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Abstract

We provide a thorough construction of a system of compatible determinant line bundles over
spaces of Fredholm operators, fully verify that this system satisfies a number of important prop-
erties, and include explicit formulas for all relevant isomorphisms between these line bundles.
We also completely describe all possible systems of compatible determinant line bundles and
compare the conventions and approaches used elsewhere in the literature.
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1 Introduction

A Fredholm operator between Banach vector spaces X and Y is a bounded homomorphism
D : X−→Y such that

ImD ≡
{
Dx : x∈X

}

is closed in Y and the dimensions of its kernel and cokernel,

κ(D) ≡
{
x∈X : Dx=0

}
and c(D) ≡ Y/(ImD),

are finite.1 The space F(X,Y ) of Fredholm operators is an open subspace of the space B(X,Y ) of
bounded linear operatorsD : X−→Y in the normed topology; see [13, Theorem A.1.5(ii)]. Quillen’s
construction, outlined in [15, Section 2], associates to each Fredholm operator D a Z2-graded one-
dimensional vector space λ(D) = det D, called the determinant line of D, and topologizes, in a
systematic way, the set

detX,Y ≡
⊔

D∈F(X,Y )

λ(D)

as a line bundle over F(X,Y ) for each pair (X,Y ) of Banach vector spaces. There are in fact
infinitely many compatible systems of such topologies, all of which we describe in Section 3.4; they
are isomorphic pairwise. This is contrary to suggestions in many papers that there is a unique way
of topologizing determinant line bundles in a systematic way and can be viewed as capturing the
essence of the unique up to a canonical isomorphism statement in [11, Theorem 1]. We describe
some intrinsic and not so-intrinsic ways of narrowing down the choices and of choosing a specific
system at the end of Subsection 2.2 and at the end of Remark 3.1.

The determinant line bundle plays a prominent role in a number of geometric situations, but
unfortunately there appears to be no thorough description of its construction and properties in
the literature. The key issue in its construction is the existence of a collection of (set-theoretic)
trivializations for detX,Y , such as ĨD,T in (2.26) and ÎΘ;D in (3.2), that overlap continuously.
The justification for the existence of such a collection in [15] consists of an allusion to some un-
specified collection of compatible isomorphisms relating the determinant line bundles in the short
exact triples

0 // 0 //

��

R
k+m //

��

R
k+m //

��

0

0 // Rc+m // Rc+m // 0 // 0

(1.1)

of homomorphisms, where the middle arrow is the projection onto the last m coordinates. Explicit
formulas for such a collection of isomorphisms appear in [1, Section (f)], [9, Section 3.2.1], [12,
Section 20.2], [13, Appendix A.2], [16, Section 2], and [17, Section (11a)], while [10, Appendix D.2]
and [11, Chapter I] describe it more abstractly. The proof of [13, Theorem A.2.2] uses them to
describe trivializations for determinant line bundles for Fredholm operators without checking that
they overlap continuously, which in fact is not the case, as discovered by [14]; see Section 3.3 for
more details. Key properties of such collections of isomorphisms necessary for the construction of
the determinant line bundle are specified in [1], [12], [17], and the construction itself is then briefly

1The first condition is implied by the other two, but is traditionally stated explicitly.
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outlined. The discussion of the relevant linear algebra considerations is more extensive in [10], but
it contains an important deficiency, which is described in Remark 4.9, and does not complete the
construction. However, the general approach of [10, Appendix B] is well-suited for an explicit con-
struction of the determinant line bundle and the analysis of its properties. Explicit formulas for the
above collection are used directly to topologize determinant line bundles over spaces of Fredholm
operators and for Kuranishi structures in [16] and [14], respectively. The latter are closely related
to the two-term case of the bounded complexes of vector bundles for which a determinant line
bundle is constructed in [11]. As explained in detail in Section 3.2, using [11, Theorem I], which
predates [15], is perhaps the most efficient way for constructing the determinant line bundle and
verifying its properties and would eliminate the need for most of our Section 4, but at the cost of
explicit formulas for important isomorphisms (which may well be useful in specific applications)
and of being self-contained. None of the above works explicitly considers most of the non-trivial
properties of the determinant line bundle for Fredholm operators listed in Subsection 2.2.

This paper provides a comprehensive construction of a system of determinant line bundles and
a complete verification of many important properties it satisfies. Section 2 sets up the necessary
notation and precisely describes the properties we later show this system satisfies. Section 3.1
outlines the determinant line bundle construction carried out in this paper and three alternative
approaches, while Section 3.2 provides more details for the approach based on the results obtained
in [11]. Section 3.3 compares several conventions for the determinant line bundle that have appeared
in the literature. Section 3.4 establishes Theorem 2, which describes all determinant line bundle
systems satisfying the properties in Subsection 2.2 and shows that such systems correspond to
collections of isomorphisms

Ai,c : Λ
c(Rc) −→ R, i∈Z, c∈Z+, c ≥ −i , (1.2)

that are orientation-preserving if i, c∈2Z. In contrast to the viewpoint of the previous paragraph,
there are no compatibility conditions on the isomorphisms in these collections. By Theorem 2,
the compatible systems of topologies on determinant line bundles correspond to the compatible
systems of isomorphisms for the exact triples (1.1) and to the compatible collections of isomor-
phisms for exact triples of Fredholm operators. Section 4, which is motivated by [11, Section 1] and
[10, Appendix D.2], deals with the relevant linear algebra. In particular, Subsection 4.2 provides
explicit formulas for a collection of exact triple isomorphisms Ψt as in (2.27) and dualization isomor-
phisms D̃D as in (2.36) satisfying all properties of Subsection 2.2; see (4.10) and (4.13), respectively.
Section 5 concludes this paper with topological arguments; this section is motivated by the ap-
proach in [13, Appendix A.2]. Many of the individual steps that we describe in this paper are not
new. However, even the full statement of Theorem 1 on page 14 does not seem to appear elsewhere.

The author would like to thank M. Abouzaid, P. Georgieva, H. Hofer, Y.-Z. Huang, D. McDuff,
D. Salamon, and K. Wehrheim for related discussions, the referee for pointing out additional
relevant literature, and the IAS School of Mathematics for hospitality.

1.1 Post-publication updates

The present version of this paper contains one modification and two additions to the mathematical
content of the published version, which are described below. The statements of the theorems,
1 on page 14 and 2 on page 35, and the discussions of the connections between various properties
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have been updated in accordance with these changes. Subsections 4.3, 5.1, and 5.2 have been
changed from the collections of specific isomorphisms Ψt in (4.10) and D̃D in (4.13) to collections
of such isomorphisms satisfying certain properties. Furthermore, Section 2 has been split into
two subsections, and more details have been added to some arguments as well. The enumeration
of theorems, propositions, etc. has not changed from the published version, but many equations
numbers in Section 2 and some in Section 5 have changed.

Naturality II property broadened to quasi-isomorphisms. The Naturality II property on
page 13 has been broadened from isomorphisms of exact triples of Fredholm operators in the pub-
lished version to quasi-isomorphisms. In the present version of the paper, we refer to the previous
version of this property as the isomorphism Naturality II property. Relatedly, the Naturality III
and Normalization III, III⋆ properties in the published version of the paper are now called Nor-
malization III, IV, IV⋆, respectively.

While no issues have been discovered with any formal statements in the published version, the
informal summary of connections between the various properties was off. In particular, the iso-
morphism Naturality II, Normalization II,III, and Compositions I,II properties do not imply the
Exact Squares property. For example, the collection of exact triple isomorphisms Ψt in (2.27) given
by (4.10) satisfies the (full) Naturality II, Normalization II,III, and Compositions I,II properties.
For each Fredholm operator D, let

AD =

{
−1, if c(D) 6= 0, dimdom(D) =∞;

1, otherwise.

For each exact triple t of Fredholm operators as in (2.6), let

Ψ′
t =

{
AD′AD′′

AD
Ψt, if dimdom(D′), dimdom(D′′) =∞;

Ψt, otherwise.

The new collection of exact triple isomorphisms Ψ′
t satisfies the isomorphism Naturality II, Nor-

malization II,III, and Compositions I,II properties. However, this collection does not satisfy the
full Naturality II property, for quasi-isomorphisms between exact triples with infinite- and finite-
dimensional Fredholm operators. Since the isomorphism Naturality II, Normalization II,III, and
Exact Squares properties imply the Naturality II property by Subsection 3.4, the above collec-
tion {Ψ′

t}t does not satisfy the Exact Squares property either.

Complex orientations. For a C-linear Fredholm operator D between Banach vector spaces X
and Y with complex structures, the determinant line λ(D) has a canonical orientation. Such ori-
entations are sometimes used to orient the determinant lines for other operators by transferring
them along paths of Fredholm operators. The Complex Orientations, Complex Exact Triples, and
Dual Complex Orientations properties on pages 11, 14, and 19 have been added to require the
topologies on the determinant line bundles, isomorphisms for exact triples of Fredholm operators,
and dualization isomorphisms to be compatible with these orientations. As indicated by the proof
of Theorem 2 in Subsection 3.4, these properties do not cut down on the admissible systems of
determinant line bundles significantly.
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Wall-crossing for orientations. If D is an isomorphism between Banach vector spaces X
and Y , the determinant line λ(D) again has a canonical orientation. By the Normalization I prop-
erty on page 12, these orientations vary continuously over the space of isomorphisms. Subsection 5.3
has been added to give a criterion determining whether the extension of the canonical orientation
for an isomorphism D over a generic path in F(X,Y ) ending an another isomorphism D′ restricts
to the canonical orientation of λ(D′). The answer turns out to be independent of the choice of an
admissible system of determinant line bundles. Along with the added complex orientation prop-
erties, this implies that the signs defined in certain geometric settings, such as in Gromov-Witten
theory, by transferring orientations from C-linear operators along paths do not depend on the
choice of either C-linear operators or an admissible system of determinant line bundles.

2 The determinant line bundle

2.1 Notation and terminology

All vector spaces we consider are over R. We denote by d(V ) the dimension of a vector space V
and by

λ(V ) ≡ ΛtopV ≡ Λd(V )V and λ∗(V ) ≡
(
λ(V )

)∗

the top exterior power of V and its dual, whenever d(V )<∞. We view λ(V ) and λ∗(V ) as graded
lines of degrees

deg λ(V ), deg λ∗(V ) = d(V ) + 2Z ∈ Z2.

For any two Z2-graded lines L1 and L2, we define

degL1⊗L2 = degL1 + degL2,

R : L1⊗L2 −→ L2⊗L1, R(v1⊗v2) = (−1)(degL1)(degL2)v2⊗v1. (2.1)

If L1,L2−→F are Z2-graded line bundles (each fiber has a grading varying continuously over F),
the fiberwise isomorphisms R give rise to an isomorphism

R : L1⊗L2 −→ L2⊗L1

of Z2-graded line bundles over F . If L is a line and v∈L−0, we define v∗∈L∗ by v∗(v)=1.

For a finite-dimensional vector space V , we define

P : λ(V ∗) −→ λ∗(V ),
{
P(α1∧. . . ∧αn)

}
(v1∧. . . ∧vn) = (−1)(

n
2) det

(
αi(vj))i,j=1,...,n (2.2)

and denote the inverse of P also by P. The advantages of the isomorphism (2.2) over the isomor-
phism induced by the first pairing in (3.10) are that the former respects complex orientations and
fits better with short exact sequences; see (2.24) and the last statement of Lemma 4.2.

For a Fredholm operator D : X−→Y , we define

λ(D) = λ(κ(D))⊗ λ∗(c(D)) (2.3)

with the grading

deg λ(D) ≡ indD + 2Z ≡ d(κ(D))− d(c(D)) + 2Z ∈ Z2.
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This is the same definition as in [12, Section 20.2] and [14, Section 7.4]; we discuss alternative
versions of (2.3) in Subsections 3.2 and 3.3.

Morphisms. A homomorphism between Fredholm operators D : X−→Y and D′ : X ′−→Y ′ is a pair
of homomorphisms φ : X−→X ′ and ψ : Y −→Y ′ so that D′◦φ=ψ◦D. A quasi-isomorphism between
Fredholm operators D and D′ is a homomorphism (φ, ψ) : D−→D′ that induces isomorphisms

φκ : κ(D) −→ κ(D′) and ψc : c(D) −→ c(D′).

In such a case, we denote by

λ(φκ) : λ(κ(D)) −→ λ(κ(D′)), λ(ψ−1
c ) : λ(c(D′)) −→ λ(c(D)),

Ĩφ,ψ;D : λ(D) −→ λ(D′), x⊗ α −→
(
λ(φκ)x

)
⊗
(
α◦λ(ψ−1

c )
)

(2.4)

the induced isomorphisms of the associated lines. An isomorphism between Fredholm operators D
and D′ is a homomorphism (φ, ψ) : D−→D′ so that φ and ψ are isomorphisms.

Isomorphisms φ : X−→X ′ and ψ : Y −→Y ′ between Banach vector spaces induce a homeomorphism

Iφ,ψ : F(X,Y ) −→ F(X ′, Y ′), Iφ,ψ(D) = ψ ◦D ◦ φ−1.

In particular, (φ, ψ) : D−→Iφ,ψ(D) is an isomorphism of Fredholm operators for each D∈F(X,Y ).

Putting the isomorphisms Ĩφ,ψ;D in (2.4) together, we obtain a bundle map

Ĩφ,ψ : detX,Y −→ I
∗
φ,ψdetX′,Y ′ (2.5)

covering the identity on F(X,Y ).

Exact Triples. An exact triple of Fredholm operators,

0 −→ D′ −→ D −→ D′′ −→ 0,

is a commutative diagram

0 // X ′

D′

��

iX // X

D
��

jX // X ′′

D′′

��

// 0

0 // Y ′ iY // Y
jY // Y ′′ // 0

(2.6)

of homomorphisms between Banach vector spaces with exact rows and with Fredholm operators
as columns. A quasi-isomorphism

0 // D′
T

//

(φ′,ψ′)

��

DT
//

(φ,ψ)

��

D′′
T

//

(φ′′,ψ′′)

��

0

0 // D′
B

// DB
// D′′

B
// 0

(2.7)

between exact triples

0 −→ D′
T −→ DT −→ D′′

T −→ 0 and 0 −→ D′
B −→ DB −→ D′′

B −→ 0
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of Fredholm operators are homomorphisms

0 // X ′
T

//

φ′

��

XT
//

φ

��

X ′′
T

//

φ′′

��

0 0 // Y ′
T

//

ψ′

��

YT //

ψ

��

Y ′′
T

//

ψ′′

��

0

0 // X ′
B

// XB
// X ′′

B
// 0 0 // Y ′

B
// YB // Y ′′

B
// 0

of short exact sequences of Banach vector spaces so that (φ′, ψ′), (φ, ψ), and (φ′′, ψ′′) are quasi-
isomorphisms between the Fredholm operators D′

T and D′
B, DT and DB, and D

′′
T and D′′

B, respec-
tively. An isomorphism between exact triples of Fredholm operators as above is a quasi-isomorphism
between these exact triples as in (2.7) so that the homomorphisms φ′, ψ′, φ, ψ, φ′′, ψ′′ are isomor-
phisms.

For Banach vector spaces X,Y,X ′, Y ′, X ′′, Y ′′, let

T (X,Y ;X ′, Y ′;X ′′, Y ′′)

⊂ F(X,Y )×F(X ′, Y ′)×F(X ′′, Y ′′)× B(X ′, X)× B(X,X ′′)× B(Y ′, Y )× B(Y, Y ′′)
(2.8)

be the subspace of tuples (D,D′, D′′, iX , jX , iY , jY ) so that (2.6) is an exact triple of Fredholm
operators. Denote by

πC, πL, πR : T (X,Y ;X ′, Y ′;X ′′, Y ′′) −→ F(X,Y ),F(X ′, Y ′),F(X ′′, Y ′′)

the restrictions of the projection maps. For ⋆= ′,′′, denote by

T ⋆(X,Y ;X ′, Y ′;X ′′, Y ′′) ⊂ T (X,Y ;X ′, Y ′;X ′′, Y ′′)

the subspace of diagrams (2.6) so that D⋆ is an isomorphism.

If t∈T ′(X,Y ;X ′, Y ′;X ′′, Y ′′) is as in (2.6), (jX , jY ) is a quasi-isomorphism between the Fredholm
operators D and D′′. With the notation as in (2.4), define

I ′t : λ(D
′)⊗λ(D′′) −→ λ(D), I ′t

(
(1⊗1∗)⊗σ′′

)
= Ĩ−1

jX ,jY ;D(σ
′′). (2.9)

If t∈T ′′(X,Y ;X ′, Y ′;X ′′, Y ′′) is as in (2.6), (iX , iY ) is a quasi-isomorphism between the Fredholm
operators D′ and D. Define

I ′′t : λ(D
′)⊗λ(D′′) −→ λ(D), I ′′t

(
σ′⊗(1⊗1∗)

)
= ĨiX ,iY ;D′(σ′). (2.10)

Direct Sums. For Banach vector spaces X ′, Y ′, X ′′, Y ′′, the direct sum operation

⊕ : F(X ′, Y ′)×F(X ′′, Y ′′) −→ F(X ′⊕X ′′, Y ′⊕Y ′′), (D′, D′′) −→ D′⊕D′′,

is a continuous map. For any D∈F(X,Y ) and a Banach vector space Z, the projections

(φ, ψ) : (Z⊕X,Z⊕Y ) −→ (X,Y ) and (φ, ψ) : (X⊕Z, Y ⊕Z) −→ (X,Y )
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are quasi-isomorphism between the Fredholm operators idZ⊕D, D, and D⊕idZ . Via (2.4), they
thus determine identifications

λ(idZ⊕D) =λ(D) = λ(D⊕idZ), (2.11)

(0, x1)∧. . .∧(0, xk)⊗
(
(0, y1)∧. . .∧(0, yℓ)

)∗
←→ x1∧. . .∧xk ⊗

(
y1∧. . .∧yℓ

)∗

←→ (x1, 0)∧. . .∧(xk, 0)⊗
(
(y1, 0)∧. . .∧(yℓ, 0)

)∗
.

We denote by

RX′,X′′ : X ′⊕X ′′ −→ X ′′⊕X ′ and

RF : F(X ′, Y ′)×F(X ′′, Y ′′) −→ F(X ′′, Y ′′)×F(X ′, Y ′)

the maps interchanging the two factors. Let

⊕′ : F(X ′, Y ′)×F(X ′′, Y ′′) −→ F(X ′′⊕X ′, Y ′′⊕Y ′) and
⊕

: F(X ′, Y ′)×F(X ′′, Y ′′)×F(X ′′′, Y ′′′) −→ F(X ′⊕X ′′⊕X ′′′, Y ′⊕Y ′′⊕Y ′′′)

be the compositions

⊕ ◦RF = IRX′,X′′ ,RY ′,Y ′′ ◦ ⊕ and (2.12)

⊕ ◦ ⊕×idF(X′′′,Y ′′′) = ⊕ ◦ idF(X′,Y ′)×⊕ , (2.13)

respectively.

We associate the direct sum D′⊕D′′ of Fredholm operators D′ : X ′−→Y ′ and D′′ : X ′′−→Y ′′ with
the commutative diagram

0 // X ′

D′

��

iX // X ′⊕X ′′

D′⊕D′′

��

jX // X ′′

D′′

��

// 0
iX(x

′) = (x′, 0)
jX(x

′, x′′) = x′′

0 // Y ′ iY // Y ′⊕Y ′′ jY // Y ′′ // 0
iY (y

′) = (y′, 0)
jY (y

′, y′′) = y′′ .

(2.14)

This yields an embedding

ι⊕ : F(X ′, Y ′)×F(X ′′, Y ′′) −→ T (X ′⊕X ′′, Y ′⊕Y ′′;X ′, Y ′;X ′′, Y ′′) s.t.

