e. landing point
of the zero external ray) of p,, and " be the other preimage of 3. We call
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B. = o~ (B3) the f-fixed point of the renormalization (¢ f¥,U, V). The other
preimage of (3, under the renormalization is 3, = o= (3') .

In this section, we always assume that the graph G, (01, -+ ,0y) is admis-
sible.

5.5.1 Periodic critical tableau implies renormalization

Lemma 5.5.1. Suppose the critical tableau T'(c) is pre-periodic.
1. If T'(c) is non-critical, then fy is critically finite.
2. If T'(c) is critical, then fy is either renormalizable or *-renormalizable.

Proof. Since T'(c) is pre-periodic, there exist two integers [ > 0 and p > 1
such that Py(fi"(c)) = Payip(c) = Piy(c) = Pa(fi(c)) for all d > 0.

1. T(c) is non-critical. In this case, the tableaux T(fL(c)) and T(f\?(c))
are also non-critical. By Lemma 5.7.1 (Notice that the proof of Lemma
5.7.1 is independent of Lemma 5.5.1), {f(c)} = Nyso Pa(fi"(c)) =
Nuso Pa(£L(c)) = {fi(c)}. Therefore, fi7(c) = fi(c) and fy is critically fi-
nite.

2. T(c) is critical. If n is odd, then by Lemma 5.4.8, there are exactly two
critical points +¢ € C), such that T'(¢') and T'(—¢’) are periodic. Suppose the
period is p. Consider the tableau T'(¢'), there are two possibilities :

Case 1. There is an integer dy > 0 such that for any d > dy,0 <
[ < p, the position (d,l) is not critical. Then f} : Pyip(d) —
Py () is a quadratic-like map and {f{?(c¢);k > 0} C Payp(c¢). Thus
(Y, Pag+p(c), Pay(¢)) is a p-renormalization of fy at ¢. Since fy is an odd
function, (fY, Pay+p(—), Py, (—¢')) is a p-renormalization of fy at —c.

Case 2. p is even and there is an integer dy > 0 such that for any
d > do,0 < I < p/2, the position (d,[) is not critical and for any d > 0,
the position (d,p/2) is (—c)-critical. Then —f%/* : Pigip2(d) — Pay(d)
is a quadratic-like map with {(=1)*f*(¢);k > 0} C Pyyipa(¢). Thus
(— 5/2, Piytp2(c), Pyy(c')) is a p/2-*-renormalization of fy at ¢’. It turns out
that (—ff\’/2,Pdo+p/2(—c’), P, (=) is a p/2-x-renormalization of f\ at —¢.

If n is even, then by Lemma 5.4.8, there is a unique critical point ¢ € C)
such that 7(¢) is periodic. Suppose the period is p. Then there is an integer
do > 0 such that for any d > dy,0 < [ < p, the position (d,!) is not critical.
Then f? : Py p(¢) — Py () is a quadratic-like map and {f7(¢);k > 0} C
Puy+p(€). Thus (fY, Piy+p(¢), Pay(€)) is a p-renormalization of f at ¢ Since
[ is an even function, (—f%, Py,+p(—¢), Py, (—¢)) is a p-#-renormalization of
f>\ at —c. 0
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Remark 5.5.1. Lemma 5.5.1 also holds when the graph G(0y,---,0y) is
non-admissible. Indeed, in this case, we can use modified puzzle pieces to
define renormalizations.

Proposition 5.5.1. Suppose f\ has a non-repelling cycle in C, then f is
either renormalizable or x-renormalizable. Under this situation, there are three
possibilities:

1. If f\ is renormalizable and n is odd, then f\ has exactly two non-
repelling cycles in C.

2. If f\ is x-renormalizable and n s odd, then f) has exactly one non-
repelling cycle in C.

3. If f\ is renormalizable and n is even, then f\ has exactly one non-
repelling cycle in C.

Proof. Let C = {29, fa(20), -, fy(20) = 20} be the non-repelling cycle of fy
in C. By Proposition 5.4.1, we can find an admissible graph G, (6, ,0y).
By Proposition 5.3.4, the cycle C avoid the graph G,(6y,--- ,0x). Thus for
any z € C and any integer d > 0, the puzzle piece P,(z) is well-defined.

We claim that there exist z € C and a critical point ¢ € (), such that
Py(z) = Py(c) for all d > 0. Otherwise, the tableau 7(z2) is non-critical for any
z € C. So there is an integer dy > 0 such that the map f{ : Py 14(20) — Pay(20)
is conformal. By Schwarz lemma, |(f})'(20)| > 1, which is a contradiction.

In this way, we can find a critical point ¢ € C\ whose tableau T'(c) is
periodic. By Lemma 5.5.1, f, is either renormalizable or %-renormalizable.

To continue, suppose the period of T'(c) is p, which is necessarily a divisor
of ¢. By Lemma 5.5.1, there are three possibilities:

(P1). nisodd and (fY, Pay+p(c), Py, (c)) is a p-renormalization of fy at c. In
this case, (f}, Piy+p(c), Pa,(c)) is quasiconformally conjugate to a polynomial
2+ 2%+ p. Since a quadratic polynomial has at most one non-repelling cycle
(See |CG| or [Sh1]), it turns out that C is the only non-repelling cycle contained
in Up<jcp fi(Kc). On the other hand, —C is the only non-repelling cycle
contained in (J,. i<p f)];(—Kc). Sipce there are exagtly two periodic critical
tableaux in this case and (Up<j<pf3(K.)) N (Uo<jcpfi(—K.)) = 0, we conclude
that f) has exactly two non-repelling cycles in C.

(P2). n is odd and (—ff\’/Q, Py 4p/2(c), Pyy(c)) is a p/2-%- renormalization
of f\ at c¢. In this case, the cycle C meets both K, and —K,.. Similar ar-
gument as above, one see that C is the only non-repelling cycle contained in
Uo<j<p FL(K,). Since the cycle —C is also contained in Uo<j<p F(K,), it turns
out that C = —C.

(P3). nis even and (fY, Piy+p(c), Psy(c)) is a p-renormalization of fy at c.
In this case, T'(c) is the only periodic critical tableau. Similar argument as
above, we see that C is the only non-repelling cycle in C . m



86 CHAPTER 5. DYNAMICS OF MCMULLEN MAPS

In the following, we discuss the case when f, has an indifferent cycle of
multiplier ¢*™. Douady [Doul] conjectured that for any rational map, when-
ever it is linearizable (i.e. the map is conformally conjugate to an irrational
rotation) near an indifferent fixed point of multiplier e*™®  then § must be
a Brjuno number. Here an irrational number 6 of convergent py/qx (ratio-
nal approximations obtained by the continued fraction expansion) is a Brjuno

number (denoted by B) if

l
Z 0g Gk+1 < 100

k>1 gk

It follows from Cremer, Siegel and Brjuno that if # € B, then every germ
f(2) = ¥z + O(2?) is linearizable. Yoccoz [Yo| shows that if the quadratic
polynomial z +— 2™z 4 22 is linearizable, then # € B. For general case,
Geyer |Geyl] shows that for any d > 2, if 2 +— 2¢ + ¢ has an indifferent cycle
of multiplier e*™* near which the map is linearizable, then § € B. Based on
these results and Proposition 5.5.1, we establish immediately:

Proposition 5.5.2. Suppose f\ has an indifferent cycle of multiplier ™,

then f\ is linearizable near the indifferent cycle if and only if 0 € B.

5.5.2 Properties of renormalizations

In this section, we assume that the critical tableau T'(c) is periodic with period
k. By Lemma 5.5.1, fy is either k-renormalizable at ¢ or k/2-x-renormalizable
at c. Let (efy, Pyy+p(c), Psy(c)) be the corresponding renormalization, where

(.p) (1, k), if fy is k-renormalizable at c,
g,p) =
P (—1,k/2), if fyis k/2-x-renormalizable at c.
The small filled Julia set K. = (50 Pa(c) = gz Palc).
If K.N OBy # 0, we will show that there is a unique external ray in By
accumulating on K,.. Before the proof, we need a classic result for quadratic
polynomials:

Lemma 5.5.2. Let p,(z) = 22+ p be a quadratic polynomial with a connected
filled Julia set K. If there is a curve § C C\ K converging to x € K and
pu(0) D6, then x is the B-fized point of p,,.

Here, a curve § C C\ K converges to z € K means that ¢ can be parameter-
ized as 0 : [0,1) — C\ K such that lim; ., 6(¢) exists and lim;_,; §(t) =z € K.
See [McM1] for a proof of Lemma 5.5.2. The conclusion also holds for
quadratic like maps.
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Lemma 5.5.3. Suppose the critical tableau T'(c) is k-periodic and K.NOB) #
0, then

1. The small filled Julia sets K., fr(K.), -+, fx "(K.) are pairwise dis-
joint.

2. There is a unique external ray Ry(t) in By accumulating on K,.. This
external ray lands at (5. € K. and the angle t is k-periodic.

Proof. 1. If fi(K.) N fl(K.) # 0 for some 0 < i < j < k, then K, N
SHUI(K,) # 0. Thus Pyjpioj(c) = [y (Pyypyioj(c)) = Py(c) for all d > 0.
This implies that the critical tableau T'(c) is (k + i — j)-periodic, which is a
contradiction.

2. First note that f¥(Pyx(c)) = Py(c) for d > 0. Since K. N B, # 0,
P,i(c) N By is nonempty and bounded by two external rays, say R\ (6,,)
and Ry(0) with 6, < 0t. Let Q(0,,,0) = Pux(c)N By, m > 1. Since

m’rm

SN Q011,00 41)) = Q(6;,,05), we have
O <Opy <o <05 <08 08 —0, =nF0 . —0,.)

Thus there is a common limit ¢ = lim @, = lim 6. Since ¢,, <t < @} for any
m, we have n*t =t (mod Z). Thus t is a periodic angle and the external ray
R, (t) lands at a point z € K. N 0B, (This is because rational external rays
always land). Since Ry (n't) lands at f](z) € f](K.) N By for 0 < j < k and
the small filled Julia sets K., fx(K.), -+, fi *(K,.) are pairwise disjoint, we
conclude that the angles t,nt,--- ,n*'t are different from each other. Thus
t is k-periodic.

Suppose 6 is another angle such that the external ray R, (6) accumulating
on K.. Then 0, <60 < 0% for any m. Thus § = lim @} =lim0_ =t.

To finish, we show z = .. Since T'(c) is k-periodic, f) is either k-
renormalizable or k/2-+-renormalizable. In the former case, f¥(Ri(t)) =
R)(t). Thus by Lemma 5.5.2, z = (.. In the latter case, since R)(t) is
the unique external ray accumulating on K., we conclude R)(t + 1/2) =
—R,(t) is the unique external ray accumulating on —K.. On the other
hand, f)lf/g(R,\(t)) is also an external ray accumulating on —K,., we have

S2(Ry(t)) = Ra(t +1/2) = —Rx(t). In this case, —fF/>(R\(t)) = Ra(t).
Again by Lemma 5.5.2, z = (.. O

5.6 A Criterion of Local Connectivity

In this section, we present a criterion to characterize the local connectivity of
the immediate basin of attraction. This criterion together with Yoccoz puzzle
techniques can be applied to study the local connectivity and higher regularity
of the boundary 0B,.
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In the following discussion, let f be a rational map of degree at least two,
C(f) be the critical set of f and P(f) = U~ f¥(C(f)) be the postcritical
set. Suppose that f has an attracting periodic point z, and the immediate
basin B of zy is simply connected. Let B(z,d) = {z € C; |z — z| < §}.

Definition 5.6.1. We say f satisfies BD (i.e. bounded degree) condition on
OB if for any uw € OB, there is a number €, > 0 such that for any integer
m > 0 and any component U, (u) of f~"(B(u,&y)) intersecting with 0B,
Un(u) is simply connected and the degree deg(f™ : Uy(u) — B(u,ey)) is
bounded by some constant D, which is independent of u,m and U,,(u).

For the definition, here is a remark: since f™ : U, (u) — B(u,&,) is a
proper map between two disks, we conclude by Maximum Principle that for
any disk W C B(u,¢,) and any component V' of f~™(W) that lies inside
Upn(u), V is also a disk.

The aim of this section is to prove the following:

Proposition 5.6.1. If f satisfies BD condition on 0B, then
1. OB is locally connected.
2. If furthermore OB is a Jordan curve, then OB is a quasicircle.

The proof of Proposition 5.6.1 is based on Theorem 2.3.2.

Proof. By replacing f with f*, we assume 2z is a fixed point of f. By quasi-
conformal surgery, we assume zy is a superattracting fixed point with local
degree d = deg(f : B — B) > 2. Thus B contains no critical points other
that zo. By Mobius conjugation, we assume zy = o0.

Since f satisfies BD condition on 0B, there exists a constant § > 0
such that for any u € JB, any integer m > 0 and any component U,,(u)
of f7™(B(u,d)) that intersects with 0B, U,,(u) is simply connected and
deg(f™ : Un(u) — B(u,0)) < D. In fact, we can choose § as the Lebesgue
number of the family F = {B(u,¢,); v € 0B}, which is an open covering of
the boundary 0B.

The proof consists of four steps.

Step 1. Let V,,(2) be the component of f~"(B(z,/2)) contained in U,,(2)
and intersecting with 0B, then

lim sup diam(V;,(z)) = 0.

M—00 »cHB

For else, there is a constant dy > 0 and two sequences {z;} C 0B and
{l} such that diam(Vj, (zx)) > do. For every k > 1, choose a point y; €
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7% (2x) NV, (2x). By passing to a subsequence, we assume yp — Yoo € OB
and zp — 2o, € 0B. By Theorem 2.3.2, there is a constant C'(D) such that

Shape(V, (2k), yx) < C(D)Shape(B(zk,6/2), z,) = C(D).

Since diam(Vy, (zx)) > do, Vi, (2x) contains a round disk centered at yy
of definite size. So there is a constant ro = 7o(dp, D) such that V, (zx) D
B(yso, 7o) for large k. This means f%(B(yso,70)) C B(zk,0/2) C B(zso,0).
But this contradicts the fact that f%(B(yeo,70)) D J(f) when k is large.

Step 2. There are two constants L > 0 and v € (0,1), such that for any
z € OB and any k > 1, diam(Vj(2)) < Lv*.

By Step 1, there is an integer s > 0, such that diam(V,(z)) < /4 for all
z € OB. For each x € OB and each integer k£ > 0, let Vjs(x) be a component
of f7%5(B(x,§/2)) intersecting with B and z, € Vis(x) N f7*(x). For 0 <
j <k, let x;5 = f*=9%(24,) and U; be the component of f~7*(B(zx—j)s,0/2))
containing xps. Then

Trs € Vks(l’) =U,C---CUy= B<$k8,5/2)

For every 1 < j <k, f7*: U; — B(x(_j)s, 0/2) is a proper map of degree
< D. Since f7*(Uj;11) is contained in B(z(j_j)s,0/4),

— 1 —— _ log2

mod(U; \ Uyr) = mod(Blxu—«.8/2)\ FF(U) = 575,
— —_ klog?2

mod(B(zys,6/2) \ Vis(x)) > Z mod(U; \ Uji1) > oD

0<j<k

So there are two constants M > 0 and u € (0, 1) such that for any z € 0B,
diam(Vis(z)) < MpF. This implies that there are two constants L > 0 and
v € (0,1) such that diam(Vy(z)) < L* for all k > 1.

Step 3. There exists a sequence of Jordan curves {~y : S — B} such that
i converges uniformly to a continuous and surjective map Vo : S — 0B,
where S = R/Z is the unit circle. Hence, OB is locally connected.

Recall that the Bottcher map ¢ : B — C \ D defined by ¢(z) =
Jim. (f5(2)*" is a conformal isomorphism. It satisfies ¢! (rde2midt)
f(o~ (re?™)) for (r,t) € (1,400) x S. Let {(R,t) = ¢ Y[V R, R]e*™) for
(R,t) € (1,2) x S. By the boundary behavior of Poincaré metric, there is a
constant C' > 0 such that for any(R,t) € (1,2) x S,

Eucl.length(¢(R, 1)) CHyper.length(¢(R,t)) - H.dist(¢ ' (RS), dB)

<
< C(logd)H.dist(¢p ' (RS),0B) (— 0as R — 1),
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where Hyper.length is the hyperbolic length in B and H.dist is the Hausdorff
distance in the sphere C. Thus we can choose R sufficiently close to 1 such
that for any ¢t € S, ¢(R,t) C B(z,6/2) for some z € dB. For k > 0, define
acurve 75 : S — B by (t) = <Z5_1(Rl/dk€2m)- Since f*(Yi4q(t)) = 74(d*t)
for ¢ > 0 and ~o(d*t),y1(d*t) € ¢(R,d*t) C B(z,/2) for some z € OB, we
conclude that v;(t) and 41 (¢) lie in the same component of f~*(B(z,§/2))
intersecting with 0B. By Step 2,

max a1 () — (1) = OWF).

So {7 : S — B} is a Cauchy sequence, hence converges to a continuous map
Yoo : S — OB. By construction, 7., is surjective.

Step 4. If furthermore OB is a Jordan curve, then OB is a quasi-circle.

Since OB is a Jordan curve, the Béttcher map ¢ : B — C\ D can be
extended to a homeomorphism ¢ : B — C \ D. Define a map ¢ : S — 9B by
P(¢) = ¢71(¢) for ¢ € S. Then f((¢)) = ¥(¢%). Let » = ¢|sp be the inverse
of 1. Both 1 and ¢ are uniformly continuous. Thus for any sufficiently small
positive number ¢, there are two small constants a(e), b(¢) such that

V(G,6) €SXS, |G -Gl <ale) = [¥(G) —v(G)] <s
V (21,22) € OB X OB, |21 — 23] < b(e) = |p(z1) — o(22)] < a(e).

Given two points 21,29 € 0B, 0B \ {z1, 22} consists of two components,
say By and Ey. Let L(z,2) € {E1, Es} be the section of OB such that
diam(L(z1, 22)) = min{diam(E}),diam(FE)}. Thus for any positive number
¢ < diam(0B), by uniform continuity, we have

|21 — 22| < b(e) = diam(L(z1, 22)) < €. (5.1)

By Ahlfors’ characterization of quasicircle [Ahl|, to prove that dB is a
quasicircle, it suffices to show that there is a constant C' > 0 such that for any
21,29 € OB with 21 # 2z, A(L(21, 22); 21, 22) < C. In fact, if |21 — 29| > ¢ for
some positive constant e, then A(L(z1, 22); 21, 22) < diam(9B)/e. So we just
need consider the case when |z; — 25| is small. In the following, we assume
d < diam(0B) and |z; — 23] < b(6/2), it turns out that diam(L(zq, 22)) < §/2.

Since f is expanding on 0B, there is an integer N > 0 such that
JE(L(21,2)) = OB for all k > N. So we can find a smallest integer £ > 0,
such that

diam(f(L(z1, 22))) < 6/2, diam(f(L(21, 2))) > 6/2.
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On the other hand, there exist two points wy,ws € f*(L(z1, 22)) such that

diam(f(L(z1,22))) = |f(wi) = flun)| < /[ | |f'(2)]ldz]
wi,w2
< Mlwy — wy| < Mdiam(f“(L(z1, 22))),
where [wy, wy)] is the straight segment connecting w; with wy and

M = max{|f'(z)|; Eucl.dist(z,0B) < §/2}.

Thus we have

21]\/[ < diam(f*(L(z1, 22))) = diam(L(f*(z1), f*(22))) <

|

By (5.1), there is a constant (6, M) > 0 such that | f*(21) — f*(z2)| > c(6, M).
Applying Theorem 2.3.2 to the following situation (Vi,U;) =
(Ue(f (1)), Vi(f*(21))), (Va,Ua) = (B(f*(#1),0), B(f*(21),6/2)) and g = f*,

we conclude that there is a constant C'(D) > 0 such that

A(L(z1,22); 21, 22) < C(D)A(f (L1, 22)); [ (21), [/ (22)) < _22_%{)123_).

Thus for any x,y € 0B with z # y, the turning A(L(z,y); x,y) is bounded
by

diam(0B) C(D)é
B T6/2)  2e(0, M) (¢

]

Remark 5.6.1. Using the same argument as [CJY], one can show further
that if f satisfies BD condition on OB, then OB is a John domain.

The following proposition gives a criterion when f satisfies BD condition
on 0B.

Proposition 5.6.2. If#(P(f)NOB) < oo and all periodic points in P(f)NOB
are repelling, then f satisfies BD condition on 0B.

Proof. The proof is based on the following claim.

Claim: For any u € 0B , there is a constant €, > 0 such that for any
m > 0 and any component Uy, (u) of f~"(B(u,e,)) that intersects with 0B,
Upn(u) contains at most one critical point of f™.

The claim implies that U, (u) is simply connected by Riemann-Hurwitz
Formula. Since the sequence U,,(u) — f(Up(u)) — -+ — MY Un(u)) —
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B(u,e,) meets every critical point of f at most once, we conclude that
deg(f™ : Un(u) — B(u,¢e,)) is bounded by D = Hccco(p)deg(f, c).

In the following,we prove the claim.

First note that every point in P(f)NdB is pre-periodic, we can decompose
OB into three disjoint sets: X, Y and Z, where X = 0B\ P(f), Z is the union
of all repelling cycles in P(f) N0B and Y = (P(f)NdB)\ Z.

For any x € X, choose a small number ¢, > 0 such that B(z,e,) N P(f) =
(). Then for any component W,,(z) of f~™(B(x,¢e,)) intersecting with 0B,
fm: Wh(z) — B(x,e,) is a conformal map.

The set Y consists of all strictly pre-periodic points. Thus there is an
integer ¢ > 1 such that for any y € Y, f~9(y) N P(f) N 0B = (. For a open
set U in C and a point u € U, we use Comp, (U) to denote the component
of U that contains u. For every y € Y, choose ¢, > 0 small enough such
that for any x € f~%(y) N 9B C X, Comp,(f %(B(y,e,))) C B(x,e,) and
Comp, (f~9(B(y,¢e,))) contains at most one critical point of f9.

Finally, we deal with Z. For z € Z, suppose z lies in a repelling cycle of
period p. Choose €, > 0 such that

(1) B(z,e.) is contained in the linearizable neighborhood of z and
Comp, (fP(B(z,¢,))) is a subset of B(z,¢,),

(2) For every u € (fP(z) N90B) \ {z} € XUY, Comp,(fP(B(z¢.)))
contains at most one critical point of f* and Comp,,(fP(B(z,¢.))) C B(u,&y,).

One can easily verify that the collection of neighborhoods {B(u,e,),u €
OB} are just as required. O

Corollary 5.6.1. If f is critically finite, then f satisfies BD condition on
0B.

Proof. Since f is critically finite, every periodic point of f is either repelling
or superattracting. This implies that #(P(f) N 0B) < oo and all periodic
points in P(f) N 0B are repelling. Thus by Proposition 5.6.2, f satisfies BD
condition on 0B. O

5.7 The boundary 0B, is a Jordan curve

In this section, we will prove:

Theorem 5.7.1. For any n > 3 and any complex parameter X\, if the Julia
set J(fr) is not a Cantor set, then OBy is a Jordan curve.

An immediate corollary of the theorem is the following:

Corollary 5.7.1. Suppose f\ has no Siegel disk and the Julia set J(fy) is
connected, then every Fatou component is a Jordan domain.
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For the higher regularity of 0B, we show

Theorem 5.7.2. Suppose the Julia set J(fy) is not a Cantor set, then the
boundary 0By is a quasicircle if it contains neither parabolic point nor recur-
rent critical point.

The strategy of the proof is as follows:

First, consider the McMullen maps f, with parameter A € H. If f) is
critically finite, then the Julia set is locally connected. Else, by Proposition
5.4.1, we can find an admissible graph G,(6y,--- ,0y). With respect to the
Yoccoz puzzle induced by this graph, there are two possibilities of the critical
tableaux:

Case 1: There is no periodic critical tableau. This case is discussed
in section 5.7.1 and the local connectivity of J(f)) follows from Proposition
5.7.1. The idea of the proof is based on the combinatorial analysis for tableaux
introduced by Branner and Hubbard (see [BH|, [M2]), together with ‘modified
puzzle piece’ techniques.

Case 2: There is a periodic critical tableau 7'(c¢). In this case, the
map fy is either renormalizable or x-renormalizable. This case is discussed in
section 5.7.2. The local connectivity of 0B, follows from Proposition 5.7.2.
The idea of the proof of Proposition 5.7.2 is to construct a closed curve sepa-
rating 0B, from the small filled Julia set K..

In section 5.7.3, we deal with the real parameters A € RT.

In section 5.7.4, we improve the regularity of the boundary 0B,. We first
include a proof of R.Devaney which claims that the local connectivity of 0B,
implies that 0B, is a Jordan curve. Then we show 0B, is a quasicircle except
two specific cases.

In section 5.7.5, we present some corollaries.

5.7.1 No periodic critical tableau case

Recall that Jy is the set of all points on the Julia set J(f\) whose orbits
eventually meet the graph G (6, -+ ,0y).

Lemma 5.7.1. Let z € J(fy) \ Jo. If T(2) is non-critical, then End(z) :=

ﬂdzo Pa(2) = {z}.

Proof. 1t suffice to prove End(fx\(z)) = {f\(2)}. Since T'(z) is non-critical,
there is an integer dy > 1 such that for any j > 0, the position (dy, j) is not
critical. Let {Péé)_l; 1 <i < M} be the collection of all modified puzzle pieces

of depth dy — 1, numbered so that ]353)_1 = Py (v)), ]353)_1 = Pyy_1(vy),
recall that we use Py(w) to denote the modified puzzle piece of Py(w). Every
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modified puzzle piece of depth> d; is contained in a unique modified puzzle
piece ﬁééll of depth dy—1. Let dist;(x, y) be the Poincaré metric of ﬁééll For
2 <1 < M, there are exactly 2n branches of f)\_1 on ﬁééll, say gt gb, -, b,
and each g¢ on I/D\Cgéll is univalent and carries ﬁé?) cC ﬁééll onto a proper
subset of some ﬁég )71. It follows that there is a uniform constant 0 < v < 1,
such that

dist; (g1.(2), gi(y)) < vdisti(z, y)
for any x,y € 1353) CcC ]365)_1 and any 2 <1 < M,1 <k < 2n.

i
0
Let D be the maximum of Poincaré diameters of the modified puzzle pieces
of depth dy. For any integer h > 0, since the sequence

Piyen(fa(2)) = Pagsn-1(f3(2)) = -+ Pagar (f2(2)) — Pao (f14(2))

contains no critical point, it follows that
Hyper.diam Py (fr(2))) < Dv"

with respect to the Poincaré metric of ]3d0_1( fr(2)).  Thus we have
Naso Pa(fr(2)) = {fa(2)}. By the construction of modified puzzle piece,

~

Pi(fr(2)) C Py(fa(2)) U Ay for any d > 0, thus End(f\(2)) C {fa(2)} U A,.
Since End(f\(z)) has no intersection with Ay, End(f\(2)) = {fa(2)}- O

Proposition 5.7.1. If T'(c) is not periodic for any c € Cy, then the Julia set
J(fx) is locally connected.

Proof. Note that T'(c) is either critical or non-critical. First we prove End(c) =
{c} and End(z) = {z} for any z € J(f\) \ Jo. Then we deal with the points
that lie in Jy.

Case 1: T(c) is critical. Since the graph is admissible, we can find a
non-degenerate annulus Ay, (c). Consider the descendants of Row.(dp). It’s
obvious that if Row,(t) is a descendent in the k-th generation of Row.(dy), the
annulus Ay(c) is non-degenerate with modulus mod(Ag,(c))/2%. If Row.(dp)
has at least 2¥ descendants in the k-th generation for each k£ > 1, then each of
these contributes exactly mod(Ag,(c))/2* to the sum Y, mod(Aq4(c)). Hence
> gmod(Ag(c)) = oo, as required. On the other hand, if there are fewer
descendants in some generation, then one of them, say Row.(m) must be an
only child, hence excellent by Lemma 5.4.7. Again by Lemma 5.4.7, we see
that >, mod(A4(c)) = oco. Therefore in either case, End(c) = {c}.

Now, consider a point z € J(fy)\ (JoUC)). If T(z) is non-critical, then by
Lemma 5.7.1, End(z) = {z}. If T'(2) is critical, then for each d > 1, there is a
smallest integer [; > 0 such that both (d, l4) and (d, l;+1) are critical positions.
It follows that fi* : Agyy,(2) — Aa(c') is a conformal map for some ¢ € Cy. In
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this case Y, mod(A4(z)) > >, mod(Agy,(2)) = >, mod(Ag(c)) = oo, hence
End(z) = {z}.

Case 2: T'(c) is non-critical. It follows from Lemma 5.7.1 that End(c) =
{c}. For z € J(f2)\(JoUC,), we assume T'(z) is critical, for else End(z) = {z}
by Lemma 5.7.1. Suppose A4 (c) is a non-degenerate annulus, and (dy +
1,01),(do + 1,15),- -+ are all critical positions in the (dy + 1)-th row of the
tableau T'(z). Since all critical tableaux are non-critical, there is a constant
D such that deg(fi’“ t Piyt1,(2) = Pyyu,.(2)) < D for all k > 1. Thus

mod(Agy+,(2)) = D™ 'mod(Ag,(c))

for all & > 1. Hence ) ,mod(Aq(z)) > >, mod(Ag(2)) = oo and
End(z) = {z}.
Points that lie in Jy. For any 2z € Jy, the orbit z — fy(2) — fi(z) —
- eventually meets the graph G, (61, -+ ,60x). So the Euclidean distance
between the critical set Cy and the orbit {f¥(2)}r>0 is bounded below by
some positive number £(z). In addition, for every d large enough, z lies in
the common boundary of exactly two puzzle pieces of depth d. We denote
these two puzzle pieces by Pj(z) and P/(z). In the previous argument, we
have already proved that End(c) = {c}, this implies Eucl.diam(P;(c)) — 0 as
d — oo. Choose dj large enough such that

Eucl.diam(Py,(c)) < (2) < Bucl.dist(Cy, {f¥(2)}xz0)-

Then the orbit z — f\(2) — f(z) — --- avoids all the critical puzzle pieces
of depth dy. Let P;(z) = Pj(z) U P}(2) for d large enough. Then the proof of
Lemma 5.7.1 applies equally well to this situation and (), P;(z) = {z} follows
immediately.

Connectivity of neighborhoods. Let

P*<Z) _ Pd(z)7 if 2 € J(f/\) \ J07
! Pi(z)UP/(z), if z€ Jyand d is large.

By Lemma 5.4.2; for every z € J(f\) and every large integer d, the inter-
section Pj(z) N J(fy) is a connected and compact subset of J(fy). Thus
{P;(2) N J(fr)} forms a basis of connected neighborhoods of z. Since
N(P;(z) N J(fr)) = {z}, the Julia set is locally connected at z. Note that z
is arbitrarily chosen, J(f) is locally connected. [

5.7.2 Periodic critical tableau case

Suppose the critical tableau T'(c) is k-periodic for some k& > 0. By the proof of
Lemma 5.5.1, fy is either k-renormalizable at ¢ or k/2-#-renormalizable at c.
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Let (ef%, Piy+p(c), Pa,(c)) be the renormalization, where dy is a large integer
and
(1, k), if fy is k-renormalizable at c,
(e,p) =

(—1,k/2), if fyis k/2-x-renormalizable at c.

The small filled Julia set of the renormalization (ef}, Pay+p(c), Pa,(c)) is de-
noted by K.. Recall that (3, is the (-fixed point of the renormalization and
(. is the other preimage of 3, under the map e[} Py +5(0)-

Assume now K.NIB, # (), then by Lemma 5.5.3, 5. € K.N90B) and there
is a unique external ray, say R)(f), landing at .. The angle 6 is of the form
7. It follows that 3, € K. N 0T and there is a unique radical ray Rr, (o)
in Ty landing at .. The radical ray Rr, (ayp) satisfies e f}(Rr, (ag)) = Ra(0).
Let

K = K. UR\0) U Ry (ag) U (—=K.) U (~Rx(0)) U (— R, ().

The set K is a connected and compact subset of C. Note that — Ry, (ag) =
Rr, (ag + 1/2). Let A; be the component of C\ (K U By) that intersects
with Qr, (ap, g + 1/2) and A, be the component of C\ (K U B,) that in-
tersects with Qr, (g + 1/2, ), where we use Qr, (01,02) to denote the set
{or, (re2mit): 0 < r < 1,0; <t < 6,}. Since K U B,, is connected and compact,
both A; and A, are disks. Let Z; be the component of C \ K that contains
Ai-

The aim of this section is to prove:

Proposition 5.7.2. Assume that K. N 0By # 0, then for i € {1,2}, there
is a curve L; C A; U {0} stemming from Ty and converging to (.. More
precisely, L; can be parameterized as L; : [0,+00) — A; U {0} such that
L;(0) =0,L;((0,+00)) C A; and limy_, o, L;(t) = L.

Proof. Let T' = szo(:l:fi(Kc U R,(0))). By Lemma 5.5.3, any two different
clements in the set {#f](K, U Rx(0));j > 0} intersect only at the point co.
This implies U = C\ T is a disk.

Step 1. There exists G; : U — U N Z;, which is an inverse branch of € fy,
such that the sequence {G%;k > 0} converges locally and uniformly in U to a
constant z; € K..

Since U has no intersection with the critical orbits, its preimage f, L(U)
has exactly 2n components, say Vi,--- ,Vs,. These components are arranged
symmetrically about the origin under the rotation z — e™™z. For every
1<j<2n, fA:V; — U is a conformal map. Moreover, f;'(U) C C\ K.

For 1 < j < p—1, let Q; be the component of f,'(U) such that Q; N
fi(Kc) # 0 and the inverse of fy : Q; — U is denoted by g;. For j = 0, let Qf
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Figure 5.10: Constructing two curves L; and Lo that converge to [3., here
n =3 and f), is 1—renormalizable at ¢ = ¢g.

be the component of f;'(U) such that ) N K, # 0 and Q) C Z;. The inverse
of fr:Qf — U is denoted by gi for i € {1,2}.
Now, we define

Gi 960910"'09;)_1(62), zeU iftp>2,
i\Z) = .
gh(ez), zeU ifp=1.

Since (efY, Piy+p(c), Pyy(c)) is a p-(*-)renormalization of f at ¢, we have
Gi(Py(c) NU) C Pyyip(c) N Z;. The map G; : U — U is not surjective,
thus by Denjoy-Wolff theorem(See [M1]), the sequence {G¥; k > 0} converges
locally and uniformly in U to a constant z;. It follows from G;(Py,(c) NU) C
Pd0+p(c) N Z; that z; € K..

Step 2. There exists a curve C; C UN(A;U{0}) connecting 0 with G;(0)
fori e {1,2}.

Since the graph G, (6, ,0y) is admissible, the filled Julia set K. is
disjoint from the boundary of any puzzle piece. Thus for any a € {7°(6;);1 <
j < N,s > 0}, T is disjoint from the cut ray Qf outside co. For any angle
a € {r%(0;);1 < j < N,s > 0} and any map g € {g},93,91,"* ,gp—1}, by
Proposition 5.4.2, only one curve of g(w§ \ {oo}),g(wffH/2 \ {o0}) intersects
with 0B, and the other curve connects 0 with a preimage of 0.

Fix an angle o € {7°(;);1 < j < N,s > 0}, we define a curve family F
by

F ={ewi\{oo}; € =1 and ew§ C Ujenfon}S;}-
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We construct the curve C; by inductive procedure as following;:
First, choose a curve (,_; € F such that g,_1((,—1) N 0By = 0, and let
Yo—1 = gp—1(Cp—1). Suppose that for some 2 < j < p — 1, we have already

constructed the curves 7,-1,---,7;. Then we choose (;_1 € F such that
gj_l(Cj_l) N aB)\ = @ and gj—l N Y = @, and let Yi-1 = gj—l((j—l U’)/j>. In this
way, we can construct a sequence of curves y,_1,vp—2, - , V2,71 step by step

and each curve has no intersection with 0B), connecting 0 with some iterated
preimage of 0. By construction,

"= U gio---0g;(G)

Now, we choose ¢} € F such that gi(¢}) NdBy = 0 and ¢{ N~ = 0, and
let
o [dGuawui), ipz2
90(¢) U {0}, if p=1.
The curve C; connects 0 with G;(0) and C; C U N (A; U {0}), as required.
Step 3. The union L; = J;5,Gi(C;) is the curve contained in A; U {0}
and converging to (3.
By construction, G;(£;) C G;(L;) UC; = L; and L£; \ {0} C A;.
To finish, we show £; converges to 3.. By step 1, the sequence {G¥; k > 0}
converges uniformly on any compact subset of U to a constant z; € K. Since

C; is a compact subset of U, the curve £; converges to z; € K, and G;(z;) = z;.
Since e fY(L;) D L;, we conclude z; = . by Lemma 5.5.2. ]

Corollary 5.7.2. If T'(c) is periodic for some ¢ € C, then OB, is locally
connected.

Proof. We may assume that f) is not geometrically finite, otherwise the Julia
set is locally connected (see [TY]). Thus f\ has no parabolic point.

If K.NOBy = 0, then for all j > 0, f{(K.) N 9By = 0. Since P(f)) is
a subset of (U, F(EAK))) U{oo}, we conclude P(fy) N 9By = 0. By
Proposition 5.6.1 and Proposition 5.6.2, 0B, is locally connected.

If K.N OBy # (0, then by Proposition 5.7.2, the closed curve £ = £; U
Lo U{f.} separates K.\ {B.} from OB, \ {f.}. In this case, for all j > 0,
F(K.)NOBy = {f](8.)}. Thus #(P(f») N9By) < oo and all periodic points
in P(fy) N OB, are repelling. Again by Proposition 5.6.1 and Proposition
5.6.2, OB, is locally connected. m

5.7.3 Real case

In this section, we will deal with real parameters. By the symmetry of the
parameter plane, we just need consider A € RT = (0, +00). In this case, the
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Julia set J(fy) is symmetric about the real axis. If C\ C Ay, by ‘The Escape
Trichotomy’ (Theorem 5.2.1), the Julia set J(f)) is either a Cantor set, a
Cantor set of circles or a Sierpinski curve. The local connectivity of 0B, is
already known in the latter two cases. In the following discussion, we assume

CyN A, =0.

Lemma 5.7.2. Suppose A € RT and CxNAy = 0, then fy is 1-renormalizable

at cog = X/

Proof. Let U be the interior of (Sy U S_,—1)) \ {# € By UTy;Gxr(2) > 1}
and V = C\ ({z € By;GA(2) > n} U[—00,vy]). One can easily verify that
fr : U — V is a quadratic-like map. Since Cy N Ay = 0, the critical orbit
{f¥(co); k > 0} is contained in U N RF. This implies that (fy,U,V) is a
1-renormalization of f) at c. O]

Let K., = =0 f>"(U) be the small filled Julia set of the renormalization
(f, U, V), Beo be the f—fixed point and 3., be the preimage of 3.,. It’s easy
to check that K., is symmetric about the real axis and K., NR* is a connected
and closed interval.

Proposition 5.7.3. K., NOB) = {B.}-

Proof. The idea of the proof is to construct a Jordan curve C that separates
K, \ {Be } from 0By \ {f, }, similar as the proof of Proposition 5.7.2.

We first show that (3., is the landing point of the zero external ray Ry (0).
Note that rational external rays (i.e. external rays with a rational angle)
always land. Let zy be the landing point of R,(0). Obviously, R\(0) C R*
and zg is a fixed point of fy. This implies zg € U N R™ and the orbit of z
does not escape from U, so zy € K. Since R,(0) is an fy-invariant ray that
lands at 2y, we conclude zy = 3., by Lemma 5.5.2.

Let K = Ko U [Bey, +00] U (= K,y) U [—00, —(]. One can easily verify
fHEK) = Uyimey w(Ke U [0,+00]). The set Y = C\ K is a disk and its
preimage f, 1(Y) consists of 2n components, which are symmetric about the
origin under the rotation z — €™/mz. For each component X of f,'(Y),
fr: X — Y is a conformal map. Let X, be the component of f;'(Y) that is
contained in Sy and g be the inverse map of f) : Xog — Y. By Denjoy-Wolff
theorem, the sequence of maps {g*; k > 0} converges locally and uniformly in
Y to a constant, say x. Since g(Y NV) C XqoNU, we conclude x € K.

Let A be the component of C\ (B) U K., U (—K,,) UR) that intersects
with 7' and lies in the upper half plane.

Claim: There is a path L C AU{0} stemming from T\ and converging to
Bey- More precisely, L can be parameterized as L : [0,400) — AU {0} such
that £(0) = 0, L((0,+00)) C A and limy_,, o L(t) = B¢,
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Let po = X/—\ be the preimage of 0 that lies in Sy and v = [0, po] be
the segment connecting 0 with pg. Then vy N (K., U 9dB)) = 0. Indeed,
v N K., = 0 follows from the fact that fy(y) N K., C iRN K, = 0. In
the following, we show 79 N 0By = (). It suffices to show By N D = (), where
D = {z € C;|z| < /A}. Otherwise, By N D # () implies By N 9D # {). Since
@ : 2+ V/\/Z maps By onto Ty and the restriction o|yp is the identity map,
we have By N 0D = (B, NoD) =T\ NdD. But this is a contradiction.

Note that g maps v, outside D and g(y) connects py with a preimage of py
that lies inside Sp. Let £ = (J;~, 9% (70). By construction, LN (K., UIBy) = 0
and L converges to x € K. Since fr(£) = LU fi(y) D £, we conclude
x = B, by Lemma 5.5.2.

Let C = LU LU {fB,}, where L* = {Z;z € L}. C is a Jordan curve
separating K, \ {8} from 0B, \ {f,,}. The conclusion follows. O

Remark 5.7.1. From the proof of Proposition 5.7.3, we conclude
OB\NR = {£6,}, Koy NR =[5, 0], OTxNR = {£0, }.

Corollary 5.7.3. Suppose A € R* and C, N Ay = 0, then OBy is locally
connected.

Proof. By Proposition 5.7.3, if n is odd, then P(fy) N 0B, C (—K. U K, ) N
OB\ C {£8,}; if n is even, then P(f\) N 0B\ C K., NOB) C {B,} If 5,
is a parabolic point, then f) is geometrically finite, the local connectivity of
0B, follows from [TY]. Else, by Proposition 5.6.1 and Proposition 5.6.2, 9B,
is also locally connected. O

5.7.4 Local connectivity implies higher regularity

Up to now, we have already proved that B, is locally connected if the Julia
set is not a Cantor set. By the arguments of Devaney [D1]|, we prove the
following proposition which will lead to Theorem 5.1.1.

Proposition 5.7.4. If 9B, is locally connected, then OB) is a Jordan curve.

Proof. Let Wy be the component of C — By containing 0. It’s obvious that
oWy C OBy, Th C Wy, 0T\ C Wy. By Lemma 5.2.1, /"W, = W,

Recall that Hy(z) = V/\/z, so H\(OW,) C Hy(0By) = 9T\ C W,. Since
OB, is locally connected, OWj is locally connected. It follows that C — W, is
connected and H,(C — Wy) € Wy,

Now we show f;'(0) € Wy. If not, f;'(0 ) N (C — Wy) # 0. By the
symmetry of f;(0) and C — Wy, we have f;'(0) € C — Wy. This will

contradict the fact that f,'(0) = Hy(fy'(0)) C Hy\(C —Wy) C Wp.
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Since any point on W, can not be mapped into Wy, we have f; (W) C
Wy and f; (W) C Wy. Take a point z € W, we have 9B, C J(f\) =
Usso £ 5(2) € Wy and 9By, C OW,. Therefore OW, = 9B,

Now we show that dB, is a Jordan curve. If two different external rays,
say Ra(t1) and R)(t2), land at the same point p € 9B,, then Ry(t;) U Ry(t2)
decomposes 0B, into two parts. It turns out that OW, # 9B,, which is a
contradiction. O

The aim of this section is to prove that 0B, is a quasicircle in almost all
cases. Formally, we have the following

Theorem 5.7.3. Suppose the Julia set J(f\) is not a Cantor set, then the
boundary OBy is a quasicircle if it contains neither parabolic point nor recur-
rent critical point.

Proof. By Theorem 1 and Proposition 5.6.1, it suffices to show that f) satisfies
BD condition on 0B,. First we deal with three special cases:

Case 1. The critical orbit escapes to infinity.

Case 2. The parameter A € R™ and 9B, contains no parabolic point.

Case 3. The map f, is critically finite.

In case 1, P(f,)NOBy = (. By Proposition 5.6.2, f) satisfies BD condition
on dB,. For case 2, by Proposition 5.7.4, either P(f,) NdBy =0 or P(f\) N
OB\ = {fB.} or P(f\) N OBy = {£0B.}. In either case, [, is a repelling fixed
point of fy. By Proposition 5.6.1, f satisfies BD condition on 0B,. For case
3, f satisfies BD condition on 0B, by Corollary 5.6.2.

In the remaining cases, we can use Yoccoz puzzle to study the higher
regularity of B,. There are two remaining cases:

Case 4. 0B, contains no critical point.

Case 5. () C 9B, and all critical points in C'y are non-recurrent.

In either case, by Proposition 5.4.1, we can find an admissible graph
G(b1,- -+ ,0n). With respect to the Yoccoz puzzle induced by this graph,
we consider the critical tableaux. For case 4, there are two possibilities:

Case 4.1. There is a periodic critical tableau T'(c).

Case 4.2. There is no periodic critical tableau.

For case 4.1, we conclude from Proposition 5.7.2 that #(P(f\)N0B,) < oc.
Since dB) contains no parabolic point, all periodic points in P(f\) N dB, are
repelling. Thus by Proposition 5.6.2, f\ satisfies BD condition on 0B,.

For case 4.2, we have already shown that End(c) = (s, Pa(c) = {c} for
¢ € Oy in the proof of Proposition 5.7.1. Thus we can choose d, large enough
such that

Eucl.diam(Py, (c)) < Eucl.dist(c, 0B)).
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For d > dy, let Uz be the union of all puzzle pieces of depth d that intersect
with 9B, and V; be the interior of U,. For every u € 0B,, there is a number
gy > 0 such that B(u,&,) C Vy,. For any m > 0 and any component U, (u) of
™ (B(u,e,)) intersecting with 0By, Uy, (u) C Vigym C Vg,. By the choice of
do, the sequence U,,(u) — -+ — f" ' (Un(uv)) — B(u,&,) meets no critical
point of fy, thus fi* : U,,(u) — B(u,&,) is a conformal map. So in this case,
fx satisfies BD condition on 0B,.

In the following, we deal with case 5. Again by Proposition 5.7.1, End(c) =
{c} for ¢ € Cy. Thus in this case, one can verify that 0B, contains no recurrent
critical point if and only if all critical tableaux are non-critical. By Lemma
5.5.1, fy is critically finite. It follows from Corollary 5.6.1 that f) satisfies

BD condition on 0B,. O

5.7.5 Corollaries

In this section, we present some corollaries of Theorem 5.1.1.

Proposition 5.7.5. If 0B, contains a parabolic cycle, then the multiplier
of the cycle is 1 and the Julia set J(fy) contains a quasiconformal copy of
quadratic Julia set of z — 2% + 1/4.

Proof. Suppose C = {zo, fa(20), -, [{(20) = 20} is a parabolic cycle on 0B,.
We will first consider the case A € RT, then deal with the case \ € H.

First suppose A € Rt. By Lemma 5.7.2 and Proposition 5.7.3, fy is
1—renormalizable at ¢y and P(f\) N 0B\ C (=K., U K.,) N 0B\ = {£0}-
Since a parabolic point must attract a critical point, we conclude that 3., is
a parabolic fixed point of fy. So (fy,U,V) is quasiconformally conjugate to
a quadratic polynomial z +— 22 4+ ;1 whose 3—fixed point is also a parabolic
point, thus x4 = 1/4. The conclusion follows in this case.

In the following, we deal with the case A € H. By Proposition 5.4.1,
we can find an admissible graph G(61,--- ,0x). By Proposition 5.3.4, the
parabolic cycle C avoid the graph G (61, -+ ,0y). With respect to the Yoccoz
puzzle induced by this graph and by the similar argument as Corollary 5.5.1,
we conclude that there is a critical point ¢ € C\ and a point z € C such
that Py(z) = Py(c) for all d > 0. Thus the critical tableau T'(c) is periodic.
Suppose the period of T'(¢) is k. It is obvious that k is a divisor of q. By
Lemma 5.5.1, when dy is large enough, the triple (efy, Py,1p(c), Pay(c)) is
either a k-renormalization of fy at ¢ (in this case, (¢,p) = (1,k)) or a k/2-
s-renormalization of fy at ¢ (in this case, (¢,p) = (—1,k/2)). Moreover, the
small filled Julia set K. = End(c) =(),», Fa(c) and z € K. N IB,.

On the other hand, by Lemma 5.5.3, there is a unique external ray
R, (t) landing at (., which is the [-fixed point of the renormalization
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(ef, Piy+p(c), Pay(c)). Note that we have already proved that 9B, is a Jordan
curve, the intersection 0B, N P,(c) shrinks to a single point as d — oo. Thus
we have K.NJB) = {f#.}. By the previous argument, 3, = z.

By the straightening theorem of Douady and  Hubbard,
(efys Pag+p(c), Pay(c)) is quasi-conformally conjugate to a quadratic polyno-
mial p,(z) = 2% + p in a neighborhood of the small filled Julia set K.. For
this quadratic polynomial, the f-fixed point is also a parabolic point, thus
p = 1/4. This means that the Julia set J(f)) contains a quasiconformal copy
of quadratic Julia set of z — 22 + 1/4. Since the multiplier of the parabolic
point of z — 2% + 1/4 if 1, it turns out that (¢f})'(2) = 1, (f¥)'(z) = 1 and
(FD/(z) = 1. -

Proposition 5.7.6. Suppose f\ has no Siegel disk and the Julia set J(fy) is
connected, then every Fatou component is a Jordan domain.

Proof. By Proposition 5.7.4 and the fact Hy(B)) = T), we conclude that both
T, and B, are Jordan domains.

If the critical orbit tends to co, then the Julia set is a Sierpinski curve which
is locally connected, and all Fatou components are quasidisks (By Proposition
5.6.1).

If the critical orbit remains bounded, then for any U € P \ {7}, B\},
there is a smallest integer k¥ > 1 such that f§¥ : U — T) is a conformal
map. Thus if two radial rays Ry(f;) and Ry(6) land at the same point,
then Rz, (6) = fX(Ry(61)) and Ry, (02) = f¥(Ry(62)) also land at the same
point. This implies that U is also a Jordan domain. If there are other Fatou
components, then they are eventually mapped to a parabolic basin or an
attracting basin. By Proposition 5.5.1, the map is either renormalizable or
x—renormalizable. It is known that every bounded Fatou component of a
quadratic polynomial(without Siegel disk) is a Jordan disk, it turns out that
all Fatou components of f) are Jordan disks in this case. O]

Proposition 5.7.7. If f\ has a Cremer point, then the Cremer point cannot
lie on the boundary of any Fatou component. In other words, all Cremer points
are buried on the Julia set.

Proof. Suppose f, has a Cremer point z, then the Fatou set F(f\,) =
Upso £ ¥(By). If 2 lies on the boundary of some Fatou component, then
after integrations, one sees that z € 9B,. By Theorem 5.1.1, there is a peri-
odic external ray R,(t) landing at z. But this is a contradiction since every

periodic external ray can only land at a parabolic point or a repelling point
(By Snail Lemma, see [M1]). O
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5.8 Local connectivity of the Julia set J(f))

In this section, we study the local connectivity of the Julia set J(fy). We will
prove the following

Theorem 5.8.1. Suppose fy has no Siegel disk and the Julia set J(f) is
connected, then J(f\) is locally connected in either of the following cases:

1. The critical orbit does not accumulate on the boundary 0B).

2. fx 1s neither renormalizable nor x—renormalizable.

3. The parameter X is real and positive.

The proof is based on the ‘Characterization of Local Connectivity’ (Propo-
sition 5.8.1, See [Wh]) and ‘Shrinking Lemma’ (Proposition 5.8.2, See [TY] or
[LM]), as follows

Proposition 5.8.1. A connected and compact set X C C is locally connected
if and only if it satisfies the following conditions:

1. Every component of C\ X is locally connected.

2. For any £ > 0, there are at most finitely many components of C \ X
with spherical diameter greater than ¢.

Proposition 5.8.2. Let f: C — C be a rational map and D be a topological
disk whose closure D has no intersection with the post-critical set P(f), then
either D is contained in a Siegel disk or a Herman ring, or for any € > 0,
there are at most finitely many iterated preimages of D with spherical diameter
greater than c.

Proof of Theorem 5.8.1.

1. If fy is geometrically finite, then J(f)) is locally connected (See [TY]).
Else, the Fatou set F(f\) = Uyso f5 "(By). Since BAxNP(f\) = 0, we conclude
by Shrinking Lemma that for any ¢ > 0, there are at most finitely many iter-
ated preimages of B, with spherical diameter greater than ¢. By Proposition
5.8.1, J(f\) is locally connected.

2. If f) is neither renormalizable nor xs—renormalizable, then the parame-
ter A € 'H by Lemma 5.7.2. We may assume f) is not critically finite, for else
the Julia set is locally connected. Thus by Proposition 5.4.1, we can find an
admissible graph. By Lemma 5.5.1, none of the critical tableaux is periodic.
The local connectivity of J(fy) follows from Proposition 5.7.1.

3. (The notations here are the same as in Section 5.7.3) We just need
consider the case when f) is not geometrically finite. In this case, the Fatou

sot F(fy) = Ugao S5 (By). Note that for any = > 0, f3(2) > 2/7- 2 —
2\ = vy, Thus {fF(v);k > 0} C [v, Bel-
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If v = ", then one can easily verify that the triple (fy, U, V) is quasicon-
formally conjugate to the quadratic polynomial z — z? — 2, which is critically
finite. So f, is also critically finite and the Julia set is locally connected.

If v > f,, then T» N [vy, ] = @ by Remark 5.7.1. Since P(fy) C
[— By, vx | U [03, Bey] U {0}, we have T\ N P(fy) = 0. By Proposition 5.8.2,
for any € > 0, there are at most finitely many iterated preimages of Ty with
spherical diameter greater than €. By Proposition 5.8.1, the Julia set is locally

connected. O






CHAPTER 6
Decomposition Theorem and
Thurston-type Theorems

6.1 Introduction

Let f : S? — S? be an orientation preserving branched covering of degree at
leat two. We denote by deg(f, z) the local degree of f at x € S?. The critical
set 27 of f is defined by

Qp = {x € % deg(f,z) > 1},

and the postcritical set Py of f is defined by

P = ().

n>1

We say that f is postcritically finite (also called ‘critically finite’) if Py is
a finite set. Such a map is always called a Thurston map. For a Thurston
map, we define a function v; : S* — NU {oco} in the following way: For each
z € S?, define v;(z) (may be co) as the least common multiple of the local
degrees deg(f™,y) for all n > 0 and all y € S? such that f"(y) = z. (Notice
that ve(x) = 1if z ¢ Py). We call Oy = (5%, 1) the orbifold of f.

In 1980s, Thurston proved the following theorem:

Theorem 6.1.1. (Thurston) Let f : S? — S? be a critically finite branched
covering. Suppose that Oy does not have signature (2,2,2,2). Then f is
combinatorially equivalent to a rational function R if and only if for any f-
stable multicurve T, we have A(T', f) < 1. The rational function R is unique
up to Mobius conjugation.

Here, the definitions of ‘multicurve’ and ‘combinatorially equivalent’ will
be presented below for a larger category of branched coverings, that covers
the postcritically finite cases. A detailed proof of Thurston’s theorem is given
by Douady and Hubbard [DH1].

Thurston’s theorem has connections with a number of related areas such
as Teichmuller theory, quasiconformal surgery, dynamics of several complex
variables, transversality, group theory, algorithm, etc.
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There are many applications of Thurston’s theorem. Here is an incom-
plete list: Geyer’s sharp bounds on the number of harmonic polynomial roots
[Gey2|, Kiwi’s characterization of polynomial laminations [Kiwi| (using pre-
vious work of Bielefield-Fisher-Hubbard [BFH] and Poirier [Poi]), Mikulich’s
classification of postcritically finite Newton maps, Milnor-Thurston’s proof of
monotonicity of entropy for unimodal maps [MT], McMullen’s work on ratio-
nal quotients [McM1], Pilgrim-Tan’s cut-and-paste surgery along arcs (|[PT1]),
Rees’ descriptions of parameter spaces |[Rees2|, Rees, Shishikura and Tan’s
studies on matings of polynomials (|[Reesl|,[ST]|, [Tanl], [Tan2]), ...

Over the years, there are several various attempts to generalize Thurston’s
theorem beyond postcritically finite rational maps. For example, David Brown
[Bro|, supported by the previous work of Hubbard and Schleicher [HS|, has
succeeded in extending the theory to the uni-critical polynomials with an
infinite postcritical set (but always with a connected Julia set), and pushed
it even further to the infinite degree case, namely the exponential maps. We
would also like to mention a recent work of Hubbard-Schleicher-Shishikura
[HSS]) extending Thurston’s theorem to postcritically finite exponential maps.
Cui-Tan|CT1| and Jiang-Zhang [JZ], independently, using different methods,
extend Thurston’s theorem to hyperbolic rational maps. Furthermore, Cui
and Tan |CT2| extend Thurston’s theorem to geometrically finite rational
maps. Meanwhile, Zhang |[Zh2| extends Thurston’s theorem to a class of
rational maps with Siegel disks.