πC◦ι⊕ = ⊕, πL◦ι⊕ = π1, πR◦ι⊕ = π2,

where
π1, π2 : F(X

′, Y ′)×F(X ′′, Y ′′) −→ F(X ′, Y ′),F(X ′′, Y ′′)

are the projection maps.

Compositions. For Banach vector spaces X1, X2, X3, the composition map

CX2 : F(X1, X2)×F(X2, X3) −→ F(X1, X3), (D1, D2) −→ D2 ◦D1,
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is continuous as well. If X4 is another Banach vector space, let

CX2,X3 : F(X1, X2)×F(X2, X3)×F(X3, X4) −→ F(X1, X4)

denote the compositions

CX3 ◦
{
CX2×idF(X3,X4)

}
= CX2 ◦

{
idF(X1,X2)×CX3

}
. (2.15)

With the notation as in (2.8), we denote by

CT : T (X1, X2;X
′
1, X

′
2;X

′′
1 , X

′′
2 )× T (X2, X3;X

′
2, X

′
3;X

′′
2 , X

′′
3 ) −→ T (X1, X3;X

′
1, X

′
3;X

′′
1 , X

′′
3 )

the continuous map sending commutative diagrams

0 // X ′
1

D′
1

��

i1 // X1

D1

��

j1 // X ′′
1

D′′
1

��

// 0 0 // X ′
2

D′
2

��

i2 // X2

D2

��

j2 // X ′′
2

D′′
2

��

// 0

0 // X ′
2

i2 // X2
j2 // X ′′

2
// 0 0 // X ′

3
i3 // X3

j3 // X ′′
3

// 0

(2.16)

to the commutative diagram

0 // X ′
1

D′
2◦D

′
1

��

i1 // X1

D2◦D1

��

j1 // X ′′
1

D′′
2 ◦D

′′
1

��

// 0

0 // X ′
3

i3 // X3
j3 // X ′′

3
// 0 .

(2.17)

We note that

(πC, πL, πR) ◦ CT =
(
CX2◦(πC◦π1, πC◦π2), CX′

2
◦(πL◦π1, πL◦π2), CX′′

2
◦(πR◦π1, πR◦π2)

)
, (2.18)

where

π1, π2 : T (X1, X2;X
′
1, X

′
2;X

′′
1 , X

′′
2 )× T (X2, X3;X

′
2, X

′
3;X

′′
2 , X

′′
3 )

−→ T (X1, X2;X
′
1, X

′
2;X

′′
1 , X

′′
2 ), T (X2, X3;X

′
2, X

′
3;X

′′
2 , X

′′
3 )

are the projection maps.

We associate the composition D2◦D1 of Fredholm operators D1 : X1 −→X2 and D2 : X2−→X3

with the exact triple

0 // X1

D1

��

iX // X1⊕X2

D2◦D1⊕idX2

��

jX // X2

D2

��

// 0
iX(x1) = (x1, D1x1)

jX(x1, x2) = D1x1−x2

0 // X2
iY // X3⊕X2

jY // X3
// 0

iY (x2) = (D2x2, x2)
jY (x3, x2) = x3−D2x2 .

(2.19)

This yields an embedding

ιC : F(X1, X2)×F(X2, X3) −→ T (X1⊕X2, X3⊕X2;X1, X2;X2, X3) s.t.

πC◦ιC(D1, D2) = CX2(D1, D2)⊕ idX2 , πL◦ιC = π1, πR◦ιC = π2.
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Combining the first identity above with (2.11), we obtain

ι∗Cπ
∗
CdetX1⊕X2,X3⊕X2 = C∗X2

detX1,X3 .

If D∈F(X,Y ), the compositions D◦idX and idY ◦D correspond to elements of

T ′(X⊕X,Y ⊕X;X,X;X,Y ) and T ′′(X⊕Y, Y ⊕Y ;X,Y ;Y, Y ),

respectively, with the isomorphisms I ′t and I
′′
t of (2.9) and (2.10) given by

I ′t
(
1⊗1∗ ⊗ x⊗β

)
= x⊗β and I ′′t

(
x⊗β ⊗ 1⊗1∗

)
= x⊗β

under the identifications (2.11).

Dualizations. For each Banach vector space X, let X∗ denote the dual Banach vector space,
i.e. the space HomR(X,R) of bounded linear functionals X −→ R. For each D ∈ F(X,Y ), let
D∗∈F(Y ∗, X∗) denote the dual operator, i.e.

{D∗β}(x) = β(Dx) ∀β∈Y ∗, x∈X.

The map
D : F(X,Y ) −→ F(Y ∗, X∗), D(D) = D∗,

is then continuous. For each D∈F(X,Y ), the homomorphisms

DD : κ(D) −→ c(D∗)∗,
{
DD(x)

}
(α+ImD∗) = α(x) ∀x∈κ(D), α∈X∗,

DD : c(D)∗ −→ κ(D∗),
{
DD(β)

}
(y) = β(y+ImD) ∀β∈c(D)∗, y∈Y,

(2.20)

are isomorphisms.

For each exact triple t of Fredholm operators as in (2.6), we define the dual triple t∗ to be given
by the diagram

0 // Y ′′∗

D′′∗

��

j∗Y // Y ∗

D∗

��

i∗Y // Y ′∗

D′∗

��

// 0

0 // X ′′∗
j∗X // X∗

i∗X // X ′∗ // 0 .

(2.21)

This defines an embedding

DT : T (X,Y ;X ′, Y ′;X ′′, Y ′′) −→ T (Y ∗, X∗;Y ′′∗, X ′′∗;Y ′∗, X ′∗) s.t.

πC◦DT = D◦πC, πL◦DT = D◦πR, πR◦DT = D◦πL . (2.22)

Complex Orientations. Let i be a complex structure on a real vector space V . The homomor-
phism

Re: HomC(V,C) −→ V ∗≡HomR(V,R), {Re(α)}(v) = Re
(
α(v)

)
∀α∈HomC(V,C), v∈V,

is an isomorphism. Via this isomorphism, i induces a complex structure on V ∗, which we still
denote by i, so that

{iα}(v) = α(iv) ∀α∈V ∗, v∈V. (2.23)
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If V is finite-dimensional with C-basis e1, . . . , en, then e1, ie1, . . . , en, ien is an R-basis for V deter-
mining the complex orientation of V . If e∗1, . . . , e

∗
n is the dual C-basis for V ∗, then

e∗1, ie
∗
1=−(ie1)

∗, . . . , e∗n, ie
∗
n=−(ien)

∗

is an R-basis for V ∗ determining the complex orientation of V ∗. Thus,

(
e1∧ie1∧. . .∧en∧ien

)∗
= P

(
e∗1∧ie

∗
1∧. . .∧e

∗
n∧ie

∗
n

)
∈ λ∗(V ), (2.24)

i.e. the isomorphism (2.2) with n replaced by 2n intertwines the complex orientations of λ(V ∗)
and λ∗(V ).

Suppose X,Y are Banach vector spaces with complex structures. We then denote by

FC(X,Y ) ⊂ F(X,Y )

the closed subspace of C-linear Fredholm operators. For each D ∈FC(X,Y ), κ(D) and c(D) are
finite-dimensional complex vector spaces. Thus, the real lines λ(κ(D)), λ(c(D)), and λ(D) have
canonical orientations, which we will call the complex orientations. In this case, the Banach vector
spaces X∗, Y ∗ inherit complex structures from X,Y , D∗∈FC(Y

∗, X∗), and the isomorphisms (2.20)
are C-linear.

If X,Y,X ′, Y ′, X ′′, Y ′′ are Banach vector spaces with complex structures, we denote by

TC(X,Y ;X ′, Y ′;X ′′, Y ′′) ⊂ T (X,Y ;X ′, Y ′;X ′′, Y ′′)

the subspace of exact triples as in (2.6) so that the Fredholm operators D′, D,D′′ and the homo-
morphisms iX , jX , iY , jY are C-linear.

2.2 Properties

The topologies on the line bundles detX,Y should satisfy a number of important compatibility
properties, which we now describe.

Naturality I. The bundle map Ĩφ,ψ in (2.5) is continuous for all isomorphisms φ : X−→X ′ and
ψ : Y −→Y ′ between Banach vector spaces.

Complex Orientations. If X,Y are Banach vector spaces with complex structures, the com-
plex orientations of the lines λ(D) with D∈FC(X,Y ) determine an orientation on the restriction
of detX,Y to FC(X,Y ).

The substance of the Complex Orientations property is that the complex orientations of the
lines λ(D), wherever defined, are continuous with respect to the topology of the relevant restriction
of detX,Y .

If X,Y are Banach vector spaces and T ∈B(Y,X), let

UT =
{
P ∈B(X,Y ) : ‖TP‖<1

}
;
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this is an open subset of B(X,Y ). If in addition P ∈B(X,Y ), define

ΦT ;P ∈B(X,X) by ΦT ;P (x) = x+TPx.

The operator ΦT ;P is invertible for every P ∈UT and the map

UT −→ F(X,X), P −→ Φ−1
T ;P =

∞∑

r=0

(−1)r(TP )r ,

is continuous.

We define

F∗(X,Y ) =
{
D∈F(X,Y ) : c(D) = {0}

}
,

π : κ(X,Y )=
{
(D,x)∈F∗(X,Y )×X : Dx=0

}
−→ F∗(X,Y ), π(D,x) = D.

The first set above is an open subset of F(X,Y ). For each D ∈F∗(X,Y ) and each right inverse
T : Y −→X of D, the map

(D+UT )×X −→ (D+UT )×X, (D+P, x) −→
(
D+P,ΦT ;P (x)

)
,

is continuous, linear on each fiber of the projection to the first component, and restricts to a
bijection

κ(X,Y )
∣∣
π−1(D+UT )

−→ (D+UT )×κ(D).

Thus, κ(X,Y ) is a subbundle of the trivial Banach bundle

F∗(X,Y )×X −→ F∗(X,Y ).

Normalization I. The topology of detX,Y |F∗(X,Y ) is the topology of the top exterior power of
the vector bundle κ(X,Y ).

This condition can alternatively be described as follows. For D ∈ F∗(X,Y ), each right inverse
T : Y −→X of D, and P ∈B(X,Y ), let

ΦD,T ;P : κ(D+P ) −→ κ(D), ΦD,T ;P (x) = ΦT ;P (x). (2.25)

This map is a bijection for every P ∈UT and thus induces an isomorphism

ĨD,T ;D+P : λ(D) = λ(κ(D))⊗ R −→ λ
(
κ(D+P )

)
⊗ R = λ(κ(D+P )).

Putting these isomorphisms together, we obtain a bundle map

ĨD,T : (D+UT )×λ(D) −→ detX,Y
∣∣
D+UT

(2.26)

covering the identity on the open neighborhood D+UT of D in F∗(X,Y ). Normalization I is equiv-
alent to the condition that the map ĨD,T is continuous for every D ∈F∗(X,Y ) and right inverse
T : Y −→X of D.
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If X,Y are Banach vector spaces with complex structures, every surjective C-linear Fredholm
operator D admits a C-linear right inverse T . The isomorphism (2.25) is then C-linear whenever
P ∈UT is C-linear. Thus, the complex orientations of the lines λ(D+T ) with P ∈ UT C-linear
determine an orientation on the restriction of detX,Y over the intersection of D+UT with

F∗
C(X,Y ) ≡ FC(X,Y )∩F∗(X,Y ) .

Thus, the Complex Orientations property over F∗
C
(X,Y ) follows from the Normalization I property.

Exact Triples. There exists a collection of (continuous) line bundle isomorphisms

Ψ: π∗LdetX′,Y ′ ⊗ π∗RdetX′′,Y ′′ −→ π∗CdetX,Y (2.27)

over T (X,Y ;X ′, Y ′;X ′′, Y ′′) parametrized by the tuples (X,Y ;X ′, Y ′;X ′′, Y ′′) of Banach vector
spaces with the following properties.

Naturality II. The isomorphisms Ψ commute with the isomorphisms (2.4) induced by quasi-
isomorphisms of exact triples of Fredholm operators, i.e. the diagram

λ(D′
T)⊗ λ(D

′′
T)

Ĩφ′,ψ′;D′
T
⊗Ĩφ′′,ψ′′;D′′

T
��

ΨT // λ(DT)

Ĩφ,ψ;DT
��

λ(D′
B)⊗ λ(D

′′
B)

ΨB // λ(DB) ,

where ΨT and ΨB are the isomorphisms (2.27) for the top and bottom exact triples of Fred-
holm operators in (2.7), commutes for every quasi-isomorphism of exact triples of Fredholm
operators as in (2.7).

Normalization II. For each t∈T (X,Y ;X ′, Y ′;X ′′, Y ′′) as in (2.6) with D′∈F∗(X ′, Y ′) and
D′′∈F∗(X ′′, Y ′′), the restriction Ψt of Ψ to the fiber over t is the canonical isomorphism ∧κ(D)

of Lemma 4.1 for the short exact sequence

0 −→ κ(D′) −→ κ(D) −→ κ(D′′) −→ 0

of finite-dimensional vector spaces.

Normalization III. For each ⋆= ′,′′ and t∈T ⋆(X,Y ;X ′, Y ′;X ′′, Y ′′), the restriction Ψt of Ψ
to the fiber over t is the corresponding isomorphism I⋆t of (2.9) or (2.10).

With ι⊕ as below (2.14), D′∈F(X ′, Y ′), and D′′∈F(X ′′, Y ′′), let

⊕̃D′,D′′ ≡ Ψι⊕(D′,D′′) : λ(D
′)⊗ λ(D′′) −→ λ(D′⊕D′′)

be the corresponding exact triples isomorphism (2.27). With ιC as below (2.19), D1∈F(X1, X2),
and D2∈F(X2, X3), let

C̃D1,D2≡ΨιC(D1,D2) : λ(D1)⊗λ(D2) −→ λ(D2◦D1)

be the corresponding isomorphism (2.27). By the next four properties, these isomorphisms provide
liftings of (2.12), (2.13), (2.15), and (2.18) to determinant line bundles.
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Direct Sums I. For all D′∈F(X ′, Y ′) and D′′∈F(X ′′, Y ′′), the diagram

λ(D′)⊗ λ(D′′)
⊕̃D′,D′′

//

R
��

λ(D′⊕D′′)

ĨR
X′,X′′ ,RY ′,Y ′′ ;D′⊕D′′

��
λ(D′′)⊗ λ(D′)

⊕̃D′′,D′
// λ(D′′ ⊕D′)

(2.28)

commutes.

Direct Sums II. For all D′∈F(X ′, Y ′), D′′∈F(X ′′, Y ′′), and D′′′∈F(X ′′′, Y ′′′), the diagram

λ(D′)⊗ λ(D′′)⊗ λ(D′′′)
id⊗⊕̃D′′,D′′′

//

⊕̃D′,D′′⊗id

��

λ(D′)⊗ λ(D′′⊕D′′′)

⊕̃D′,D′′⊕D′′′

��
λ(D′⊕D′′)⊗ λ(D′′′)

⊕̃D′⊕D′′,D′′′
// λ(D′⊕D′′⊕D′′′)

(2.29)

commutes.

Compositions I. For all D1∈F(X1, X2), D2∈F(X2, X3), and D3∈F(X3, X4), the diagram

λ(D1)⊗ λ(D2)⊗ λ(D3)
id⊗C̃D2,D3 //

C̃D1,D2
⊗id

��

λ(D1)⊗ λ(D3◦D2)

C̃D1,D3◦D2
��

λ(D2◦D1)⊗ λ(D3)
C̃D2◦D1,D3 // λ(D3◦D2 ◦D1)

(2.30)

commutes.

Compositions II. For all t1∈T (X1, X2;X
′
1, X

′
2;X

′′
1 , X

′′
2 ) and t2∈T (X2, X3;X

′
2, X

′
3;X

′′
2 , X

′′
3 )

as in (2.16), the diagram

λ(D′
1)⊗ λ(D

′′
1)⊗ λ(D

′
2)⊗ λ(D

′′
2)

C̃D′
1,D

′
2
⊗C̃D′′

1 ,D
′′
2
◦id⊗R⊗id

��

Ψt1⊗Ψt2 // λ(D1)⊗ λ(D2)

C̃D1,D2
��

λ(D′
2◦D

′
1)⊗ λ(D

′′
2 ◦D

′′
1)

ΨCT (t1,t2) // λ(D2 ◦D1)

(2.31)

commutes.

Complex Exact Triples. If X,Y,X ′, Y ′, X ′′, Y ′′ are Banach vector spaces with complex
structures and t ∈ TC(X,Y ;X ′, Y ′;X ′′, Y ′′), the restriction Ψt of Ψ to the fiber over t inter-
twines the complex orientations of λ(D′), λ(D′′), λ(D).

Theorem 1. There exist a collection of topologies on the line bundles detX,Y −→ F(X,Y ) cor-
responding to pairs (X,Y ) of Banach spaces and a collection of continuous line-bundle isomor-
phisms (2.27) which satisfy the Naturality I,II, Complex Orientations, Normalization I,II,III, Di-
rect Sums I,II, Compositions I,II, and Complex Exact Triples properties.
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We will refer to the Naturality II property restricted to the isomorphisms of exact triples of Fred-
holm operators as the isomorphism Naturality II property.

Any family of exact triple isomorphisms Ψt as in (2.27) satisfying Normalization II also satisfies
Normalization III for triples of surjective Fredholm operators and Complex Exact Triples for triples
of surjective C-linear Fredholm operators. By Lemma 5.1, such a family induces a continuous
bundle map over the subspace

T ∗(X,Y ;X ′, Y ′;X ′′, Y ′′) ⊂ T (X,Y ;X ′, Y ′;X ′′, Y ′′)

of exact triples as in (2.6) with surjective Fredholm operators D,D′, D′′ with respect to the topolo-
gies determined by the Normalization I property.

For an isomorphism (φ, ψ) : D−→D′ between Fredholm operators D : X−→Y and D′ : X ′−→Y ′

as above (2.4), define

Ĩφ,ψ;D : λ(φ−1)⊗ λ(D)⊗ λ(ψ) −→ λ(D′), Ĩφ,ψ;D
(
(1⊗ 1∗)⊗ σ ⊗ (1⊗ 1∗)

)
= Ĩφ,ψ;D(σ).

By Normalization III, the diagram

λ(φ−1)⊗ λ(D)⊗ λ(ψ)
id⊗C̃D,ψ //

C̃
φ−1,D⊗id

��
Ĩφ,ψ;D

❲❲❲❲
❲❲❲❲

++❲❲❲❲
❲❲❲

λ(φ−1)⊗ λ(ψ◦D)

C̃
φ−1,ψ◦D

��
λ(D◦φ−1)⊗ λ(ψ)

C̃
D◦φ−1,ψ // λ(ψ◦D ◦φ−1)=λ(D′)

commutes.