In this work, we aim to extend Thurston’s theorem to a large class of
branched covering, namely ‘non-parabolic’ branched covering. Roughly speak-
ing, a ‘non-parabolic’ branched covering is a proper branched covering for
which each critical point either has finite orbit or is attracted to an attracting
cycle, or is eventually mapped to the closure of some rotation domain. Before
we are going on, we shall define these objects first.

We may identify S? with C.

Definition 6.1.1. (Rotation domain) We say (Up,- - ,U,—1) is a cycle of
rotation domain of f if

1. All U; are disks or annuli, with disjoint closures and Jordan curve
boundaries.
2. f should induce conformal isomorphisms

L

UOiUli...iUp_l

U, = Uy

and the return map f? : Uy — Uy 1s conformally conjugate to an wrrational
rotation.

3. Each boundary cycle of OU; contains at least one critical point of f.
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One may compare this definition with the definitions of Siegel disks and
Herman rings for rational maps ([M1]). Let P} be the accumulation set of P;.

Definition 6.1.2. (Attracting cycle) We say (zo,- - , 2,-1) is an attracting
cycle of f if (20, ,2p-1) is contained in P}, and f is holomorphic in a
neighborhood of this cycle with multiplier |(f?) (z0)] < 1.

We remark that: A periodic cycle near which the map f is holomorphic and
attracting (i.e. the multiplier A satisfies |A\| < 1) is not necessarily contained
in P;. This kind of ‘attracting’ cycle may be artificial. This is one of the
differences between branched coverings and rational maps. Another impor-
tant and essential difference is, for an attracting cycle (zg,--- , 2,-1) C Pj’c7
the immediate attracting basin Ay = Up<i<pAo(zi) of (20,---,2,-1) does
not necessarily contain a critical point, where Ag(z;) is the component of
{2z € C; fP*(2) — 2 as k — oo} that contains z;. This case usually implies
the existence of Thurston obstructions.

Definition 6.1.3. (Non-parabolic map) We say that f is a non-parabolic
map if each critical point of f either has finite orbit or is attracted to an at-
tracting cycle, or is eventually mapped to the closure of some rotation domain.

Given a non-parabolic map f, let ngp(f) be the number of rotation disk
cycles, ngra(f) be the number of rotation annulus cycles and n(f) be the
number of attracting cycles. By definition, we see that

nrp(f) + 2nra(f) +na(f) < 2deg(f) — 2.

Let f be a non-parabolic map,

a Herman map, if nra(f) > 0,ngp(f) > 0 and na(f) =0,

we call f
a Siegel map, if nga(f) = 0,nrp(f) > 0 and na(f) =0.

It’s obvious that a Thurston map is a non-parabolic map with nga(f) =

nep(f) =na(f) =0.

Definition 6.1.4. (Marked set) Let f be a non-parabolic map and Ry be
the union of all rotation domains of f. A marked set P is a compact set that
satisfies the following:

1. f(P)C P.

2. P> Py URy and P — (Py U Ry) is a finite set.

In the chapter, we always use a pair (f, P), a branched covering together
with a marked set, to denote a non-parabolic map.
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Definition 6.1.5. (C-equivalence) Two non-parabolic maps (f, P) and
(9,Q) are called combinatorially equivalent or ‘c-equivalent’ for short (resp.
q.c-equivalent), if there is a pair (¢,v) of homeomorphisms (resp. quasicon-
formal maps) of C such that

1. po f=got and p(P) = Q.

2. ¢ and ) are holomorphic in RyUN , where Ry is the union of all rotation
domains of f (if any) and N is a neighborhood of all attracting cycles (if any).
If P} contains no attracting cycle, we set N = 0.

3. ¢ and Y are isotopic rel PUN. That 1s, there is a continuous map H :
[0,1]xC — C such that for anyt € [0,1], H(t,-) : C — C is a homeomorphism
(resp. quasiconformal map), H(0,-) = ¢, H(1,-) = ¢ and H(t,z) = ¢(z) for
any t € [0,1] and any z € PUN.

In this case, we say (f, P) is c-equivalent (resp. ¢.c-equivalent) to (g, Q)
via (¢, ). Notice that a necessary condition for q.c-equivalence is that f is a
qusiregular map.

Multicurve and Thurston obstruction

Let (f, P) be a non-parabolic map. A Jordan curve y in C\ P is called null-
homotopic (resp. peripheral) in C\ P if one of its complementary components
contains no (resp. one) point of P, and called non-peripheral in C \ P if each
component of C \ v contains at least two points of P.

We say that I' = {71, ,7,} is a multicurve in C\ P if each ~; is a non-
peripheral Jordan curve in C \ P, and they are mutually disjoint and no two
homotopic in C \ P. Its (f, P)-transition matrix Wr = (a;;) is defined by

1
deg(fra— )

a'ij =

where the summation is taken over all the components « of f~!(~;) which are
homotopic to ; in C\ P.

A multicurve I' in C\ P is called (f, P)-stable if every component of f~(v)
for v € T is either null-homotopic, or peripheral, or homotopic in C\ P to a
curve ¢ € I

We say that a multicurve I' is a Thurston obstruction of (f, P) if T" is
(f, P)-stable and the leading eigenvalue (T, f) of its transition matrix Wr
satisfies A\(T, f) > 1.

For convention, an empty set I' = () is always considered as a (f, P)-stable
multicurve with A(T', f) = 0.

The main theorem of this chapter is:

Theorem 6.1.2. (Decomposition Theorem) Let (f, P) be a non-parabolic
map, then there exist a (f, P)-stable multicurve I' and a collection of Siegel
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maps or Thurston maps, say {(hy, Py),k € A}, where A is a finite index set,
such that

1. (Combinatorial part) (f, P) has no Thurston obstructions if and only
if N\(T', f) < 1 and for each k € A, (hg, Py) has no Thurston obstructions.

2. (Surgery part) (f, P) is q.c-equivalent to a rational map if and only if
AT, f) <1 and for each k € A, (hy, Py) is g.c-equivalent to a rational map.

3. (Analytic part) (f, P) is q.c-equivalent to a unique rational map up to
Mobius conjugation if and only if N(I', f) < 1 and for each k € A, (hy, Px)
q.c-equivalent to a unique rational map up to Mobius conjugation.

From the viewpoint of ‘decomposition’, this theorem means that every non-
parabolic branched covering can be decomposed along a stable multicurve into
finitely many Siegel maps or Thurston maps, such that the combinatorics and
rational realizations of these resulting maps essentially dominate the origi-
nal one. These resulting maps can be viewed as the renormalizations of the
original map.

From the viewpoint of ‘reduction’, the theorem implies that Thurston-
type Theorems for every non-parabolic branched covering can be reduced to
Thurston-type Theorems for finitely many Siegel type branched coverings. In
particular, Thurston-type Theorems for rational maps with Herman rings can
be reduced to Thurston-type Theorems for rational maps with Siegel disks.

Remark 6.1.1. 1. The number of Siegel maps is bounded by ngp(f) +
2npra(f).

2. In the surgery part of Theorem 6.1.2, we require that (f, P) is a quasireg-
ular branched covering, and the pair of c-equivalences are quasiconformal.
This 1s stmply because we want to apply Measurable Riemann Mapping The-
orem in our proof. In fact, this part can be restated as (f, P) is c-equivalent
to a rational map if and only if N(T', f) < 1 and for each k € A, (hy, Py) is
c-equivalent to a rational map’ and the proof goes through without any diffi-
culty. The only modification of the proof is to replace the Measurable Riemann
Mapping Theorem by the Uniformization Theorem.

3. The condition \(I', f) < 1 implies that if (hg, Px) is a Thurston map
for some k € A, then the signature of the orbifold of (hy, Py) is not (2,2,2,2).
Thus by Thurston’s Theorem, (hy, Py) has no Thurston obstructions if and
only if (hy, Py) is c-equivalent to a rational map.

4. Theorem 6.1.2 consists of four cases:

1). T =0, A=0. In this case, (f,P) is c-equivalent to a unique rational
map up to Mébius conjugation. Hyperbolic polynomials with Cantor Julia sets
provide such examples.

2). T #0, A =10. In this case, (f,P) has no Thurston obstructions
(or ‘is c-equivalent to a rational map’) if and only if \(I', f) < 1. Such
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examples of rational maps can be found in the family of McMullen maps:
far(z) = 2" + A/2" with n > 3 and X suitably chosen such that J(f,) is a
Cantor set of circles.

3). T =0, A#0. In this case, (f, P) is a Herman map. See Example
6.2.1.

4). T #£0, A#10. This is the general case.

The ‘Decomposition Theorem’ provides a mechanism to produce Thurston
type Theorems for non-parabolic maps. Thus it has many applications. For
example, it can reduce the Thurston-type Theorem for hyperbolic maps to
the so-called ‘Marked Thurston Theorem’ (this is the idea of Cui-Tan’s work
[CT1]), which is slightly stronger than Thurston’s original theorem, as follows:

Theorem 6.1.3. (Marked Thurston Theorem) Let (f, P) be a Thurston
map. Suppose that Oy does not have signature (2,2,2,2). Then (f,P) is
c-equivalent to a rational function (R, Q) if and only if for any (f, P)-stable
multicurve I, we have \(I', f) < 1. The rational function (R, Q) is unique up
to Mdébius conjugation.

The detailed proof the ‘Marked Thurston Theorem’ can be found in [BCT],
using the same idea as Douady-Hubbard’s original one.

As another application, the ‘Decomposition Theorem’ enables us to give
a characterization of a class of rational maps with Herman rings based on
Zhang’s work |Zh2] and the ‘Marked Thurston Theorem’, as follows:

Theorem 6.1.4. (Characterization of rational maps with Herman
rings) Let (f, P) be a non-parabolic map, with only one rotation annulus cycle
which is of period one and has rotation number of bounded type, and without
rotation disk. Then (f, P) is c-equivalent to a rational map (R, Q) if and only
if (f,P) has no Thurston obstructions. Moreover, the Lebesgue measure of
the Julia set J(R) is zero, and (R, Q) is unique up to Mobius conjugation.

There is no reason to believe that the absence of Thurston obstruction
is always equivalent to rational realization for postcritically infinite branched
covering, even if the equivalence is true for hyperbolic case (|[CT1|, [JZ]),
some Siegel cases [Zh2] and Herman cases (Theorem 6.1.4). The mating of
two quadratic Siegel polynomials fy(2) = 22+ ¢ and f_¢(2) = 22+ c_g, where

827;&(1 — 62;&), provides a non-parabolic map g = fy U f_g for which
the equivalence is false. As a supplement to the Decomposition Theorem,
following the same idea as Shishikura’s construction [Shl] of rational maps
with prescribed numbers of non-repelling cycles and Herman rings, we can

Co —

construct many such examples by surgery.
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Theorem 6.1.5. Given nonnegative integers na, nrp,Ngra,d satisfying
na+ngrp +2npa <2d—2, 1 <npa <d—2, ngp +nra > 2.

There exists a non-parabolic map (f, P) of degree d, such that

1. na(f) = na,nerp(f) = nrp,nra(f) = nra, and the rotation number of
each rotation cycle is of bounded type.

2. (f, P) has no Thurston obstructions.

3. (f, P) is not c-equivalent to a rational map.

This chapter is organized as follows:

From Section 6.2 to Section 6.4, we prove the ‘combinatorial part’ and
‘surgery part’ of Theorem 6.1.2 for Herman maps. More precisely, in Section
6.2, we will decompose a Herman map into finitely many Siegel maps and
Thurston maps based on Shishikura’s ‘Herman ring-Siegel disk’ surgery. In
Section 6.3, we show the equivalence of absence of Thurston obstructions
between the original map and the resulting maps. In Section 6.4, we show the
equivalence of rational realizations between the original map and the resulting
maps.

From Section 6.5 to Section 6.7, we prove that a non-parabolic map with
na(f) > 0 can be decomposed along a stable multicurve into finitely many
Herman maps, Siegel maps and Thurston maps whose combinatorics and ra-
tional realizations essentially dominate the original one. The proof is based
on Cui-Tan’s repelling system theory. The decomposition procedure, ‘combi-
natorial part’ and ‘surgery part’ are discussed in Section 6.5, Section 6.6 and
Section 6.7, respectively.

In Section 6.8, we prove the ‘combinatorial part’ and ‘surgery part’ of
Theorem 6.1.2.

In Section 6.9, we discuss the renormalizations of rational maps and prove
the ‘analytic part’ of Theorem 6.1.2.

In Section 6.10, we give many applications of Theorem 6.1.2. These include
characterizations of hyperbolic rational maps and a class of rational maps with
Siegel disks. As another application, we prove a Thurston-type theorem for a
class of rational maps with Herman rings.

In Section 6.11, as a supplement to the Decomposition Theorem, we show
that for postcritically infinite non-parabolic maps, no Thurston obstruction
does not always imply rational realization. We construct many such examples
by surgery.

Definitions and Notations:

1. Given a collection of Jordan curves C (not necessarily a multicurve)
in C — P. For any integer k& > 0, we denote by f~%(C) the collection of all
components § of f~*(v) for v € C. Set UC := U,c7.
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2. Let A = (a;;) be a n x n real matrix. The Banach norm ||A]| of A is
defined to be either 3~ |a;;| or (37 |a;j|?)Y/? according to different situations.
The spectral radius sp(A) of A is defined by sp(A) := lim {/||A"|.

3. Given two multicurves ¥; and X5 in C — P. We say that > is ho-
motopically contained in Yo, denoted by i < Y, if each curve o € ¥ is
homotopic in C — P to some curve § € ¥,. We say that > is identical to X9
up to homotopy, if ¥ < ¥y and ¥y < 3.

4. Let D and €2 be two planar domains and f : D — () be a quasiregular
map, the Beltrami coefficient p1 of f is defined by pf = ?—é / %.

5. We use #FE to denote the cardinality of the set E. The characteristic
function xg : £ — {0, 1} is defined by

(2) 1, ifzekF,
Z) =
e 0, ifz¢dE.

6.2 Decompositions of Herman maps

In the following three sections we will prove the following theorem:

Theorem 6.2.1. (Herman=multicurve+Siegel+Thurston) Let (f, P) be
a Herman map, then there exist a (f, P)-stable multicurve T and a collection
of Siegel maps or Thurston maps, say {(hg, Py),k € A}, where A is a finite
index set, such that

1. (f, P) has no Thurston obstructions if and only if N(I', f) < 1 and for
each k € A, (hg, Py) has no Thurston obstructions.

2. (f,P) is q.c-equivalent to a rational map if and only if A(T, f) < 1 and
for each k € A, (hy, Py) is q.c-equivalent to a rational map.

In this section, we will decompose a Herman map into finitely many Siegel
maps and Thurston maps along a collection of f-periodic Jordan curves and
their suitably chosen preimages. The method we use here is called ‘Herman-
Siegel” surgery which is pioneered by Shishikura [Sh1].

Let (f, P) be a Herman map, A be the collection of all rotation annuli of
fand UA := (J,c 4 A be the union of all these annuli. For each A € A, we
choose an analytic curve y4 C A such that v4 N f(P —UA) = () (This implies
that v4 avoids the postcritical points and the images of other marked points)
and f(va) = vp4)- It’s obvious that if fP(A) = A, then fP(v4) = va.

Let I'g = {y4; A € A}, we first show that Iy can generate a unique (f, P)-
stable multicurve up to homotopy.

Lemma 6.2.1. Given a choice of Ty, there is a (f, P)-stable multicurve T’
such that:
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e (Invariant) For any v € ', we have f(y) € T UT,.

e (Mazimal) T represents all homotopy classes of non-peripheral curves of
Us1f#(Ty) — T in C — P.

Moreover, the multicurve I' is unique up to homotopy.

Proof. First, there is a multicurve I'; in C— P such that T'; € f~*(Ty) T and
I'; represents all homotopy classes of non-peripheral curves of f~1(Ty) — T.

Such I'; is not uniquely chosen. But any two such multicurves are identical
up to homotopy, thus they have the same number of curves.

For n > 2, we define I';, inductively in the following way:

o', C f_l(Fn,l).

eI, U.---UT, is a multicurve in C — P.

e[ U---UTI, represents all homotopy classes of non-peripheral curves of
f(Ty) — Ty.

Since any two different curves in Ugs1 f%(Tg) — I'g are disjoint and P has
finitely many components, we conclude that Ugs;f~*(I'g) — Iy has finitely
many homotopy classes of non-peripheral curves in C — P. It turns out that
#(I'yU---UT,) is uniformly bounded above by some constant C'(P). Thus
there is an integer N > 0 such that 'y # 0 and Ty 3 = Tnyo =--- = 0. (It
can happen that N = 0, see Example 6.2.1.)

Weset ' = 0 if N = 0 and I' = Uj<j<nI'; if N > 1. By the choice
of N, I' is a (f, P)-stable multicurve. By construction, for any v € T', we
have f(y) € I' UTy. The homotopy classes of I' is uniquely determined by
those of non-peripheral curves of Upsif*(I'g) — ['p. So I' is unique up to
homotopy. O]

Here we give an example to show that I' can be an empty set.
Example 6.2.1. (I' = ()) The example is borrowed from Shishikura’s paper

[Sh1]. Let |
)= (220)

z \1l—r1rz

where a € R and 0 < r < 1/5. We may assume that o is properly chosen such
that f has a fixed Herman ring H containing the unit circle S, with bounded
type rotation number (Remark: in this case, each boundary component of H
is a quasicircle containing a critical point of f). There are two other critical
points: v and 1/r, which are eventually mapped to a repelling cycle of period
two, and f(r) = f3(r) =0, f2(r) = f(1/r) = co. We choose Ty = {S}. Let
P = HUP; = HU{0,00}. Since each component of C—H s a disk containing
exactly one point in the marked set P, the set ' is necessarily empty.
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Let ¥ =ToUTI. In the following, we will use ¥ to decompose the complex
sphere C into finitely many pieces. We define

S = {U; U is a connected component of C — UX},
& ={V; V is a connected component of C — Uf*(X)}.

Each element of S (resp. &) is called an S-piece (resp. E-piece). Given an
S-piece S (resp. E-piece E), let 0(S) (resp. O(FE)) be the collection of all
boundary curves of S (resp. E). One should notice that S and 0(S) are
different notations, they satisfy 05 = U0J(.5).

The following facts are easy to verify:

o Every E-piece E is contained in a unique S-piece and f(E) € S.

e For every S-piece S, we have #(S N P) 4+ #9(S) > 3.

e For each curve v € %, there exist exactly two S-pieces, say Sj and S,
that share v as a common boundary component.

() %

s

. o
53 S4

Figure 6.1: Four examples: FE; (shadow region) is parallel to S;. p;,q; are
marked points in P. Here, S is an annulus with one marked point, Sy has
three boundary curves and contains no marked point, both S3 and S, are disks
with two marked points.

Let S be an S-pieces, T is a connected and closed subset of S, we say T'
is parallel to S if 9T N P = () and each component of S\ T is either
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e an annulus contained in S — P, or
e a disk that contains at most one point of P.
Notice that if T" is parallel to S and A is an annular component of S\T', then

one boundary curve of Aison S and #(T'NP)+#0(T) > #(SNP)+#9I(S).
Here is an important property of the S-pieces:

Lemma 6.2.2. For every S-piece S, there is a unique £-piece, say Eg, parallel

to S.

Proof. The proof is based on the ‘maximal’ property of the (f, P)-stable mul-
ticurve I'. We omit the details. O

We define a map

S—S,
I {S — f(Es).

Since there are finitely many S-pieces, every S-piece is eventually periodic
under the map f,.

For each curve v € 0(5), there is a unique boundary curve 3, € Jd(Eg)
such that either 3, = v, or 8, and v bound an annulus in S — P. We define
three sets 0y(.S), 01(5), 02(S) as follows:

A(S) = {v€a(S);~ €T},
o(S) = {y€alS)v# 06},
0(S) = {y€a(S);y =08y} —To.

Lemma 6.2.3. If 0y(S) # 0, then we have:
1. For any vy € 0o(S), v = B,.
2. S is fi-periodic.
5. #00(S) = #0o(f:(9))-

Proof. 1. Notice that every component of S — FEg is either a disk containing
at most one point in P, or an annulus in C — P. It follows that if v € 9,(S),
then v C P and v = 3,.

2. Take v € 0p(S). Then there is a rotation annulus A, € A containing
7. Then from 1 we see that SN A, = Eg N A,. This implies f(SNA,) =
f(S) N f(A,). Let k > 1 be the period of A,. Then we have SN A, =
fFSNA) = fHS)n f*(A,) = fES)n A,. Thus f¥(S) = S. So S is
fi«-periodic, and the period of S is a divisor of k.

3. It follows from 1 that if v € 0y(S5), then f(v) € 0y(f«(S)). So
#00(S) < #0o(f(S)) < ---. Since S is f.-periodic (by 2), we have
#00(S) = #00(f:(5)). 0
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It follows from Lemma 6.2.3 that 9;(5),7 € {0,1,2} are mutually disjoint
and 0(S) = 0p(S) U 01 (S) U 0a(5).

Remark 6.2.1. Suppose 0y(S) # (. For each v € 9o(S), let per(y) be the
period of v. From Lemma 6.2.3 we see that the f.-period of S is a devisor
of ged{per(y);y € (S)}. In particular, if ged{per(y);y € 0(S)} = 1,
then f.(S) = S and for every v € 0y(S) and every integer k > 0, we have
15(7) € 0n(9).

For example, suppose that (f, P) has two cycles of rotation annuli whose
periods are different prime numbers, say p and q. If 9o(S) # 0, then #0y(S)
takes only four possible values: 1, p, q and p + q.

6.2.1 Marked disk extension

For each S-piece S, we denote by C(S) the Riemann sphere containing 5. We
always consider that different S-pieces are embedded into different copies of
Riemann spheres.

In the following, we will extend f|g, to a quasiregular branched covering
Hg : C(S) — C(f.(S)) such that deg(Hs) = deg(f|gs). To do this, we need to
define the map Hg : C(S) — Es — C(f.(S)) — f.(S) such that Hg|op, = flors-
We will define Hg component by componet.

Notice that each component of C(S) — Eg is a disk. Let U be such a
component with boundary curve ~.

We first deal with the case when v € 0y(S). In this case, there is a
rotation annulus A, containing 7. Let k& > 1 be the period of A,. Let
¢o: SNA, = Ar :={z € C;1 < |z] < R} be the conformal map such that
boffoyt(2) = €2z for z € Ap. For 1 < j < k — 1, we define a conformal
map from f7(S N A,) onto Ag by ¢; = ¢0fk7j|fj(SmA’Y). Then we have the
following commutative diagram

SnA, L fsnayl—s s Lssna,

.

Ag Agr

id

Let Dp = {# € C;|2| < R}. For 0 < j < k, we consider the disk A;
obtained by gluing f7(S N A,) and Dg via the map ¢;. The disk A; inherits
a natural complex structure from Dy since ¢; is holomorphic.
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C(9) C(£.(9))

Figure 6.2: Marked disk extension. Here 0S5 = v Uy, U3 U vy, 0fu(S) =
v5 U v U y7. Marked points are labeled by ‘e’.

The map H i(s) A; — Ay defined by

f(z), zefl(SNA,), 0<j<k,
Hfﬂ(S)(Z) = 627”’02’/’ z € ]D)7 j = 07
z, zeD, 1<) <k.

is a holomorphic extension of f| B along the boundary curve fi(y) €

0o(f1(8)). We call (A;,0) a holomorphic marked disk of Hg. This con-
struction allows us to define the extensions of f|g,,--- , f| By (where [ is

the f.-period of S) along the curves in 95(S) U--- U dy(f71(9)) at the same
time.

Now, we consider the case when v = U ¢ 0y(S). Notice that either U is a
disk in S containing at most one point of P, or it contains a unique component
V of C(S) — S. In the former case, if U contains a marked point p € P, we
get a marked disk (U, p); if UN P = (), we don’t mark any point in U. In the
latter case, we mark a point p € V' and get two marked disks (U, p) and (V, p).

Now we extend f|g, to U in the following fashion:
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We require that Hg maps U onto (W, q) with deg(Hs|y) = deg(fl|av),
where (W, q) is the unique marked disk of C(f.(S)) — f.(S) whose boundary
curve is f(OU). If U contains a marked point p, we require further H(p) = ¢
and the local degree of Hg at p is equal to deg(f|sy). Else, we require that ¢
is the only possible critical value (This implies that U contains at most one
ramification point of Hg).

In this way, for each S-piece S, we can get an extension Hg : C(S) —
C(f.(9)) of f|zs. Let D(S) be the union of all holomorphic marked disks of
Hs. Notice that if 95(S) = (), then D(S) = (). Set

P(S) = (PN S) U {all marked points in C(S) — S} U D(S).

We call (C(S), P(S)) a marked sphere of C(S). By the construction of Hg,
we see that Hg(P(S)) C P(f.(5)).

Notice that every S-piece is eventually periodic under the map f,. Let n
be the number of all f,-cycles of S-pieces. These cycles are listed as follows:

Sy = [l Sy) oo NS = fP(S,) =S, 1<v<n,

where S, is a representative of the v-th cycle and p, is the period of S,,.
Set

h,, = Hffy—l(sy) O--- OHf*(SU) OHSV; Pl, = P(S,,), 1 S v S n.

Then h,, : C(S,) — C(S,) is a branched covering with h,(P,) C P,.

These resulting maps (hy, P1),- -, (hy, P,) can be considered as the renor-
malizations of the original map (f, P). There are three types of them:

e 0y(S,) # 0 or S, contains at least one rotation disk of (f, P). In this
case, (h,, P,) has at least one cycle of rotation disks, so (h,, P,) is a Siegel
map. Moreover, a curve v € Jy(S,) contained in a rotation annulus of f
with period p and rotation number 6 becomes a periodic curve contained in a
rotation disk of h,, with period p/p, and rotation number 6. One may verify
that the number of these resulting Siegel maps is at least two, and bounded
above by 2nga(f) + nrp(f).

e 0y(S,) = 0, S, contains no rotation disk of (f, P) and deg(h,) > 1. In
this case, P, is a finite set and (h,, P,) is a Thurston map.

e 0y(S,) =0, S, contains no rotation disk of (f, P) and deg(h,) = 1. In
this case, (h,, P,) is a homeomorphism of C(S,) and h,(P,) = P,. So every
point of P, is periodic. Moreover, for any S € {S,, f«(S.), -, ff*71(S,)}, we
have #0(Es) = #0(9).

Let A be the index set consisting of all v € {1,---  n} such that deg(h,) >
1. That is, for each v € A, (h,, P,) is either a Siegel map or a Thurston map.
Let A*={1,--- ,n} — A.
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We use the following notation to record the decomposition procedure:

Dec(f,P>=( . (h,,,m) :

veEAUA*

Lemma 6.2.4. If \(T', f) < 1, then

1. For any 1 < v < n, every point in (C(S,) — S,) N P, is eventually
mapped to either the center of some rotation disk or a periodic critical point
of (b P,).

2. A* =1.

3. If (hy, P,) is a Thurston map, then the signature of the orbifold of
(hy, P,) is not (2,2,2,2).

Proof. Since h,((C(S,)—S,)NP,) C (C(S,)—S,)NP, and (C(S,)—S,)NP,

is a finite set, every point in (C(S,)—S,)N P, is eventually periodic under the
map (h,, P,). Let z be a periodic point in (C(S,) — S,) N P, with period .
Suppose that z; is not the center of rotation disk, and let 3 be the boundary
curve of S, that encloses zy. Then there is a unique component of h;*(3),

denoted by «, such that a C S, and « is homotopic to 3 in @(Sl,) — P,. Thus
deg(hy, z0) = deg(hy - a — ) = deg(f" : & — ) > AL, /)7 > 1.

This implies that zo lies in a critical cycle and deg(h,) > 1. It follows that
A* = () and there is no (2,2,2,2)-type Thurston map among (h,, P,),v €
A. O

A multicurve T' = {7, -+ , &} is called a Levy cycle of (f, P), if for each
1 <i <k, f~(y) has a component «;_; homotopic to v;_; in C — P (set
Yo = Yk) and deg(f : ;1 — ;) = 1.

Corollary 6.2.1. If A* # 0, then A\(T', f) > 1 and T’ contains a Levy cycle of
(f, P).

Proof. If A* # 0, then (T, f) > 1 follows from Lemma 6.2.4. Take some
v € A*, the boundary multicurve 9(S,) contains a submulticurve {~y,-- -, v}
labeled in the way that for any i € [1,k], h,*(v;) is homotopic to v;_1 (7o :=
7) in C — P. In particular, a := h;*(y;) is homotopic to v, in C — P. So
there exist two integers 0 < m < n < kp, such that f™(«) is homotopic to
f"(a)in C — P and {f*(a);m < k < n} is a multicurve in C — P. Since I is
(f, P)-stable, there is a submulticurve I', C T identical to {f*(a);m < k < n}
up to homotopy. One may verify that I', is a Levy cycle of (f, P). O]

To end this section, we give a concrete example to illustrate how the de-
composition procedure works:
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Example 6.2.2. We still consider the rational map f defined as in Example
6.2.1. Recall that f has a fized Herman ring containing the unit circle S.
Suppose f7(S) = SU v U, where v1 (resp. 72) is a Jordan curve in the
connected component Dy (resp. Dy ) of C — H containing 0 (resp. 0o0). One
may deduce that 1 encloses 0 and vo encloses co. Let Dg' (resp. DX2) be
the disk neighborhood of 0 (resp. oo) whose boundary curve is v1 (resp. 72).
Notice that r € Dy — Dg' and 1/r € Do — D22.

One may check both f~1(y1) and f~(y2) consist of two components. We
denote f~H(y1) =14 U~s, where v4 C D22 and ~y4 encloses oo, 5 C Dy — D!
and s encloses the critical point r. Correspondingly, We denote f~1(v;) =
73 U e, where v3 C DJ' and 3 encloses 0, v¢ C Do, — D22 and s encloses
the critical point 1/r.

Let D* (resp. DY) be the disk neighborhood of 0 (resp. oo) whose
boundary curve is s (resp. 71). We choose two points p and q, with
p € DJ® and q € DY. We modify the mappings f|D33 : D* — D22 and
flpyu : D% — Dg', by ¢ : Dg® — D2 and v : DY — Dg', respectively, such
that @lyg = flygs ¥lyy = flous 0(0) = 00, 0(p) = q,¥(00) = p,¥(q) = 0. Then

we define a new branched covering

¢(z), z€ Dy,
h(z) = Q¥(2), =z€ DL,
f(z), z€C—D§ uUDX.

Then the postcritical set P, of h is 0H U{0,p,q, o0} and (h, P) is a Herman
map, where P = P, U H. The curves ;,1 € [1,4] are all non-peripheral in
C-P.

According to the decomposition procedure, T' = {y1,7%} and ¥ =
{S,v1,72}. There are four S-pieces: Sy, Sa,S3,S4, and h,(S1) = S1, he(S2) =
So, hi(S3) = Sy, hi(Sy) = S3. So there are three h.-periodic cycles, we denote
the resulting map associating with S;,i = 1,2,3 by (h;, P;).

One may check the resulting maps (hy, P1) and (hg, P2) are both degree
two Siegel maps, c-equivalent to z — e*™(z — 1)2/z. Moreover, (hs, Ps) is a
homeomorphism, satisfying hs3(0) = p, h3(p) = 0.

The (h, P)-transition matriz of T is

0 1
1 0/
Thus T is a Levy cycle. It follows that (h, P) is not c-equivalent to a
rational map (To see this, one may use ‘modulus argument’ or apply Theorem

6.4.2).
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6.3 Combinatorial part

The aim of this section is to prove the following:

Theorem 6.3.1. Let (f, P) be a Herman map, and

Dec(ﬁP)—( >, (h,,,Py>> :

vEAUA*

Then (f, P) has no Thurston obstructions if and only if A(T', f) < 1 and for
each v € A, (h,, P,) has no Thurston obstructions.

Notice that if (f, P) has no Thurston obstructions or A(I', f) < 1, then
A* = (See Lemma 6.2.4).

The proof of the ‘sufficiency’ of Theorem 6.3.1 is based on the decom-
position of (f, P)-stable multicurves. We will show that every (f, P)-stable
multicurve contains an ‘essential’ submulticurve (see Lemma 6.3.1), and ev-
ery such essential submulticurve can be decomposed into a ‘I'-part’ multicurve
together with a (h,, P,)-stable multicurve for each v € [1,n]. Moreover, the
leading eigenvalues of their transition matrices satisfy the so-called ‘reduction
identity’ (Theorem 6.3.2).

To prove the ‘necessity’ of Theorem 6.3.1, we will show that every (h,, P,)-
stable multicurve ¥ can generate a ( f, P)-stable multicurve C with A\(3, h,) <
AC, f)Pe.

Lemma 6.3.1. (Essential submulticurve) Let ¥ be a (f, P)-stable mul-
ticurve, then there is a (f, P)-stable multicurve 3, such that

1. ¥ is homotopically contained in Y.

2. Fach curve of ¥ is contained in the interior of some S-piece.

3. A2, f) = M2, f).

Proof. For n > 1, we define a multicurve ¥, inductively in the following way:
¥, C f7Y2,.1) and ¥, represents all homotopy classes of non-peripheral
curves of f~1(3,_1). Since X is a (f, P)-stable multicurve, all 3, are (f, P)-
stable, and ¥, is homotopically contained in ¥, ;. Let W, be the (f, P)-
transition matrix of >, for n > 0, then

_ Wn—H *
e ()
Thus A2, f) = M2, f) = AMXs, f) = ---. By the construction of T,
there is an integer N > 0 such that I' C f~%(Ty), where 'y is the choice

of a collection of f-periodic curves in the rotation annuli (see the previous
section). Since UI'y has no intersection with U, we conclude that f~"(UT')
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has no intersection with f~"(UX) for all n > 1. Thus when n > N, we have
ul' ¢ f7(Ul'p) and each curve of ¥, is contained in the interior of some
S-piece. The proof is completed if we set ¥ = ¥, for some n > N. n

Theorem 6.3.2. (Decomposition of stable multicurve) LetC be a (f, P)-
stable multicurve. Suppose that each curve of C is contained in the interior of
some S-piece. Let

Cr = {~ € C;~ is homotopic to a curve of T'},
Y, ={y €C—Cr;v is contained in S,}, v € NUA* =[1,n].

Then Cr is a (f, P)-stable multicurve, ¥, is a (h,, P,)-stable multicurve for
each v € [1,n], and we have the following reduction identity:

AC, f) = max{A(Cp,f), NS ), ”\"/)\(En,hn)}.

Remark 6.3.1. In Theorem 6.3.2, the multicurve >, can be viewed as a
multicurve of (hy,, P,), this is because under the inclusion map v, : S, —
C(S,), the set 1,(2,) := {1, (7);7 € B,} is a multicurve in C(S,) — P,. We
still use 3, to denote the multicurve 1,(3,) if there is no confusion.

One may show directly that if A* # (0, then for any v € A*,

L, if 5, #0,

SN e

This observation can simplify the reduction identity.

Proof. The fact that Cr is (f, P)-stable is easy to verify since both I' and C are
(f, P)-stable. Let ¥¥ = {y € C—Cr;~ is contained in f*(S,)} for 0 < k < p,.
It’s obvious that 3% = ¥kv = 3,. Since C is (f, P)-stable, each non-peripheral
component of f~(v) for vy € ¥¥+1(0 < k < p,) is homotopic in C— P to either
a curve a € Cr, or a curve 3 € ¥* or a curve § contained in a non-periodic
S-piece.

By the definition of the marked set P(f¥(S,)), one can verify that the set
Yk is a multicurve in C(f*(S,)) — P(f*(S,)). Moreover, each curve v € Cr
contained in f¥(S,) and homotopic (in C— P) to a boundary curve of f¥(S,) is
peripheral in C(f*(S,))—P(f*(S,)). Thus for 0 < k < p,,, each non-peripheral
component of H&l(sy)(ﬂy) for v € Y51 is homotopic to a curve § € ¥ in

C(f*(S,)) — P(f¥(S,)). Tt follows that each non-peripheral component of
h;'(7) for v € B, is homotopic to a curve § € ¥, in C(S,) — P,. This means
Y, is a (hy,, P,)-stable multicurve.

In the following, we will prove the ‘reduction identity’. Let W,

be the (f,P)-transition matrix of Cr. We define C; = {y € C —
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Cr;~ is contained in a strictly preperiodic S-piece} with (f, P)-transition
matrix W. Let C, = X0U---UXP~! with (f, P)-transition matrix W,. Then
the (f, P)-transition matrix W of C has the following block decomposition:

WCF * *
O W, % - %
We = @] o W, --- *
o o o0 --- W,

It follows that A(C, f) = max {A(Cr, f), A(Cs, f), A(C1, [), -+, A(Cp, )}
By the definition of Cs, there is an integer M > 0 such that for any v € C;
and any component « of f~(v), « is either null-homotopic, or peripheral, or

homotopic to a curve § € Cr in C— P. This implies WM = 0 and A\(Cs, f) = 0.
So we have

A(Cv f) = max {)‘(Cl"a f)7 )\(Cla f)? T 7)‘(Cn7 f)}

Notice that the (f, P)-transition matrix W, of C, has the form

O By O -+ O
O O B -+ O

W, = : P :
O O O -+ By,
B, O O --- O

where B; is a nj X n;;; matrix, n; is equal to the number of curves in 7 for
0 <j <p,— 1. By a direct calculation,

BoBi---B,, O O
— 0 ByBy---By - 10
O 0 o~ By, 1By By, s

For a square matrix A = (a;;), we use the norm ||A|| = /> |a;;|?>. Then
for any k£ > 1, we have

(W2 1? = 1(BoBy - -+ By,—1)"I* + -+ - + | (Bp,<1Bo - - - Bp,—2)"||*.
It follows from Lemma 6.3.2 that

sp(Wo)? =sp(BoB1 -+ By, 1) =+ =sp(By,—1By - -+ By, -2).
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On the other hand, one can verify that the (h,, P,)-transition matrix of
Yy is BoB;--- By, —1. It follows from Perron-Frobenius Theorem that

)‘(Ew hu) = Sp(BOBl tee Bpu*l) = Sp(WI/)pV = )‘(Cua f)py

Finally we have

NG, f) = max{ (Cr, ), /N0, hn), P\"/)\(Zn,hn)}.
O

Lemma 6.3.2. Let B, be a n, X n,yq real matriz for 1 < v <k, ng 1 = nq,
then

Sp(BlBZBk) :Sp(BZBSBl) :Sp(BkBlkal)

Proof. For a square matrix A = (a;;), we define a norm || A|| := /> |a;;|*
The basic property of this norm is ||AB|| < ||A]|||B||. First we assume n; =
-+ =ny, then for any 1 < v <k,

sp(B1By- By) = lim {/[[(BiBy-- Bi)"|

= lim Y/[(Bi- B ) (B,Brrr - Bo) By Byl

< lim /|Br - Booalll(BuBoss - Bu—y)" M 1By -+ Bi
= Sp(BI/BI/-i-l"'BV—l)-

The same argument leads to the other direction of the inequality. In the
following, we deal with the general case. Choose n > max{ny,--- ,n;}, for
any 1 < v <k, we define a n X n matrix B, by

Eu _ ( Bl/ Onyx(nfn,)_H) )
O(nfm,)xnwrl O(nfny)x(nfnwrl)
where we use Opxq to denote the P X ¢ zero matrix. Then by the above
argument, sp(3132 Bk) = Sp(B By —1). On the other hand,

D5 D D B,B, 1B, On X (n—ny)
BVBVJrl"'Byl:( + v v )
O(nfny)xnl, O(nfn,,)x(nfny)

This implies that ||(ByBs - - - By)"|| = ||[(BiBs - - - By)"| for all n > 1. So
sp(B1Bs - By) = sp(B1Bs - By) = sp(B,Bys1 - B,-1) = sp(BuByya -+ Byv).

]
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Proof of Theorem 6.3.1 .

Sufficiency. Let C be a (f, P)-stable multicurve in C— P. The multicurves
Cr, %1, -+ ,2, are the subsets of C defined as in Theorem 6.3.2. We may
assume that each curve v € C is contained in the interior of some S-piece by
Lemma 6.3.1. If A(T', f) < 1 (notice that this implies A* = () by Lemma 6.2.4)
and (h,, P,) has no Thurston obstructions for each v € A, then by Theorem
6.3.2, we have

\C,f) = max{)\(Cp,f), NS ), ”\"/)\(En,hn)}
< max{A(F,f), pmv”' ) pM} <1

This means (f, P) has no Thurston obstructions.

Necessity. Suppose that (f, P) has no Thurston obstructions. Then
AT, f) < 1and A* = (. Let ¥ be a (h,, P,)-stable multicurve in C(S,) — P,.
Up to homotopy, we may assume that each curve v € X is contained in the in-
terior of S, so ¥ can be considered as a multicurve in C — P. In the following,
we will use X to generate a (f, P)-stable multicurve C.

For k > 0, let A;, C f~*(X) be a multicurve in C — P, representing all
homotopy classes of non-peripheral curves in f~%(3). We claim that

For any o € A;, 3 € Aj with 0 < i < j, if a is not homotopic to B in
C — P, then o and 3 are homotopically disjoint.

In fact, the claim is obviously true in either of the following cases:

1. The curves o and 3 are contained in two different S-pieces.

2. Either « or (8 is homotopic a curve in I.

So in the following discussion, we assume that « and 3 are contained in
the same S-piece S, and neither is homotopic to a boundary curve of S. We
assume further that they intersect homotopically. In this case, one may check
that both f’() and f*(3) are contained in f!(S) = S,, but neither of f*(«)
and f%(3) is homotopic to a boundary curve of S,. So f%(/3) is contained in the
unique component of f©7(S,) that is parallel to S,. This implies i = j mod p,.
Since f7(8) € ¥ and ¥ is (h,, P,)-stable, we have that f*(3) is homotopic in
C — P to either a curve of ¥ or a curve of I'. But neither is possible due to
our assumption. This ends the proof of the claim.

For k > 0, we define a collection of Jordan curves C such that ¥ C C, C
AgU---UA, and Cy, represents all homotopy classes of non-peripheral curves
in AgU---UAy. It follows from the above claim that we can consider C;, as a
multicurve in C— P up to homotopy. Notice that C; is homotopically contained
in C11, we have #Cj, < #Cj11. Since P has finitely many components, #Cj,
is uniformly bounded above for all k. So there is an integer N > 0, such that
#C,, = #Cy for alln > N.
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Let C = Cy, then C is a (f, P)-stable multicurve by the choice of N. Let
Cr = {v € C;~ is homotopic to a curve in ['}, one may verify that 3 = {v €
C — Cr;~ is contained in S, }. By Theorem 6.3.2,

AMXE hy) <A, f)Pr < 1.

Thus (h,, P,) has no Thurston obstructions. O

6.4 Surgery part: Gluing holomorphic models

The aim of this section is to prove the following:

Theorem 6.4.1. Let (f, P) be a Herman map, and

Dec(f,P):( @ (h‘lMPV)) :

veAUA*

Then (f, P) is q.c-equivalent to a rational map if and only if \(T', f) < 1 and
for each v € A, (h,, P,) is q.c-equivalent to a rational map.

The proof of Theorem 6.4.1 is based on the quasiconformal surgery.

In Section 6.4.1, we prove the necessity of Theorem 6.4.1. The idea is as
follows: we use the rational realization of (f, P), say (R, @), to generate the
partial holomorphic models of (h,, P,),v € A. The partial holomorphic model
of (h,, P,) takes the form RP|g, , where F, is a multi-connected domain in
the Riemann sphere C. The holomorphic map RP*|g, can be extended to a
Siegel map or Thurston map, say (g,, @, ), q.c-equivalent to (h,, P,). The map
(91, Q) can be made holomorphic outside a neighborhood of the boundary
OF,. In the final step, we apply quasiconformal surgery to make the map
(9., Q) globally holomorphic and get a rational realization of (h,, P,).

In Section 6.4.2, we prove the sufficiency of Theorem 6.4.1 assuming I' =
(). This part is the inverse procedure of Section 6.4.1. We use the rational
realizations of (h,, P,),v € A to generate the partial holomorphic models for
(f, P). These partial holomorphic models can be glued along 3 = T'y in a
suitable fashion into a branched covering (g, @)), holomorphic in most part of
C and q.c-equivalent to (f, P). Finally, we apply quasiconformal surgery to
make the map (g, @) globally holomorphic.

In Section 6.4.3, we prove the sufficiency of Theorem 6.4.1 in the more
general case I' # (). The idea of reconstruction of the rational realization
of (f, P) via gluing the rational realizations of (h,, P,),v € A is essentially
the same as that in Section 6.4.2. But this setion provides very interesting
and technical flavor because of the algebraic condition A(I", f) < 1. In most
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part of this section, we deal with this condition and shows that this algebraic
condition is equivalent to the Grotzsch inequality in the homorphic setting.
Thus it enables us to glue the partial homorphic models of (f, P) along ¥ in
a suitable fashion into a branched covering (g, @), holomorphic in most part
of C and q.c-equivalent to (f, P). The last step is similar to the previous
sections, it is a quasiconformal surgery procedure.

6.4.1 Rational realizations can descend

Theorem 6.4.2. (Marked McMullen Theorem) Let R be a rational map,
M be a closed set containing the postcritical set Pr and R(M) C M. Let T’
be a multicurve in C — M. Then MN(T,R) < 1. If N(T,R) = 1, then either
R is postcritically finite whose orbifold has signature (2, 2, 2, 2); or R is
posteritically infinite, and T includes a curve contained in a periodic Siegel
disk or Herman ring.

We remark that the definition of the multicurve in C — M is similar to the
definition of the multicurve in C — P. The ‘Marked McMullen Theorem’ is
slightly stronger than McMullen’s original result [McM1], but the proof goes
through without any problem.

Proof of the necessity of Theorem 6.4.1 Suppose that (f, P) is q.c-
equivalent to a rational map (R, Q)) via a pair of quasiconformal maps (g, ¢1).
Then the (f, P)-stable multicurve I' in C — P induces a (R, Q)-stable multic-
urve ¢o(T) := {¢o(7);7 € T} in C — Q. Since the marked set Q contains all
possible Siegel disks and Herman rings of R, it follows from Theorem 6.4.2
that A(T', f) = M¢o(T), R) < 1.

Notice that A\(T', f) < 1 implies A* = () by Lemma 6.2.4. In the following,
we will show that for each v € A, (h,, P,) is q.c-equivalent to a rational map.

Let Hy : [0,1] x C — C be an isotopy between ¢y and ¢, rel P. That is,
Hy : [0,1] x C — C is a continuous map such that Hy(0,-) = ¢o, Ho(1,-) = ¢,
and Hy(t,2) = ¢o(z) for all (¢,2) € [0,1] x P. Moreover, for any ¢ € [0, 1],
Hy(t,-) : C — C is a quasiconformal map. Then there is a unique lift of Hy,
say Hy, such that Ho(t, f(2)) = R(Hi(t,z)) for all (¢,z) € [0,1] x C, with
basepoint Hq(0,-) = ¢1. Set ¢ = Hi(1,-). Inductively, for any & > 1, let
Hpi.1 be the unique lift of Hy such that Hg(t, f(2)) = R(Hgs1(t,2)) for all
(t, Z) € [O, 1] X @, and Hk+1(0, ) = ¢k+l- Set ¢k+2 = Hk-l—l(la ) In this way,
we can get a sequence of quasiconformal maps ¢g, ¢1, ¢, -+, such that the
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following diagram commutes.

A(@jp)L)(@?P)gf)(C?p);f)(@,P)

g e

7 (€.Q) 5~ (€0 - (C.Q —~ T

One can verify that for any k > 0, ¢, is isotopic to ¢y rel f=5(P).

Fix some v € A, let D, be the union of all rotation disks of (h,, P,)
intersecting 95,. We set D, = 0 if 9y(S,) = 0.

Choose a large integer ¢ > 0 such that UI' C f~“*?*(P). Then we ex-
tend ¢|s, to a quasiconformal map ® : C(S,) — C. We require that ® is
holomorphic in D, if D, # (.

Notice that there is a unique component E, of f~7(S,) parallel to S,. By
the choice of ¢, dE, C fP(Ul') C f~4(P), so ¢yip, and ¢, are isotopic rel
f7Y(P). In particular, ¢g+pU’aEy_: bolop, = Plog, -

Denote the components of C(S,) — (E, U D,) by {U;;j € I}, where [
is a finite index set. Each U; is a disk, containing at most one point in P,.
For any j € I, let V; € U; be a disk such that V; N P, = U; N P, and
U;\'V; C f~4P)\ P. By Measurable Riemann Mapping Theorem, there is a
quasiconformal homeomorphism ¥, : V; — ®(V;) whose Beltrami coefficient
satisfies puy,(2) = paon,(2) for z € V;. If U; contains a point p € P, we
further require that ¥;(p) = ®(p).

We can construct a quasiconformal map ¥ : C(S,) — C by

d(2), zeD,,
\:[/(Z) _ ¢£+pu (Z>7 S EV’ ‘
\IJJ(Z), 261/37‘7617

q.c interpolation, ze U;\V;,j€ 1.

One may verify that ® is homotopic to ¥ rel P,. Thus (h,,P,) is c-
equivalent to (g,,@Q,) := (® o h, o U~ &(P,)) via (®, ¥). Moreover, (g,,Q,)
is holomorphic outside W(U;c;(U; \ V;)).

In the following, we will construct a (g,, @, )-invariant complex structure.
For each j € I, we may assume that the annulus U; \ Vj is thin enough such
that for & > 1 large enough, g*(¥(U; \ V;)) is contained either in a rotation
disk of g,, or in a neighborhood of a periodic critical point near which g, is
holomorphic. Let k; > 1 be the first integer such that g, is holomorphic in
g (U(U; \ V;)). Define a complex structure in (U, \ V;) by pulling back
the standard complex structure in gy’ (Y(U; \'V;)) via gs7. Then we define
a complex structure in g, *(¥(U;er(U; \ V;))) by pulling back the complex
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structure in W(U;e (U; \ V) via gF for all k > 0 and define the standard
complex structure elsewhere. In this way, we get a (g,, @), )-invariant complex
structure o. The Beltrami coefficient p of o satisfies ||p]|oo < 1 since (g, Q)
is holomorphic outside W(U;c;(U; \ V;)).

By Measurable Riemann Mapping Theorem, there is a quasiconformal map
¢ : C — C whose Beltrami coefficient is y. Let f, = (o g, 0 (™!, then f, is a
rational map and (h,, P,) is q.c-equivalent to (f,,(o®(P,)) via ((o®, o V).
See the following commutative diagram.

_ ¢
C(S,) ~——=C—~TC
hyl gui ful

6.4.2 Promotion of rational realizations when I'" = ()

Proof of the sufficiency of Theorem 6.4.1, assuming I' = ()

Since I' = (), for each S-piece S, we have 9(S) = 9y(S) C T'y, where I’y
is the collection of (f, P)-periodic curves defined in Section 6.2. It follows
from Lemma 6.2.3 that S is f.-periodic. So each S-piece is f,-periodic, and
S can be written as {f7(S5,);0 < j < p,,v € A}. Moreover, any two S-pieces
contained in the same f,-cycle have the same number of boundary curves.

Suppose that (h,, P,) is c-equivalent to a rational map (R, (,) via a pair
of quasiconformal maps (®,,V,) for v € A = [1,n].

Step 1: Getting partial holomorphic models. For each S-piece S,
there exist a pair of quasiconformal maps (®g, Vg) : C(S) — C and a rational
map Rg such that the following diagram commutes:

(S) —=C(£.(9))
Vs lq)f*(ﬁ
C——C

It suffices to show that for each f.-cycle (S,, -, fP»71(S,)), there exist a
sequence of quasiconformal maps Wg,, ®r(g,),0 < k < p, and a sequence of
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rational maps Ryk(g,),0 < k < p, such that the following diagram commutes

H _Hsy f*(Su) — _ H Ysy) —
c<sy> YT(L.(8,) = Tr2(8,)) — - — T (8, ) —+ <c<sy>
l Pt (s0) l P2, i q>ff”‘1<sl,)l l
c Rs, c R (s0) ¢ o ¢ Ripv—1s,) c

The constructions of the two sequences of maps are as follows: First,
we set &g, = &, and Vg, = V,. By Measurable Riemann Mapping Theo-
rem, there is a quasiconformal map @ ;-1 (g ) : C(fP~1(S,)) — C such that
-1 (g )(00) = (®s, © Hppo-1(5,))"(00), where o is the standard complex

structure. Then Rff,,—l(sy) = ®s, 0 Hypo-1(g,) 0 o) is a rational map.

T (S)

Inductively, fori = p,—2,--- ,1, we can get a quasmonformal map Dy (g, :
C(fi(S,)) — C such that Ryi(s,) = D piv1g,y © Hyis,) © ot ) is a rational
map.

Finally, we set Rs, = ®,(s,) 0 Hg, o \IIEVI Then R, = Rf*p,,A(Su) 0---0
Ry (s,) 0 Rgs,. Hence Rg, is also a rational map.

Set Wyi(g,) = Prics,) for 1 <4 < p,. Then the pair of quasiconformal maps
(®rics,)> Yris,)) and the rational map Ryi(s,)(0 < i < p,) are as required.

fi(Sy

Step 2: Gluing holomorphic models. For each S-piece S, recall that
Eg is the unique E-piece parallel to S. Since I' = (), each boundary curve of S is
also a boundary curve of Eg. So each component of S— Eg is a disk, containing
at most one point in P. Let {Uy; k € Is} be the collection of all components
of S\ Eg, where Ig is the finite index set induced by S. For any k € Ig, let
Vi € Ug be a disk such that V; NP = U, N P and U, \ Vi C f~Y(P)\ P.
By the Measurable Riemann Mapping Theorem, there is a quasiconformal
homeomorphism ¢y, : Vi, — Wg(V)) whose Beltrami coefficient satisfies

M%(Z) = Z XE(Z),U«I)f(E)of(Z), z € Vi.
EDECU

Here the summation is taken over all the &-pieces contained in U,. If Vj
contains a point p € P, we further require that ¢ (p) = ®5(p).
Now we define a quasiconformal homeomorphism g : S — ®g(S) by

\115'(2), z € Es,
bs(z) = § on(2), z € Vi, k € I,
q.c interpolation, z € Uy \ Vi, k € Is.

Define a quasiconformal map © : C — C by Oy = wgl odg forall S €8S.

The map © is isotopic to the identity map rel P. Let ® : C — C be a
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quasiconformal map such that

,u<1>(z) = ZXS(Z)“"PS(’Z)’ z€C.

Ses

Let ¥ = ® 0 ©~!. The pair of quasiconformal maps (®, ¥) can be consid-
ered as the gluing of (®g|s, Vs|s)ses- In this way, (f, P) is q.c-equivalent to
the Herman map (g, Q) := (® o f o U~ ®(P)) via (®, V).

Step 3: Applying quasiconformal surgery. We first show that the
Herman map (g, Q) is holomorphic in most parts of C. In fact, it is holomor-
phic outside X := ¥(Uges Ukers (Ux \ Vi)). To see this, we fix some S-piece
S. The restriction g|y(gy) can be decomposed into

gluiss) = (® 0 Prip) 0 (Priig) © f 0 Ug)|ws(ms) © (P50 @) |w(ms).

For any k € Ig, any E-piece E C Uy, the restriction gly(v,ng) can be
decomposed into

glewing) = (@ 0 @7 ly) o (Premy 0 f o & lsvinm) © (P50 D7) wwing)-

In either case, each factor of the decompositions of ¢ is holomorphic in
its domain of definition. So g|g is holomorphic outside ¥(Uger, (Ux \ Vi)). It
follows that (g, Q) is holomorphic outside X.

Let R4 be the union of all rotation annuli of g. Then one can check that
X C g7Y(Ra) \ Ra. Let 0p be the standard complex structure in C. Define a
g-invariant complex structure o by

0o, n @ — Ukzl(g_k(RA) \g_kH(RA)).

Since ¢ is holomorphic outside X, the Beltrami coefficient u of o satisfies
ltt]le < 1. By Measurable Riemann Mapping Theorem, there is a quasicon-
formal map ¢ : C — C such that (*(cy) = 0. Let R=_ogo (™}, then Ris a
rational map and (f, P) is c-equivalent to (R, o ®(P)) via ((o®, (o V). O

o= {(gk)*(go)a in g_k(RA) \g_k""l(RA)’ k> 1’

6.4.3 Promotion of rational realizations when I" # ()

This is the technical part. We assume in this section that ' # 0, A\(T', f) < 1
and for each v € A = [1,n], the map (h,, P,) is q.c-equivalent to a rational
map, we will show that (f, P) is q.c-equivalent to a rational map.

To begin with, we recall a result on non-negative matrix. Let W be a
non-negative square matrix (i.e. each entry is a nonnegative real number).
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It’s known from Perron-Frobenius Theorem that the spectral radius of W is
an eigenvalue of W, named the leading eigenvalue. Let v = (vq,--- ,v,)" € R”
be a vector, we say v > 0 if for each 7, v; > 0. The following Lemma can be
found in [CT1|, Lemma A.1.