Some of the properties listed in Theorem 1 are similarly implied by other properties:

• Naturality I follows from the continuity of Ψ in (2.27) and Normalization III applied to the
diagrams

0 // X

D

��

φ // X ′

D′

��

// {0}

��

// 0

0 // Y
ψ // Y ′ // {0} // 0

• Complex Orientations follows from the continuity of Ψ, Normalization I, and Complex Exact
Triples;

• the isomorphism Naturality II property follows from Compositions II and Normalization II,III
applied to the diagrams

0 // X ′
B

φ′−1

��

// XB

φ−1

��

// X ′′
B

φ′′−1

��

// 0 0 // X ′
B

D′
T ◦φ

′−1

��

// XB

DT ◦φ
−1

��

// X ′′
B

D′′
T ◦φ

′′−1

��

// 0

0 // X ′
T

D′
T

��

// XT

D

��

// X ′′
T

D′′
T

��

// 0 0 // Y ′
T

ψ′

��

// YT

ψ

��

// Y ′′
T

ψ′′

��

// 0

0 // Y ′
T

// YT // Y ′′
T

// 0 0 // Y ′
B

// YB // Y ′′
B

// 0
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• the Exact Squares property below is implied by the Naturality II, Normalization II, and Com-
positions II properties (see Corollary 4.13);

• the two Direct Sums properties follow from the Exact Squares property applied to the two
diagrams in Figure 1 and the isomorphism Naturality II property applied to the diagram

0 // D′′

��

// D′⊕D′′

��

// D′ //

��

0

0 // D′′ // D′′⊕D′ // D′ // 0

• Compositions II is implied by the Normalization III and Exact Squares properties (see Subsec-
tion 3.2);

• Compositions I is implied by the isomorphism Naturality II, Normalization III, and Exact Squares
properties (see Subsection 3.2);

• the full Naturality II property is implied by the isomorphism Naturality II, Normalization II,III,
and Exact Squares properties (see Subsection 3.4).

By Proposition 5.3, a collection of exact triple isomorphisms Ψt as in (2.27) determines topologies
on the line bundles detX,Y which satisfy the Naturality I and Normalization I properties if this
collection satisfies the Normalization II,III and Compositions I,II properties. By Corollary 5.4, all
these isomorphisms Ψt are continuous in the resulting topologies if in addition they satisfy the
Naturality II property. By the above, the full Naturality and Compositions I,II property can be
replaced by the isomorphism Naturality II and Exact Squares properties.

In summary, a collection of exact triple isomorphisms (Ψt)t as in (2.27) determines a system of
topologies on the determinant line bundles detX,Y which satisfy the Naturality I and Normaliza-
tion I properties and in which the isomorphisms Ψt are continuous if this collection satisfies the
Normalization II,III properties along with either

• the Exact Squares property or

• the Naturality II and Compositions I,II properties.

In either case, such a collection of isomorphisms necessarily satisfies the Exact Squares, Natural-
ity II, Compositions I,II, and Direct Sums I,II properties. This is consistent with [11, Theorem 1];
see Subsection 3.2 for more details. If a collection of isomorphisms as above also satisfies the
Complex Exact Triples properties, then the resulting topologies satisfy the Complex Orientations
property as well. A collection of isomorphisms Ψt satisfying all of the above properties is specified
by (4.10). Theorem 2 on page 35 describes all other collections of isomorphisms Ψt with these
properties.

16



Exact Squares. For every commutative diagram

0

��

0

��

0

��
0 // DTL

iT //

iL
��

DTM
jT //

iM
��

DTR
//

iR
��

0

0 // DCL
iC //

jL
��

DCM
jC //

iM
��

DCR
//

jR
��

0

0 // DBL
iB //

��

DBM
jB //

��

DBR
//

��

0

0 0 0

(2.32)

of exact rows and columns of Fredholm operators, the diagram

λ(DTL)⊗ λ(DBL)⊗ λ(DTR)⊗ λ(DBR)

ΨL⊗ΨR

��

ΨT⊗ΨB ◦ id⊗R⊗id // λ(DTM)⊗ λ(DBM)

ΨM

��
λ(DCL)⊗ λ(DCR)

ΨC // λ(DCM)

(2.33)

of graded lines, where Ψ⋆ are the isomorphisms (2.27) corresponding to the top, center, and
bottom rows and left, middle, and right columns of the diagram (2.32), commutes.

By the proof of Lemma 5.6, the Normalization I property can be replaced by a dual version. Let

F ′(X,Y ) ≡
{
D∈F(X,Y ) : κ(D)=0

}

be the space of injective Fredholm operators. For each D0∈F
′(X,Y ), right inverse S : c(D0)−→Y

for
qD0 : Y −→ c(D0), qD0(y) = y + ImD0,

and D∈F(X,Y ) sufficiently close to D0, the homomorphism

qD◦S : c(D0) −→ c(D)

is an isomorphism and thus induces an isomorphism

ĨD0,S;D : λ(D0) −→ λ(D) , ĨD0,S;D(1⊗ α) = 1⊗
(
α◦λ(qD◦S)

−1
)
. (2.34)

Putting these isomorphisms together, we obtain a bundle map

ĨD0,S : UD0,S×λ(D0) −→ detX,Y |UD0,S
(2.35)

covering the identity on an open neighborhood UD0,S of D0 in F ′(X,Y ).

Normalization I′. The map ĨD0,S is continuous for every D0 ∈ F
′(X,Y ), right inverse

S : c(D0)−→Y of qD0 , and sufficiently small open neighborhood UD0,S of D0 in F ′(X,Y ).
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0

��

0

��

0

��
0 // 0 //

��

D′ //

��

D′ //

��

0

0 // D′′ //

��

D′⊕D′′ //

��

D′ //

��

0

0 // D′′ //

��

D′′ //

��

0 //

��
0 0 0

0

��

0

��

0

��
0 // D′ //

��

D′ //

��

0 //

��

0

0 // D′⊕D′′ //

��

D′⊕D′′⊕D′′′ //

��

D′′′ //

��

0

0 // D′′ //

��

D′′⊕D′′′ //

��

D′′′ //

��

0

0 0 0

Figure 1: Exact squares of Fredholm operators corresponding to the two Direct Sums properties

The determinant line bundle is also compatible with dualizations of Fredholm operators. Let DD
and P be as in (2.20) and (2.2), respectively.

Dualizations. There exists a collection of (continuous) line bundle isomorphisms

D̃ : detX,Y −→ D
∗detY ∗,X∗ (2.36)

over F(X,Y ) parametrized by pairs (X,Y ) of Banach vector spaces with the following proper-
ties.

Normalization IV. For every homomorphism δ : L−→{0} from a line,

D̃δ
(
x⊗1∗

)
= 1⊗ P

(
Dδ(x)

)
∀ x ∈ λ(L) = L.
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Dual Exact Triples. The isomorphisms (2.27) and (2.36) provide a lifting of (2.22) to
determinant line bundles, i.e. the diagram

λ(D′)⊗ λ(D′′)

D̃D′′⊗D̃D′◦R
��

Ψt // λ(D)

D̃D
��

λ(D′′∗)⊗ λ(D′∗)
Ψt∗ // λ(D∗)

(2.37)

commutes for every t∈T (X,Y ;X ′, Y ′;X ′′, Y ′′) as in (2.8).

Dual Complex Orientations. If X,Y are Banach vector spaces with complex structures and
D∈FC(X,Y ), the isomorphism (2.36) intertwines the complex orientations of λ(D) and λ(D∗).

By Corollary 5.8 and Section 3.4, each determinant line bundle system as in Theorem 1 on page 14
determines a unique system of isomorphisms D̃ satisfying the above three properties. Furthermore,
there is a somewhat smaller family of determinant line bundle systems that satisfy a stronger ver-
sion of the Normalization IV property:

Normalization IV⋆. For each D ∈F∗(X,Y ), D̃D is the canonical isomorphism induced by
the first equation in (2.20) and the pairing (2.2):

λ(D) −→ λ(D∗), x⊗1∗ −→ 1⊗ P
(
λ(DD)x

)
. (2.38)

By Lemma 5.7, the isomorphisms (2.38) give rise to a continuous bundle map over F∗(X,Y ) for any
system of topologies on determinant line bundles as in Theorem 1. In the proof of Corollary 5.8,
we use this to show that the continuity of (2.36) is implied by the Dual Exact Triples property.
However, the isomorphisms (2.36) are compatible with the Normalization IV⋆ property only for
some determinant line bundle systems, including the one specified by the isomorphisms Ψt of (4.10).

The dualization isomorphisms D̃D given by (4.13) and the identity isomorphisms Ai,1 in (1.2) seem
rather natural. However, by Theorem 2 on page 35, the number of systems of topologies on deter-
minant line bundles compatible with these choices is still infinite.

Combining the Dual Exact Triples property with the isomorphism Naturality II property applied
to the diagram

0 // D′′∗

id
��

j∗ // (D′⊕D′′)∗

(TX ,TY )
��

i∗ // D′∗ //

id
��

0 TX(β) = (β|Y ′′ , β|Y ′)

0 // D′′∗ i // D′′∗⊕D′∗ j // D′∗ // 0, TY (α) = (α|X′′ , α|X′)

(2.39)

where i=(iX , iY ) and j=(jX , jY ) are as in (2.14), we find that the diagram

λ(D′)⊗ λ(D′′)

D̃D′′⊗D̃D′◦R
��

⊕̃D′,D′′
// λ(D′⊕D′′)

ĨTX,TY ;(D′⊕D′′)∗◦D̃D′⊕D′′

��
λ(D′′∗)⊗ λ(D′∗)

⊕̃D′′∗,D′∗
// λ(D′′∗⊕D′∗)
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commutes, i.e. the dualization and direct sum isomorphisms, D̃ and ⊕̃, on the determinant lines
are compatible. Combining the Dual Exact Triples property with the isomorphism Naturality II
property applied to (2.39) with (D′, D′′)=(D2◦D1, idX2), we find that the diagram

λ(D1)⊗ λ(D2)

D̃D2
⊗D̃D1

◦R
��

C̃D1,D2 // λ(D2◦D1)

D̃D2◦D1
��

λ(D∗
2)⊗ λ(D

∗
1)

C̃D∗
2 ,D

∗
1 // λ(D∗

1◦D
∗
2)

commutes, i.e. the dualization and composition isomorphisms, D̃ and C̃, on the determinant lines
are compatible.

Section 4.2 provides explicit formulas for the above isomorphisms Ψt, ⊕̃D′,D′′ , C̃D1,D2 , and D̃D; see
(4.10), (4.12), (4.22), and (4.13), respectively. Such formulas may be useful in some applications.

3 Conceptual considerations and comparison of conventions

3.1 Topologizing determinant line bundles

For any Banach vector spaces X and Y , the overlap maps between the trivializations ĨD,T of

detX,Y in (2.26) are continuous. Thus, the trivializations ĨD,T topologize detX,Y
∣∣
F∗(X,Y )

as a line

bundle over F∗(X,Y ), as required by the Normalization I property on page 12. By Lemma 5.1,
the resulting topology is compatible with the Normalization II property on page 13.

For any Banach vector space X and N ∈Z≥0, let ιX;N : X−→X⊕RN be the natural inclusion. If
Y is another Banach vector space, D∈F(X,Y ), and Θ: RN −→Y is any homomorphism, define

ιΘ : F(X,Y ) −→ F(X⊕RN , Y ) by ιΘ(D) = DΘ, DΘ(x, u) = Dx+Θ(u);

the map ιΘ is an embedding. The exact triple

0 // X

D
��

ιX;N // X ⊕ R
N

DΘ

��

π2 // RN

��

// 0

0 // Y
idY // Y // 0 // 0

(3.1)

and (2.27) give rise to the isomorphism

ÎΘ;D : λ(D) −→ λ(DΘ), ÎΘ;D(σ) = Ψt

(
σ ⊗ ΩN⊗1

∗
)
, (3.2)

where ΩN is the standard volume tensor on R
N , i.e.

ΩN = e1 ∧ . . . ∧ eN

if e1, . . . , eN is the standard basis for RN .
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By the continuity requirement on the family of isomorphisms Ψt in (2.27) and the Normalization I
property, the isomorphisms ÎΘ;D topologize detX,Y over the open subset

UX;Θ ≡
{
D∈F(X,Y ) : c(DΘ) = 0

}
.

Since these open subsets cover F(X,Y ) as Θ ranges over all homomorphisms R
N −→ Y and

N ranges over all nonnegative integers, the isomorphisms ÎΘ;D completely specify the topology
on detX,Y . However, the overlap map

ÎΘ2;D◦Î
−1
Θ1;D

: ι∗Θ1
detX⊕RN1 ,Y −→ ι∗Θ2

detX⊕RN2 ,Y

must be continuous over UX;Θ1 ∩UX;Θ2 for any pair of homomorphisms Θ1 : R
N1 −→ Y and

Θ2 : R
N2 −→ Y . By Proposition 5.3, this is indeed the case if the collection of isomorphisms Ψt

satisfies the Normalization II,III and Compositions I,II properties. By Corollary 5.4, every isomor-
phism in such a collection is continuous in the resulting topologies if this collection also satisfies the
Naturality II property. A collection of isomorphisms Ψt satisfying all these properties is provided
by (4.10). All other such collections are described by Theorem 2 on page 35.

For D∈UX;Θ, the exact triple (3.1) induces an exact sequence

0 −→ κ(D) −→ κ(DΘ) −→ R
N −→ c(D) −→ 0

of vector spaces. A homomorphism δ : V −→ W between finite-dimensional vector spaces also
induces an exact sequence

0 −→ κ(δ) −→ V
δ
−→W −→ c(δ) −→ 0

of vector spaces. There is an isomorphism

Iδ : λ(δ) −→ λ(0) ≡ λ(V )⊗ λ∗(W ). (3.3)

As suggested in [15], a suitable collection of these isomorphisms is fundamental to constructing a
system of determinant line bundles for Fredholm operators. Unfortunately, [15] makes no mention
of what properties of a system of isomorphisms (3.3) are needed for such a construction and gives no
explicit formula for these isomorphisms. The discussion in [15] is also limited to Cauchy-Riemann
operators on Riemann surfaces.

In the convention (2.3), which is also used in [12, Section 20.2] and [14, Section 7.4], the exact
triple isomorphisms (4.10) correspond to the isomorphisms (3.3) given by

Iδ : λ(δ) −→ λ(0), x⊗ y∗ −→ (−1)(d(W )−d(c(δ)))d(c(δ))(x∧V v)⊗
(
λ(δ)v ∧W y

)∗
, (3.4)

∀ x ∈ λ
(
κ(δ)

)
− 0, y ∈ λ

(
c(δ)

)
− 0, v ∈ λ

(
V

κ(δ)

)
− 0,

where ∧V and ∧W are the isomorphisms of Lemma 4.1; see Remark 4.6. This is precisely the
isomorphism of [14, Lemma 7.4.7] and is used directly to topologize determinant line bundles in
the proof of [14, Proposition 7.4.8].2 While the properties of (3.4) necessary for this construc-
tion are verified in [14], few of the important properties of the resulting determinant line bundles

2As shown in the proof of Proposition 5.3 in this paper, the restriction to injective homomorphisms Θ in the proof
of [14, Proposition 7.4.8] is unnecessary.
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are checked in [14]. The isomorphism (3.4) appears only indirectly in the construction of this paper.

There are alternative ways of constructing a system of determinant line bundles satisfying the
properties in Subsection 2.2.

(1) A system of determinant line bundles for bounded complexes of vector bundles and isomor-
phisms for exact triples of such complexes is constructed in [11, Chapter I]. A system of deter-
minant line bundles for Fredholm operators can then be obtained by associating each Fredholm
operator with a two-term complex, deducing the Exact Squares property for Fredholm opera-
tors from that for bounded complexes and the two algebraic Compositions properties from the
Exact Squares property, and deriving explicit formulas for all isomorphisms. This approach is
described in detail in Section 3.2.

(2) One could explicitly specify a collection of isomorphisms ÎΘ;D as in (3.2) that are compati-
ble with compositions. This is essentially the approach taken in [13], [14], [16], and [17] to
topologize determinant line bundles, without verifying the properties in Subsection 2.2. The
isomorphisms (3.2) can be used to define Exact Triples isomorphisms (2.27) from the Normal-
ization II property, imposing the commutativity property of Lemma 4.12 by definition, and to
derive an explicit formula for these isomorphisms. The Exact Squares property for Fredholm
operators can then be obtained from the basic Exact Squares property of Lemma 4.3 as in the
proof of Corollary 4.13 and used to confirm the two algebraic Compositions properties.

(3) The commutativity property of Lemma 4.12 could be verified for the isomorphism (4.10) di-
rectly, without using Proposition 4.10, and used to obtain the Exact Squares property as in
the proof of Corollary 4.13. The two algebraic Compositions properties could then be de-
duced either from the Exact Squares property or from the corresponding properties for vector
spaces by an argument similar to the proof of Corollary 4.13. Unfortunately, the proof of the
special case of Proposition 4.10 corresponding to Lemma 4.12 is as elaborate as the proof of
Proposition 4.10 itself; the former involves a bit less notation, but exactly the same steps.

In all three approaches, the Dual Exact Triples property can be either checked directly or deduced
from more general considerations. The above listed alternatives can be used to replace parts of
Section 4 in this paper, but most of Section 5 would still be needed. It appears the overall approach
of this paper is more efficient than the three alternatives described above.

The equivalence of the topologies arising from the algebraic approach of [11] and the analytic
approach of [15] in many complex-geometric settings is shown in the trilogy [2, 3, 4]; see [2, Theo-
rem 0.1] in particular. Combined with earlier work [6, 7], this trilogy leads to an arithmetic version
of the Grothendick-Riemann-Roch Theorem; see [8]. A thorough discussion of the determinant line
bundle in Arakelov geometry, which is outside of the scope of this paper, is contained in the books
[5, 18].

3.2 Relation with Knudsen-Mumford

The existence of a determinant line bundle system satisfying the properties in Subsection 2.2 fol-
lows most readily (but still with some work) from the proof of [11, Theorem 1], which constructs
determinant line bundles for bounded complexes of vector bundles. Unfortunately, a complete
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construction of a determinant line bundle based on [11] with a verification of all of the properties
listed in Subsection 2.2 and with explicit formulas for the relevant isomorphisms does not seem to
appear elsewhere; we describe it below.

For each homomorphism Θ: RN −→Y ,

KΘ ≡
{
(D,x, u)∈UX;Θ ×X⊕R

N : (x, u)∈κ(DΘ)
}
−→ UX;Θ

is a vector bundle. For each D ∈ UX;Θ, the commutative diagram (3.1) gives rise to an exact
sequence

0 −→ κ(D) −→ κ(DΘ)
δΘ−→ R

N Θ
−→ c(D) −→ 0. (3.5)

Thus, each homomorphism Θ: RN −→Y determines a two-term graded complex

. . . −→ 0 −→ KΘ
δΘ−→ UX;Θ×R

N −→ 0 −→ . . . (3.6)

of vector bundles over UX;Θ, with KΘ placed at the 0-th position, and a Z2-graded line bundle

LΘ ≡ λ(KΘ)⊗ λ
∗(UX;Θ×R

N ),

the determinant line bundle of the two-term complex (3.6).

For each D∈UX;Θ, let Ξ: c(D)−→R
N be a right inverse for the surjective map

R
N −→ c(D), u −→ Θ(u) + ImD. (3.7)

The diagram

. . . // 0

��

// κ(D)

iD;X

��

0 // c(D)

Ξ
��

// 0

��

// . . . iD;X(x) = (D,x, 0)

. . . // 0 // KΘ|D
δΘ // {D}×RN // 0 // . . .

is then a quasi-isomorphism of graded complexes over {D}, i.e. a homomorphism of graded complexes
of vector bundles that induces an isomorphism in homology. By [11, Theorem 1], there is then a
canonical isomorphism

Î ′Θ;D : λ(D) −→ LΘ|D ≈ λ(DΘ).

Since any other right inverse for the homomorphism (3.7) is of the form Ξ + δΘΞ̃ for some homo-
morphism Ξ̃ : c(D)−→ κ(DΘ), Î

′
Θ;D is independent of the choice of Ξ by [11, Proposition 2]. If

Θ′ : RN
′

−→Y is another homomorphism and ι : RN −→R
N ′

is a homomorphism such that Θ=Θ′◦ι,

. . . // 0

��

// KΘ

id×id×ι

��

δΘ // UX;Θ×R
N

id×ι
��

// 0

��

// . . .