Lemma 6.4.1. Let W be a non-negative square matrix with leading eigenvalue
A. Then A < 1 iff there is a vector v > 0 such that Wv < v.

With the help of Lemma 6.4.1, we turn to our discussion. First, A(T', f) < 1
implies Wv < v, where W is the (f, P)-transition matrix of I' and v € RT is
a positive vector. That is, there is a positive function v : I' — R* such that
for any v € T,

=203 egf a_)ﬂ) < (),

Bel anry

where the second summation is taken over all components « of f~!(/3) homo-
topic to v in C — P.

Figure 6.3: Orientation and labeling

Recall that for each curve v € X, there exist exactly two S-pieces, say Sj
and S, such that S N ST = . For each curve 7 € X, we can associate an
orlentatlon such that f preserves the orientation. We may assume that the
notations SDYL and S~ are chosen such that S;“ lies on the left side of + and
S lies on the right side of .

Here, we borrow some notations from Lemma 6.2.1. Recall that 'y is
the collection of the (f, P)-periodic curves that generates I', and I'), = {v €
I'; n is the first integer such that f™(v) € I'y} for n > 1.
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One may verify that if § € f~(T") is homotopic to a curve v € I'in C — P,
then ¢ is necessarily contained in Sj U S.". Moreover, if v € I'y, then § # 7;
if v € T’y for some k > 2, it can happen that 6 = v

In the following, for each curve v € I' = |, -, 'y, we will associate two
positive numbers p(SX7,v) and p(S7,7) inductively.

For v € I'y, we choose two positive numbers p(S7,v) and p(S7,~) such
that

p(S+,7) +p(S7,7) =1,

> Z f o Hﬁ) <v(Mp(Sy,7), we {£}.

Bel anry, aCS‘*’

Suppose that for each curve o € I'y U- - - U T, we have already chosen two
numbers p(SH, ) and p(S,,«). Then for v € T'y1;1 (notice that f(v) € T'y),
we can find two positive numbers p(S;,v) and p(S,v) such that:

p(ST,7) +p(S7,7) =1,

w(f () v(58) .
deg(f| ) wa +ﬁze; QN'Y;SW\’V deg(f:a— () <v()p(57,7), w e {=}

In fact, we can take

v(f(2)) v(5)
dog( 71y T ! Uze;w;sm deglf: 0 =~ f)

p(S5,7) = , we {£}.

S e

Bel anry

Potentials

Let D be the unit disk. A marked disk is a pair (A, a) with A an open
hyperbolic disk in C and @ € A a marked point. An equipotential v of
the marked disk (A, a) is a Jordan curve that is mapped to a round circle
with center zero under a conformal isomorphism ¢ : A — D with ¢(a) = 0.
The potential w(y) of v is defined to be mod(A(9A,~)), the modulus of
the annulus between A and . One may check that these definitions are
independent of the choice of the Riemann mapping ¢.

Suppose that (f, P) is either a Thurston rational map or a Siegel rational
map, with a non-empty Fatou set. Recall that P is a marked set contain-
ing the poscritical set Py. Then each periodic Fatou component is either a
superattracting domain or a Siegel disk. If f has a superattracting Fatou
component D, then every Fatou component A which is eventually mapped
onto D can be marked by the unique eventually periodic point a € A. We
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call (A,a) a I-type marked disk of f. Notice that every equipotential in a
superattracting Fatou component corresponds to a round circle in Bottcher
coordinates. If f has a Siegel disk D, then it is known that the boundary 0D
is contained in the postcritical set Py. Let zy be the center of the Siegel disk
D, the intersection PN (D —{z}) is either empty or consists of finitely many
(f, P)-periodic Jordan curves. Let Dy C D be the component of C— (P\{z})
containing zg. For any k > 0 and any component A of f=%(D,), one can verify
that A is a disk and there is a unique point a € AN f7%(z). We call (A, a)
a II-type marked disk of (f, P).

A positive function

For each curve v € X, we associate a very thin annular neighborhood A”
of . The annulas A" is chosen as follows: If v € Iy, then A” is a proper
subset of the rotation annulus containing v such that f(A7) = A7) and
ATN f(P —UA) = 0. If 4y € T, for some k > 1, then A7 is the component of
FR(AF ™) containing 7.

We define

S* = {U; U is a connected component of C — U,ex A7},
&* ={V; V is a connected component of C — f~1(U,cx A7)}

Each element of S* (resp. E*) is called an S*-piece (resp. £*-piece). We will
use S* (resp. E*) to denote an S*-piece (resp. E£*-piece). Notice that for
each S-piece S (resp. E-piece E), there is a unique S*-piece (resp. E*-piece)
contained in S (resp. E), we denote this piece by S* (resp. E*). Similarly
as in Section 6.2, we can define Fg«, the unique £*-piece contained in S*
and parallel to S*. The map f. : S* — S* is defined by f.(S*) = f(FEs+).
Moreover, the notations A(E*),d(S*), 0p(S*), 01(S*), 3»(S*), C(S*) and the
marked disk extension Hg. : C(S*) — C(f.(S*)) are defined similarly. Let

v =

hy = Hypooygyy 000 Hy(sp) 0 Hsy, By = P(S)), 1 <v<mn.

One can see that this modification doesn’t change the combinatorics and ra-
tional realizations of the maps (h,, P,), 1 < v <n. That is to say

e (h,, P,) has no Thurston obstructions if and only if (h%, P¥) has no
Thurston obstructions.

e (h,,P,)) is c-equivalent to a rational map if and only if (h}, PJ) is c-
equivalent to a rational map.

The virtue of this modification is that we can construct deformations in a
neighborhood of each curve v € 3. This will be seen in the last step of the
proof of Theorem 6.4.1 when we apply the quasiconformal surgery to glue all
holomorphic models together to obtain a rational realization of (f, P).
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Figure 6.4: A S-piece S with boundary 05 = v, Uy U3 U7, S contains a
S*-piece S*, whose boundary curves are (31, 32, 33 and ay.

For each curve v € ¥, let o, 3, be the two boundary curves of A”. Define

= {aﬂmﬁ'y;'}/ € 2}7 I = {05776%7 € F}a FZ = {05776%7 € Fk}a k > 0.

We define a map 7 : ¥* — ¥ by 7(a) = 7 if « is a boundary curve of A7. It’s
obvious that for each curve v € X, 77!(y) = {«, 3,}. For each curve y € ¥*,
let S, (resp. SZ) be the unique S-piece (resp. S*-piece) that contains 7.

Now we define a positive function o; : ¥* — R, where ¢ is a positive
parameter, as follows:
First suppose v € I'*. In this case, v € 0,(S3) U 02(5%). If v € 01(S3), we
define
or(7) =t - p(Sy, (7)) - v(m(7)).

If v € 05(8S%), we define

o(f(7))
oi(y) = 4 deg(fl5)’
t'p(S’wﬂ-(ﬁ)/)) 'U(W(’Y))a if S,’; € {Sfa 7‘97*1}

Now we consider v € I'j. In this case, there is an integer p > 0 such that
fP(7y) € 0p(Sy) for some k € {1,--- ,n}. Then fP(y) is contained in a rotation
disk of (h}, PY), say D, with the center a. Notice that there is an annulus
A C A such that:

e the inner boundary of A is fP(7),

e the outer boundary of A is a (h}, P})-periodic curve in the marked set
PI::

it S e 8* — {Sf,---, 5%},



CHAPTER 6. DECOMPOSITION THEOREM AND THURSTON-TYPE
138 THEOREMS

e AN Pr=1.
We define o4(7y) to be the modulus of A. By definition, o.(v) = o¢(f(7)) =
-+ In this way, for all curves v € ¥*, the quantity o,() is well defined.

Lemma 6.4.2. When t is large enough, the function o, : ¥* — R satisfies:
1. For anyy € T, 0y(7) < t - p(Sy, (7)) - v{().
2. For every v € X, suppose that 7=*(vy) = {a,, 5,}. Then

tu(7), ifyerl,

O't(Oé’y) + Ut(ﬁ’y) < {mod(Ay)a foy € FQ,

where A, is the rotation annulus of (f, P) that contains v if v € I'y.
8. For every v € I'*, if v € 01(S}), then we have the following inequality:

Z Z o/ : a—>ﬂ)<0t(7)

BeT* an~y, aCS*

where the second summation is taken over all components of f~1(3) contained
in S% and homotopic to vy in C— P .

Proof. 1. Notice that if v € I'*, then v € 9,(5}) U 05(S3). If v € 01(S%)
or S¥ € {S7,--+,Sh}, then by definition, o(y) = tp(S,, 7(7))v(7(7)). Now
suppose v € 0»(S%) and S3 € S* —{S}, -+, S} }. Let p > 1 be the first integer
such that fP(Sx) € {S7,---,Ss}. There is a largest number & € {0,--- , p}
such that f7(y) € 0x(f(S%)) for 0 < j < k. Thus we have

alf() _ o)
deg(fl) deg(f*|,)

If f*(y) € 0o(fE(S%)), then oy(f*(7)) is a constant independent of ¢, thus
oi(y) < tp(Sy, m(y))v(m(y)) when t is large.
IF f4(3) € 0 (fH(S)), then

o ( ) _ t p(ka('y)77r(fk(7>>> : U(Tr(fk(V)))
o deg(f*],) '

By the choice of the numbers {p(S;",7), p(S7,7);7 € I'}, we see that for
any curve € I' = I'y = U,>ol',

U(f(ﬁ))P(S?(g)a f(8)) -
deg(f1s)

oi(y) =

v(B)p(S5,0), w e {£}.
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Since for each v € I'*, deg(f|,) = deg(f|x(y)), we have that

(S s iy T (L)) e (51 (7))
() < dog(F*11,) <
_ S éeé(%)w( )~ s ro el

If f*(v) € Gg(ff(S;)), in this case, we have k = p by the choice of k and

oi(y) = tp(Str(y), T(fP(7)))o(m(fP(7)))
t deg(f7],) |

With the same argument as above, we have o,(v) < tp(S,, 7(7))v(7(7)).
2. It follows from 1 and the definition of oy.
3.

I

BeT* arvry, aCS*
_ 1) o(f(7))
B /3%;* awgc:s;\y deg(f: a0 — f) i deg(f|,)

o) L oS ()
2 2 Gafazpt deg(J71,) (By 1)

IA

BET* any,aCS%\y

- () t(S 0y, T (£ (£(7)
=2 2 X GaFasot deg(f|

o€l ¢en—1(8) ary, aCS*\'y ’Y)

-y 3 2cen-15) 9t(S) L tSre), 7)) (f ()

SeF (o) s, \n(n) 108 = 9) deg(fly)

tv(9) tp(Sye, (f(V))v(7(f(7)))
cSeZFaw(w),achw\wm deg(fia—0) © deg(f|,) (By 2)

< tp(Sy,m(y))v(m(y)) = o(y). (By the choice of the number p)

IN

Holomorphic Models

We first decompose S* into §§ U ST U - - -, where

={A(8);0<j <p,1 <v<n},
S; = {S* € 8§*; k is the first integer such that f5(S*) € Sg}, k> 1.

It’s obvious that Sj consists of all f.-periodic S*-pieces.
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Lemma 6.4.3. (Pre holomorphic models) Suppose that (h}, P}) is q.c-
equivalent to a rational map (R,,Q,) via a pair of quasiconformal maps
(®,,V,) for 1 < v < n. Then for each S*-piece S*, there exist a pair of
quasiconformal maps (®g+, Ug.) : C(S*) — C and a rational map Rg~ such

that ®g« is isotopic to Vg« rel P(S*) and the following diagram commutes:

—_— Hs*

C(8*) —=C(f.(5"))
‘I’s*l l‘l’f*w*)
C——F. ~C

Proof. Using the same argument as the proof of the sufficiency of Theorem
6.4.1 (see Section 6.4.2, step 1), one can show that for any 1 < v < n and
any 0 < k < p,, there exist a quasiconformal map ® g,y and a rational map
Ry (sy) such that the following diagram commutes

= ey 85— st = pu—1 Moo —sp)— o
C(S;) —=T(LS))) = —=T(fr 1 (S3)) —=T(S;)
‘I’s;=‘lfvl q’ms;)l ¢ff”_l(sﬁ)l lq’sszq’v
c Rgy c Ry, (sp) C Ropu—1 g5, ¢

We set \Ilff(s,f) = q)f!f(Sé) for 0 < k < Py

For each S* € Sy, notice that f.(S*) € &;, we pull back the standard
complex structure of C to C(S*) via @y, (s-) o Hs- and integrate it to get a
quasiconformal map ®g« : C(S*) — C. Then Rg- := Py (svy 0 Hgs 0 Pl isa
rational map. We set W« = Pg-.

By the inductive procedure, for each S*-piece (n =2,3,---), we can get a
pair of quasiconformal maps (®g«, Ug+) and a rational map Rg«, as required.

]

Lemma 6.4.4. (Holomorphic model for periodic pieces) Fiz a periodic
piece S* € §;. Let p be the period of S*. Then for any large parameter t > 0,
there exist a pair of quasiconformal maps (®%., WL.) : C(S*) — C such that

1. UL, is isotopic to Pk. rel P(S*).

2. CID’}*(S*) ofo (\Ifts*)’lh,ts*(Es*) = Rs|ut, (mg.), where R« is defined in
Lemma 6.4.5.

3. The return map f; := Rfiﬂ(s*) 0--+0Rg+0 Rff—l(S*) 00 Ryi(gr) 18
either a Siegel map or a Thurston map.

4. For each i > 0 and each curve v € O(fL(S*)), let B, be the unique
boundary curve of Eyig«y such that either v = B,, or v and 3, bound an
annulus in S* — P. Then both @;i(s*)(’y) and \I’?;(s*)(ﬁv) are equipotentials in
the same marked disk of f;, with potentials
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w<q)§”i(s*)(7)) = o4(7), w(\I/;};(S*)(gv)) _ %.

Proof. For each v € [1,n] and each ¢ > 0, the critical values of Hyi(gy)
are contained in P(f/1(Sy)) and Hyiso(P(f1(Sy))) € P(fi1(Sy)). Let
(P ricse)s Urigss)) © C(fi(S%)) — C be the quasiconformal maps constructed
in Lemma 6.4.3. Since ®g, is isotopic to Vg rel Py = P(S}), there is
a quasiconformal map @ rv=1(gy C(fr—1(S*)) — C isotopic to P -1y
rel P(f2=1(S})) and Wsy 0 Hppo1 (g0 = Rypo-1(g.) © (bffi_l(sﬁ)' Inductively,
there is a sequence of quasiconformal maps ¢yiss) @ C(fi(Sy)) — C for
i =p,—2,---,1, such that ¢si(ss is isotopic to ®yigs) rel P(fI(S})) and
the following diagram commutes:

— Hy, (sp)—= Ha (55 — S Gt
C(£.(82)) = T(f2(85)) = - - —=C(f1 1 (S:) —=CT(Sy)
br.(sp) P2(s%) v =155 l Vs l
C Ry, (st) C B2 s ¢ Rypv=1(gp) ¢

This diagram together with the diagram in Lemma 6.4.3 implies that for
any 1 < 7 < p,, the map Hf;ifl(slt) o---0Hgs o Hf'/—l(s;) o -0 Hyicsy
is q.c-equivalent to f; = Rfiﬂ(sz) o---0Rgso0 Rffu—l(sz) 0+ 0 Ryicgy) via
(Qigsy): Pricsy))- Notice that fi(dysis) (P(fi(S5)))) C dpsy(P(fi(S]))), so
fi is either a Siegel map or a Thurston map.

The relation fiy1 0 Ryi(ss) = Ryiss) o fi with f,, = R, (here, R, is the
rational map defined in Lemma 6.4.3) means that Ryi(s.) is a semi-conjugacy
between f;11 and f;, so their Julia sets satisfy J(f;) = Rﬁl(sg)(‘](fiﬂ))' One
can check that Ryi(sy) maps the marked disks of f; onto the marked disks of
fir1, and maps the equipotentials of f; to the equipotentials of f; .

In the following, we will construct a pair of quasiconformal maps
(PL., WL,) : C(S*) — C that satisfy the required properties.

Step 1: Construction of ®%. and @;py,l(S*). We first modify ®g: to

a new quasiconformal map ®%, : C(S;) — C such that %, is isotopic to dg;
rel P(S5), and for each curve v € J(S}), the curve ®. (v) is the equipotential
in a marked disk of f,, = R, with potential @(®%. (7)) = 04(7).

Then, we lift ®%, via R ov=1(g5) and H ppo1 g,y and get a quasiconformal

map </13tfu_1(5;) isotopic to ® -1 4, Tel P(fPv=1(S*)). See the following com-

mutative diagram:
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Hopv=1gx)
—_—

C(fre1(Sz) —2T(Sy)
ajff”%sm(wq)ff”l(s;))i J/*PE;(N%;)
C— T

vy

Now, we modify H =1 (sx) O another marked disk extension of f| Bt gy
say ﬁf”‘l(s*)? such that for each curve v € 0(fP*~1(S*)), the curve
Py, (?[ v=1(s5)(7)) 18 an equipotential in some marked disk of f,, = R,.
Since v € Oi(fF*7(S})), the potential of @&, (H 16, (7)) should be
larger than @(®4.(f(3,))) = o:(f(3,)). It follows from Lemma 6.4.2
that deg(f|g,)o(y) > o(f(By)) when t is large. So we designate
@ (P, (H ppo-1(5,)(7))) to be deg(flg,) - oe(7).

Since both H P18 and H frv-l(gs) are marked disk extensions of
f|Eva*1<s*>’ there is a quasiconformal map &,,_; : C(fP1(S%) —
_(fp“_l(S*)) isotopic to the identity map rel Ep-1(g, U P(f271(S})) such
that H pV—l S*) — H pV—l( ngufl.

We set (IDfpV gy = = P!
Rffy—l(S* o(b

ov1(gs) © &p,—1. It’s obvious that (IDS* o Hff,,q(s;) =

7S

Step 2: Construction of (I)ifi(s*) fori=p,~2,---,1and ¥g,. By the
same argument as in Step 1, we can lift (I)tf"‘l(sg) via Rffy_z(sz) and H P02 (g)
fpu-2(gy) 1S0tODIC 10 P pp, 2, el P(fP=2(S%)). Then
we modify H frv2(gs) O another marked disk extension of f| Eppu-n gy S
Hppo2 g5 = Hppo2(g5)0&p,—2, Where &, o : C(f*72(S})) — C(f2*73(S})) is a
quasiconformal map isotopic to the identity map rel E 2., UP(fPr=2(S%)),
such that for each v € 9 (fP*~2(S%)), the curve ® H po—2(5.,1(7)) is an
equipotential of f,, _; with potential

and get a map Pt

s

~

(éfpu 1(5*)<Hff’/_2(slj)(7))) = deg(f‘ﬁw>0t(7)
We Set ¢t Pl/ 2( ) Qtfpu 2 S* gpl/_Q

Inductlvely, we can get a sequence of new marked disk extensions
Hyigssy, 1 =p, —1,--+,0, and a sequence of quasiconformal maps @}i(s*),i =
py—1,--+ 1, Uk . such that the following diagram commutes
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H 1
. Hy, «(55)_ = 1 ol TG = g
TS5 — 2T (S — T (s 2 sy
‘I’E;l Ms;)l (I’;fv—l(s;)l ‘I’ts;
c Rgy Ry, (sp) ¢ Ropu—1 g5 ¢

Moreover, for each i € [0, p, — 1] and each curve v € 9 (f1(S?)), we require

A~

D@1 g0 (Hpsisn) (1)) = deg( £ )on(7).

Finally, we set W}, g.) = %y (g, for 1 <i<p, — 1L

Step 3: Prescribed potentials. In this step, we will show that for
each 0 <7 < p, — 1 and each curve v € 9(f*(S?)),

o (f(By))
deg(fls,)

Notice that for each curve v € 9(S%)UUg<icp, Oo(fE(S%)), the first equation
of (6.1) holds by the evaluation of w.

If v € 01(fi(S;)) for some 0 < i < p,, then by construction,
(IDfm(S*)(Hf*(s*)(’V)) is an equipotential in a marked disk (A;;1,a) of fiiq.

@(Phis5) (1) = 0e(7); @(Phis5)(3)) = (6.1)

Since o* 41 (55 © Hfz(s*)( ) = Ryi(sy) © Phi(s5)(7), we conclude that %, .\ (7)
is also an equ1p0tent1al of some marked disk of f;, denoted by (A;,b). Then
Rypicssy : Ay — {b} — A1 — {a} is a covering map of degree deg(f|g, ). The
potential of o fz(s*)(’V) satisfies (Here, we use A(a, ) to denote the annulus
bounded by « and ()

D@5y (1)) = mod (ADA, Py, (1))
= mod (A1, s g, (s (1)) /dea(f1s,)
= (@) (Hrigsp (1)) /des(f15,)
= (7).

Now we consider v € Oy(f1(S%)) for some 0 < i < p,. In this case, by the
same argument as above, we can see that

D@ g (1))
deg(f|7) ‘

(q)jg(s*)(’Y)) =
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By the definition of oy, for v € d2(f1(S%)), we have
o:(f (7))
() = ——<.
) e 1)

Based on this observation, we conclude by induction that w(@? (S*)(v)) =
oe(7)-

To finish, we show that the second equation of (6.1) holds. Since for each
i € [0,p, — 1] and each curve v € 9(f*(S})), the curve <I>’}i+1(5*)(f(57)) is an

equipotential, it follows from the relation

q)ti O (@] \I/ti * 1 t X = R i .
f*+1(S;) f ( f*(s ) |\I/ (S*)( ji(s;)) f S* |\Ijtfz(s*)(Ef>t(S’j))

that \Iﬂ} 52 (By) is also an equipotential. Using a similar argument as above,
we obtam

. B w(@;iﬂ(sz)(f(ﬁv))) o O't(f(ﬁw))
@(Wyisp (Br) = deg(fls,) - deg(fls,)

The proof is completed. O

Now, we deal with the strictly pre-periodic S*-pieces. Let S* € S;
for some & > 1. Then f*(S*) is a f,-periodic S*-piece. Notice that for
0 < i <k, Hpiso(P(fi(S*))) € P(fit(S*)) and each critical value of
H i(g+) is contained in P(f*1(S*)), we have that Ryi(ge)o®i(s+)(P(fL(S*))) C
D i1 gy (P(fI71(S7))) and every critical value of R -1 (g, 0 -+ 0 Rg- is con-
tained in @ gx (o) (P(fF(S*))) = @l g0 (P(fE(S*))), here Rf;g(s*) and P igx)
are defined in Lemma 6.4.3. For any marked point a € P(5*) N (C(S*) — S*),
the point R r-1(g.y 0+ -0 Rg«(Ps(a)) is the center of some marked disk (A, g)
of some f;, where f; is a return map defined in Lemma 6.4.4. The component
Ag,(a) of (Rff—l(s,() o---0Rg)"1(A) that contains ®g-(a) is also a disk. We
call (Agg, (a), Ps+(a)) a marked disk of Rpr-1(g.y 0+ 0 Rge.

By the same argument as in the proof of Lemma 6.4.4, we can show that

Lemma 6.4.5. For any k > 1, any S* € S and any large parameter t > 0,
there exist a pair of quasiconformal maps ®L. = W, : C(S*) — C such that
1. <I>'}*(S*) o fo (Ph)” |\I,t (Bsr) = Rs+lut, (mg.), where Rg- is defined in
Lemma 6.4.3.
2. For each curve v € 0(S*), let B, be the unique curve in O(Eg+) homo-
topic to v in C — P. Then both ®%.(v) and ®L.(8,) are equipotentials in the
same marked disk of Rff—l(S*) o---0 Rg«, with potentials

O't(f(ﬁ’y))
deg(flg,)

@(P5 (7)) = 0u(7), @(P5.(By)) =
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We decompose £* into £, LI £ U Ef), where

€ess

o & . = {Fg;S* € 8}, it consists of all £E*-pieces parallel to some S*-
piece;

o £ is the collection of all £*-pieces E* contained essentially in an annular
component of S* — Fg. for some S*-piece S* (Here ‘essential’ means at least
one boundary curve of E* is non-peripheral in C — P);

o & =& — (&, UEL). One may verify that each £-piece is contained
in a disk component of S* — Eg« for some S*-piece S*.

Figure 6.5: Different types of £*-pieces: Here, S* is a S*-piece with boundary
05" =1 Uy U7ys. Ejfis a & -piece. Ef and Ef are £-pieces. LT, ES, E3
and E} are £}-pieces.

In the following, for every &£}-piece E*, we will construct a holomorphic
model for f|g«. Given an &}-piece E*, first notice that E* has no intersection
with the marked set P. As we did before, we also associate a Riemann sphere
C(E*) for E*. We mark a point in each component of C(E*) — E*, and let
P(E*) be the collection of all these marked points. We can get a marked disk
extension of f|g«, say Hg« : C(E*) — C(f(E*)), such that Hp+|g+ = f|p-,
Hpg+(P(E*)) C P(f(E*)) and all critical values (if any) of Hg« are contained in
P(f(E*)). Let ®%. : C(E*) — C be a quasiconformal map such that Rp. :=
®% ey © Hp o (®5.)~" is holomorphic. We remark that if we change ®% .,
to another quasiconformal map QD?(E*) isotopic to <I>§C(E*) rel P(f(E*)), then
we can modify ®%,. to a new map ®%., isotopic to ®%. rel P(E*), such that
Rp« = (I)?l( gy © Hps 0 (®%.)~!. This means that once we get the holomorphic
map Rpg«, we can always assume that it is independent of the parameter ¢.
We set Ut,, = @, .

Notice that the &j-piece E* has exactly two boundary curves a and
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(3 which are non-peripheral and homotopic to each other in C — P. By
the choice of ®§. for S* € S* both @} . (f(@)) and % 4. (f(3)) are
equipotentials in the marked disks of some f; (defined in Lemma 6.4.4)
or some Rfffl g © -+ 0 Rg.. We denote the marked disk that contains
D% gy (f(a)) (resp. % puy(f(3))) by (Aa,a) (resp. (Ap,b)). It can happen
that (A,,a) = (A, b). Let A, (resp. Ag) be the component of Ry:(A,) (resp.
Ry} (Ay)) that contains @, (a) (resp. ®%4.(3)). Then A, (resp. Ag) contains
a marked point in P(E*), say z, (resp. zz). The marked disks (A,, z,) and
(Ag, z3) are called the marked disks of Rg+. They are independent of the
choice of t. Clearly, ®%.(a) is an equipotential in the marked disk (A,, z,)
and ®%. () is an equipotential in the marked disk (Ag, z3), with potentials

@ (% (f(@)  a4(f())
deg( ) deg(fla)’
@ (P50 (f(8)  au(f(B))
deg( ) deg(fls)’

We denote by A(E*) Cc C(E*) the annulus bounded by a and 3. By
Reversed Grotzsch Inequality (See Theorem 2.2.3, also Lemma B.1 in [CT1]),
there is a constant C'(E*), independent of the parameter ¢, such that

wlf(@) | nlf(3)
= deg(fl)  dea(/Ts)

@ (Pl (@)

@ (P (5))

mod(®L. (A(E*))) < +O(EY).

V3

Figure 6.6: A S*-piece S* with boundary 05* =y Uy, Uy U y3. Here, Ej is
the &£, -piece parallel to S*, £} and E3 are two £}-pieces between v and (3,.

€SS

For any S*-piece S* and any v € 0;(S*), let AL be the annulus bounded
by v and 3,. By the construction of ®%., Wk, : C(S*) — C, both &L, (v)
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and UL, ((3,) are equipotentials. We denote the annulus between ®%, () and
U, (3,) by A'(S*, 7). It’s obvious that

o(f(5y))

mod(A4'(5",7)) = (2. (1)) = =5 (B,)) = 7i(7) = G,

Then we have the following

Lemma 6.4.6. (Large parameter implies Grotzsch inequality) When
t is large enough, for any S*-piece S* and any v € 01(S*), we have

> mod(Ph. (A(EY))) < mod(A'(S*,7)),

Sj,aE*cAg*
where the summation is taken over all the £%-pieces contained in Al..