. . . // 0 // KΘ′

δΘ′ // UX;Θ×R
N ′ // 0 // . . .

is also a quasi-isomorphism of graded complexes. By the proof of [11, Theorem 1], it also induces
a canonical isomorphism

IΘ′,Θ : LΘ −→ LΘ′
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of line bundles over UX;Θ. By the functoriality of the determinant construction of [11, Theorem 1],

Î ′Θ′;D = IΘ′,Θ◦Î
′
Θ;D : λ(D) −→ LΘ′ |D ≈ λ(DΘ′).

Since the line bundle maps IΘ′,Θ are continuous, the isomorphisms Î ′Θ;D topologize detX,Y over
UX;Θ and endow detX,Y with a well-defined topology of a line bundle over F(X,Y ), which satisfies
the Normalization I and Naturality I properties.

The proof of [11, Theorem 1] produces analogues of the isomorphisms (2.27) for exact triples of
graded complexes (3.6) of vector bundles. These isomorphisms satisfy analogues of the Normal-
ization II,III, Naturality II, and Exact Squares properties. By the proof of Corollary 5.4, an exact
triple of Fredholm operators gives rise to an exact triple of two-term complexes (over a point).
By the analogue of the Naturality II property for two-term complexes, the isomorphisms of [11,
Theorem 1] then induce via the isomorphisms Î ′Θ;D isomorphisms Ψt for exact triples of Fredholm
operators which satisfy the Normalization II,III and Naturality II properties. These isomorphisms
depend continuously on t by the proofs of Lemma 5.1 and Corollary 5.4. By the proof of Corol-
lary 4.13, an exact square of Fredholm operators as in (2.32) gives rise to an exact square of
two-term complexes. By the analogue of the Exact Squares property for two-term complexes and
the proof of Corollary 4.13, the induced isomorphisms for exact triples of Fredholm operators sat-
isfy the Exact Squares property for Fredholm operators. The proof of [11, Theorem 1] implies the
existence of the bundle maps D̃D as in (2.36) satisfying the analogue of the Dual Exact Triples
property on page 19 for two-term complexes. These bundle maps D̃D satisfy the analogue of the
Normalization IV⋆ property on page 19 in the case of the system explicitly constructed in the proof
of [11, Theorem 1]; this can be seen from the last paragraph of this section and Section 3.4.

We show below that the Compositions I,II properties on page 14 follow from the isomorphism
Naturality II, Normalization III, and Exact Squares properties. By Subsection 3.4, the full Nat-
urality II property follows from the isomorphism Naturality II, Normalization II,III, and Exact
Squares properties. Thus, [11, Theorem 1] gives rise to a determinant line bundle system satisfying
all properties in Subsection 2.2, with the possible exceptions of the Complex Orientations, Complex
Exact Triples, and Dual Complex Orientations properties.

Exact Squares and Normalization III imply Compositions II . Let t1 and t2 be exact triples
as in (2.31). For ⋆= ′,′′ or blank, let

Ψ⋆ : λ(D⋆
1)⊗λ(D

⋆
2) −→ λ

(
D⋆

2◦D
⋆
1⊕idX⋆

2

)

be the isomorphism (2.27) for the exact triple (2.19) corresponding to the composition D⋆
2◦D

⋆
1. For

i=1, 3, define
ιX⋆

i ;X
⋆
2
: X⋆

i −→ X⋆
i ⊕X

⋆
2 , ιX⋆

i ;X
⋆
2
(x) = (x, 0).

Thus, (ιX⋆
1 ;X

⋆
2
, ιX⋆

3 ;X
⋆
2
) is a quasi-isomorphism from D⋆

2◦D
⋆
1 to D⋆

2◦D
⋆
1⊕idX⋆

2
. Let

I⋆= ĨιX⋆1 ;X⋆2
,ιX⋆3 ;X⋆2

;D⋆2◦D
⋆
1
: λ(D⋆

2◦D
⋆
1) −→ λ

(
D⋆

2◦D
⋆
1⊕idX⋆

2

)

be the corresponding isomorphism (2.4). In the top diagram of Figure 2, the rows are the exact
triple t1, the direct sum of CT (t1, t2) with

0 −→ idX′
2
−→ idX2 −→ idX′′

2
−→ 0,
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and the exact triple t2. The columns in this commutative square of Fredholm operators are the
exact triples (2.19) corresponding to the compositions D′

2◦D
′
1, D2◦D1, and D

′′
2 ◦D

′′
1 .

Applying the Exact Squares property to this diagram, we obtain the top commutative square in
the last diagram in Figure 2. Applying the Exact Squares and Normalization III properties to the
center diagram in Figure 2 and using the identification

λ(D⋆
2◦D

⋆
1) −→ λ(D⋆

2◦D
⋆
1)⊗λ(idX⋆

2
) , σ −→ σ ⊗ 1⊗1∗ , (3.8)

with ⋆= ′,′′ or blank, we obtain the bottom commutative square in this diagram. The two round
arrows are the vertical arrows in (2.31); the two half-disk diagrams commute by the definition
of C̃D⋆1 ,D⋆2 . Thus, the diagram (2.31), which consists of the outermost arrows in the last diagram in
Figure 2, commutes.

Exact Squares, Normalization III, and isomorphism Naturality II imply Composi-

tions I. Let D1, D2, D3 be Fredholm operators as in (2.30). Let

Ψ1,2 : λ(D1)⊗λ(D2) −→ λ(D2◦D1⊕idX2), Ψ1,23 : λ(D1)⊗λ(D3◦D2) −→ λ(D3◦D2◦D1 ⊕idX2),

Ψ2,3 : λ(D2)⊗λ(D3) −→ λ(D2◦D3⊕idX3), Ψ12,3 : λ(D2◦D1)⊗λ(D3) −→ λ(D3◦D2◦D1 ⊕idX3)

be the isomorphisms (2.27) for the exact triple (2.19) corresponding to the compositions D2◦D1,
(D3◦D2)◦D1, D3◦D2, and D3◦(D2◦D1). We define isomorphisms

I1,2 : λ(D2◦D1) −→ λ
(
D2◦D1⊕idX2

)
, I1,23 : λ(D3◦D2◦D1) −→ λ

(
D3◦D2◦D1⊕idX2

)
,

I2,3 : λ(D3◦D2) −→ λ
(
D3◦D2⊕idX3

)
, I12,3 : λ(D3◦D2◦D1) −→ λ

(
D3◦D2◦D1⊕idX3

)

analogously to I⋆ above.

The left column in the top diagram of Figure 3, the bottom row in this diagram, and the top row
in the middle diagram of Figure 3 are the exact triples (2.19) corresponding to the compositions
D2◦D1, D3◦D2, and D3◦(D2◦D1), respectively. The middle rows in these two figures are the direct
sum of the exact triple (2.19) corresponding to the composition D3◦(D2◦D1) with the exact triple

0 −→ idX2 −→ idX2 −→ 0 −→ 0.

The homomorphisms i≡(iX , iY ) and i≡(jX , jY ) in the center column of the top diagram of Figure 3
are given by

iX(x1) = (x1, D1x1, D2D1x1), jX(x1, x2, x3) = (D1x1−x2, x3−D2x2),

iY (x2) = (D3D2x2, x2, D2x2), jY (x4, x2, x3) = (x4−D3D2x2, x3−D2x2).

The left and center columns in the middle and bottom diagrams of this figure and the top and
middle rows in the bottom diagram are the direct sums of the obvious exact triples.

Applying the Exact Squares and Normalization III properties to the top exact square in Fig-
ure 3 and using identifications similar to (3.8), we find that the top left quadrilateral in Figure 4,
where Ψ̃12,3 and ΨM are the isomorphisms (2.27) corresponding to the middle row and the center
column in this square, commutes. The commuting bottom left quadrilateral in Figure 4, where
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0

��

0

��

0

��
0 // D′

1
//

��

D1
//

��

D′′
1

//

��

0

0 // D′
2◦D

′
1 ⊕ idX′

2

//

��

D2◦D1 ⊕ idX2
//

��

D′′
2 ◦D

′′
1 ⊕ idX′′

2

//

��

0

0 // D′
2

//

��

D2
//

��

D′′
2

//

��

0

0 0 0

0

��

0

��

0

��
0 // D′

2◦D
′
1

//

��

D2◦D1
//

��

D′′
2 ◦D

′′
1

//

��

0

0 // D′
2◦D

′
1 ⊕ idX′

2

//

��

D2◦D1 ⊕ idX2
//

��

D′′
2 ◦D

′′
1 ⊕ idX′′

2

//

��

0

0 // idX′
2

//

��

idX2
//

��

idX′′
2

//

��

0

0 0 0

λ(D′
1)⊗λ(D

′′
1)⊗λ(D

′
2)⊗λ(D

′′
2)

Ψt1⊗Ψt2 //

Ψ′⊗Ψ′′◦id⊗R⊗id
��

++

λ(D1)⊗ λ(D2)

Ψ
��

C̃D1,D2

uu

λ(D′
2◦D

′
1⊕idX′

2
)⊗ λ(D′′

2 ◦D
′′
1⊕idX′′

2
) // λ(D2◦D1⊕idX2)

λ(D′
2◦D

′
1)⊗λ(D

′′
2 ◦D

′′
1)

I′⊗I′′

OO

ΨCT (t1,t2) // λ(D2◦D1)

I

OO

Figure 2: Derivation of the Compositions II property from the Exact Squares and Normalization III
properties



0

��

0

��

0

��
0 // D1

��

id // D1

i

��

// 0

��

// 0

0 // D2◦D1 ⊕ idX2
//

��

D3◦D2◦D1 ⊕ idX2⊕idX3
//

j

��

D3
//

id
��

0

0 // D2
//

��

D3◦D2 ⊕ idX3
//

��

D3
//

��

0

0 0 0

0

��

0

��

0

��
0 // D2◦D1

��

// D3◦D2◦D1 ⊕ idX3

��

// D3

id
��

// 0

0 // D2◦D1 ⊕ idX2
//

��

D3◦D2◦D1 ⊕ idX2⊕idX3
//

��

D3
//

��

0

0 // idX2

id //

��

idX2
//

��

0 //

��

0

0 0 0

0

��

0

��

0

��
0 // D3◦D2◦D1

��

// D3◦D2◦D1 ⊕ idX3

��

// idX3

id
��

// 0

0 // D3◦D2◦D1 ⊕ idX2
//

��

D3◦D2◦D1 ⊕ idX2⊕idX3
//

��

idX3
//

��

0

0 // idX2

id //

��

idX2
//

��

0 //

��

0

0 0 0

Figure 3: Exact squares of Fredholm operators used in the derivation of the Compositions I property



λ(D1)⊗λ(D2)⊗λ(D3)
id⊗C̃D2,D3 //

id⊗Ψ2,3

❲❲❲❲
❲❲❲

++❲❲❲❲
❲❲❲

Ψ1,2⊗id

��
C̃D2,D1

⊗id

''

λ(D1)⊗ λ(D3◦D2)

id⊗I2,3
❤❤❤❤

❤❤❤

ss❤❤❤❤❤
❤❤

Ψ1,23

��
C̃D1,D3◦D2

ww

λ(D1)⊗λ(D3◦D2⊕idX3)

ΨM

��
Ψ̃1,23

��
λ(D2◦D1⊕idX2)⊗λ(D3)

Ψ̃12,3 // λ
(
D3◦D2◦D1⊕idX2⊕idX3

)
λ
(
D3◦D2◦D1⊕idX2

)Ĩ12,3oo

λ
(
D3◦D2◦D1⊕idX3

)
Ĩ1,23

OO

λ(D2◦D1)⊗λ(D3)
C̃D2◦D1,D3 //

Ψ12,3❤❤❤❤❤❤❤❤

33❤❤❤❤❤❤❤

I1,2⊗id

OO

λ(D3◦D2◦D1)

I12,3❱❱❱❱❱❱❱❱

jj❱❱❱❱❱❱❱

I1,23

OO

Figure 4: Commutative diagram used in the derivation of the Compositions I property from the Exact Squares, Normalization III,
and isomorphism Naturality II properties



Ĩ1,23 is the isomorphism (2.27) corresponding to the center column in the second diagram of Fig-
ure 3, is obtained from this diagram by applying the Exact Squares and Normalization III properties
as well. A similar exact square gives the commuting top right quadrilateral in Figure 4, where Ψ̃1,23

and Ĩ12,3 are the isomorphisms (2.27) corresponding to the direct sum of the exact triple (2.19) for
the composition (D3◦D2)◦D1 with the exact triple

0 −→ 0 −→ idX3 −→ idX3 −→ 0

and to the middle row in the last diagram in Figure 3, respectively. The bottom right quadrilateral
in Figure 4 arises from the last diagram in Figure 3.

The two arrows that run between the same objects in the middle of Figure 4 are related by the
isomorphism of exact triples of Fredholm operators,

0 // D1
//

id
��

D3◦D2◦D1 ⊕ idX2⊕idX3
//

(φ,ψ)

��

D3◦D2⊕idX3
//

id
��

0

0 // D1
i // D3◦D2◦D1 ⊕ idX2⊕idX3

j // D3◦D2⊕idX3
// 0 ,

where the top row is the exact triple (2.19) corresponding to the composition (D3◦D2)◦D1 augmented
by idX3 ,

φ(x1, x2, x3) = (x1, x2, x3+D2x2), ψ(x4, x2, x3) = (x4, x2, x3+D2x2).

Since Ĩφ,ψ;D3◦D2◦D1⊕idX2
⊕idX3

=id, these two arrows are in fact the same by the isomorphism Nat-
urality II property. The two half-disk and two triangular diagrams in Figure 4 commute by the
definition of C̃. Thus, the diagram (2.30), which consists of the outermost arrows of the diagram
in Figure 4, commutes.

The determinant for a complex of vector bundles in [11, p31] corresponds to reversing the two
factors in (2.3) and thus interchanges the roles of the kernels and cokernels of linear operators.
The isomorphism (3.4) should then be replaced by

λ∗
(
c(δ)

)
⊗λ

(
κ(δ)

)
−→ λ∗(W )⊗λ(V ),

y∗⊗x −→ (−1)(d(V )−d(κ(δ)))d(κ(δ))
(
λ(δ)v ∧W y

)∗
⊗ x∧V v,

(3.9)

with x, y, v as before. This isomorphism differs from the isomorphism (3.4) conjugated by the
isomorphisms (2.1) by (−1) to the power of d(Im δ), which equals N−d(c(D)) in the case of (3.5).
The dependence on d(c(D)) drops out when taking the overlap maps, analogous to ÎΘ2;D ◦Î

−1
Θ1;D

on page 21, for the trivializations of the new version of the determinant line bundle, and so the
isomorphisms (3.9) still give rise to a well-defined topology on this bundle. The two versions of
the determinant line bundle are isomorphic by the maps (2.1) composed with the multiplication by
AindD,d(c(D))≡ (−1)c(D) in the fiber over D∈F(X,Y ). Neither of the last two maps is continuous,
but the composite is continuous; see Section 3.4 for a systematic discussion of such isomorphisms.
The isomorphism Ψt for exact triples of Fredholm operators described by (4.10) for the topology
on detX,Y specified by (3.4) should then be conjugated by the above isomorphism between the two
versions of the determinant line bundle. In particular, this changes the sign exponent in (4.12)
to (indD′)d(c(D′′)), in addition to interchanging the kernel and cokernel factors.
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3.3 Other conventions

In [9, Section 3.1], λ(D) is defined as the tensor product of λ(κ(D)) and λ(c(D)∗). In [13, Ap-
pendix A.2], λ(D) is defined as the tensor product of λ(κ(D)) and λ(κ(D∗)). In light of the second
isomorphism in (2.20), these two conventions are essentially identical. They implicitly identify
λ∗(c(D)) with λ(c(D)∗). Such an identification is determined by a pairing of λ(V ∗) with λ(V ) for
a finite-dimensional vector space V . There are two such standard pairings:

λ(V ∗)⊗ λ(V ) −→ R, α1∧. . .∧αn ⊗ v1∧. . .∧vn −→ det
(
αi(vj))i,j=1,...,n and

−→ (−1)(
n
2) det

(
αi(vj))i,j=1,...,n.

(3.10)

Along with (3.4), these two pairings topologize the new version of the determinant line bundle
in two different ways. The resulting line bundles are isomorphic by the multiplication by (−1)
to the power of

(
d(c(D))

2

)
in the fiber over D ∈ F(X,Y ). Under the second pairing in (3.10), the

isomorphism (3.4) precisely corresponds to the isomorphism [9, (3.1)]. On the other hand, the
analogue of (3.4) used in the proof of [13, Theorem A.2.2] corresponds under the first pairing
in (3.10) to (3.4) without the sign; see [13, Exercise A.2.3]. In the case of (3.5), the exponent
of this sign is (N−c(d))c(D), which changes the overlap maps between the trivializations of the
determinant line bundle by (−1) to the power of (N ′−N)d(c(D)). The overlap maps in the proof
of [13, Theorem A.2.2] thus need not be continuous if N−N ′ is odd and so do not topologize the
determinant line bundles.3

In [17, Section (11a)], λ(D) is defined as the tensor product of λ(c(D)∗) and λ(κ(D)). In [16, Sec-
tion 1.2], λ(D) is defined as the tensor product of λ(κ(D∗)) and λ(κ(D)). In light of the second iso-
morphism in (2.20), these conventions are essentially identical. Under the second pairing in (3.10),
the isomorphism (3.9) becomes [17, (11.3)]. Under the same pairing, the isomorphism (3.9) corre-
sponds to the isomorphism of [16, Theorem 2.1] multiplied by (−1) to the power of

(
d(W )−d(c(δ))

)
(ind δ) + d

(
κ(δ)

)
d
(
c(δ)

)
∼= d(W )(ind δ) + c(δ) mod 2.

In the case of (3.5), the sign exponent reduces to N(indD)+d(c(D)). The dependence on d(c(D))
drops out when taking the overlap maps for the trivializations of this version of the determinant
line bundle, and so the isomorphism of [16, Theorem 2.1] gives rise to a well-defined topology on
this bundle. It is isomorphic to the determinant line bundle of [17, Section (11a)] by the multipli-
cation by (−1)c(D) in the fiber over D∈F(X,Y ). The interchange of factors in λ(D) accounts for
the change of the sign exponent in the direct sum formulas, [16, (3)] and [17, (11.2)], from (4.12),
as explained at the end of the last paragraph in Section 3.2.

In [15, Section 1] and [10, Appendix D.2], λ(D) is defined to be either

λ(κ(D)∗)⊗ λ(c(D)) or λ∗(κ(D))⊗ λ(c(D));

3The 2017 revision of [13] contains a modification to address this issue. There is inconsistency in the definition
of λ(D) at the beginning of the revised Appendix A.2 in [13] and the notation in Theorem A.2.1ab. Assuming the
intended definition is as stated, Theorem A.2.1ab defines a collection of exact triple isomorphisms Ψt corresponding
to the collection Ai,c ≡ (−1)ic of our Theorem 2 on page 35 under the second pairing in (3.10); this pairing is
consistent with the notation in Theorem A.2.1ab. These isomorphisms correspond to the isomorphisms (3.4) with
the sign as in (3.9). This sign is more consistent with reversing the factors in the definition of λ(D) in [13], as in
Theorem A.2.1ab and in [11].
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the notation is somewhat ambiguous, but looks more like the former. The usage in [15] is more
consistent with the latter convention; the usage in [10] is sometimes more consistent with the
latter and sometimes more consistent with the former.4 The latter definition of λ(D) is used in [1,
Section (f)]. While λ(κ(D)∗) and λ∗(κ(D)) are canonically isomorphic, there are at least two choices
of such canonical isomorphisms, the two provided by the pairings (3.10). The “construction” of
the determinant line bundle in [15] consists of mentioning that each homomorphism δ : V −→W
between finite-dimensional vector spaces gives rise to a natural isomorphism

λ(κ(D)∗)⊗ λ(c(D)) −→ λ(V ∗)⊗ λ(W ) or λ∗(κ(D))⊗ λ(c(D)) −→ λ∗(V )⊗ λ(W ),

but no indication is given what it is. In the proof of [10, Proposition D.2.2], this isomorphism is
described as a composition of other isomorphisms, but some of them are not specified.5 The con-
struction in [10, Appendix D.2] is fundamentally based on [10, Proposition D.2.6], though its proof
appears to be incomplete; see Remark 4.9 for details. However, the statement of this proposition
is the basis for the construction of the determinant line bundle in this paper and a close cousin
of this proposition, Proposition 4.10, is used to verify the continuity of the bundle map (2.27) for
families of exact triples of Fredholm operators. The construction in [1] is limited to Hilbert spaces
and still omits some details. Neither [1, Section (f)], [10, Appendix D], nor [15] confirms most of
the properties of the determinant line bundle stated in Subsection 2.2.