Proof. 1t suffices to show that when ¢ is large enough,

ou(flap-)) | ou(f(Be+)) WL o@D
2 (deg<f\w>*deg<frﬁE*>+C(E >)+deg<f\m < (S, m)-v(r(3),

SgaEcAg*

where o+ and fgs are the boundary curves of £*, homotopic to v in C — P.
One can verify that

oi(flag)) o f(Be))
> (deg(f\aE*) + deg(f|3E*)) deg f‘ﬁw =D Z - _>5)

5:\9E*CA:;* BEX* anvry, aCS*

Since ¥* = I'j UT™, we can decompose the summation into two parts:

=YY mteem TR S mtes

BEL* any,aCSx Bel'y a~y, aCS*

It follows from the proof of Lemma 6.4.2 that I < tw(v), where

() o P, T () v(8)
() : deg(f|) + ;ﬂ( )NaCZSV\ﬂ( deg(f :a —9)’

if f(7) € T'* (or equivalently v € [ UT5U---); and

v(0)
:Z Z deg(f:a —0)’

5€T 7(7)~aCS,\m(y)
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if f(y) € T'§ (or equivalently v € T'}).
For the second term, we have

mod(A)
LD I 1
e Smonr, 408(fla)
where A is the collection of all rotation annuli of (f, P), I'y is the collection

of (f, P)-invariant curves defined in Section 6.2.
So if we choose t large enough such that for any v € Ugscg+01(S*),

SECED VD M BOAA) — 1(p(8,. 7)) - v(w() — (),

Exegy A€A aef~1(To) (f| )

then the conclusion follows (notice that by the choice of the number p, we
have p(S,, (7)) - v(7(7y)) —w(y) > 0 for all v € I'*). O

Now, we are ready to complete the proof of Theorem 6.4.1. Here is a
fact used in the proof, which is equivalent to the Grétzsch inequality, and we
will state it as follows. Let A,B C C be two annuli. We say that B can
be embedded into A essentially and holomorphically if there is a holomorphic
injection ¢ : B — A such that ¢(B) separates the two boundary components
of A.

Fact Let A, Ay, -, A, C C be annuli, then Ay, ---, A, can be embedded
into A essentially and holomorphically such that the closures of the images of
A;’s are mutually disjoint if and only if

Z mod(4;) < mod(A).

Proof of the sufficiency of Theorem 6.4.1, assuming I # ()

The idea of the proof is to glue the holomorphic models together along the
stable multicurve I'. Here is the detailed proof:

Recall that for each S*-piece S*, we use S to denote the S-piece that
contains S*. For each curve v € 3, A7 is the annular neighborhood of ~ such
that A7 avoids P U f(P — UA) and f(A7) = A7) where A is the collection
of all rotation annuli of (f, P).

For each S*-piece S*, we extend ¥k, : S* — &L, (S*) to a quasiconformal
homeomorphism ®g : S — ®g(S) such that ®g is holomorphic in (S — S*) N
(UA).

We first choose t large enough such that Lemma 6.4.6 holds. In this case,
one can embedded W%, (E*) holomorphically into the interior of ®g(S) for
each &£}-piece E* contained in S according to the original order of their
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non-peripheral boundary curves so that the embedded images are mutu-
ally disjoint. In other words, there is a quasiconformal homeomorphism
s S — Pg(S) such that

e Yslas = Pslas and g is isotopic to $g rel 9S U (S N P). Moreover
Vslsnua) = Pslsnua)-

¢ Vg|p,. = V% |p,., where Eg. is the unique £*-piece parallel to S*.

e For each curve v € 0,(S5), Ps(SNAY) =1s(SNAY).

e For every £4-piece E* with E* C S, the map Wk, o5 is holomorphic
in 1g(E*).

We define a subset €4 of € by €4 = {E; E* € £4}. Let D(S) be the
collection of all disk components of S— EsU(Ug,,5spcsE), here Eg is the unique
E-piece parallel to S. For each D € D(S), we construct a quasiconformal
homeomorphism (p : D — 1g(D), whose Beltrami coefficient satisfies

fep(2) = Z XE(Z)MDf(E)of(Z),

E3ECD

here the summation is taken over all £-pieces contained in D. We further
require (p(p) = 1¥g(p) if D contains a marked point p € P.

Let I's be the collection of all boundary curves of Upep(s)D. For each
v € Ty, notice that f(y) € X. Let A7 be the component of f~'(Af() that
contains 7. It’s obvious that A7 is an annular neighborhood of v. We define
a quasiconformal homeomorphism Wg : S — $4(S) by

(p(2), z€ D,D eD(9),
Us(z) = { ¥s(2), z €8 — (Upep(s)D) U (Uyerg A7),
q.c interpolation, 2z € Uyerg A7 — Upep(s)D.

The map Vg satisfies:

o Ugloss = Pglogs and Vg is isotopic to $g rel S U (S N P). Moreover
\IJS‘SO(U.A) = (I)S‘SQ(UA)-

e For every £, UE%-piece E* C S, the map ®f(pyo foWUg' is holomorphic
in Wg(E*).

e For every £-piece EE C Upep(s)D, the map @ g0 fo \Ilgl is holomorphic
in \Ifs(E)

Now, we define a quasiconformal map © : C — C by O|s = \Ilgl o ®g for
all S € 8. It’s obvious that O is isotopic to the identity map rel P. Moreover,
for each curve 4 € T, we have O(y) =y and A” C ©7}(A7). Let & :C — C
be a quasiconformal map whose Beltrami coefficient satisfies

Mq)(Z) = ZXS(Z)F“DS(Z)’ z € @

Ses
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Set ¥ = ® 0o ©O"!. Then (f, P) is q.c-equivalent to the Herman map
(9,Q) := (Po fol™l O(P)) via (P, V).

One can verify that g is holomorphic outside X = V(U cryugesrs)A7)-
To see this, notice that if E* € £
S, then the decomposition

gluesy = (@0 @y y) 0 (Pmy 0 foTgh) o (Ps 0 @) |y

implies that ¢ is holomorphic in W(E*) since each factor is holomorphic. If
Ee€&and EC D e D(5), then

gl‘I’(E’) ((I)O(I)(E)) (‘bf mofo §D> (Pgo®” )|\I/(E),

so ¢ is holomorphic in W(E).

The last step is to apply quasiconformal surgery. For each curve v € T,
let «(7y) be the first integer p > 1 such that fP(y) € I'g and L = max,ep ¢(7).
One may verify by induction that for any 7 > 1,

T (P(UA)) = T((© 0 ) (UA)) D T(User(<;A7)-

In particular, gL~ (¥(UA)) D X. Let 0 be the standard complex struc-
ture in C. Define a (g, Q)-invariant complex structure o by

U &% and E* is contained in some S-piece

. {(g’“)*(cro), in g7*(W(UA)\ g T (T(UA)), k=1,
90, in € — Upz1(g7"(T(UA)) \ g1 (T (UA))).

Since (g,@Q) is holomorphic outside X, the Beltrami coefficient p of o
satisfies ||u|l.c < 1. By Measurable Riemann Mapping Theorem, there is a
quasiconformal map ¢ : C — C such that ¢*(oy) = 0. Let R = (ogo (™},
then R is a rational map and (f, P) is q.c-equivalent to (R, o ®(P)) via
(Co®d, (o). O

6.5 Decomposition part 11

In the following three sections, we will prove the following:

Theorem 6.5.1. Let (f, P) be a non-parabolic map withna(f) > 0, then there
exist a (f, P)-stable multicurve Y and a finite collection of Herman maps, or
Siegel maps, or Thurston maps, say {(hg, Pr),k € A}, such that

1. (f, P) has no Thurston obstructions if and only if N(Y, f) < 1 and for
each k € A, (hg, Py) has no Thurston obstructions.

2. (f, P) is q.c-equivalent to a rational map if and only if N(), f) < 1 and
for each k € A, (hy, Py) is q.c-equivalent to a rational map.
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This theorem can be read as

Non-parabolic=multicurve+Herman+Siegel+ Thurston.

The proof of Theorem 6.5.1 is based on Cui-Tan’s repelling system theory
[CT1].

6.5.1 The hole-filling operator

Let (f, P) be a non-parabolic map with n4(f) > 0.

A bordered surface S ; C is the Riemann sphere C minus at most finitely
many open quasidisks whose closures are mutually disjoint. The set of all
boundary curves of S is denoted by 9(95).

Let S be a bordered surface with 95 N P = (). The topological complexity
of S with respect to the marked set P is defined by

To(S) = #0(S) + #(S 1 P).

We say S is of disk type if S is a closed disk containing at most one point
in P; of annular type if S is a closed annulus disjoint from P. Otherwise, we
say S is of complex type. One may verify that S is of complex type if and only
if 7p(S) > 3.

A surface puzzle S = Sy L --- LU S is a finite union of disjoint bordered
surfaces. Each S; is called an S-piece.

Let S be a bordered surface. We define D(S) by
D(S) = {U;U is a component of C — S with #(U N P) < 1}.
The hole-filling of S, denoted by H(.S), is defined by
H(S) = S U (Uveps)V)-

The hole-filling of the surface puzzle S = Sy LI --- U Sk, denoted by H(S), is
defined by
H(S) = | H(S))
1<j<k

One can verify that the hole-filling operator satisfies the following proper-
ties:

1. Let S; and Sy be two bordered surfaces. If S; C Ss, then H(S;) C
H(S2). If S1 € Sy, then H(S;) € H(S,).

2. Let Sy and Sy be two disjoint bordered surfaces. Then either H(S;) N
H(SQ) = (Z), or H(Sl) c H(SQ), or H(SQ) c H(Sl)

3. For any bordered surface S, we have f~' o H(S) C H o f~!(S) and
HoH(S) ="H(S).
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Figure 6.7: The hole-filling of E (Suppose that each boundary curve of S is
non-peripheral in C — P).

6.5.2 Surface puzzle of constant complexity

Now, we denote by A(f) the union of all attracting cycles of f in P;. For
each point z € A(f), there is a small disk neighborhood U, of z such that

1. OU, is a quasicircle, and OU, N P = ().

2. f~4C — U.ea(p)U.) is contained in the interior of C - UzeanUs.

3. f is holomorphic in U.c 4 U..

Let Sy = C — U.eanU.. For n > 1, we define the surface puzzle S,
inductively in the following way:

Sy =Ho f(Sp-1) == (Hof)"(So).

One can verify by induction that S,,.; € S,, for all n > 0.

Definition 6.5.1. (Parallel) Let S, E be two bordered surfaces, with E € S
and S is of complex type. We say that E is parallel to S if each component
of S — E is either a disk containing at most one point in P or an annulus
containing no point in P (notice that in the latter case, one boundary curve
of the annulus is on 0S and the other is on OF).

Notice that if S is of complex type and E is parallel to S, then 7p(E) >
Tp(S) > 3. This means FE is also of complex type.

Definition 6.5.2. (Constant complexity) Let S = S;U- - -LUSy be a surface
puzzle with f~1(S) € S and 0SN P = (. We say S is of constant complexity,
if either there is no complex type S-piece, or every complex type S-piece S
contains a f~1(S)-piece E which is parallel to S.
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One may compare with [CT1| for the definitions of ‘hole-filling’, ‘paral-
lel” and ‘constant complexity’. However, our definitions on these objects are
slightly different from Cui-Tan’s original ones, in order to make Theorem 6.6.2
sharp.

Figure 6.8: f~1(S) = FE; U Fy (two shadow regions). In the left, E; is parallel
to S and S is of constant complexity. In the right, neither £ nor E, is parallel
to S, so S is not of constant complexity.

Proposition 6.5.1. When n is large enough, S, is of constant complexity.

Proof. 1. We claim that: for every n > 0, and every annular type or complex
type S,-piece S, all boundary curves of S are non-peripheral in C — P.

It’s obvious for n = 0. So we just consider the case when n > 1. Let S be
a S,-piece, either of annular type or of complex type. Since the hole-filling
of two disjoint bordered surfaces either are disjoint or one contains the other,
we conclude that there is a unique f~'(S,,_1)-piece T such that S = H(T).
Notice that the hole-filling operator satisfies H o H = H, we have S = H(S).
This implies all boundary curves of S are non-peripheral in C — P.

2. For every n > 0, one can verify that S,, N P has finitely many connected
components, and S,,;1 NP C S, N P. We can choose ng large enough such
that for all n > ng, the number of connected components of S,, N P remains
constant.

3. For any n > 0, let k, be the number of homotopy classes of non-
peripheral curves of Uy<;<,0S; in C — P. It’s obvious that k, < k,.1. Since
0So U (Sp N P) has finitely many components, there exists n; > ng, such that
for all n > nq, k, = ky,.

4. By the choice of ny, for any n > n; and any non-peripheral curve ~ of
OSn11, there is a curve v C Up<j<n, S; homotopic to v in C — P. Let A(y, a)
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be the annulus bounded by v and a. First notice that there is a unique S, -
piece, say S,.1, containing v as a boundary curve. The piece S, is either of
annular type or of complex type. Since S,,11 € S,,, there is a unique S,,-piece
S, containing S, 1 as a proper subset. The piece S, is either of annular type
or of complex type. By 1, each boundary curve of S, is non-peripheral in
C — P. It follows that there is a unique boundary curve 3 of S, contained in
A(7y, ). Moreover, 3 is homotopic to 7 in C — P, and the annulus A(v, )
bounded by v and (3 is contained in .S,,.

Claim: Every complex type S,-piece S, contains at most one complex
type S, ;1-piece, say S,y1. Each component of S,, — S, is an annulus.

To see this, let S,41 and S, be two S,,;-pieces contained in .S, with S,
of complex type. By the previous argument, each component of S,, — 5,11 is
an annulus in C — P. So there exist Vn C 0S, and v,41 C 05,41 such that
S! i1 C Ay Yg1) C C— P, where A(7,, Vn11) is the annulus bounded by v,
and 7y,41. This implies that S]_ ; is either of disk type or of annular type.

Let ¢, be the number of complex type S,-pieces for n > 0. Notice that
every complex type S, 1-piece is contained in a unique complex type S,,-piece,
we have that for n > ny, ¢,11 < ¢,. So there is ny > ny such that for all
N > Ng, Cp = Cp,.

To finish, we show that for any n > no, S,, is of constant complexity. Let
S, be a complex type S,,-piece. Then there is a unique S,,;1-piece S,, 11 that
is parallel to S,. Since ¢, = ¢,1, there is a unique f~1(S,)-piece, say T, such
that S,.1 = H(T). We have

Sp =T = (Sn = Sn41) U (Spg1 = T') = (S — Sny1) U (UyepnyV).
This means that 7' is parallel to S,,. n

From the proof of Proposition 6.5.1, we see that when n > ns, S,, is of
constant complexity. Fix some n > ns, the surface puzzle S = S,, satisfies:

e For each annular type or complex type S-piece S, each boundary curve
v of S is non-peripheral in C — P.

o For every complex type S-piece S, there is a unique f~1(S)-piece Eg
parallel to S. And f(FEs) is also a complex type S-piece.

Let Sp be the union of all disk type S-pieces, S, the union of all annular
type S-pieces and S¢ the union of all complex type S-pieces. If S¢ # (0, then
for every Sco-piece S, there is a unique f~!(S)-piece Eg parallel to S, and
f(Es) is also a complex type S-piece. We define a map f, from all Sc-pieces
to themselves by

f«(S) = f(Es),
where Eg is the unique f~!(S)-piece that is parallel to S. Since S¢ has finitely
many components, every So-piece is eventually periodic under f,.
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Let Y C {all boundary curves of S4US¢} be a multicurve that represents
all homotopy classes of boundary curves of S 4US¢ in C— P. Such multicurve
Y is unique up to homotopy.

The constant complexity of S implies:

Lemma 6.5.1. The multicurve ) is (f, P)-stable.

6.5.3 Marked disk extension

We assume in this section that S # (). This section is an analogue of Section
6.2. For each Sc-piece S, we denote by C(S) the Riemann sphere containing
S. We always assume that different Sc-pieces are embedded into different
copies of Riemann spheres.

Since each component U; of C(S) — Es either is contained in S or contains
a unique component V; of C(S) — S. In the former case, if U; contains a
marked point p € P, then we get a marked disk (U;, p); else, we don’t mark
any point in U;. In the latter case, we mark a point p € V; C U;, and get two
marked disks (V;,p) and (U;, p).

We define

P(S) = (PN S) U {all marked points in C(S) — S}.

We call (C(S), P(S)) a marked sphere of S.

Now we extend f|g, to a branched covering Hg : C(S) — C(f.(S)). For
each component U; of C(S) — Eg, we define Hg|y, in the following way:

a). If U; contains a marked point p € P(S), then Hg maps the marked disk
(Ui, p) to the marked disk (Wj,q). Here W; is the component of C(f.(S)) —
f«(S) whose boundary curve is f(9U;). We require further that Hg(p) = ¢
and p is the only possible critical point, with local degree deg (f|sv, ).

b). If U; contains no marked point in P(S), then Hg maps U; to the
marked disk (W}, q), such that deg(Hs|y,) = deg(f|ov;,) and ¢ is the only
possible critical value. Here, W} is the component of C(f.(S)) — f.(S) whose
boundary curve is f(9U;).

In this way, for each Sc-piece S, we can get an extension Hg of f|g,. It
satisfies Hg(P(S)) C P(f«(S5)).

Notice that every Sc-piece is eventually periodic under the map f,. We
list all periodic Sg-pieces in the following:

Sy [o(Sy) o fPTN(S,) > fP(S,) =S, 1<v<n,

where n is the number of f,-periodic cycles, S, is a representative in the v-th
cycle and p, is the period of the piece S,,.



CHAPTER 6. DECOMPOSITION THEOREM AND THURSTON-TYPE
156 THEOREMS

Set
h,, :pr“_l(S) O -~ OHf*(S) OH57 Pl, = P(S,,), 1 <v<n.

*

Then h, : C(S,) — C(S,) is a branched covering with h,(P,) C P,. There
are four types of the resulting map (h,, P,):

e S, contains at least one rotation annulus of (f, P). In this case, (h,, P,)
has at least one cycle of rotation annulus, and each boundary cycle of which
contains at least one critical point of h,. So (h,, P,) is a Herman map.

e S, contains no rotation annulus of (f, P) but contains at least one rota-
tion disk of (f, P). In this case, (h,, P,) has at least one cycle of rotation disk
whose boundary cycle contains at least one critical point of h,. So (h,, P,) is
a Siegel map.

e S, contains neither rotation annulus nor rotation disk of (f, P) and
deg(h,) > 1. In this case, (h,, P,) is a Thurston map.

e S, contains neither rotation annulus nor rotation disk of (f, P) and
deg(h,) = 1. In this case, (h,, P,) is a homeomorphism and all points in P,
are periodic.

Let A be the index set consisting of all v € {1,--- ,n} such that deg(h,) >
1. For each v € A, (h,,P,) is either a Herman map, or a Siegel map, or
a Thurston map. Let A* be the set of all indices v € {1,--- ,n} such that
deg(h,) = 1.

We use the following notation to record the decomposition procedure:

DeCO(f7P):< @ (hl/7pl/)> .
Yy

veEAUA*

By the same argument as Lemma 6.2.4, one may show that if A(), f) < 1,
then the following holds:

1. For any 1 < v < n, every point in (C(S,) — S,) N P, is eventually
mapped to a periodic critical point of (h,, P,).

2. A* = 0.

3. If (h,, P,)) is a Thurston map, then the signature of the orbifold of
(hy, P,) is not (2,2,2,2).

6.6 Combinatorial part II

In this section, we will prove

Theorem 6.6.1. Let (f, P) be a non-parabolic map with na(f) > 0. and

DeCO(f7P)2< @ (hy,Py)> .
Yy

veAUA*



6.6. COMBINATORIAL PART II 157

Then (f, P) has no Thurston obstructions if and only if N(), f) < 1 and for
each v € A, (h,, P,) has no Thurston obstructions.

Here is the idea of the proof:

We first show that any (f, P)-stable multicurve induces a (F,Q)-stable
multicurve (Here, (F, Q) is a suitable restriction of (f, P), which will be called
a ‘repelling system’ of (f, P), see Section 6.6.1), and vice versa. These two
multicurves have the same leading eigenvalues of their respective transition
matrices. This implies that (f, P) has no Thurston obstructions if and only if
(F, Q) has no Thurston obstructions (see Theorems 6.6.2 and 6.6.3).

We then show that every (F, @Q)-stable multicurve can be decomposed into
a ‘Y-part’ and a (h,, P,)-stable multicurve for each v € A U A*. Conversely,
every (h,, P,)-stable multicurve can generate a (F, ))-stable multicurve. This
enables us to prove that (F, @) has no Thurston obstructions if and only if
A, f) < 1 and for each v € A, the map (h,, P,) has no Thurston obstructions
(Theorems 6.6.4 and 6.6.5).

Then Theorem 6.6.1 follows by combining the above two steps.

6.6.1 Multicurves for repelling system

Let B=f"YS)€S, F=flg, Q=SNP. Wecall (F,Q) a repelling system
of (f, P).

A Jordan curve v C S\ @ is called null-homotopic (vesp. peripheral, non-
peripheral) in S\ @ if it is null-homotopic (resp. peripheral, non-peripheral)
in C\ P.

We say that I' = {71, -+ , 7.} is a multicurve in S\ @ if each ~; is a non-
peripheral Jordan curve in S\ @, and they are mutually disjoint and no two
homotopic in S\ Q. Its (F, Q)-transition matrix Wr = (a;;) is defined by

1
i = Z deg(F : a0 — ;)]

anyg

where the summation is taken over all components « of F~*(v;) homotopic
toy; in S\ Q.

Notice that if two Jordan curves are homotopic in S \ @, then they are
necessarily homotopic in @\ P. But the converse is not true.

A multicurve ' in S\ Q is called (F, Q)-stable if each component of F~1(v)
for v € I' is either null-homotopic or peripheral, or homotopic to a curve of I'
in S\ Q.

We say a multicurve I' in S\ Q is a Thurston obstruction of (F,Q) if I is
(F, @Q)-stable and the leading eigenvalue \(I', F') of its transition matrix Wr
satisfies A(I', F') > 1.
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Figure 6.9: Suppose that the annulus A(7;,72) bounded by 7, and 7, contains
no point in P, then 7; and 7, are homotopic in C — P. But they are not
homotopic in S\ @ .

For convention, an empty set I' = () is also considered as a (F,Q)-stable
multicurve with A(I', F') = 0.

Lemma 6.6.1. Given two different S-pieces S1 and Sy, each is either of
annular type or of complex type. If there are two non-peripheral curves
v C S; i = 1,2, homotopic to each other in C — P, then ~; is homotopic
i S; to a boundary curve of S;, 1 =1, 2.

Proof. We consider the annulus A(7;,7,) bounded by 77 and 7. Since 7 is
homotopic to v, in C — P, we have that A(vy;,72) NP = (). Since S; is either of
annular type or of complex type, each boundary curve of S; is non-peripheral in
C — P. This implies that the closure of A(v1,72) necessarily contains a unique
boundary curve of S;,7 = 1,2. The conclusion follows immediately. n

Given a (f, P)-stable multicurve I', suppose that each curve v € T is
contained in S,US¢. Obviously, I' is not necessarily a (F, )-stable multicurve
in S — @Q. But we can use I' to generate a (F, @Q)-stable multicurve as follows:

Take a non-peripheral curve v € f~}(T") that is not homotopic to any
curve of I" in S — @ (if any), then + is contained in some S U Sc-piece, say
S. Since T is (f, P)-stable, there is a curve § € I', homotopic to 7 in C — P.
We conclude by Lemma 6.6.1 that there is a unique boundary curve §(v) of
S such that v is homotopic to G(y) in S — Q. We define

Iy =T U{B(v);v € f1(I) is non-peripheral

and not homotopic to any curve of I" in S — Q}.
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For n > 1, we define I',, inductively in the following way: Let >, be the
set of all non-peripheral curves in f~"(I") that are not homotopic to any curve
of I',m1 in S — Q. For each v € ¥,,, let 5(y) be the unique boundary curve of
S homotopic to v in S — Q). Notice that given two different curves vy, v, € ¥,
it may happen 3(v1) = (72). We define

One may verify that for each n > 1, the set I',, is a multicurve in S — ). Since
0S4 UJSc U (S¢ N P) has finitely many components, there exists a positive
integer N such that #I',, = #I'y for all n > N. We define G(I') = I'y. By
the choice of N, one can verify that G(I') is a (F, Q)-stable multicurve. We
call G(I') a (F, Q)-stable multicurve generated by I

Now, let X be a (F, @Q)-stable multicurve. We define an equivalent relation
for the curves in ¥: a ~ 3 if @ and 3 are homotopic in C — P. In this way,
we can decompose X into finitely many equivalent classes ¥y LI --- U 3. For
each equivalent class X;, we choose a representative v; € ¥;. We define a
multicurve 7(X) as follows:

W(Z) = {’717 T 77k}
It’s easy to check that 7w(3) is a (f, P)-stable multicurve.

Theorem 6.6.2. For any (f, P)-stable multicurve I', suppose that each curve
v € T' is contained in S, then NI, f) = MG(I"), F'). Conversely, for any
(F, Q)-stable multicurve 3, we have (X, F) = A(n(2), f).

Proof. For any (f, P)-stable multicurve I', we decompose G(I') as follows:
G(T') = Uyerl, where I, = {§ € G(I');d is homotopic to v in C — P}. Let
Wr = (aqp) be the (f, P)-transition matrix of I' and Wgry = (bg,;) be the
(F, Q)-transition matrix of G(I'). Then

1 1
tos = D deg(f 5 = p) 2 deg(F : ¢ —n)’

0€Nap CEQey

where A,z is the collection of components of f~!(3) which are homotopic
to a in C — P and ), is the collection of components of F~!(n) which are
homotopic to £ in S — Q.

We claim that for any «, 5 € I' and any 7 € ['g,

Qg = Z bgn.

£ely
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To prove this, we first assume 1 = 3. One may check that

Ueer, s = {6 C F7'(B) is homotopic to a curve of ', in S — Q}
C {6 c F'(B) is homotopic to a in C — P} = A,p.
Conversely, for any curve § C F~'(3) which is homotopic to « in C — P, since

G(I) is (F,Q)-stable, there is a curve { € G(I'), homotopic to § in S — Q.
This implies Aag C UEEFQQE,@' So we have UgeFang = Aaﬁ and

wo 3 e o G

0€Uger, Qe £€la 6€Qp £ely

If n # 3, we can replace n by 3 in I'. This replacement doesn’t change the
transition matrix Wr. So the claim holds.

Now for any p x ¢ real matrix A = (a;;), we define [[A[| = >, [a;;|. It's
obvious that if p = ¢, then [|A|| is the Banach norm of A. In the following,
we will show that:

There exist two constants Co > Cy > 0 such that for alln > 1,

CilWr| < [IWgmll < Cof W]

To prove this relation, we make a block decomposition of Wgr): Wgr) =
(Wag)a.per, where W, is the (a, §)-th block. Moreover, W,z is a #I', X #I'3
matrix, whose entries are be,,§ € I'y,n € I'g. One can verify that

Wasll =D > bey = #T5 - dap.

£ely Werg

We set Cy = min{#I',;y € I'}, Cy = max{#I",;y € I'}. Then we have

= Gy[[Well,
Wamll = Wasll = ) #L's0ap
v Z Z < Gof[Wr||.

a,Bel’ a,Bel’

For any n > 1, the (a, §)-th block of Wgpr) is Z WaorWaras = Wa,_18-

s Qn—1

One can prove by induction that

H Z Waalwala2 e Wan—lﬁ ’ = #Fﬁ ’ Z Qoo Qaras * " Qap_18-

a1, Qg —1 a1, ,0n—1

It follows that

. > Chl|WEl,
Wl = 3 40 0 5{ i

o,BeT 1y i1 < Co|W.
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The proof of the claim is completed. This implies

sp(Wr) = lim {/|[Wefl = lim ¢/[Wg [ = sp(Wa)).

By Perron-Frobenius Theorem, A(I', f) = A(G(I"), ). The second statement
follows from the same argument. O]

6.6.2 Reduction of no Thurston obstructions
We first prove the following

Theorem 6.6.3. (f, P) has no Thurston obstructions if and only if (F,Q)
has no Thurston obstructions.

Proof. Let T be a (f, P)-stable multicurve. Using the same argument as in
Lemma 6.3.1, we can show that there is a (f, P)-stable multicurve T',, such
that

e [', is homotopically contained in T'.

e Each curve of I, is contained in a S-piece.

o N[y, f) = AT, f).

The multicurve T', can generate a (F,Q)-stable multicurve G(T',). By
Theorem 6.6.2, A(G(I'y), F') = A, f) = ML, f). Thus that (F,Q) has no
Thurston obstructions implies that (f, P) has no Thurston obstructions.

On the other hand, given a (F,Q)-stable multicurve ¥, the set m(X) is
a (f, P)-stable multicurve, and \(3, F') = A(w(X), f). Thus if (f, P) has no
Thurston obstructions, then (F, Q) has no Thurston obstructions either. [

Definition 6.6.1.
a disk-covering, if Sc = Sa = 0,

We say that (F,Q) is < an annular-covering, if S¢ = () but S, # 0,

a complez-covering, if Sc # (.

Notice that if F' : (E,Q) — (S,Q) is a disk-covering or an annular-
covering, then (f, P) has no rotation domains.

Let B be a multicurve of (F, (@), consisting of all homotopy classes the
boundary curves of S4 U S in S — (). In fact, B can be written as

B ={vy€d(9);S is an Sc-piece} U {7g; S is an S4-piece},

where g is a boundary curve of S if S is an S4-piece (notice that for each
annular piece S, B contains only one boundary curve of 5).

Lemma 6.6.2. The multicurve B is (F, Q)-stable and \(B, F') = XY, ).
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Proof. The constant complexity of S implies that B is (F, @Q)-stable. Notice
that ) is identical to w(B) up to homotopy. The equality \(B, F') = A(), f)
follows from Theorem 6.6.2. O]

Theorem 6.6.4. (Decomposition of stable multicurve) Suppose that
(F,Q) is a complex-covering and let T be a (F,Q)-stable multicurve. We
define

YT ={y € Y;v is homotopic to a curve § € B in S — Q},
Y, ={ye€ Y —"Tg;7v is contained in S,},v € NUAN* = [1,n].

Then Yy is a (F,Q)-stable multicurve, ¥, is a (h,, P,)-stable multicurve for
1 < v <n, and we have the following identity:

AT, F) = max{)\(TB,F), NS ), P(//\(En,hn)}.

The proof of Theorem 6.6.4 is the same as that of Theorem 6.3.2, we omit
the details.

Suppose that (F, Q) is a complex-covering. For each 1 < v < n, let 3,
be a (h,, P,)-stable multicurve. Up to homotopy, we may assume that each
curve of ¥, is contained in S,,.

In the following, we will use 1, --- , %, to generate a (F,Q)-stable multi-
curve.

Let Ty € F7*(Z,U---UYX,) be a multicurve in S — @, such that 'y
represents all homotopy classes of non-peripheral curves of F~*(3,U---UY,).

Lemma 6.6.3. For any pair of curves v; € I';, v; € I'; with 0 <@ < 7, if v,
is not homotopic to v; in S — Q, then 7; and 7; are homotopically disjoint.

Proof. Since ; is not homotopic to v; in S — @, either ; and ~; are contained
in two different S4 U Sc-pieces, or 7; and 7; are contained in the same Sc-
piece, say S. If we are in the former case, then the proof is done. So we just
consider the latter case. In this case, if one of the curves «;,~; is homotopic
to a boundary curve of S, then they are obviously homotopically disjoint.
We assume that neither of 7;, v, is homotopic to a boundary curve of S. We
further assume by contradiction that ; and 7, intersect homotopically. There
is v € [1,n] such that f*(v;) and f*(v;) are contained in S,. Moreover, neither
of fi(7:), f'(7;) is homotopic to a boundary curve of S,. It follows that f(v;)
is contained in the unique F*7(S;U---US,)-piece that is parallel to S,. This
implies ¢ = j mod p,, where p, is the f,-period of S,. Since ¥, is (h,, P,)-
stable, f(7;) is homotopic to either a curve § € 3, or a boundary curve of S,,.
But neither is possible since f*(v;) intersects f*(v;) € X, homotopically. [
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It follows from Lemma 6.6.3 that for any & > 1, there is a multicurve Ay
in S — @ such that X, U---UX,, C A, and Ay represents all homotopy classes
of non-peripheral curves in I'g U --- U T',. Obviously, Ay is homotopically
contained in Ay,4. Since 9S4 UIScU(ScN P) has finitely many components,
there exists a positive integer N such that #A, = #Ay for all £ > N.

By the choice of N, the set Ay is a (F, Q)-stable multicurve. We denote
Ax by Gp(Xy, -+ ,3,) since it is generated by Xy, --- ,3,. We define

Br(Xy, -, %) ={y € Gp(X1, - ,%,);7 is homotopic to a curve of B in S—Q}.

Obviously Br(3,---,%,) is a (F, @)-stable multicurve. One may check
that for all v € [1,n],

v — {/y € GF<217 7271) _BF<217 azn)/y C Sl/}
Theorem 6.6.1 is essentially equivalent to the following:

Theorem 6.6.5. We have that

1. If (F, Q) is a disk-covering, then (f, P) has no Thurston obstructions.

2. If (F,Q) is an annular-covering, then (f, P) has no Thurston obstruc-
tions if and only if XY, f) < 1.

3. If (F,Q) is a complex-covering, then (f, P) has no Thurston obstruc-
tions if and only if N}, f) < 1 and for each k € A, (hy, Py) has no Thurston

obstructions.

Proof. 1. Since (F, Q) is a disk-covering, any (F, ))-stable multicurve X" is an
empty set. So we have A(X, F') = 0 and (F, ) has no Thurston obstructions.
It follows from Theorem 6.6.3 that (f, P) has no Thurston obstructions either.

2. For any (F, @Q)-stable multicurve X', X is homotopically contained in B.
So A(X, F') < A(B, F'). This implies that (F, @) has no Thurston obstructions
if and only if A(B, F') < 1. It follows from Lemma 6.6.2 and Theorem 6.6.3
that (f, P) has no Thurston obstructions if and only if A(Y, f) < 1.

3. The ‘sufficiency’ follows from Theorem 6.6.3 and 6.6.4. We just prove
the ‘necessity’. We may assume that (F, Q) has no Thurston obstructions
by Theorem 6.6.3. It follows immediately A(B,F) < 1 and A* = (. Let
¥, be a (h,, P,)-stable multicurve for » € A = [1,n]. By homotopic defor-
mations, we may assume that each curve of ¥, is contained in the piece S,.
Let Gp(2q, -+, X,) be the (F, Q)-stable multicurve generated by ¥y, - -+, 3,.
Again by Theorem 6.6.4, for each v € A,

)\(Zy,hy) S )\(GF(El, . ,Zn),F)pV < 1.

So (hy, P,) has no Thurston obstructions for each v € A. O
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6.7 Surgery part II

The section is a sketch of Cui-Tan’s work [CT1], with slight modifications.
In the pervious section, we call (F, Q) a repelling system of (f, P). In this
section, to begin with, we give a more general definition of repelling systems:

Definition 6.7.1. We say that a map H : U — V is a repelling system, if

e Both U and V are surface puzzles, with U € V;

e The map H maps every U-piece U properly onto a V-piece V as a
quasireqular map;

e The orbit {H"(c);n > 0} of every critical point ¢ of H is disjoint from
the boundary of U.

Notice that in the definition, we don’t require that H(U) = V.

For example, a polynomial-like map is a repelling system.

Let C(H) be the critical set of the repelling system H : U — V, the
postcritical set P(H) is defined as the closure of {H"(c¢) € V;c € C(H),n >
1}. A marked set of the repelling system H : U — V is a compact set
M C V such that HM NU) C M and M — P(H) is a finite set. We will
use H : (U, M) — (V, M) to denote a marked repelling system. If there is no
confusion, the marked repelling system H : (U, M) — (V, M) is also denoted
by (H, M).

Definition 6.7.2. We say that two marked repelling systems Hy : (Uy, M) —
(V1, M) and Hy : (Ug, M) — (Vao, My) are q.c-equivalent if there is a pair
of quasiconformal homeomorphisms ®, ¥ : Vi — Vs, such that

[ ) \I/(Ul) = UQ, \If(Ml) == MQ,'

o U s isotopic to @ rel OV, U My;

e Do H =HyoV.

In this case, we say that (Hy, M;) is q.c-equivalent to (Ha, Ms) via (®, V).

Let H : (U, M) — (V, M) be a marked repelling system. We say that a
U-piece U is of disk type, if one boundary curve of U bounds a disk Ay such
that U C Ay C V and Ay contains at most one point in M.

Let Uy the union of all disk type U-pieces. A repelling system H; :
(Uy, My) — (V1, M) is called a sub-marked repelling system of (H, M), if
U, is the union of some U-pieces, V; is the union of some V-pieces, and
My =ViNM.

Lemma 6.7.1. Let H : (U,M) — (V,M) be a marked repelling system
and Hy : (U, My) — (V1, My) be a sub-marked repelling system of (H, M),
with U — Uy C Ug. Then (H, M) is q.c-equivalent to a holomorphic marked
repelling system if and only if (Hy, M) is q.c-equivalent to a holomorphic
marked repelling system.
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Proof. Suppose that (H, M) is q.c-equivalent to a holomorphic marked re-
pelling system via (®, V), then (Hi, M;) is q.c-equivalent to a holomorphic
marked repelling system via (®|v,, V]v,).

On the other hand, suppose that (Hj, M;) is q.c-equivalent to a holo-
morphic marked repelling system via (®1, V). We first extend ®; to a qua-
siconformal map ® : V. — ®(V) C C. Then we define a qusiconformal
homeomorphism ¥ : V — &(V) isotopic to ® rel OV U M, as follows:

Given a V-piece V, if V is a disk containing at most one point in M, then
we choose a closed disk V' such that VN U eV ' e Vand V N M =V M.
By Measurable Riemann Mapping Theorem, there is a q.c homeomorphism
v : V' — &(V’') with Beltrami coefficient:

fp(2) = Z Xu(2)paor(2),

vcvnu

where the summation is taken over all U-pieces contained in V. We further
require that ¢(p) = ®(p) if V contains a marked point p € M.
We define a quasiconformal map ¥ : V' — ®(V') by

d(2), z € dV,
U(z) = € ¢(2), zeV’,
q.c interpolation, =z €V —V'.

Now, suppose that V' is either an annulus or #9(V)+#(V N M) > 3. Let
U (V') be the collection of all (U — Uy )-pieces that are contained in V. Notice
that for Uy, Uy € U(V), either Ay, N Ay, = 0 or one of Ay, contains another.
We denote all components of UyeyvyAu by {D;}iea, , where Ay is an index
set induced by V. We thicken each D; a little bit along the boundary dD; to

get a larger disk U;. Take a quasiconformal homeomorphism ¢; : D; — (D;)
(here, we set ¢» = Wy if V.C Vyand ¢ = ® if V. C V — V) such that

po(2) = Y xe(2)paor(2).
U\V)such,

We further require that ¢;(p) = ®(p) if D; contains a marked point p € M.
Now, we define

¢(2); PSS V — UiEAvUi7

U(z) = < ¢i(2), z€ Dj,ie Ay,
q.c interpolation, z € Ujen, (U; — D;).
In this way, we can construct a quasiconformal map ¥ : V — &(V),

isotopic to ® rel OV U M. One may verify that (H, M) is q.c-equivalent to a
holomorphic marked repelling system via (¢, ). O
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Let (f, P) be a non-parabolic map with n,(f) > 0, and (F, Q) the marked
repelling system of (f, P) defined in Section 6.6.1.

Theorem 6.7.1. (f, P) is q.c-equivalent to a rational map if and only if (F, Q)
18 q.c-equivalent to a holomorphic marked repelling system.

Proof. Suppose that (f, P) is q.c-equivalent to a rational map (R, M) via
(¢o, 1), then we can construct a sequence of quasiconformal maps ¢,,n > 0
such that R¢,.+1 = ¢, f and ¢, is isotopic to ¢,q rel f7"(P U N), where N
is a neighborhood of all attracting cycles of (f, P) in P;. By the construction
of the repelling system F : (E,Q) — (S,Q), when n is large enough, C —
S C f7™(N), thus ¢,.1 and ¢, are identical on the boundary 0S. We set
O = ¢uls, U = ¢py1]s for such large n. Then (F, Q) is q.c-equivalent to the
holomorphic marked repelling system R|yg) : (V(E), ¥(Q)) — (V(S), ¥(Q))
via (@, V).

Sufficiency. It follows from [CT1]|, Proposition 2.4. O

Theorem 6.7.2. Suppose that (f, P) is a quasiregular map, then

1. If (F,Q) is a disk-covering, then (f, P) is q.c-equivalent to a rational
map. This rational map is unique up to Mdobius conjugation.

2. If (F,Q) is an annular-covering, then (f, P) is q.c-equivalent to a ra-
tional map (R, M) if and only if (Y, f) < 1. The rational realization (R, M)
15 unique up to Mdobius conjugation.

3. If (F, Q) is a complex-covering, then (f, P) is q.c-equivalent to a rational
map if and only if N}, f) < 1 and for each k € A, (hg, Py) is q.c-equivalent
to a rational map.

Proof. 1. 1f (F, Q) is a disk-covering, then all E-pieces are of disk type. It fol-
lows from Lemma 6.7.1 that (F, Q) is q.c-equivalent to a holomorphic marked
repelling system. By Theorem 6.7.1, (f, P) is q.c-equivalent to a rational map,
say (R, M). The uniqueness of the rational realization follows from Lemma
6.9.2 below and the fact that J(R) has zero Lebesgue measure.

2. Let E4 be the union of all E-pieces E which are contained essentially
in the S 4-pieces (here, ‘essentially’ means that E separates the two boundary
curves of some S 4-piece). One may verify that E4 € S4 and each E 4-piece
is mapped properly onto some S 4-piece. Let G = F|g,, then G : E4 — Sy is
a repelling system.

One may check that B is also a stable multicurve for G : E4 — S4, with
AB,G) = X\B, F). Since A\(B, F) < 1, it follows from Lemma 6.2 in [CT1]
that G : E4 — S, is q.c-equivalent to a holomorphic repelling system. Notice
that each (E — E,)-piece is of disk type, we deduce by Lemma 6.7.1 that
(F, Q) is q.c-equivalent to a holomorphic marked repelling system.
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By Theorem 6.7.1, (f, P) is q.c-equivalent to a rational map, say (R, M).

The uniqueness of the rational realization follows from Lemma 6.9.2 and
the fact that J(R) has zero Lebesgue measure.

3. The ‘necessity’ part is essentially the same as the proof of ‘necessity’ of
Theorem 6.4.1 (See Section 6.4.1). The ‘sufficiency’ part is essentially due to
Cui Guizhen and Tan Lei [CT1|. Even if they deal only with maps without
rotation domains, their proof applies equally well to our situations. For more
details, one may refer Cui-Tan’s paper ([CT1], Section 7 ‘Proof of Theorem
5.4 for a cycle of complex pieces’ and Section 8 ‘Proof of Theorem 5.4") [

6.8 Proof of Theorem 6.1.2, the first two parts

Let (f, P) be a non-parabolic map. Notice that if (f, P) itself is a Siegel map
or a Thurston map, then Theorem 6.1.2 follows immediately (We may take
' = (), and the resulting map as (f, P) itself). If (f, P) is a Herman map
or a non-parabolic map without rotation annulus, then Theorem 6.1.2 follows
from Theorem 6.2.1 and Theorem 6.5.1.

So in the following, we need only consider the case when n4(f) >
0,nrp(f) > 0 and nra(f) > 0. By Theorem 6.5.1, there is a (f, P)-stable
multicurve Ty, and finitely many branched coverings (hy, Py),k € A, each is
either a Herman map, or Siegel map, or Thurston map, such that

e (f, P) has no Thurston obstructions if and only if A(I'y, f) < 1 and for
each k € A, (hy, Py) has no Thurston obstructions.

e (f, P) is q.c-equivalent to a rational map if and only if A(T, f) < 1 and
for each k € A, (hy, Py) is q.c-equivalent to a rational map.

Suppose that there are exactly n Herman maps in the resulting maps.
We may relabel them such that (hy, Py),- -, (hyn, P,) are Herman maps. By
Theorem 6.2.1, for each k € [1,n], there is a decomposition

Dec(hk,Pk):< @ (hk,j,Pk,j)) ;

jGAkUAZ

such that: (hg, P;) has no Thurston obstructions if and only if A\(Xg, hy) < 1
and for each j € Ay, (hy;, Py ;) has no Thurston obstructions; (hg, Py) is q.c-
equivalent to a rational map if and only if A\(Xg, hi) < 1 and for each j € A,
(hi,j, Pr ;) is q.c-equivalent to a rational map.

Now let (F,Q) be the repelling system of (f, P) defined as in Section
6.6.1. We may assume that for each k € [1,n], each curve of ¥; is con-
tained in the S-piece Si. In this way, ¥, can be considered as a multic-
urve of (F,Q). We use ¥i,---,%, to generate a (f, P)-stable multicurve
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Gp(X1, -+ ,%,) (see Section 6.6.2). Let I'y = 7o Gp(Xy,---,%,), then
I'y is a (f, P)-stable multicurve. We decompose I'; into two submulticurves

I'1o :== {v € I'1;v is homotopic to a curve in I'y} and I'1; = I’y — T’y . One
may check that I'y  is (f, P)-stable and the (f, P)-transition matrix W; (resp.
Wi, Wia) of I'y (resp. Iy, I'1 1) satisfies:

o WI,O *
W= < O Wiy > '

Thus we have \(I'y, f) = max{ (', f), A\(T'11, f)}.
Define I' =Ty UT'; ;. Then I' is a (f, P)-stable multicurve and

AT, f) = max{ (Lo, f), M1, f)} = max{\(Lo, f), M(I'1, f)}.
By Theorem 6.6.2 ,

MGp(X, - 5), F) = AT, f),
)\(BF(El, ce 7En),F) = )\(WOBF(El,' . ,Zn),f)

Since mo Bp(Xy, -+ ,%,) is homotopically contained in I'g, we have A(w o
Br(X1,--, %), f) < AT, f). It follows from Theorem 6.6.4 that

AT, f) = max{/\(Fo,f), NS ), ”\"/)\(En,hn)}.

This implies A\(I', f) < 1 if and only if A\(I'y, f) < 1 and for each k € [1,n],
)\(Ek, hk) < 1.

The proof is completed if we take the (f, P)-stable multicurve as I" and
the resulting maps as (hy j, P ), k € [1,n],7 € Ay and (hg, Py), k € A—[1,n].

6.9 Analytic part

In this section, we will discuss the rational-like maps, renormalizations of
rational maps and prove the analytic part of Theorem 6.1.2.

6.9.1 Rational-like maps

A rational-like map g : U — V is a proper and holomorphic map between
two multi-connected domains such that U ¢ V C C and the complementary
set C — X of X € {U,V} consists of finitely many topological disks. In our
discussion, we always assume V # C and the degree of ¢ is at least two. The
filled Julia set is defined by K(g) = (),~; 9~ "(V), the Julia set is defined by
J(g) = 0K(g). The filled Julia set K(g) is not necessarily a full set. This
implies that J(g) is not necessarily connected even if K (g) is connected.
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Two rational-like maps ¢g; and gy are hybrid equivalent if there is a quasi-
conformal conjugacy ¢ between g; and g, defined in a neighborhood of their
respective filled Julia sets, such that d¢ = 0 on K(g;). We call ¢ a hybrid
conjugacy between g; and gs. These definitions are simply the generalizations
of Douady-Hubbard’s definitions of polynomial-like maps.

The following is an analogue of Douady-Hubbard’s straightening theorem
for polynomial-like maps.

Theorem 6.9.1. (Straightening Theorem) Let g : U — V be a rational-
like map of degree d > 2, then

1. The map g is hybrid equivalent to a rational map R of degree d.

2. If K(g) is connected, then g is hybrid equivalent to a rational map R of
degree d, which is postcritically finite outside ¢(K(g)). Here ¢ is the hybrid
conjugacy. Such R is unique up to Mobius conjugation.

Remark 6.9.1. 1. A rational-like map g : U — V can be hybrid equivalent
to a rational map of degree greater than d.

2. Fven if K(g) is connected, the rational-like map g can be hybrid equiv-
alent to a rational map of degree greater than d, which is postcritically finite
outside ¢(K(g)). Such example can be found in the family of rational maps:
fa(z) = 2"+ A/z",n > 3, where X\ is a complex parameter. We denote by B)
the immediate attracting basin of co. We assume that each critical point of
the form X/X has an orbit meeting an attracting cycle other than co. In this
case, the Julia set is connected since the map is postcritically finite, and fy is
strictly expanding on OBy. There is an annular neighborhood A of OB, such
that fila : A — fa(A) is a proper map of degree n. (Such annulus can be
chosen as the union of puzzles pieces that intersect with 0B), see the previous
chapter). The rational-like map f\|a can be hybrid equivalent to the power
map z +— 2", whose degree is lower than that of fy.

3. If K(g) is connected and C — K(g) consists of two components, then
there are two annuli U', V' such that K(g) C U C V' C V and the restriction
glur : U — V" is a rational-like map. One may show that K(g) is a quasicircle
by quasiconformal surgery.

Proof. 1. The proof is a standard surgery procedure. By shrinking V' a little
bit, we may assume that each boundary curve of U and V is a quasicircle. We
then extend ¢ : U — V to a quasiregular branched covering G : C — C such
that G is holomorphic in C—V and G maps each component Uy, of C— U onto
a connected component V; of C — V, with degree equal to deg (g|ay, ). Such
extension keeps the degree. By pulling back the standard complex structure
oo on C —V via G, we get a G-invariant complex structure
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o {(Gk)*wo), in GHC-V), k=1,
0o, in K(g).

The Beltrami coefficient ;1 of o satisfies pi|x(y) = 0 and ||pl|c < 1. Let ¢
solve the Beltrami equation d¢ = ud¢. Then R = ¢ o G o ¢! is a rational
map and ¢ is a hybrid conjugacy between g and R.

2. By a hole-filling process, we can find a suitable restriction gy : U' — V'
of g with K(g) € U’ € V' € V such that

a). All postcritical points of g|y7 in V'’ are contained in K(g).

b). Each connected component of V/ — U’ is either an annulus or a disk.

Notice that such V'’ can be chosen arbitrarily close to the filled Julia set
K(g). (To see this, one may replace V' by g=*(V’) for some large k, and a),
b) still holds.)

In this way, each component U; of C — U’ either is contained in V' or
contains a unique component V; of C — V'. In the former case, we mark a
point p € U; and get a marked disk (U;, p); in the latter case, we mark a point
p € V;, and get two marked disks (V},p) and (U;,p). We extend g|y to a
quasiregular branched covering G : C — C such that

a). For each component U; of C — U’, G maps the marked disk (U;, p) to
the marked disk (V4, ¢), where V}, is the component of C — V’ whose boundary
is g(0U;). We require that G(p) = g and p is the only possible critical point,
with local degree equal to deg (g|su, ).

b). We further require that G is holomorphic in C — V7.

By pulling back the standard complex structure on C— V', we can get a G-
invariant complex structure whose Beltrami coefficient u satisfies ji|g () = 0
and ||p|/sc < 1. Let ¢ solve the Beltrami equation d¢ = pdé. Then f =
poGo¢p~! is arational map, postcritically finite outside ¢(K(g)), as required.

To prove the uniqueness, we need investigate some mapping properties of
R, a rational map of degree d, to which g|y+ is hybrid equivalent via ¢, and
postcritically finite outside ¢(K(g)). We assume V' is sufficiently close to
K(g) such that ¢ is defined on V’. Then g|y induces a suitable restriction
Rlswn. Let X; be the collection of all components of C — ¢(K(g)) which
intersect with the boundary curves of ¢(V’) and X, be the collection of all
components of C—¢(K (g)) which intersect with the boundary curves of ¢(U").
It’s obvious that X; C AX,. Since the degree of R is equal to d (This is very
important), we have that

{U is a component of R1(X); X € X1} = A

Thus for each X € A,, R(X) € X,. This implies that each X € A, is
eventually periodic under the map R. Let X € X, be a periodic element, with
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period p. Since R is poscritically finite outside ¢(K(g)), RP|x : X — X is
proper and each critical point in X has finite orbit. Thus RP|x is conformally
conjugate to z — 2%, where d = deg(RP|x) > 2 (For a proof of this fact, see
[DH2] Lemma 4.1). It follows that for all X € &3, the proper map R|x : X —
R(X) has only one possible critical point, which is eventually mapped to a
superattracting cycle. Base on these observations, we are now ready to prove
the uniqueness part of the theorem.

Suppose that R; and R, are two rational maps of degree d, both are hy-
brid equivalent to g|y» and poscritically finite outside ¢1(K(g)) and ¢2(K(g)),
respectively. Here, ¢; is a hybrid conjugacy between g|y and R;, i = 1,2.
We assume that V" is sufficiently close to K(g) such that ¢; is defined on U’.
Then g|y induces two restrictions R;|4, ), = 1,2 and a hybrid conjugacy
¢ = ¢ 0¢; " between them. One can construct a pair of quasiconformal maps
0o, 1 : C — C such that

a). oo Ry = Ryo ¢, on C.

b). o, 1 are isotopic rel ¢1(K(g)) U Pr, and ¢ole, @) = ©1lsyw) =
¢’¢1(U )

¢). o, 1 are holomorphic and identical in a neighborhood N of all super-
attracting cycles of Ry in C — ¢, (K (g)).

By Thurston algorithm, there is a sequence of quasiconformal maps
{¢n,n > 0} such that ¢, o Ry = Ry 0 ¢,41 and ¢, is isotopic to ¢, rel
Ry™(¢1(U') U Pg, U N). The quasiconformal map ¢, satisfies dp,, = 0 on
61(K(g)) U R{™(N). The sequence {p,} has a limit quasiconformal map
¢ = lim ,,. Since the Lebesgue measure of C — ¢1(K(g)) U R;™(N) tends to
zero as n — 00, the map ¢ satisfies dp = 0 outside a zero measure set. It is
in fact a holomorphic conjugacy between R; and Rs. O]

6.9.2 Renormalizations of rational maps

Let f be a rational map. Its Julia set, critical set and postcritical set are
denoted by J(f), 2 and Py, respectively. Let P4 be the accumulation set of
Py. A Julia component is a connected component of J(f).

We say f? is renormalizable if there exist two multi-connected domains
U,V such that fP : U — V is a rational-like map of degree at least two,
and the filled Julia set K (f?|y) is connected. The triple (f?,U,V) is called
a renormalization of f. A renormalization (fP,U,V) is of annular type if
C — K(f?|y) consists of two components (In this case, K (f?|) is necessarily
a quasicircle and we may assume that U,V are annuli, see Remark 6.9.1). By
Theorem 6.9.1, the rational-like map f? : U — V is hybrid equivalent to a
unique rational map R via some quasiconformal map ¢, such that deg(R) =
deg(fP|y) and R is postcritically finite outside ¢(K (f?|y)). Such R is called
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the canonical straightening map of f?: U — V.
In this section, we will prove:

Theorem 6.9.2. (Renormalization) Let f be a rational map of degree at
least two. Suppose that J(f) N Py is contained in finitely many Julia compo-
nents and P; contains attracting cycles. Then f admits finitely many non-
annular type renormalizations (fPi,U;, V;),i € A (A is a finite index set) which
satisfy

1. For everyi € A, V; contains no attracting cycles of [ in Py.

2. The Julia set J(f) has zero Lebesque measure (resp. carries no in-
variant line fields) if and only if for each i € A, J(fP!|y,) has zero Lebesgue
measure (resp. carries no invariant line fields).

Remark 6.9.2. Theorem 6.9.2 also holds when f is a rational-like map.
The proof is based on the following ([McM1]):

Theorem 6.9.3. (Ergodic or attracting) Let f be a rational map of degree
at least two, then either

e J(f) = C and the action of f on C is ergodic, or

e the spherical distance d(f™(z), Pr) — 0 for almost every z € J(f) as
n — oo.

Proof of Theorem 6.9.2. Let A(f) be the union of all attracting cycles of f in
P;. For each point 2 € A(f), there is a disk neighborhood U’ of z such that

1. 9U, is a quasicircle, and U, N Py = (.

2. f~4(C — Usea(nUz) is contained in the interior of C- U.eanUs.

Let So = C — U.eanUz, P = Py. For n > 1, we define the surface puzzle
S,, inductively in the following way:

Sy =Ho [ (Sp-1) == (Hof)"(So).

Since J(f) N Py is contained in finitely many Julia components, the same
proof as Lemma 6.5.1 yields that when n is large enough, S,, is of constant
complexity. We set S = S,, for such large n and E = f~(S). Let Sp, S, Sc
be the union of all disk pieces, annular pieces and complex pieces of S, re-
spectively.

If Sc = 0, then each S-piece is either of disk type or of annular type.
In this case, Py N J(f) is a finite set. This implies that the map f has
neither indifferent cycles nor rotation domains. So the orbit of every point
z € PrN J(f) meets a repelling cycle. It follows that the Julia set J(f) has
Lebesgue measure zero. The conclusion follows if we set A = ().
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If S¢ # 0, then each Sc-piece is eventually periodic under the map f,.. We
list all f,.-periodic cycles of Sco-pieces in the following:

Sy fu(Sy) o fHS) = f(S,) = S0, 1<v <,

where n is the number of f,-periodic cycles, S, is a representative in the v-th
cycle and p, is the period of the piece S,. For i € [1,n], let V; = S;, and U; be
the unique component of f~7i(.S;) that is parallel to V; (Recall that ‘parallel’
means each component of V; — U; is either a disk containing at most one point
in P, or an annulus in C — P containing a boundary curve of V;). Then
(fPi,U;,V;),i € [1,n] are the renormalizations of f. (To see this, one should
prove that deg(f?*|y,) > 2, this follows from the fact A(O(V;), fP|v,) < 1, with
the same argument as Lemma 6.2.4.)