As noted in [15, Section 2], the section of detX,Y in the definitions of [15, Section 1] and [10,
Appendix D.2] given by

σ(D) =

{
1∗⊗1, if D is isomorphism;

0, otherwise;
(3.11)

is continuous. There is no such section if detX,Y is defined as in (2.3), [9], [14], [16], or [17].
The definition of detX,Y in [15, Section 1] and [10, Appendix D.2] thus comes with a natural
normalization for the topology, but it does not restrict the topology of detX,Y any further than
the properties in Subsection 2.2; see Section 3.4. The alternative definitions seem more natural
from the geometric viewpoint, as typically the spaces κ(D) describe tangent spaces of some, ideally
smooth, moduli spaces, and so it seems desirable not to dualize them. The alternative definitions
also lead to a somewhat nicer appearance of formulas describing key properties of the determinant
line bundle system. For example, [10, Proposition D.2.2] reverses the order of the factors in the
isomorphism of Lemma 4.1.

3.4 Classification of determinant line bundles

For each exact triple t of Fredholm operators, we denote by Ψt the isomorphism (4.10). By Subsec-
tions 4.2-5.2, this collection of exact triple isomorphisms satisfies all properties for systems of de-
terminant line bundles listed in Subsection 2.2. Let {Ψ′

t}t be another collection of isomorphisms for
exact triples of Fredholm operators satisfying the isomorphism Naturality II, Normalization II,III,
and Exact Squares properties. We show that this collection is as in (3.17) for some Ai,c∈R

∗ and

4For example, the last equality in the last displayed expression in the proof of [10, Proposition D.2.2] uses the
latter definition, while [10, (D.2.9)] uses the former.

5In addition, (detF )−1 should be detF at the end of the statement of this proposition and detH2 should be
(detH2)

∗ in the second-to-last displayed equation in the proof; the first change is necessary for the section (3.11) to
be continuous in the finite-dimensional case.
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satisfies the remaining properties for systems of determinant line bundles listed in Subsection 2.2, if
Ai,c are chosen appropriately. Theorem 2 describes all collections of isomorphisms for exact triples
of Fredholm operators satisfying all properties listed in Subsection 2.2.

For i∈Z and c∈Z≥0 with c≥−i, let Ψi,c be the isomorphism Ψt in (4.10) for the exact triple

0 // Ri+c //

0

��

R
i+c⊕Rc //

��

R
c //

��

0

0 // Rc // Rc // 0 // 0 ,

(3.12)

where the top right and middle arrows are the projections onto the last c coordinates. Thus,

Ψi,c

(
Ωi+c⊗Ω

∗
c ⊗ Ωc⊗1

∗
)
= (−1)cΩi+2c⊗1

∗.

Let Ψ′
i,c be the isomorphism Ψ′

t for the exact triple (3.12) and Ai,c∈R
∗ be such that

Ψ′
i,c = Ai,cΨi,c . (3.13)

In particular,
Ψ′
i,c

(
Ωi+c⊗Ω

∗
c ⊗ Ωc⊗1

∗
)
= (−1)cAi,cΩi+2c⊗1

∗. (3.14)

By the Normalization II property on page 13, Ai,0=1 for all i∈Z≥0. By the Complex Exact Triples
property, Ai,c∈R

+ if i, c∈2Z.

Let t be an exact triple as in (2.6) and

Θ′ : RN
′

−→ Y ′ and Θ̃′′ : RN
′′

−→ Y

be homomorphisms such that D′∈UX′;Θ′ and D′′∈UX′′;j
Y ◦Θ̃′′

. Let N =N ′+N ′′, i : RN
′

−→R
N be

the inclusion as RN
′

×0N
′′

, and j : RN −→ R
N ′′

be the projection onto the last N ′′ coordinates. We
define

Θ: RN −→ X, Θ(x′, x′′) = iY
(
Θ′(x′)

)
+ Θ̃′′(x′′) ∀ (x′, x′′) ∈ R

N ′

⊕RN
′′

,

Θ′′ : RN
′′

−→ X ′′, Θ′′(x′′) = jY
(
Θ̃′′(x′′)

)
∀x′′ ∈RN

′′

.

Thus, the first diagram in Figure 5, where the right column is the exact triple

0 // RN
′ i //

jN′

��

R
N j //

jN

��

R
N ′′ //

jN′′

��

0

0 // 0 // 0 // 0 // 0 ,

is an exact square of Fredholm operators. By the Exact Squares and Normalization II properties,
the collection {Ψ′

t} is thus determined by the isomorphisms

Î ′Θ;D : λ(D) −→ λ(DΘ), Î ′Θ;D(σ) = Ψ′
t

(
σ ⊗ ΩN⊗1

∗
)
,

corresponding to the exact triples (3.1) with D∈UX;Θ.
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0

��

0

��

0

��
0 // D′ //

��

D′
Θ′

//

��

jN ′ //

��

0

0 // D //

��

DΘ
//

��

jN //

��

0

0 // D′′ //

��

D′′
Θ′′

//

��

jN ′′ //

��

0

0 0 0

0

��

0

��

0

��
0 // Ḋ //

��

D //

��

0κ(D),c(D)
//

��

0

0 // Ḋ //

��

DΘD
//

��

(
0κ(D),c(D)

)
ΘD

//

��

0

0 // 0 //

��

jND
//

��

jND
//

��

0

0 0 0

0

��

0

��

0

��
0 // D //

��

DΘD
//

��

jND
//

��

0

0 // D //

��

DΘ
//

��

jN //

��

0

0 // 0 //

��

jN−ND
//

��

jN−ND
//

��

0

0 0 0

Figure 5: Exact squares of Fredholm operators specifying a determinant line bundle system



Given D∈F(X,Y ), let Ẋ⊂X be a closed linear subspace such that the operator

Ḋ : Ẋ −→ ImD, Ḋ(x) = Dx,

is an isomorphism and ΘD : RND −→ Y be a homomorphism inducing an isomorphism to c(D)
when composed with the projection Y−→c(D). There is an exact square of Fredholm operators as
in the second diagram in Figure 5, where the right column is the exact triple

0 // κ(D) //

0

��

κ(D)⊕ R
ND //

0ΘD

��

R
ND //

jND
��

0

0 // c(D) // c(D) // 0 // 0 .

By the Exact Squares, isomorphism Naturality II, and Normalization III properties and (3.13), the
isomorphisms Î ′ΘD;D above are determined by the isomorphisms Ψ′

i,c and satisfy

Î ′ΘD;D = AindD,d(c(D))ÎΘD;D .

For each homomorphism Θ : R
N −→ Y with D ∈ UX;Θ, there is an exact square of Fredholm

operators as in the last diagram in Figure 5. By the Exact Squares and Normalization II,III
properties and the above equation,

Î ′Θ;D = AindD,d(c(D))ÎΘ;D . (3.15)

The overlap maps Î ′Θ2;D
◦ Î ′ −1

Θ1;D
between the above isomorphisms are still ÎΘ2;D ◦ Î

−1
Θ1;D

and in
particular are continuous. By Remark 4.6, the isomorphisms (3.15) are compatible with the iso-
morphisms (3.4) given by

I ′δ =
Ad(V )−d(W ),d(c(δ))

Ad(V )−d(W ),d(W )
Iδ : λ(δ) −→ λ(0) , (3.16)

whenever δ : V −→W is a homomorphism between finite-dimensional vector spaces. The isomor-
phisms

ID : λ(D) −→ λ(D), σ −→ A−1
indD,d(c(D))σ ,

give rise to continuous isomorphisms between the determinant line bundles in the original and new
topologies. The suitable exact triples and dualization isomorphisms are given by

Ψ′
t = ID ◦Ψt ◦ I

−1
D′ ⊗I

−1
D′′ =

AindD′,d(c(D′))AindD′′,d(c(D′′))

AindD,d(c(D))
Ψt ,

D̃′
D = AindD

−1,1 ID∗◦D̃D◦I
−1
D = AindD

−1,1

AindD,d(c(D))

A−indD,d(κ(D))
D̃D,

(3.17)

if t is as in (2.6). The extra factors of A−1,1 in the second equation above are needed to achieve
the Normalization IV property on page 18, while preserving the Dual Exact Triples property. In
the case of the exact triple (3.1), Ψ′

t= ÎΘ;D, as the case should be. The new determinant line bun-
dle system also satisfies the Normalization IV⋆ property if and only if A−k,k=A

k
−1,1 for every k∈Z

+.

The above argument also implies that the Normalization IV and Dual Exact Triples properties on
page 13 determine the dualization isomorphisms D̃D completely. Putting everything together, we
obtain a complete description of systems of determinant line bundles.
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Theorem 2. The map specified by (3.14) sends each system of determinant line bundles satisfying
the properties in Subsection 2.2, other than Normalization IV⋆, to the functions

{
(i, c) : i∈Z, c∈Z+, c≥−i

}
−→ R

∗ , (i, c) −→ Ai,c , Ai,c ∈ R
+ if i, c∈2Z,

and is a bijection with the set of all such functions. The determinant line bundle systems that also
satisfy the Normalization IV⋆ property correspond to the subset of the above functions satisfying
A−k,k =Ak−1,1 for all k ∈ Z

+. In particular, the compatible systems of topologies on determinant
line bundles are in one-to-one correspondence with the admissible systems of isomorphisms Iδ as
in (3.3), (3.4), and (3.16) and with admissible systems of isomorphisms Ψt as in (2.27).

By Theorem 2 and the preceding discussion, the section S of det∗X,Y given by

SD(σ) =

{
c, if σ = c 1⊗1∗;

0, if D is not an isomorphism;

is continuous. This is the analogue of the section (3.11) for the convention (2.3).

Remark 3.1. According to [17, Remark 11.1], there are two possible sign conventions for the
determinant line bundle and the sign convention in [17, Section (11a)] is the same as in [11]. As
noted in Subsection 3.3, the setup in [17, Section (11a)] corresponds to the setup in [11, Chapter I]
via the second pairing in (3.10). The alternatives for [17, (11.2)] and [17, (11.3)] specified in [17,
Remark 11.1] for the “other” sign convention do not satisfy the key commutativity requirement
on the preceding page in [17]. In order for this requirement to be satisfied, the sign in [17, (11.2)]
must be kept precisely the same (contrary to what is explicitly stated in [17, Remark 11.1]); This
“other” convention would then correspond to the setup in [11, Chapter I] via the first pairing
in (3.10). Furthermore, by Theorem 2, there are infinitely many possible sign conventions, at least
several of which seem quite natural. The isomorphisms (3.15) satisfy the two requirements above
the diagram on page 150 in [17] provided A0,1>0. These systems of isomorphisms can be narrowed
down by replacing the Normalization IV property on page 18 with the Normalization IV⋆ property
(A−k,k=A

k
−1,1 for all k∈Z+), by specifying the dualization or direct sum isomorphisms, i.e.

A−i,i+c = Ai−1,1Ai,c or Ai,c = Ac0,1 ∀ i∈Z, c∈Z≥0, c≥−i,

and/or by requiring the isomorphisms Iδ to be given by

Iδ : λ(δ) −→ λ(0), 1⊗1∗ −→ (det δ)−1 v⊗v∗ ,

whenever δ : V −→ V is an isomorphism and v ∈ λ(V )−0 (A0,c=1 for all c∈Z+). The strongest
of these additional conditions, specifying the isomorphisms for direct sums of Fredholm operators,
seems to be the least natural requirement to make.

4 Linear algebra

4.1 Finite-dimensional vector spaces

In this subsection, we make a number of purely algebraic observations concerning finite-dimensional
vector spaces that lie behind the determinant line construction.
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Lemma 4.1 ([11, Proposition 1(i)]). Every short exact sequence

0 −→ V ′ i
−→ V

j
−→ V ′′ −→ 0 (4.1)

induces a natural isomorphism

∧V : λ(V ′)⊗ λ(V ′′) −→ λ(V ).

Proof. If v′1, . . . , v
′
k is a basis for V ′ and v1, . . . , vℓ∈V are such that j(v1), . . . , j(vℓ) is a basis for V ′′,

v′1∧ . . .∧v
′
k and j(v1)∧ . . .∧ j(vℓ) span λ(V ′) and λ(V ′′), respectively. By the exactness of (4.1),

i(v′1), . . . , i(v
′
k), v1, . . . , vℓ is basis for V and so the map

∧V : v′1∧. . .∧v
′
k ⊗ j(v1)∧. . .∧j(vℓ) −→ i(v′1)∧. . .∧i(v

′
k) ∧ v1∧. . .∧vℓ (4.2)

induces an isomorphism λ(V ′)⊗λ(V ′′) −→ λ(V ). By the exactness of (4.1), each vi∈V is determined
by j(vi) ∈ V

′′ up to a linear combination of i(v′1), . . . , i(v
′
k), and so the right-hand side of (4.2) is

determined by v′1, . . . , v
′
k∈V

′ and j(v1), . . . , j(vℓ)∈V
′′. Changing the collections v′1, . . . , v

′
k∈V

′ and
v1, . . . , vℓ∈V by a k×k-matrix A′ and an ℓ×ℓ-matrix A, respectively, changes the wedge products
of the first k vectors and the last ℓ vectors by detA′ and detA, respectively, on both sides of (4.2).
Thus, the isomorphism induced by (4.2) is independent of the choices of collections v′1, . . . , v

′
k∈V

′

and v1, . . . , vℓ∈V as above. It clearly commutes with isomorphisms of short exact sequences.

The next lemma follows immediately from the definitions of P in (2.2) and of ∧V above.

Lemma 4.2. For every finite-dimensional vector space V ,

P(v∗) = (Pv)∗ ∀ v ∈ λ(V )−0. (4.3)

For every isomorphism δ : V −→W between finite-dimensional vector spaces,

λ(δ∗)P
(
(λ(δ)v)∗

)
= P(v∗) ∀ v ∈ λ(V )−0. (4.4)

For every short exact sequence (4.1),

P
(
(λ(i)v′ ∧V v

′′)∗
)
= P(v′′∗) ∧V ∗ λ(i∗)−1P(v′∗) ∀ v′∈λ(V ′)−0, v′′∈λ

(
V/i(V ′)

)
−0. (4.5)

From (4.2), we immediately find that the isomorphisms ∧V of Lemma 4.1 satisfy graded commuta-
tivity, as described by the next lemma. Corollary 4.4 below is a special case of this lemma (either
VTR=0 or VBL=0).

Lemma 4.3 ([11, Proposition 1(ii)]). For every commutative diagram

0

��

0

��

0

��
0 // VTL

//

��

VTM
//

��

VTR
//

��

0

0 // VCL
//

��

VCM
//

��

VCR
//

��

0

0 // VBL
//

��

VBM
//

��

VBR
//

��

0

0 0 0
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of exact rows and columns, the diagram

λ(VTL)⊗ λ(VBL)⊗ λ(VTR)⊗ λ(VBR)

∧VCL
⊗∧VCR

��

∧VTM
⊗∧VBM

◦ id⊗R⊗id
// λ(VTM)⊗ λ(VBM)

∧VCM

��
λ(VCL)⊗ λ(VCR)

∧VCM // λ(VCM)

commutes.

Corollary 4.4. For every commutative diagram

0
&&
VLR

##

""❋
❋❋

❋❋
❋❋

❋
0

0

  

0
%%♦

❴ ❖

VLC

<<②②②②②②②②

""❊
❊

❊
❊

VCR

""❋
❋❋

❋❋
❋❋

❋

##
0 0

0 ::VLL

<<②②②②②②②②

55 VCC 55❲ ❬ ❴ ❝ ❣

<<

VRR <<

>>⑥
⑥

⑥
⑥

0

of 4 exact short sequences, the diagram

λ(VLL)⊗ λ(VLR)⊗ λ(VRR)
∧VLC

⊗id
//

id⊗∧VCR

��

λ(VLC)⊗ λ(VRR)

∧VCC

��
λ(VLL)⊗ λ(VCR)

∧VCC // λ(VCC)

commutes.

4.2 Exact triples of Fredholm operators

We begin this subsection by extending the isomorphism of Lemma 4.1 to exact triples of Fredholm
operators. It is immediate from the explicit formula (4.10) for the new isomorphism that it satisfies
the Naturality II, Normalization II,III, Direct Sums I,II, and Complex Exact Triples properties in
Subsection 2.2. We verify that it also satisfies the Dual Exact Triples property with D̃D given
by (4.13) and the Compositions I,II properties.

We will use the natural pairing of a one-dimensional vector space L with its dual given by

L∗ ⊗ L −→ R, α⊗ v −→ α(v).

If V is a finite-dimensional vector space and v∈λ(V ), we denote by

〈v〉 ≡ dimV + 2Z ∈ Z2

the degree of v as an element of the Z2-line λ(V ).

Proposition 4.5 ([10, Proposition D.2.3]). Every exact triple t of Fredholm operators as in (2.6)
induces a natural isomorphism

Ψt : λ(D
′)⊗ λ(D′′) −→ λ(D).

37



Proof. By the Snake Lemma, (2.6) induces an exact sequence

0 −→ κ(D′)
iX−→ κ(D)

jX−→ κ(D′′)
δ
−→ c(D′)

iY−→ c(D)
jY−→ c(D′′) −→ 0. (4.6)

By Lemma 4.1, there are then natural isomorphisms

λ(κ(D)) ≈ λ(κ(D′))⊗ λ(Im jX), λ(κ(D′′)) ≈ λ(Im jX)⊗ λ(Im δ),

λ(c(D′)) ≈ λ(Im δ)⊗ λ(Im iY ), λ(c(D)) ≈ λ(Im iY )⊗ λ(c(D
′′)).

(4.7)

Putting these isomorphisms together and using the natural evaluation isomorphisms, we obtain

λ(D′)⊗ λ(D′′) ≡ λ(κ(D′))⊗ λ∗(c(D′))⊗ λ(κ(D′′))⊗ λ∗(c(D′′))

≈ λ(κ(D))⊗ λ∗(Im jX)⊗ λ
∗(Im iY )⊗ λ

∗(Im δ)

⊗ λ(Im jX)⊗ λ(Im δ)⊗ λ∗(c(D))⊗ λ(Im iY ) ≈ λ(κ(D))⊗ λ∗(c(D)).

(4.8)

This establishes the claim.

For computational purposes, it is essential to specify the isomorphism of Proposition 4.5 explicitly.
With the notation as in (2.6) and (4.6), let

ǫt = (indD′′)d(c(D′)) + d(c(D))d(Im δ). (4.9)

For t corresponding to (2.6), we define

Ψt

(
x⊗(λ(δ)v ∧c(D′)w)

∗ ⊗ (λ(jX)u ∧κ(D′′)v)⊗(λ(jY )y)
∗
)

= (−1)ǫt
(
λ(iX)x∧κ(D)u

)
⊗
(
λ(iY )w ∧c(D)y

)∗
,

(4.10)

whenever

x∈λ(κ(D′)), u∈λ

(
κ(D)

iX(κ(D′))

)
, v∈λ

(
κ(D′′)

jX(κ(D))

)
, w∈λ

(
c(D′)

δ(κ(D′′))

)
, y∈λ

(
c(D)

iY (c(D′))

)
,

x, u, v, w, y 6= 0.

In particular, Ψt satisfies the Naturality II and Normalization II,III properties. By (2.24), it also
satisfies the Complex Exact Triples property.

Remark 4.6. If δ : V −→W is a homomorphism between finite-dimensional vector spaces, the
isomorphism (4.10) applied to the exact sequence

0 −→ 0 −→ κ(δ) −→ V
δ
−→W

q
−→ c(δ) −→ 0 −→ 0 (4.11)

induces the isomorphism

Ψδ : λ
∗(W )⊗ λ(V ) −→ λ(δ), Ψδ(β ⊗ x) = Ψtδ(1⊗β ⊗ x⊗1

∗),

where Ψtδ is the isomorphism (4.10) for the exact sequence (4.11). Explicitly,

Ψδ

(
(λ(δ)v∧Ww)∗ ⊗ (u∧V v)

)
= (−1)d(V )d(W )+(d(W )−d(c(δ)))d(c(δ))u⊗ w∗,

if u ∈ λ(κ(δ))− 0, v ∈ λ(V/κ(δ))− 0, w ∈ λ(c(δ))− 0.

Thus,

Ψ0 ◦Ψ
−1
δ : λ(δ) −→ λ(0) ≡ λ(V )⊗ λ∗(W ),

u⊗ w∗ −→ (−1)(d(W )−d(c(δ)))d(c(δ))(u∧V v)⊗ (λ(δ)v∧Ww)∗,

is precisely the isomorphism (3.4).
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For any D′∈F(X ′, Y ′) and D′′∈F(X ′′, Y ′′), let

⊕̃D′,D′′ : λ(D′)⊗ λ(D′′) −→ λ(D′⊕D′′)

be the isomorphism Ψt in (4.10) corresponding to the diagram (2.14). Thus,

⊕̃D′,D′′

(
(x′1∧. . .∧x

′
k′)⊗(y

′
1∧. . .∧y

′
ℓ′)

∗ ⊗ (x′′1∧. . .∧x
′′
k′′)⊗(y

′′
1∧. . .∧y

′′
ℓ′′)

∗
)

= (−1)(indD
′′)d(c(D′))

(
(x′1, 0)∧. . .∧(x

′
k′ , 0) ∧ (0, x′′1)∧. . .∧(0, x

′′
k′′)

)

⊗
(
(y′1, 0)∧. . .∧(y

′
ℓ′ , 0) ∧ (0, y′′1)∧. . .∧(0, y

′′
ℓ′′)

)∗
,

(4.12)

whenever

x′1∧. . .∧x
′
k′ ∈ λ(κ(D

′))− 0, y′1∧. . .∧x
′
ℓ′ ∈ λ(c(D

′))− 0,

x′′1∧. . .∧x
′′
k′′ ∈ λ(κ(D

′′))− 0, y′′1∧. . .∧y
′′
ℓ′′ ∈ λ(c(D

′′))− 0.

The two Direct Sums properties on page 14 follow immediately from (4.12).

The isomorphism

D̃D : λ(D) −→ λ(D∗), x⊗α −→ (−1)(indD)d(c(D))λ(DD)(Pα)⊗ P
(
λ(DD)x

)
, (4.13)

satisfies the Normalization IV⋆ property on page 19. By (2.24), it satisfies the Dual Complex
Orientations properties as well. The next proposition shows that it also satisfies the Dual Exact
Triples property. The extra factor of (−1)d(c(D)) in (4.13) arises for the same reason as in the
paragraph containing (3.9). Due to this extra factor, the compositions of D̃D with D̃D∗ are the
multiplication by (−1)indD, not necessarily the identity, whenever the Banach spaces X and Y are
reflexive.

Proposition 4.7 (Dual Exact Triples). For every exact triple (2.6) of Fredholm operators, the
diagram (2.37) determined by the isomorphisms (4.10) and (4.13) commutes.

Proof. With notation as in (2.6) and (2.37), we define

ǫL = (indD′)(indD′′) + (indD′)d(c(D′)) + (indD′′)d(c(D′′)) + ǫt∗ , ǫR = ǫt + (indD)d(c(D)).

The isomorphisms (2.20) intertwine the analogue of the exact sequence (4.6) for t∗ and the dual
of (4.6):

0 // κ(D′′∗)
j∗Y // κ(D∗)

i∗Y // κ(D′∗)
δ∗ // c(D′′∗)

j∗X //

D∗

D′′

��

c(D∗)
i∗X //

D∗
D

��

c(D′∗) //

D∗

D′

��

0

0 // c(D′′)∗
j∗Y //

DD′′

OO

c(D)∗
i∗Y //

DD

OO

c(D′)∗
δ∗ //

DD′

OO

κ(D′′)∗
j∗X // κ(D)∗

i∗X // κ(D′)∗ // 0 .

(4.14)

In particular,

d(Im δ∗) = d(Im δ) = d(κ(D′)) + d(κ(D′′)) + d(κ(D)) = d(c(D′)) + d(c(D′′)) + d(c(D))

and so 2|(ǫL−ǫR).
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Let x, u, v, w, y be as in (4.10). By (4.14), we can compute Ψt∗ using

x̌ = λ(DD′′)P
(
(λ(jY )y)

∗
)
∈ λ

(
κ(D′′∗)

)
, ǔ = λ(DD)P

(
(λ(iY )w)

∗
)
∈ λ

(
κ(D∗)

j∗Y (κ(D
′′∗))

)
,

v̌ = λ(DD′)P
(
(λ(δ)v)∗

)
∈ λ

(
κ(D′∗)

ι∗Y (κ(D
∗))

)
, w̌ = λ(D∗

D′′)−1P
(
(λ(jX)u)

∗
)
∈ λ

(
c(D′′∗)

δ∗(κ(D′∗))

)
,

y̌ = λ(D∗
D)

−1P
(
(λ(iX)x)

∗
)
∈ λ

(
c(D∗)

j∗X(c(D
′′∗))

)
.

By (4.3), (4.4), and the commutativity of the diagram (4.14),

P
(
λ(DD′)x

)
=

(
λ(i∗X)y̌

)∗
, (4.15)

λ(DD′)P(w∗) = λ(i∗Y )ǔ, λ(DD′)λ(δ∗)−1P(v∗) = v̌,

λ(DD)P(y
∗) = λ(j∗Y )x̌, λ(DD)λ(i

∗
Y )

−1P(w∗) = ǔ,

λ(DD′′)λ(jX)u = P(w̌∗), λ(DD′′)v = λ(δ)−1P(v̌∗)

λ(DD)λ(iX)x = P(y̌∗), λ(DD)u = λ(jX)
−1P(w̌∗).

Combining each pair of identities on the last four lines above with (4.5), we obtain

λ(DD′)P
(
(λ(δ)v ∧c(D′)w)

∗
)
= λ(i∗Y )ǔ ∧κ(D′∗) v̌, (4.16)

λ(DD)P
(
(λ(iY )w ∧c(D)y)

∗
)
= λ(j∗Y )x̌ ∧κ(D∗) ǔ, (4.17)

P
(
λ(DD′′)(λ(jX)u ∧κ(D′′)v)

)
=

(
λ(δ∗)v̌ ∧c(D′′∗)w̌

)∗
, (4.18)

P
(
λ(DD)(λ(iX)x ∧κ(D)u)

)
=

(
λ(j∗X)w̌ ∧c(D∗) y̌

)∗
, (4.19)

respectively. By (4.13), (4.15), (4.16), (4.18), and (4.10), the image of

x⊗(λ(δ)v ∧c(D′)w)
∗ ⊗ (λ(jX)u ∧κ(D′′)v)⊗(λ(jY )y)

∗ ∈ λ(D′)⊗ λ(D′′) (4.20)

under Ψt∗◦D̃D′′⊗D̃D′◦R is

(−1)ǫL
(
λ(j∗Y )x̌ ∧κ(D∗) ǔ

)
⊗
(
λ(j∗X)w̌ ∧c(D∗) y̌

)∗
∈ λ(D∗).

By (4.10), (4.13), (4.17), and (4.19), the image of the element (4.20) under D̃D◦Ψt is

(−1)ǫR
(
λ(j∗Y )x̌ ∧κ(D∗) ǔ

)
⊗
(
λ(j∗X)w̌ ∧c(D∗) y̌

)∗
∈ λ(D∗).

Since 2|(ǫL−ǫR), this establishes the claim.

For any D1∈F(X1, X2) and D2∈F(X2, X3), let

C̃D1,D2 : λ(D1)⊗ λ(D2) −→ λ(D2◦D1)

be the isomorphism Ψt in (4.10) corresponding to the diagram (2.19). The exact sequence (4.6) in
this case specializes to

0 −→ κ(D1) −→ κ(D2◦D1)
D1−→ κ(D2)

δ
−→ c(D1)

D2−→ c(D2◦D1) −→ c(D2) −→ 0, (4.21)

δ(x2) = −x2 + ImD1.
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Let
ǫD1,D2 = (indD2)d(c(D1)) +

(
d(c(D1)) + d(c(D2))

)
d(Im δ).

Then,

C̃D1,D2

(
x1⊗(v ∧c(D1)w)

∗ ⊗ (λ(D1)u ∧κ(D2)v)⊗y
∗
2

)

= (−1)ǫD1,D2 (x1∧κ(D2◦D1)u)⊗ (λ(D2)w ∧c(D2◦D1)y2)
∗,

(4.22)

whenever

x1∈λ(κ(D1))− 0, y2∈λ(c(D2))− 0, u∈λ

(
κ(D2◦D1)

κ(D1)

)
− 0,

v∈λ

(
κ(D2)

κ(D2) ∩ (ImD1)

)
− 0, w∈λ

(
X2

κ(D2) + (ImD1)

)
− 0.

Proposition 4.8 (Compositions I, [10, Proposition D.2.6]). For any triple of Fredholm opera-
tors D1 : X1 −→ X2, D2 : X2 −→ X3, and D3 : X3 −→ X4, the diagram (2.30) induced by the
isomorphisms (4.10) commutes.

Proof. We denote by D′′D′ the composition D′′◦D′ of two maps D′ and D′′ and define

ǫL = ǫD1,D2 + ǫD2D1,D3 , ǫR = ǫD2,D3 + ǫD1,D3D2 .

For i=1, 2, 3, let
xi∈λ(κ(Di))− 0 and yi∈λ(c(Di))− 0.

For (i, j) ∈ {(1, 2), (2, 3), (1, 23), (12, 3)}, let

ui,j ∈ λ

(
κ(DjDi)

κ(Di)

)
− 0, vi,j ∈ λ

(
κ(Dj)

κ(Dj) ∩ Im(Di)

)
− 0, wi,j ∈ λ

(
Xj

κ(Dj) + Im(Di)

)
− 0,

where D12=D2D1, D23=D3D2, and X23=X2; see Figure 6. Below we choose these elements in a
compatible way.

Applying Lemma 4.1 to the exact sequence (4.21) with D1 and D2 replaced by Di and Dj with
(i, j) as above, we obtain

d(κ(D3)) = 〈u12,3〉+ 〈v12,3〉, d(c(D1)) = 〈v1,23〉+ 〈w1,23〉 ,

d(c(DjDi)) = d(c(Di)) + d(c(Dj))− 〈vi,j〉, indDjDi = indDi + indDj ,

where (i, j)=(1, 2), (2, 3). From this, we find that

ǫL = A+ C(〈v1,2〉+〈v12,3〉) + 〈u12,3〉〈v1,2〉 mod 2,

ǫR = A+ C(〈v2,3〉+〈v1,23〉) + 〈v2,3〉〈w1,23〉 mod 2,
(4.23)

where

A = (indD3D2) · d(c(D1)) + (indD3) · d(c(D2)), C = d(c(D1)) + d(c(D2)) + d(c(D3)).
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In light of the top row in the first diagram in Figure 6, the bottom row in the second diagram, and
Lemma 4.1, we can take

u1,23 = u1,2 ∧κ(D3D2D1)
κ(D1)

u12,3 and w12,3 = λ(D2)w1,23 ∧ X3
κ(D3)+Im(D2D1)

w2,3 . (4.24)

Along with Corollary 4.4, these equalities insure that

(
(x1∧κ(D2D1) u1,2) ∧κ(D3D2D1) u12,3

)
⊗
(
λ(D3)w12,3 ∧c(D3D2D1)y3

)∗

=
(
x1 ∧κ(D3D2D1)u1,23

)
⊗
(
λ(D3D2)w1,23 ∧c(D3D2D1) (λ(D3)w2,3 ∧c(D3D2) y3)

)∗ (4.25)

in λ(D3D2D1). In light of the right column and bottom row in the first diagram in Figure 6, the
top row and left column in the second diagram in Figure 6, and Lemma 4.1, we can take

u2,3 = λ(D1)u12,3 ∧κ(D3D2)
κ(D2)

µ, v1,23 = v1,2 ∧ κ(D3D2)
κ(D3D2)∩Im(D1)

µ,

v12,3 = λ(D2)µ ∧ κ(D3)
κ(D3)∩Im(D2D1)

v2,3, w1,2 = µ ∧ X2
κ(D2)+Im(D1)

w1,23

(4.26)

for some

µ ∈ λ

(
κ(D3D2)

κ(D2) + κ(D3D2) ∩ Im(D1)

)
− 0.

In light of the left column of the first diagram and the right column of the second diagram in
Figure 6, (4.26), and Corollary 4.4, we can take

x2 = λ(D1)u1,2 ∧κ(D2) v1,2, x3 = λ(D2D1)u12,3 ∧κ(D3) v12,3 = λ(D2)u2,3 ∧κ(D3) v2,3 ,

y2 = v2,3 ∧c(D2) w2,3, y1 = v1,2 ∧c(D1) w1,2 = v1,23 ∧c(D1) w1,23 .
(4.27)

Combining the above definitions of x2 and y2 with (4.26) and applying Lemma 4.3 to the two
diagrams in Figure 6, we find that

λ(D1)x2 ∧κ(D3D2) u2,3 = (−1)〈u12,3〉〈v1,2〉λ(D1)u1,23 ∧κ(D3D2) v1,23 ,

λ(D2)w1,2 ∧c(D2D1) y2 = (−1)〈v2,3〉〈w1,23〉v12,3 ∧c(D2D1) w12,3.
(4.28)

By (4.22), (4.27), and (4.28), the images of

x1⊗y
∗
1 ⊗ x2⊗y

∗
2 ⊗ x3⊗y

∗
3 ∈ λ(D1)⊗ λ(D2)⊗ λ(D3)

under C̃D2◦D1,D3 ◦ C̃D1,D2⊗id and C̃D1,D3◦D2 ◦ id⊗C̃D2,D3 are

(−1)ǫL+〈v2,3〉〈w1,23〉
(
(x1∧κ(D2D1) u1,2) ∧κ(D3D2D1) u12,3

)
⊗
(
λ(D3)w12,3 ∧c(D3D2D1)y3

)∗
and

(−1)ǫR+〈u12,3〉〈v1,2〉
(
x1 ∧κ(D3D2D1)u1,23

)
⊗
(
λ(D3D2)w1,23 ∧c(D3D2D1) (λ(D3)w2,3 ∧c(D3D2) y3)

)∗
,

respectively. By (4.23), the second and third identities in (4.26), and (4.25), these two elements of
λ(D3D2D1) are the same, which establishes the claim.
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0

��

0

��

0

��

0 // κ(D2D1)
κ(D1)

D1

��

// κ(D3D2D1)
κ(D1)

D1

��

// κ(D3D2D1)
κ(D2D1)

D1

��

// 0

0 // κ(D2) //

��

κ(D3D2) //

��

κ(D3D2)
κ(D2)

//

��

0

0 // κ(D2)
κ(D2)∩Im(D1)

//

��

κ(D3D2)
κ(D3D2)∩Im(D1)

//

��

κ(D3D2)
κ(D2)+κ(D3D2)∩Im(D1)

//

��

0

0 0 0

0

��

0

��

0

��

0 // κ(D3D2)
κ(D2)+κ(D3D2)∩Im(D1)

D2 //

��

κ(D3)
κ(D3)∩Im(D2D1)

//

��

κ(D3)
κ(D3)∩Im(D2)

//

��

0

0 // X2
κ(D2)+Im(D1)

D2 //

��

c(D2D1) //

��

c(D2) //

��

0

0 // X2
κ(D3D2)+Im(D1)

D2 //

��

X3
κ(D3)+Im(D2D1)

//

��

X3
κ(D3)+Im(D2)

��

// 0

0 0 0

u 1
,2
⋉

u 1
,2
3
⋉

u 1
2,
3
⋉

x 2
⋉

u 2
,3
⋉

v 1
,2
⋉

v 1
,2
3
⋉ µ⋉

µ⋉
v 1
2,
3
⋉

v 2
,3
⋉

w 1
,2
⋉ y 2

⋉

w 1
,2
3
⋉

w 1
2,
3
⋉

w 2
,3
⋉

Figure 6: Commutative diagrams of exact sequences used in the proof of Proposition 4.8

Remark 4.9. The proof of this crucial proposition in [10, Appendix D.2] does not appear to
establish anything. Up to notational differences, it describes an expression for

{
C̃D2◦D1,D3 ◦ C̃D1,D2⊗id}

(
x1⊗y

∗
1 ⊗ x2⊗y

∗
2 ⊗ x3⊗y

∗
3

)
∈ λ(D3◦D2◦D1)

without any signs and simply claims that

{
C̃D1,D3◦D2 ◦ id⊗C̃D2,D3

}(
x1⊗y

∗
1 ⊗ x2⊗y

∗
2 ⊗ x3⊗y

∗
3

)
∈ λ(D3◦D2◦D1)

is given by the same expression, without providing an explicit formula for C̃D1,D2 , using the state-
ment of Lemma 4.3, or indicating the significance of the grading of the lines λ(V ). As illustrated
by the proof of Proposition 4.8 above, the two expressions require auxiliary terms from different

43



vectors spaces and it takes significant care to show that it is possible to choose them compatibly.
Furthermore, there are two typos at the end of the proof of the closely related [10, Corollary D.2.4]
with two subscripts that should be different being the same and resulting in the order of two factors
switched between the statements of [10, Proposition D.2.3] and [10, Corollary D.2.4].

Proposition 4.10 (Compositions II). For any pair (t1, t2) of exact triples of Fredholm operators
as in (2.16), the diagram (2.31) induced by the isomorphisms (4.10) commutes.

Proof. We continue with the notation described in the first sentence of the proof of Proposition 4.8
and define

t12 = CT (t1, t2), ǫL = (indD′′
1)(indD

′
2) + ǫD′

1,D
′
2
+ ǫD′′

1 ,D
′′
2
+ ǫt12 , ǫR = ǫt1 + ǫt2 + ǫD1,D2 .

For k=1, 2 and ⋆ =′,′′, let

x⋆k ∈ λ(κ(D
⋆
k))− 0, y′k ∈ λ(c(D

′
k))− 0, y′′k ∈ λ

(
Xk+1

Im(ik+1) + Im(Dk)

)
− 0 .