We claim that

The Lebesque measure of J(f) is zero if and only if for each i € [1,n], the
Lebesgue measure of J(fP:

Let ¢ be the collection of all E-pieces that are parallel to the Sc-pieces.
Eap = {D; D is an E-piece contained in Sy U Sp U (S¢ — Uges E)}. Each
element F € £4p contains at most one point in the postcritical set Py. Let
E=EU&4p. For each F € &, the boundary of F is contained in the Fatou
set F'(f).

Notice that J(f) C N>/ ¥ (UreeE), we can define an itinerary map by:

iter : {J<f> - &
Nz (Bo(2), Ey(2), EBay(2),--).

;) s zero.

where EJ,(z) is the unique element in € that contains f*(2).

For simplicity, we denote J; = J(f?|y,) for i € [1,n]. Given a point
z € J(f) with itinerary iter(z) = (Eo(z), E1(2), E2(2),--+), one can verify
that 2 € s f7(J1U---UJ,) if and only if there is an integer N (depending
on z) such that for all k > N, Ey(z) € E. Moreover, -, f*(J1U---U J,)
contains all possible parabolic cycles, Cremer cycles and the boundaries of

rotation domains, together with their preimages.

This implies that if z € J(f) — Upso f"(J1 U---UJ,), then there exists
a sequence of integers {n;;j > 1} such that E,, € Esp for all j > 0. We
consider the sequence {Fj(z);j > 1}, where Fj(z) = E, (). It contains a
subsequence {F},(z);i > 1} that satisfies either of the following three cases:

1. F;,(z)N Py =0 for all i > 1.

2. Forall i > 1, Fj,(2) N Py # 0 and Fj,(z) contains a point in Py which
is contained either in the Fatou set or in the grand orbit of a repelling cycle.

3. Forall i > 1, Fj,(2) N Py # ) and Fj,(z) contains a point in Py whose
orbit accumulates at P N J(f).
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In the first two cases, one may easily check that limsup d(f™(z), Pf) > 0.

In the last case, the set {F},(2);¢ > 1} can be rewritten as {E,--- , E,.},
which is a finite subset of £4p. Since each Ej is contained either in a disk
component of S¢ — Ugeg, £ or in a Sp-piece, there is an integer M > 0 such
that f~"(E,U---UE,,)NP; = 0. If limsup d(f™(z), P;) = 0, then there exists
a sequence of integers {/;} such that d(f%(z), (E;U---UE,) N P;) — 0 as
j — oo. It follows that f%=(z) € f~M(E,U---UE,,) for all large j. Since the
boundary of each component of f~(E,U- - -UE,,) is contained in the Fatou set
F(f), there is an integer £(z) > 0 such that d(f%~"(z), P;) > (z) for all large
J, which is contradiction. So in this case, we also have lim sup d(f"(z), Pf) > 0.

Thus, for any z € J(f) — Upsof "(Jy U--- U J,), we have

limsup d(f"(z), Pf) > 0.

It follows from Theorem 6.9.3 that the Lebesgue measure of J(f) —
Ugsof *(J1 U -+~ U J,) is zero. This means Leb(J(f)) = 0 if and only if
for each k € A, Leb(J;) = 0.

Now we set A as the indices i € {1,...,n} such that the renormalization
(fP,U;, V;) is not of annular type.

1. Notice that the Julia set of an annular type renormalization is a quasi-
circle, whose Lebesgue measure is zero. It follows that Leb(J(f)) = 0 if and
only if for each k € A, Leb(J;) = 0.

2. Suppose that J(f) carries an invariant line field. That is, there is a
measurable Beltrami differential p supported on a positive measure subset E
of J(f) such that f*u = u a.e, and |u| = 1 on E. Let ux = ply, for k € A.
It follows from 1 that there exists ¢ € A such that Leb(J, N E) > 0, then
fte is an invariant line field for fP¢|y, since (fP¢|y,)*pe = pe. On the other
hand, suppose that p, is an invariant line field for f?¢|y,, then the Beltrami
differential defined by p = (f*)*ue on f=%(Jy),k > 1 is an invariant line field
for f. O

Remark 6.9.3. (Hyperbolic rational maps) It follows from Theorem 6.9.1
and Theorem 6.9.2 that: For every hyperbolic rational map f, either

e cach Julia component is a single point or a quasicircle, or

o [t admits finitely many rational maps fi,--- , f, as renormalizations,
and for each 1 <1i <n, 3 < #Py, < 00.

Let f be a rational map of degree d that satisfies the condition of Theorem
6.9.2. Here is a question concerning the number #A of non annular type
renormalizations of f, posed by Cui Guizhen and Tan Lei:

Question 6.9.1. (Cui-Tan) Is there a constant C' = C(d) depending on d,
such that #A < C(d)?
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The answer is yes if f is a polynomial. In fact, we can take C(d) =d — 1
in the polynomial case. However, for general rational maps, we don’t know
much.

6.9.3 Herman-Siegel renormalization

In [Sh1], Shishikura developed a surgery which transfers a rational map with
Herman rings into finitely many rational maps with Siegel disks. These re-
sulting maps can be considered as the renormalizations of the original map.
However, we will see in the following that this kind of renormalization does
not fit our definition in Section 6.9.2.

To begin with, we restate the ‘Herman-Siegel surgery’ following Shishikura.
Let f be a rational map with Herman rings. For our purpose, we assume that
PN J(f) is contained in finitely many Julia components (This assumption
enables us to obtain a stable multicurve).

Let A be the collection of all Herman rings of f. For each A € A, we
choose an analytic curve y4 C A such that y4 N Py = 0 and f(v4) = vfa).-
Let Ty = {ya; A € A}, P = P;UU4c4A. By the same argument as in Lemma
6.2.1, we can use Iy to generate a (f, P)-stable multicurve I" such that:

1. For any v € T, f(v) e TUT,.

2. T represents all homotopy classes of non-peripheral curves of
UkZlf_k(Fg) — Ty in C-P.

Here, we follow the notations in Section 6.2. Recall that S is the set of all
closures of connected components of C —U(I'UTYy), £ is the set of all closures
of connected components of C — Uf~1 (' UTy). For each S € S, let Eg € &
be the unique &-piece that is parallel to S. We define a map f, : § — S
by f.(S) = f(Es). Since there are finitely many S-pieces, every S-piece is
eventually periodic under the map f,.

We list all periodic cycles of S-pieces in the following:

SV = f*(SV) == ffy_l(su) = ffy<su) = Szu 1 <v § n,

where S, is a representative of the v-th cycle and p, is the period of S,,.

For i € [1,n], let V; = S; and U; be the unique component of f~7:(S;) that
is contained in S; and parallel to S;. The triple (f?i, U;, V;) can be considered
as a renormalization of f. In general, U; is not contained in the interior of V;
(For example, if there is a boundary curve v € 9(V;) such that v € T'g, then ~
is necessarily a boundary curve of U;). For this reason, we call (f?,U;, V;) a
Herman-Siegel (HS for short) renormalization of f.

We should show that deg(f?!|y,) > 2 for all ¢ € [1,n]. If deg(f?|y,) =1
for some i € [1,n], then #9(U;) = #0(V;). There are two possibilities:
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a). 9(V;)—Tg # 0. In this case, for each curve v € 9(V;) — Ty, (fPi]r,) " (7)
is a curve in O(U;) — I'y. Conversely, each curve o € 9(U;) — I'y is homotopic
to a curve in 9(V;) — I'g. Thus 9(V;) — I'y contains a Levy cycle of fPi. But
this contradicts Theorem 6.4.2.

b). O(V;) — Ty = 0. In this case, U; = V; and f(U;) = U;. This implies
that U; is contained in the Fatou set of f, which is again a contradiction.

So in either case, deg(f?i|y,) > 2.

The filled Julia set of the HS renormalization (f?',U;, V;) is defined by
K(fP0,) = Npso(fP0.)#(U;), and the Julia set is defined by J(f7i|y,) =
K(f?|y,) N J(f) (Notice that K (f?|y,) is not a reasonable definition of the
Julia set because 0K (f?"|y,) may contain a curve in the Herman ring of f).
One may check that K (fP|y,) is connected. Moreover, if 9(V;) NTy = (), then
K(fPy,) is contained in the interior of V; and J(f|y,) = OK(f?|v,)-

We say (f?i,U;,V;) is hybrid equivalent to a rational map R, if there is
a qusiconformal map ¢ defined in a neighborhood N of K (fPi|y,) such that
N C U;, ¢ = 0 on K(f?|y,) and ¢ o fP|y = Ro ¢. Notice that ON may
intersect with 0K (f7|y,).

Theorem 6.9.4. (HS Renormalization) Let f be a rational map with Her-
man rings, assume that Py N J(f) is contained in finitely many Julia compo-
nents. Let (f?",U;,V;),i € [1,n] be all the HS renormalizations defined as
above. Then

1. For each i € [1,n], the HS renormalization (f*",U;, V;) is hybrid equiv-
alent to a rational map R; of degree deg(f?i|y,) which is postcritically finite
outside ¢(K (fPi|y,)). Here ¢ is the hybrid conjugacy. Such R; is unique up
to Mobius conjugation.

2. The Julia set J(f) has zero Lebesque measure (resp. carries no invari-
ant line fields) if and only if for each i € [1,n], the Julia set J(f?:
Lebesgue measure(resp. carries no invariant line fields).

v,) has zero

The proof of the first statement follows from the same line as Theorem
6.9.1, the proof of the second statement is essentially the same as the proof of
Theorem 6.9.2. We omit the details here.

6.9.4 Q.c-equivalence vs Mobius conjugation

Lemma 6.9.1. (Q.c-equivalence implies g.c-conjugacy) Let (f, P) and
(g, Q) be two non-parabolic rational maps, and J(f) # C. If (f, P) and (g, Q)
are q.c-equivalent via a pair of q.c maps (po, ¢1), then they are q.c conjugate.
That is, there is a quasiconformal map ¢, holomorphic in the Fatou set F(f),
such that ¢f = go.
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Proof. By the definition of q.c-equivalence, ¢y and ¢; are holomorphic and
identical in the union of all rotation domains R of f (if any) and a neighbor-
hood Ny of all attracting cycles in P (if any).

If f has a superattracting cycle (zo, 21, -+, 2,-1) C Py — P, then we can
modify ¢g and ¢; such that they are holomorphic and identical near these
superattracting cycles. The modification is as follows:

First, notice that for any ¢ € (29, 21, , 2p—1), ¢o({)(= ¢1(¢)) is a super-
attracting point of g. We can choose a neighborhood U, of ¢ (resp. V() of
®0(C)), a Bottcher coordinate Bg :Ue — D (resp. B oy Vi) — D), such
that the following diagram commutes:

B! Bio©
Ue ——= D~ Vo (0)

fl izHZdC J{g

Ur¢) 7= D <7 Va0
Bf(g) b0 (f(¢))

where d; is the local degree of f at (. By a suitable choice of the neighborhoods
U; and a suitable choice of the Bottcher coordinates, we can modify ¢g, ¢;
such that ¢oly, = ¢1lv, = (BZO(O)_1 o Bg. A suitable modification elsewhere
guarantees ¢gf = g¢;.

In this way, ¢y and ¢; can be made holomorphic in a neighborhood Ng4 of
all superattracting cycles in Py — P} (if any). Then we construct a sequence
of q.c maps {¢,;n > 0} by ¢f = gpny1 so that ¢, is isotopic to ¢,i1
rel f="(P U N4 U Nga). The sequence ¢, has a unique limit ¢, which is
holomorphic in U,>of " (RU N4 U Nga) = F(f), as required. O

Lemma 6.9.2. Suppose that the non-parabolic map (f, P) is q.c-equivalent to
a rational map (R, Q) with J(R) # C . Then the rational realization (R, Q)
is unique up to Mdbius conjugation if and only if J(R) carries no invariant
line field.

Proof. 1t’s obvious that if J(R) carries an invariant line field, then the rational
realization (R, () is not unique up to Md&bius conjugation. Conversely, let
(R1, Q1) be another rational realization of (f, P). Then it follows from Lemma
6.9.1 that (R, @) and (R, Q1) are q.c conjugate via some q.c map ¢, which is
holomorphic in F(R). This implies R*j15 = pg on J(R). Since J(R) carries
no invariant line field, p, = 0 almost everywhere on C. This implies that ¢ is
a Mobius transformation. O

Proof of the analytic part of Theorem 6.1.2. It follows from Theorem 6.9.2
Theorem 6.9.4 and Lemma 6.9.2. U
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Q.c-equivalence is a special case of c-equivalence. It follows that the rigid-
ity of c-equivalence always implies the rigidity of q.c-equivalence.On the other
hand, c-equivalences between two non-parabolic rational maps without rota-
tion domains can always be promoted to q.c-equivalences, this is because the
pair of c-equivalences are holomorphic in a neighborhood of all attracting cy-
cles. For two non-parabolic rational maps with Siegel disks, to the author’s
knowledge, whether the promotion works depends on the boundary regularity
of the Siegel disks.

It’s known from Gaofei Zhang [Zh1]| that the boundary of every bounded
type Siegel disk of a rational map must be a quasicircle containing at least
one critical point.

In [Zh2|, Zhang showed that given a rational map R with a fixed Siegel disk
and postcritically finite outside this Siegel disk, then the Lebesgue measure
of the Julia set J(R) is zero. He told the author that his method also works
for more general case:

Given a rational map R with Siegel disks, all with bounded type rotation
numbers and postcritically finite outside these Siegel disks, then the Julia set
J(R) has zero Lebesque measure.

Based on Zhang’s Theorems and Theorems 6.9.4, we have

Theorem 6.9.5. (Rigidity) Let (f, P) be a non-parabolic rational map with
rotation domains(i.e. Siegel disk or Herman ring), and the rotation number
of each rotation domain is of bounded type, then the Lebesque measure of the
Julia set J(f) is zero. Thus if two such rational maps are c-equivalent, then
they are conformally conjugate.

6.10 Applications

Besides of the independent interest, Theorem 6.1.2 enables us to extend
Thurston’s Theorem beyond postcritically finite cases, and give characteri-
zations of hyperbolic rational maps, and rational maps with rotation domains
(Siegel disks and Herman rings).

6.10.1 Characterization of hyperbolic rational maps

Theorem 6.10.1. (Cui-Tan [CT1], Jiang-Zhang [JZ]) Let (f,P) be a
non-parabolic map without rotation domains. Then (f, P) is c-equivalent to a
rational map (R, Q) if and only if (f, P) has no Thurston obstructions. The
rational map (R, Q) is unique up to Mobius conjugation.
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Remark 6.10.1. In fact, the family of non-parabolic rational maps without
rotation domains is slightly larger than the family of hyperbolic rational maps.
It is conjectured to be dense in the parameter space.

Proof. The proof here in fact follows from Cui-Tan’s original one [CT1]. If
(f, P) is a disk covering or annular covering, then the proof is done by The-
orem 6.6.5 and Theorem 6.7.2. Else, by the Decomposition Theorem, (f, P)
admits finitely many decompositions (hg, Py),k € [1,n] along some stable
multicurve I'. Since (f, P) has no rotation domains, all of these resulting
maps are Thurston maps. If (f, P) has no Thurston obstructions, then each
resulting map has no Thurston obstructions and the signature of its orbifold
is not (2,2,2,2) (Lemma 6.2.4). By Marked Thurston Theorem, all (hy, Py)
have rational realizations, so does (f, P). The uniqueness of the rational re-
alization of (f, P) follows from Lemma 6.9.2 the fact that any such rational
realization has a Julia set of zero Lebesgue measure. O

6.10.2 Characterization of rational maps with Siegel
disks

For rational maps with Siegel disks, Zhang [Zh2] proved the following:

Theorem 6.10.2. (Zhang) Let (f, P) be a non-parabolic map, with only one
rotation disk cycle which is of period one and has rotation number of bounded
type, and without rotation annulus. Then (f, P) is c-equivalent to a rational
map (R, Q) if and only if (f, P) has no Thurston obstructions. Moreover, the
Lebesgue measure of the Julia set J(R) is zero, and (R, Q) is unique up to
Moébius conjugation.

Zhang’s Theorem requires that the non-parabolic map has only one rota-
tion disk, and it is postcritically finite outside the rotation disk. It’s possible
to generalize Zhang’s Theorem to a more general setting without the assump-
tions of

e the postcritical finiteness outside the rotation disks, and

e the number of rotation disk cycles.

But for compensation, we usually need a separate condition for these ro-
tation disks.

For a non-parabolic map (f, P) with na(f) > 0, let A be the union of all
attracting cycles. The filled Julia set K of f is defined by

K; = {z € C;limsupd(f"(z), A) > 0},

where d(-, ) is the spherical distance. K is a compact subset of C.
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Theorem 6.10.3. Let (f,P) be a non-parabolic map, with na(f) >
0,nrp(f) > 0 and nga(f) = 0. Suppose that the rotation numbers of all
rotation disk cycles are of bounded type, and all rotation disks are contained
in different components of the filled Julia set Ky. Then (f, P) is c-equivalent
to a rational map (R, Q) if and only if (f, P) has no Thurston obstructions.
Moreover, the Lebesque measure of the Julia set J(R) is zero, and (R, Q) is
unique up to Mdbius conjugation.

Proof. By the Decomposition Theorem, (f, P) admits finitely many decom-
positions (hg, Py), k € [1,n]. Since different rotation disks are contained in
different components of the filled Julia set K, each resulting Siegel map has
only one rotation disk cycle, of period one and with bounded type rotation
number (Thus the number of these Siegel maps is ngp(f)). Then the conclu-
sion follows from the Decomposition Theorem, Thurston’s Theorem, Zhang’s
Theorem and Theorem 6.9.2. [

6.10.3 Characterization of rational maps with Herman
rings

As another application, we can give a characterization of a class of rational
maps with Herman rings, as follows:

Theorem 6.10.4. Let (f, P) be a non-parabolic map, with only one rotation
annulus cycle which is of period one and has rotation number of bounded
type, and without rotation disks. Then (f, P) is c-equivalent to a rational
map (R, Q) if and only if (f, P) has no Thurston obstructions. Moreover, the
Lebesgue measure of the Julia set J(R) is zero, and (R,Q) is unique up to
Moébius conjugation.

Proof. By the decomposition procedure, (f, P) admits finitely many decom-
positions (hg, Py), k € [1,n]. Two are Siegel maps and the rest are Thurston
maps. The theorem follows from the Decomposition Theorem, Thurston’s
Theorem, Zhang’s Theorem and Theorem 6.9.4. [

We can further generalize Thurston’s Theorem to rational maps with many
Herman ring cycles but satisfying ‘sperate configuration’.

Let (f, P) be a Herman map, A be the collection of all rotation annuli of
f. For cach A € A, we associate an analytic curve 4 such that v4 NPy =0
and f(va) = vp). Let Ty = {yva;A € A} We call T'y a (f, P)-invariant
curve system.
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Definition 6.10.1. (Sperate configuration) We say that a Herman map
(f, P) satisfies ‘sperate configuration’, if there is a (f, P)-invariant curve sys-
tem I'y such that for any two different rotation annuli A, and Ag, there is a
curve Yo € Ups1 f (L) that separates A, and Ag.

Theorem 6.10.5. Let (f, P) be a Herman map without rotation disk cycle
and the rotation numbers of all rotation annuli cycles are of bounded type.
Suppose (f, P) satisfies sperate configuration. Then (f, P) is c-equivalent to
a rational map (R,Q) if and only if (f, P) has no Thurston obstructions.
Moreover, the Lebesque measure of the Julia set J(R) is zero, and (R, Q) is
unique up to Mdébius conjugation.

Proof. By the decomposition procedure, (f, P) admits finitely many decompo-
sitions (hg, Py), k € [1,n]. The sperate configuration implies that each Siegel
map has only one rotation disk cycle, of period one and with bounded type ro-
tation number. The theorem then follows from the Decomposition Theorem,
Marked Thurston Theorem, Zhang’s Theorem and Theorem 6.9.4. O

6.11 No Thurston obstructions vs rational real-
1zation

In this section, we will exhibit many examples of non-parabolic maps which
have no Thurston obstructions but are not c-equivalent to rational maps. By
Theorem 6.10.1, such non-parabolic map necessarily has at least one cycle of
rotation domain. We first construct a Siegel map by mating two quadratic
Siegel polynomials and show that it has no Thurston obstructions but is not
c-equivalent to a rational map. Then we will use it to construct more such
non-parabolic maps by surgery.

We begin with the definition of the mating of two quadratic polynomials.
The notations here follow from [YaZ]. Let (©) denote the complex plane C
compactified by adjoining a circle of directions at infinity {oo-e?™:t € R/Z}
with the natural topology. Each f; = 22 + ¢; extends continuously to a copy
of ©;, acting as the squaring map z +— 2% on the circle at infinity. Gluing
the disks (©); together via the equivalence relation ~., identifying the point
00 - 2™ € (©), with co - e 2™ € (©),, we obtain a 2-sphere (©); U (©)5)/ ~eco-
The well-defined map f; U fo on this sphere given by f; on (©), is a degree 2
branched covering of the sphere with an invariant equator. We shall refer to
this map as the formal mating of f; and fs.

For any quadratic polynomial z — >z 4+ 22, we can conjugate it to the

normal form
21160 27160

e e
f9(2)222+09, Ccp = 5 (1— 5 >
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We may assume that € is an irrational number of bounded type. It’s known
that fy has a Siegel disk whose boundary is a quasicircle containing the critical
point 0. The mating f = fo U f_g is a Siegel map. Let Dy and D_y be two
rotation disks of f, where Dy (resp. D_gy ) inherits the complex structure of
the Siegel disk of fy (resp. f_g).

Lemma 6.11.1. The Siegel map (f,P) := (fo U f_9, Dy U D_g) has no
Thurston obstructions but is not c-equivalent to a rational map.

Remark 6.11.1. One the other hand, given two irrational numbers 61 and 6,
of bounded type, with 01 + 05 # 0 mod Z, Yampolsky and Zakeri [YaZ] proved
that the mating fg, U fo, is c-equivalent to a unique quadratic rational map up
to Mobius conjugation.

Proof. Let T be a (f, P)-stable multicurve. If T" is non-empty, then I" necessar-
ily consists of one curve v C C — Dy U D_g. Consider the annulus A bounded
by v and the boundary of the rotation disk Dy. The preimage f~1(A) is an
annulus B, and deg(f : B — A) = 2. One boundary curve of B is a figure
eight curve while the other boundary curve § of B is the preimage of ~, and
deg(f : § — 7) = 2. Since ¢ is homotopic to v in C — P, we have that
AL, f) = 1. Thus (f, P) has no Thurston obstructions.

If (f,P) is c-equivalent to a rational map, say (R,Q). Then (R,Q) has
three fixed points. Two fixed points are the centers of Siegel disks, with
multipliers e?™ —2m%  The third fixed point is necessarily a repelling
fixed point, since a quadratic rational map has at most two non-repelling
cycles. We denote the multiplier of the repelling fixed point by A. Then by
holomorphic index formula (|[M1]),

1 i 1 N 1
1 — 627ri9 1 — 6—27ri9 11—\

It follows that A = oo, which is a contradiction. O

and e

=1.

In the following, we will use the Siegel map (fyU f_s, DgUD_g) to produce
more non-parabolic maps without Thurston obstructions but not c-equivalent
to rational maps.

Theorem 6.11.1. Given nonnegative integers na, nrp,Ngra,d satisfying
na+ngp+2nga <2d—2, 1 <nra <d—2, ngp +nga > 2.

There exists a non-parabolic map (f, P) of degree d, such that

1. na(f) =na,nerp(f) = nrp,nra(f) = nra, and the rotation number of
each rotation cycle is of bounded type.

2. (f, P) has no Thurston obstructions.

3. (f, P) is not c-equivalent to a rational map.
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The idea of the proof of Theorem 6.11.1 is to glue some well-chosen rational
maps with the Siegel map (f, P) defined as in Lemma 6.11.1. To obtain these
rational maps as candidates, we need a result of Shishikura ([Sh1]):

Theorem 6.11.2. (Shishikura) Given nonnegative integers nag,npg, nsp,
NHR, Neremer 0Nd d satisfying

nap +npp + nsp + 2nHR + Neremer S 2d — 2, NHR S d — 27

there exists a rational function f of degree d, such that the numbers of at-
tracting cycles, parabolic cycles, Siegel disk cycles, Herman ring cycles and
Cremer cycles are nag, npg, Nsp, NgR ANA Neremer, TESPECtively.

Proof of Theorem 6.11.1

We first consider the case ngp > 1. Then Shishikura’s Theorem and qua-
siconformal surgery guarantee the existence of a non-parabolic rational map
g with (na(g),nrp(9), nra(g),deg(g)) = (na,nrp,nra —1,d — 1). Choose a
Siegel disk cycle Dy +— Dy +— -+ +— D, = Dy of g. For each D; we choose an
analytic curve v; C D; such that g(7;) = vi+1 and the disk A; C D; bounded
by v; contains at most one point in the postcritical set P, (Notice that the
only possible point in A; N P, is necessarily the center of the Siegel disk D;).
Let 6 be the rotation number of the Siegel disks cycle.

We consider the Siegel map (Sp, Ps) := (follf_g, DgUD_g). We can view it
as the composition of p maps Sy = fp—10---0 fo with f; : C,—Ciy1,0<1<p
and fo =950, fi=-= fpo1 = id,@p = Cy. Let §, be a Sp-invariant curve in
D_pand §; = fio---0 fo(d) for 1 <i<p—1. We cut AgU---UA,_; off for
g and cut the disk U; C f;0--- 0 fo(D_g) bounded by §; for f;,0 <i<p—1.
Then we glue each filg,_y;, with glz_s,..ua, , along the boundary curves §;
and ;. We can assume that

a). The gluing procedure preserves the complex structure of the rotation
domains.

b). The center of the rotation disk f; o---o fo(D_g) replace the center of
the Siegel disk D;.

In this way, we get a non-parabolic map f  with
(ma(F),mn(f)snralF), deg(£)) = (na(g),nrn(g) nralg) + 1, deg(g) + 1) =
(na,nrp,Nra,d), as required.

Now we consider the case ngp = 0. In this case, ngy > 2. First, it follows
from Shishikura’s Theorem that there is a non-parabolic rational map g with

(na,1,npa — 2,d —2), ifny =0,1,
(TLA—l,l,TLRA—2,d—2), ianZZ

(na(g),nrp(9),nra(g),deg(g)) = {

Let 8 be the rotation number of the Siegel disk cycle of g. We mate the Siegel
map (Sg, Py) = (foU f_s, Dg U D_g) with the quadratic Siegel polynomial f_g
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in the following way: Cut the Sp-fixed disk Ay € Dy off for Sy and cut the
f-o-fixed disk Uy € D4 off for f_y, then we glue Sp|z_,, and f4lz_, along
the boundary curves 0Ay and 0Uy. We get a Herman map (Hy, Q). This
Herman map has one fixed rotation disk with rotation number —6 and one
rotation annulus with rotation number 6. Moreover, deg(Hy) = deg(Sy) +
deg(f_p) — 1 = 3. By performing the same mating procedure as above, we
can mate (g, P,) with (Hp, Qy) and obtain a non-parabolic map (f, P) with
(na(f),nrp(f):nra(f),deg(f)) = (na(g),nrp(9) + nro(He) — 2,nralg) +
nra(Hp) + 1,deg(g) + deg(Hp) — 1) = (na(g),0,nr4,d). If ng = 0,1, then
n4(g) = na, then map (f, P) is as required; if ng > 2, then na(f) =n4s — 1.
In this case, notice that the superattracting fixed point oo of f_4 descends to
a ‘superattracting’ cycle of (f, P), we can change this superattracting cycle
of (f, P) to be locally holomorphic and attracting whose multiplier satisfies
0 < || < 1 by quasiconformal surgery and get the required map.

To finish, we will show that in either case, (f, P) has no Thurston obstruc-
tions but is not c-equivalent to a rational map. By Decomposition Theorem,
there is a ( f, P)-stable multicurve I" and finitely many Siegel maps or Thurston
maps (hg, Py), k € [1,n] whose combinatorics and rational realizations domi-
nate the original one. The construction of (f, P) guarantees that

e The (f,P)-stable multicurve T' is in fact a stable multicurve of
9le—aou-un, - So it follows from Marked McMullen Theorem that A(T', f) =
AT, g) < 1.

e One of the resulting maps of (hg, Py),k € [1,n| is the Siegel map
(Sg, Py) = (foU f_9, Dg U D_y) while the rest resulting maps all have rational
realizations.

Then by the Decomposition Theorem, (f, P) has no Thurston obstructions
but is not c-equivalent to a rational map.
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