With ⋆ denoting ′,′′ or a blank, let

u⋆ ∈ λ

(
κ(D⋆

2D
⋆
1)

κ(D⋆
1)

)
− 0, v⋆ ∈ λ

(
κ(D⋆

2)

κ(D⋆
2) ∩ Im(D⋆

1)

)
− 0, w⋆ ∈ λ

(
X⋆

2

κ(D⋆
2) + Im(D⋆

1)

)
− 0;

see Figures 7 and 8. For k=1, 2, 12, let

δk : κ(D
′′
k) −→ c(D′

k),

where D′
12 = D′

2D
′
1 and D′′

12 = D′′
2D

′′
1 , be the connecting homomorphisms in the sequences (4.6)

corresponding to t1, t2, and t12, respectively, and

uk∈λ

(
κ(Dk)

κ(Dk)∩Im(ik)

)
− 0, vk∈λ

(
κ(D′′

k)

jk(κ(Dk))

)
− 0, wk∈λ

(
X ′
k+1

i−1
k+1(Im(Dk))

)
− 0,

with i12= i1, j12= j1, and 12+1≡3; see Figures 7 and 8. Define

w̃′′ ∈ λ

(
X2

j−1
2 (κ(D′′

2)) + Im(D1)

)
− 0 by w′′ = λ(j2)w̃

′′.

Below we choose these elements in a compatible way.

In order to describe the two relevant signs, we define

A = (indD′′
2)(c

′
1+c′′1+c′2

)
+
(
indD′′

1 + indD′
2

)
c′1 + c′′1κ

′
2, C = c′1 + c′′1 + c′2 + c′′2 ,

AL = κ′′1κ
′
2 + (κ′′1+κ

′′
2)〈v

′〉+ (c′1+c′2
)
〈v′′〉+

(
〈v′〉+〈v′′〉

)
〈v12〉,

AR = c′′1c
′
2 + (κ′2+κ

′′
2)〈v1〉+ (c′1+c′′1)〈v2〉+

(
〈v1〉+〈v2〉

)
〈v〉,

where κ⋆i =d(κ(D⋆
i )) and c⋆i =d(c(D⋆

i )) with i=1, 2 and ⋆= ′,′′. Applying Lemma 4.1 to the exact
sequences (4.6) with D⋆ replaced by D⋆

k, for ⋆=
′,′′ and blank and k=1, 2, 12, and (4.21) with Dk

replaced by D⋆
k, for ⋆=

′,′′ and blank and k=1, 2, we obtain

indD2 = indD′
2 + indD′′

2 , d(c(Dk)) = d(c(D′
k)) + d(c(D′′

k))− 〈vk〉 ,

indD′′
2D

′′
1 = indD′′

1 + indD′′
2 , d(c(D⋆

2D
⋆
1)) = d(D⋆

1) + d(c(D⋆
2))− 〈v

⋆〉.
(4.29)
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From this, we find that

ǫL = A+ C
(
〈v′〉+〈v′′〉+〈v12〉

)
+AR + 〈v12〉,

ǫR = A+ C
(
〈v1〉+〈v2〉+〈v〉

)
+AL + 〈v1〉+〈v2〉,

(4.30)

modulo 2. By the identities in the second column in (4.29),

〈v〉+ 〈v1〉+ 〈v2〉 = C − d(c(D2D1)) = 〈v12〉+ 〈v
′〉+ 〈v′′〉 . (4.31)

From the exact sequences (4.6) and (4.21), we also find

κ′′i = 〈ui〉+ 〈vi〉, c′i = 〈vi〉+ 〈wi〉, κ⋆2 = 〈u
⋆〉+ 〈v⋆〉, c⋆1 = 〈v

⋆〉+ 〈w⋆〉,

where i=1, 2 and ⋆= ′,′′. From this, we find that

〈u′〉〈u1〉+ 〈w
′′〉〈w2〉+ 〈w

′〉〈u2〉+ 〈u
′′〉〈w1〉+ 〈v〉〈v12〉

∼= AL +AR +
(
〈v1〉+〈v2〉+〈v12〉

)(
〈v′〉+〈v′′〉+〈v〉

) (4.32)

modulo 2.

In light of the bottom row and right column in the first diagram in Figure 7, the top row and left
column in the second diagram in Figure 7, and Lemma 4.1, we can take

u = λ(i1)u
′ ∧κ(D2D1)

κ(D1)

µ, u12 = u1 ∧ κ(D2D1)
κ(D2D1)∩Im(i1)

µ,

w = η ∧ X2
κ(D2)+Im(D1)

w̃′′, w12 = λ(i−1
3 ◦D2)η ∧ X′

3

i
−1
3 (Im(D2D1))

w2
(4.33)

for some

µ ∈ λ

(
κ(D2D1)

κ(D1) + κ(D2D1) ∩ Im(i1)

)
− 0 , η ∈ λ

(
j−1
2 (κ(D′′

2))

κ(D2) + j−1
2 (κ(D′′

2)) ∩ Im(D1)

)
− 0.

Along with Lemma 4.3 applied to the two diagrams in Figure 7, these equalities insure that

(
(λ(i1)x

′
1∧κ(D1)u1)∧κ(D2D1) u

)
⊗
(
λ(D2)w∧c(D2D1) (λ(i3)w2∧c(D2)y

′′
2)
)∗

= (−1)〈u
′〉〈u1〉+〈w̃′′〉〈w2〉

(
λ(i1)(x

′
1∧κ(D′

2D
′
1)
u′) ∧κ(D2D1) u12

)

⊗
(
λ(i3)w12 ∧c(D2D1) (λ(D2)w̃

′′ ∧ X3
Im(i3)+Im(D2D1)

y′′2)
)∗
,

(4.34)

in λ(D2D1).

We next make use of the three commutative diagrams in Figure 8. They can be viewed as the
three coordinate planes in Z

3, with all three diagrams sharing the center and any pair sharing an
axis. We choose v′, w′, u2, v2, v1, u

′′, µ arbitrarily, then find y′1, w1, v12, v so that

v′ ∧c(D1) w
′ = y′1 = λ(δ1)v1 ∧c(D1) w1, v1 ∧κ(D′′

2D
′′
1 )

j1(κ(D1))

u′′ = (−1)〈u
′′〉〈w1〉λ(j1)µ ∧κ(D′′

2D
′′
1 )

j1(κ(D2))

v12,

λ(i2)v
′ ∧ κ(D2)

κ(D2)∩Im(i2D1)

u2 = (−1)〈w
′〉〈u2〉λ(D1)µ ∧ κ(D2)

κ(D2)∩Im(i2D1)

v ,
(4.35)
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0

��

0

��

0

��

0 // κ(D′
1)

i1 //

��

κ(D1) //

��

κ(D1)
κ(D1)∩Im(i1)

��

// 0

0 // κ(D′
2D

′
1)

i1 //

��

κ(D2D1) //

��

κ(D2D1)
κ(D2D1)∩Im(i1)

��

// 0

0 // κ(D
′
2D

′
1)

κ(D′
1)

i1 //

��

κ(D2D1)
κ(D1)

//

��

κ(D2D1)
κ(D1)+κ(D2D1)∩Im(i1)

��

// 0

0 0 0

0

��

0

��

0

��
0 // j

−1
2 (κ(D′′

2 ))

κ(D2)+j
−1
2 (κ(D′′

2 ))∩Im(D1)
//

i
−1
3 ◦D2

��

X2
κ(D2)+Im(D1)

//

D2

��

X2

j
−1
2 (κ(D′′

2 ))+Im(D1)
//

D2

��

//

��

0

0 // X′
3

i
−1
3 (Im(D2D1))

��

i3 // c(D2D1) //

��

X3
Im(i3)+Im(D2D1)

��

// 0

0 // X′
3

i
−1
3 (Im(D2))

��

i3 // c(D2) //

��

X3
Im(i3)+Im(D2)

��

// 0

0 0 0

x
′
1
⋉

u 1
⋉

u 1
2
⋉

u
′ ⋉ u⋉ µ⋉

η⋉ w
⋉

w̃
′′ ⋉

w 1
2
⋉

w 2
⋉

y
′′
2
⋉

Figure 7: Commutative diagrams of exact sequences used in the proof of Proposition 4.10

and finally take η, x′′2, v
′′ so that

λ(i2)w
′ ∧

j
−1
2 (κ(D′′

2 ))

κ(D2)+Im(i2D
′
1)

v2 = (−1)〈v〉〈v12〉λ(D1◦j
−1
1 )v12 ∧ j

−1
2 (κ(D′′

2 ))

κ(D2)+Im(i2D
′
1)

η ,

λ(j2)u2 ∧κ(D′′
2 )
v2 = x′′2 = λ(D′′

1)u
′′ ∧κ(D′′

2 )
v′′ .

(4.36)
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By Lemma 4.3 applied to the three commutative squares in Figure 8, (4.35), and (4.36),

λ(D1◦j
−1
1 )

(
v1 ∧κ(D′′

2D
′′
1 )

j1(κ(D1))

u′′
)
∧

j
−1
2 (κ(D′′

2 ))

Im(i2D
′
1)

(
λ(i2)w1 ∧ j

−1
2 (κ(D′′

2 ))

j
−1
2 (κ(D′′

2 ))∩Im(D1)

v′′
)

= (−1)〈u
′′〉〈w1〉λ(i2)

(
λ(δ1)v1 ∧c(D1) w1

)
∧

j
−1
2 (κ(D′′

2 ))

Im(i2D
′
1)

(
λ(D′′

1)u
′′ ∧κ(D′′

2 )
v′′
)

= (−1)〈u
′′〉〈w1〉λ(i2)

(
v′ ∧c(D1) w

′
)
∧

j
−1
2 (κ(D′′

2 ))

Im(i2D
′
1)

(
λ(j2)u2 ∧κ(D′′

2 )
v2
)

= (−1)〈u
′′〉〈w1〉+〈w′〉〈u2〉

(
λ(i2)v

′ ∧ κ(D2)
κ(D2)∩Im(i2D1)

u2
)
∧

j
−1
2 (κ(D′′

2 ))

Im(i2D
′
1)

(
λ(i2)w

′ ∧
j
−1
2 (κ(D′′

2 ))

κ(D2)+Im(i2D
′
1)

v2
)

= (−1)〈u
′′〉〈w1〉+〈v〉〈v12〉

(
λ(D1)µ ∧ κ(D2)

κ(D2)∩Im(i2D1)

v
)
∧

j
−1
2 (κ(D′′

2 ))

Im(i2D
′
1)

(
λ(D1◦j

−1
1 )v12 ∧ j

−1
2 (κ(D′′

2 ))

κ(D2)+Im(i2D
′
1)

η
)

= (−1)〈u
′′〉〈w1〉λ(D1◦j

−1
1 )

(
λ(j1)µ ∧κ(D′′

2D
′′
1 )

j1(κ(D2))

v12
)
∧

j
−1
2 (κ(D′′

2 ))

Im(i2D
′
1)

(
v ∧

j
−1
2 (κ(D′′

2 ))

j
−1
2 (κ(D′′

2 ))∩Im(D1)

η
)
.

Along with the second equation in (4.35), this gives

λ(i2)w1 ∧ j
−1
2 (κ(D′′

2 ))

j
−1
2 (κ(D′′

2 ))∩Im(D1)

v′′ =
(
v ∧

j
−1
2 (κ(D′′

2 ))

j
−1
2 (κ(D′′

2 ))∩Im(D1)

η
)
. (4.37)

In addition to the choices of y′1 and x′′2 specified in (4.35) and (4.36), we take

x′′1 = λ(j1)u1 ∧κ(D′′
1 )
v1 , λ(j2)y

′′
1 = v′′ ∧c(D′

2)
w′′ ,

x′2 = λ(D′
1)u

′ ∧κ(D′
2)
v′ , y′2 = λ(δ2)v2 ∧c(D′

2)
w2 .

(4.38)

By (4.33), the last two equations in (4.35), the first equation in (4.36), (4.37), and Corollary 4.4,

λ(i2)w1 ∧c(D1) y
′′
1 = v ∧c(D1) w , λ(i2)x

′
2 ∧λ(D2) u2 = (−1)〈w

′〉〈u2〉λ(D1)u ∧κ(D2) v ,

λ(D′
2)w

′ ∧c(D′
2D

′
1)
y′2 = (−1)〈v〉〈v12〉λ(δ12)v12 ∧c(D′

2D
′
1)
w12 ,

x′′1 ∧κ(D′′
2D

′′
1 )
u′′ = (−1)〈u

′′〉〈w1〉λ(j1)u12 ∧κ(D′′
2D

′′
1 )
v12 ;

(4.39)

the third identity above also uses

λ(D′
2) = λ(i−1

3 ◦D2) ◦ λ(i2) , λ(δ2) = λ(i−1
3 ◦D2) ◦ λ(j2)

−1 , λ(δ12) = λ(i−1
3 ◦D2) ◦ λ(D1◦j

−1
1 ) .

By (4.10), the second equality in the first identity in (4.35), the first equality in the last identity
in (4.36), the first and last equations in (4.38), (4.22), and the first two equations in (4.39), the
image of

x′1⊗y
′∗
1 ⊗ x

′′
1⊗(λ(j2)y

′′
1)

∗ ⊗ x′2⊗y
′∗
2 ⊗ x

′′
2⊗(λ(j3)y

′′
2)

∗ ∈ λ(D′
1)⊗ λ(D

′′
1)⊗ λ(D

′
2)⊗ λ(D

′′
2)

under C̃D1,D2 ◦Ψt1⊗Ψt2 is

(−1)ǫR+〈w′〉〈u2〉
(
(λ(i1)x

′
1∧κ(D1)u1)∧κ(D2D1) u

)
⊗
(
λ(D2)w∧c(D2D1) (λ(i3)w2∧c(D2)y

′′
2)
)∗
.
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0

��

0

��

0

��

0 // κ(D′
2)

κ(D′
2)∩Im(D′

1)

��

i2 // κ(D2)
κ(D2)∩Im(i2D′

1)

��

// κ(D2)
κ(D2)∩Im(i2)

j2

��

// 0

0 // c(D′
1)

��

i2 // j
−1
2 (κ(D′′

2 ))
Im(i2D′

1)

��

j2 // κ(D′′
2)

��

// 0

0 // X′
2

κ(D′
2)+Im(D′

1)

��

i2 // j
−1
2 (κ(D′′

2 ))
κ(D2)+Im(i2D′

1)

��

j2 // κ(D′′
2 )

j2(κ(D2))

��

// 0

0

��

0

��

0

��

0 // κ(D′′
1 )

j1(κ(D1))

δ1

��

// κ(D
′′
2D

′′
1 )

j1(κ(D1))

D1◦j
−1
1

��

// κ(D
′′
2D

′′
1 )

κ(D′′
1 )

D′′
1

��

// 0

0 // c(D′
1)

��

i2 // j
−1
2 (κ(D′′

2 ))
Im(i2D′

1)

��

j2 // κ(D′′
2)

��

// 0

0 // X′
2

i
−1
2 (Im(D′

1))

��

i2 // j
−1
2 (κ(D′′

2 ))

j
−1
2 (κ(D′′

2 ))∩Im(D1)

��

j2 // κ(D′′
2 )

κ(D′′
2 )∩Im(D′′

1 )

��

// 0

0

��

0

��

0

��

0 // κ(D2D1)
κ(D1)+κ(D2D1)∩Im(i1)

D1

��

j1 // κ(D
′′
2D

′′
1 )

j1(κ(D1))

D1◦j
−1
1

��

// κ(D′′
2D

′′
1 )

j1(κ(D2D1))

D1◦j
−1
1

��

// 0

0 // κ(D2)
κ(D2)∩Im(i2D′

1)

��

// j
−1
2 (κ(D′′

2 ))
Im(i2D′

1)

��

// j
−1
2 (κ(D′′

2 ))
κ(D2)+Im(i2D′

1)

��

// 0

0 // κ(D2)
κ(D2)∩Im(D1)

��

// j
−1
2 (κ(D′′

2 ))

j
−1
2 (κ(D′′

2 ))∩Im(D1)

��

// j
−1
2 (κ(D′′

2 ))

κ(D2)+j
−1
2 (κ(D′′

2 ))∩Im(D1)

��

// 0

0 0 0

v
′ ⋉

u 2
⋉

y
′
1
⋉

x
′′
2
⋉

w
′ ⋉

v 2
⋉

v 1
⋉

u
′′ ⋉

y
′
1
⋉

x
′′
2
⋉

w 1
⋉

v
′′ ⋉

µ⋉
v 1
2
⋉

v⋉ η⋉

Figure 8: Commutative diagrams of exact sequences used in the proof of Proposition 4.10



By (4.22), the first equality in the first identity in (4.35), the second equality in the last identity
in (4.36), the second and third equations in (4.38), (4.10), and the last two equations in (4.39), the
image of this element under Ψt12 ◦ C̃D′

1,D
′
2
⊗C̃D′′

1 ,D
′′
2
◦ id⊗R⊗id is

(−1)ǫL+〈v〉〈v12〉+〈u′′〉〈w1〉
(
λ(i1)(x

′
1∧κ(D′

2D
′
1)
u′) ∧κ(D2D1) u12

)

⊗
(
λ(i3)w12 ∧c(D2D1) (λ(D2)w̃

′′ ∧ X3
Im(i3)+Im(D2D1)

y′′2)
)∗
.

By (4.34) and (4.30)-(4.32), these two elements of λ(D2D1) are the same, which establishes
the claim.

4.3 Stabilizations of Fredholm operators

We now describe stabilizations of Fredholm operators which are used to topologize determinant
line bundles in the next section. In this subsection, we use them to deduce the Exact Squares
property on page 17 for the isomorphisms (2.27) from the Naturality II, Normalization II, and
Compositions II properties via Lemmas 4.3 and 4.12.

For any Banach vector space X, N ∈Z≥0, and homomorphism Θ: RN −→Y , let

ιX;N : X−→X⊕RN , DΘ : X⊕RN −→ Y, and ÎΘ;D : λ(D) −→ λ(DΘ)

be as in Section 3.1. Since D = DΘ◦ιX;N and the projection π2 : X⊕R
N −→R

N identifies c(ιX;N )
with R

N , the corresponding exact triple (2.19) gives rise to the isomorphism

IΘ;D : λ(DΘ) −→ λ(D), IΘ;D(σ) = C̃ιX;N ,DΘ

(
1⊗(Ω∗

N ◦λ(π2))⊗ σ
)
, (4.40)

where ΩN is the standard volume tensor on R
N as before.

Lemma 4.11. For any collection of exact triple isomorphisms Ψt as in (2.27) satisfying the Nor-
malization III and Compositions II properties and N ∈Z≥0, there exists AN ∈R

∗ with the following
property. For any Banach vector spaces X and Y , homomorphism Θ: RN −→Y , and D∈F(X,Y ),
the isomorphisms (3.2) and (4.40) induced by the isomorphisms Ψt satisfy

IΘ;D ◦ ÎΘ;D = (−1)(indD)NAN idλ(D). (4.41)

Proof. Let AN ∈R
∗ be such that

C̃ι0;N ,jN : λ(ι0;N )⊗λ(jN ) −→ λ
(
id0=jN ◦ι0;N

)
, C̃ι0;N ,jN

(
(1⊗Ω∗

N )⊗(ΩN⊗1
∗)
)
= AN 1⊗1∗.

By the Compositions II and Normalization III properties applied to the diagram

0 // X

id
��

id // X

ιX;N

��

// 0

ι0;N
��

// 0

0 // X

D

��

ιX;N// X⊕RN

DΘ

��

π2 // RN

jN

��

// 0

0 // Y
id // Y // 0 // 0 ,
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the diagram

λ(D)

(−1)(indD)NAN
��

ÎΘ;D // λ(DΘ)

IΘ;D

��
λ(D)

id // λ(D)

commutes. This gives (4.41).

For a short exact sequence

0 −→ R
N ′ i
−→ R

N j
−→ R

N ′′

−→ 0

of vector spaces, we denote by ci,j the exact triple

0 // 0 //

��

0 //

��

0 //

��

0

0 // RN
′ i // RN

j // RN
′′ // 0

of Fredholm operators. Given a collection of exact triple isomorphisms as in (2.27), define Ai,j∈R
∗

by
Ψci,j

(
1⊗Ω∗

N ′⊗ 1⊗Ω∗
N ′′

)
= A−1

i,j (−1)
N ′N ′′ (

1⊗ Ω∗
N

)
. (4.42)

In the case of the collection of exact triple isomorphisms given by (4.10),

ΩN ′ ∧RN ΩN ′′ = Ai,jΩN ,

where ∧RN is the isomorphism provided by Lemma 4.1 for the (i, j) short exact sequence above.

For an exact triple s of vector-space homomorphisms of the form

0 // RN
′

Θ′

��

i // RN

Θ
��

j // RN
′′

Θ′′

��

// 0

0 // Y ′ iY // Y
jY // Y ′′ // 0 ,

(4.43)

let As =Ai,j. If t is an exact triple of Fredholm operators as in (2.6), we denote by ts the exact
triple

0 // X ′⊕RN
′ iX⊕i //

D′

Θ′

��

X⊕RN
jX⊕j //

DΘ

��

X ′′⊕RN
′′ //

D′′

Θ′′

��

0

0 // Y ′ iY // Y
jY // Y ′ // 0

of Fredholm operators.

Lemma 4.12. Let {Ψt}t be a family of exact triple isomorphisms as in (2.27) satisfying the Natu-
rality II and Compositions II properties. For every exact triple t of Fredholm operators as in (2.6)
and for every exact triple s of homomorphisms as in (4.43), the diagram

λ(D′
Θ′)⊗ λ(D′′

Θ′′)
Ψts //

IΘ′;D′⊗IΘ′′;D′′

��

λ(DΘ)

IΘ;D

��
λ(D′)⊗ λ(D′′)

(−1)(indD
′)N′′

AsΨt // λ(D)
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of isomorphisms induced by the isomorphisms (2.27) commutes.

Proof. By our assumptions, the diagram

0 // X ′ iX //

ιX′;N′

��

X
jX //

ιX;N

��

X ′′ //

ιX′′;N′′

��

0

0 // X ′⊕RN
′ iX⊕i //

D′

Θ′

��

X⊕RN
jX⊕j //

DΘ

��

X ′′⊕RN
′′ //

D′′

Θ′′

��

0

0 // Y ′ iY // Y
jY // Y ′ // 0

commutes. By Naturality II applied to the exact triple tT in the top half of this diagram and the
exact triple ci,j and by (4.42),

ΨtT

(
1⊗(Ω∗

N ′◦λ(π′2))⊗ 1⊗(Ω∗
N ′′◦λ(π′′2))

)
= A−1

s (−1)N
′N ′′

1⊗ (Ω∗
N ◦λ(π2)),

where π⋆2 : X⋆⊕R
N⋆
−→ R

N⋆
is the projection on the second component and ⋆ =′,′′ or blank.

Thus, the claim follows from the Compositions II property applied to the above diagram, along
with (4.40).

Corollary 4.13 (Exact Squares). A family of exact triple isomorphisms Ψt as in (2.27) satisfying
the Naturality II, Normalization II, and Compositions II properties also satisfies the Exact Squares
property on page 17.

Proof. We augment the domains in (2.32) by a commuting square of homomorphisms between
finite-dimensional vector spaces, obtaining a version of the commutative diagram (2.32) with sur-
jective Fredholm operators. The conclusion of this corollary holds for such a diagram by the
Normalization II property and Lemma 4.3. The diagrams (2.33) corresponding to the original and
new diagrams (2.32) are related by Lemma 4.12. This gives rise to a cube of commuting diagrams;
see Figure 9. We put the new version of (2.33) on the back face and the diagrams arising from
Lemma 4.12 on the top, right, bottom, and left faces. This forces some coefficients A⋆ on each
edge of the front face in order to make the last four diagrams commute. The resulting coefficient
distribution on the edges of the front face may be different from the coefficients distribution (all
A⋆=1) on the original version of (2.33). However, by Lemma 4.3, the two coefficient distributions
are equivalent at least if the original diagram consists of surjective Fredholm operators. Since
the coefficients depend only on the supplementary commuting square of homomorphisms between
finite-dimensional vector spaces and on the parities of the indices of the Fredholm operators (not
the dimensions of their kernels or cokernels), it follows that the two coefficient distributions are
equivalent in all cases; this establishes Corollary 4.13.

We denote the range of the operator D⋆∗ by Y⋆∗. Let

ΘTL : R
NTL −→ YTL, Θ̃TR : RNTR −→ YTM, Θ̃BL : R

NBL −→ YCL, Θ̃BR : RNBR −→ YCM,

be homomorphisms such that

c
(
(DTL)ΘTL

)
, c
(
(DTR)jT◦Θ̃TR

)
, c
(
(DBL)jL◦Θ̃BL

)
, c
(
(DBR)jR◦jC◦Θ̃BR

)
= 0. (4.44)
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λ(D̃TL)⊗λ(D̃BL)⊗λ(D̃TR)⊗λ(D̃BR)

Ψ̃L⊗Ψ̃R

✤

✤

✤

✤

✤

✤

Ψ̃T⊗Ψ̃B ◦ id⊗R⊗id //

ITL⊗IBL⊗ITR⊗IBR
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

uu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥

λ(D̃TM)⊗λ(D̃BM)

ITM⊗IBM
ss
ss
ss
ss
ss

yysss
ss
ss
ss
s

Ψ̃M

��

λ(DTL)⊗λ(DBL)⊗λ(DTR)⊗λ(DBR)

ALΨL⊗ΨR

��

ATΨT⊗ΨB ◦ id⊗R⊗id //

��✤
✤

✤

✤

✤

✤ λ(DTM)⊗λ(DBM)

ARΨM

��

λ(D̃CL)⊗λ(D̃CR)
Ψ̃C ❴❴❴❴❴❴❴❴❴❴❴❴

ICL⊗ICR
❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥

uu❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥

//❴❴❴❴❴❴❴❴❴❴ λ(D̃CM)

ICM
ss
ss
ss
ss
ss

yysss
ss
ss
ss
s

λ(DCL)⊗λ(DCR)
ABΨC // λ(DCM)

Figure 9: The cube of commutative diagrams used in the proof of Corollary 4.13, where D̃⋆∗=(D⋆∗)Θ⋆∗ , I⋆∗=IΘ⋆∗;D⋆∗ , and Ψ̃⋆ are
the isomorphisms (2.27) corresponding to the top, center, and bottom rows and left, middle, and right columns of the regularized
version of the diagram (2.32) described in the proof



Let

NTM = NTL +NTR, NCL = NTL +NBL, NCR = NTR +NBR, NBM = NBL +NBR,

NCM = NCL +NCR = NTM +NBM.

We define Θ⋆∗ : R
N⋆∗−→Y⋆∗ for (⋆, ∗) ∈ {T,C,B}×{L,M,R} − {(T,L)} by

ΘTR = jT ◦ Θ̃TR, ΘBL = jL ◦ Θ̃BL, ΘBR = jR ◦ jC ◦ Θ̃BR = jB ◦ jM ◦ Θ̃BR,

ΘTM(xTL, xTR) = iT
(
ΘTL(xTL)

)
+ Θ̃TR(xTR), ΘCL(xTL, xBL) = iL

(
ΘTL(xTL)

)
+ Θ̃BL(xBL),

ΘCR(xTR, xBR) = iR
(
ΘTR(xTR)

)
+ jC(Θ̃BR(xBR)),

ΘBM(xBL, xBR) = iB
(
ΘBL(xBL)

)
+ jM(Θ̃BR(xBR)),

ΘCM(xTL, xTR, xBL, xBR) = iM(ΘTM(xTL, xTR)) + iC(Θ̃BL(xBL)) + Θ̃BR(xBR)

for all x⋆∗ ∈ R
N⋆∗ with (⋆, ∗) ∈ {T,B}×{L,R}. For any N ′ ≤ N , we denote by i : RN

′

−→ R
N

and j : RN −→R
N ′

the inclusion as R
N ′

⊕0N−N ′

and the projection onto the last N ′ coordinates,
respectively. We also define

i′ : RNCL −→ R
NCM , i′(xTL, xBL) = (xTL, 0, xBL, 0),

j′ : RNCM −→ R
NCR , i′(xTL, xTR, xBL, xBR) = (xTR, xBR),

for all x⋆∗∈R
N⋆∗ . In particular, the diagram in Figure 10 commutes and its 6 rows and 6 columns

are exact.

By the commutativity and exactness properties of the diagram in Figure 10, the diagram (2.32)
with D⋆∗ replaced by D̃⋆∗≡(D⋆∗)Θ⋆∗ , iC : XCL−→XCM and jC : XCM−→XCR replaced by

iC⊕i
′ : XCL⊕R

NCL −→ XCM⊕R
NCM and jC⊕j

′ : XCM⊕R
NCM −→ XCR⊕R

NCR ,

respectively, and the remaining homomorphisms i⋆ and j⋆ on X∗◦ by i⋆⊕i and j⋆⊕j on X∗◦⊕R
N∗◦ ,

respectively, still commutes and its 3 rows and 3 columns are still exact. Thus, by (4.44), the
Normalization II property, and Lemma 4.3, the diagram on the back face of the cube in Figure 9
commutes.

Let I⋆∗=IΘ⋆∗;D⋆∗ be the isomorphisms defined by (4.40). By the commutativity of the 3 pairs of
exact rows and 3 pairs of exact columns in Figure 10 and Lemma 4.12, the diagrams on the top,
right, bottom, and left faces in Figure 9 commute for some AT, AR, AB, AL ∈ R

∗ determined by
NTL, NTR, NBL, NBR and the indices of the Fredholm operators D⋆∗. By Lemma 4.3,

ATAR=ABAL (4.45)

if c(D⋆∗)={0} for (⋆, ∗)∈{T,B}×{L,R}. Thus, (4.45) always holds, which establishes Corollary 4.13
in all cases.

Remark 4.14. For the collection of exact triple isomorphisms (2.27) given by (4.10), A⋆=(−1)ǫ⋆

with

ǫT = NTRNBL + (indDCL)NTR + (indDTR)NBL + (indDBL)NBR, ǫR = (indDTM)NBM,

ǫB = NTRNBL + (indDCL)NCR, ǫL = (indDTL)NBL + (indDTR)NBR.

In this case, it can be checked directly that ǫT+ǫR+ǫB+ǫL∈2Z.
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0

��

0

��

0

��

0

��

0

��

0

��

0 ❴❴❴❴ //❴❴❴❴ R
NTL

✤
✤
✤
✤

i
��✤
✤

✤

i ❴❴❴❴

ΘTL

{{

//❴❴❴❴ R
NTM

✤
✤
✤
✤

i
��✤
✤

✤

j ❴❴❴❴

ΘTM

{{

//❴❴❴❴ R
NTR

✤
✤
✤
✤

i
��✤
✤

✤

//❴❴❴❴❴❴

ΘTR

{{

0

0 // YTL

iL

��

iT // YTM

iM

��

jT // YTR

iR

��

// 0

0 ❴❴❴❴ //❴❴❴❴ R
NCL

✤
✤
✤
✤

j
��✤
✤

✤

i′ ❴❴❴❴

ΘCL

{{

//❴❴❴❴ R
NCM

✤
✤
✤
✤

i
��✤
✤

✤

j′ ❴❴❴❴

ΘCM

{{

//❴❴❴❴ R
NCR

✤
✤
✤
✤

i
��✤
✤

✤

//❴❴❴❴❴❴

ΘCR

{{

0

0 // YCL

jL

��

iC // YCM

jM

��

jC // YCR

jR

��

// 0

0 ❴❴❴❴ //❴❴❴❴ R
NBL

✤
✤
✤
✤

��✤
✤

✤

i ❴❴❴❴

ΘBL

{{

//❴❴❴❴ R
NBM

✤
✤
✤
✤

��✤
✤

✤

j ❴❴❴❴

ΘBM

{{

//❴❴❴❴ R
NBR

✤
✤
✤
✤

��✤
✤

✤

//❴❴❴❴❴❴

ΘBR

{{

0

0 // YBL

��

iB // YBM

��

jB // YBR

��

// 0

0 0 0

0 0 0

Figure 10: The panel of commutative diagrams, with exact rows and columns, used in the proof of Corollary 4.13 to regularize the
square grid (2.32)



Remark 4.15. For the collection of exact triple isomorphisms (2.27) given by (4.10), AN =1 in
Lemma 4.11. Thus, AN =A−N,N in the case of the collection of isomorphisms (2.27) of Theorem 2
on page 35 corresponding to the collection (Ai,c)i,c.

5 Topology

It remains to topologize each set detX,Y as a line bundle over F(X,Y ) with good properties. By
Proposition 5.3, the Normalization I property on page 12 and the isomorphisms (3.2) determine
a topology on detX,Y if the collection of exact triple isomorphisms Ψt as in (2.27) satisfies the
Normalization II,III and Compositions I,II properties. By Corollary 5.4, all isomorphisms Ψt

are continuous with respect to these topologies if this collection also satisfies the Naturality II
property. By Corollary 5.8, a collection of dualization isomorphisms as in (2.36) satisfying the
Normalization IV∗ and Dual Exact Triples properties consists of continuous isomorphisms with
respect to these topologies.

5.1 Continuity of overlap and exact triple maps

For Banach vector spaces X,Y,X ′, Y ′, X ′′, Y ′′, let

T ∗(X,Y ;X ′, Y ′;X ′′, Y ′′) ⊂ T (X,Y ;X ′, Y ′;X ′′, Y ′′)

denote the subspace of short exact sequences as in (2.6) with surjective Fredholm operators
D,D′, D′′.

Lemma 5.1. Let X,Y,X ′, Y ′, X ′′, Y ′′ be Banach vector spaces. A family of exact triple isomor-
phisms Ψt as in (2.27) satisfying the Normalization II property induces a continuous bundle map

Ψ: π∗LdetX′,Y ′ ⊗ π∗RdetX′′,Y ′′ −→ π∗CdetX,Y

over T ∗(X,Y ;X ′, Y ′;X ′′, Y ′′) with respect to the topologies determined by the Normalization I
property.

Proof. We abbreviate T ∗(X,Y ;X ′, Y ′;X ′′, Y ′′) as T ∗. Let t0 ∈ T
∗ be as in (2.6), with all seven

homomorphisms carrying subscript 0, and T : Y −→X, T ′ : Y ′−→X ′, and T ′′ : Y ′′−→X ′′ be right
inverses for D0, D

′
0, and D

′′
0 , respectively. For each t as in (2.6) and ⋆= ′,′′ or blank, let

ΦD⋆0 ;t : κ(D
⋆) −→ κ(D⋆

0), ΦD⋆0 ;t(x) = x+T ⋆
(
{D⋆−D⋆

0}(x)
)
,

be as in (2.25); this map is an isomorphism if t is sufficiently close to t0. We need to show that
the map

Ψt0;t : λ(κ(D
′
0))⊗ λ(κ(D

′′
0)) −→ λ(κ(D0)) (5.1)

described by

Ψt

(
λ(Φ−1

D′
0;t
)x′⊗1∗ ⊗ λ(Φ−1

D′′
0 ;t
)x′′⊗1∗

)
=

(
λ(Φ−1

D0;t
)Ψt0;t(x

′⊗x′′)
)
⊗ 1∗

depends continuously on t∈T ∗ near t0.
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Let x′1, . . . , x
′
k be a basis for κ(D′

0) and x1, . . . , xℓ ∈ κ(D0) be such that jX;0(x1), . . . , jX;0(xℓ) is a
basis for κ(D′′

0). If t as in (2.6) is sufficiently close to t0, then Φ−1
D′

0;t
(x′1), . . . ,Φ

−1
D′

0;t
(x′k) is a basis for

κ(D′) and
jX

(
Φ−1
D0;t

(x1)
)
, . . . , jX

(
Φ−1
D0;t

(xℓ)
)
∈ X ′′

is a basis for κ(D′′). In particular,

jX
(
Φ−1
D0;t

(x1)
)
∧. . .∧jX

(
Φ−1
D0;t

(xℓ)
)
= f(t) Φ−1

D′′
0 ;t

(
jX;0(x1)

)
∧. . .∧Φ−1

D′′
0 ;t

(
jX;0(xℓ)

)
,

iX
(
Φ−1
D′

0;t
(x′1)

)
∧. . .∧iX

(
Φ−1
D′

0;t
(x′k)

)
∧ Φ−1

D0;t
(x1)∧. . .∧Φ

−1
D0;t

(xℓ)

= g(t) Φ−1
D0;t

(
iX;0(x

′
1)
)
∧. . .∧Φ−1

D0;t

(
iX;0(x

′
k)
)
∧ Φ−1

D0;t
(x1)∧. . .∧Φ

−1
D0;t

(xℓ)

for some R
+-valued continuous functions f and g. By the Normalization II property, the homo-

morphism (5.1) is then given by

Ψt0;t

(
(x′1∧. . .∧x

′
k)⊗(jX;0(x1)∧. . .∧jX;0(xℓ))

)
=
g(t)

f(t)
iX;0(x

′
1)∧. . .∧iX;0(x

′
k) ∧ x1∧. . .∧xℓ

and thus depends continuously on t.

Corollary 5.2. Let (Ψt)t be a collection of exact triple isomorphisms as in (2.27) satisfying the
Normalization II,III and Compositions II properties. For any Banach vector spaces X and Y and
homomorphism Θ: RN −→Y , the induced map

IΘ : ι∗ΘdetX⊕RN ,Y −→ detX,Y

as in (4.40) is continuous over F∗(X,Y ) with respect to the topologies determined by the Normal-
ization I property.

Proof. By Lemma 4.11, IΘ;D=(−1)(indD)NAN Î
−1
Θ;D, with ÎΘ;D given by (3.2). By Lemma 5.1, the

family of isomorphisms ÎΘ;D induce a continuous bundle map

ÎΘ : detX,Y −→ ι∗ΘdetX⊕RN ,Y

over F∗(X,Y ). This implies the claim.

Let X and Y be as above. The subsets

UX;Θ ≡
{
D∈F(X,Y ) : c(DΘ) = 0

}

form an open cover of F(X,Y ) as Θ ranges over all homomorphisms RN −→Y and N ranges over
all nonnegative integers. We topologize detX,Y |UX;Θ

by requiring the bundle isomorphism

ι∗ΘdetX⊕RN ,Y −→ detX,Y , σ −→ IΘ;D(σ) ∀ σ∈λ(DΘ), D∈F(X,Y ),

to be a homeomorphism over UX;Θ with respect to the topology on the domain induced by the
topology on detX⊕RN ,Y |F∗(X⊕RN ,Y ) described at the beginning of this section. We next show that
this topology is well-defined.
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Proposition 5.3 (Continuity of transition maps). Let (Ψt)t be a collection of exact triple iso-
morphisms as in (2.27) satisfying the Normalization II,III and Compositions I,II properties. For
any Banach vector spaces X and Y and homomorphisms Θi : R

Ni−→Y with i=1, 2, the induced
overlap map

I−1
Θ2;D
◦IΘ1;D : ι∗Θ1

detX⊕RN1 ,Y −→ ι∗Θ2
detX⊕RN2 ,Y

is continuous over UX;Θ1∩UX;Θ2 with respect to the topologies determined by the Normalization I
property.

Proof. With N≡N1+N2, let

0 −→ R
N1 ι1−→ R

N =R
N1⊕RN2

πR;N2−→ R
N2 −→ 0 and

0 −→ R
N2 ι2−→ R

N =R
N1⊕RN2

πL;N1−→ R
N1 −→ 0

be the natural exact sequences of vector spaces and

ιk;X = idX⊕ιk : X⊕R
Nk −→ X⊕RN

for k=1, 2. Define

Θ: RN −→ Y by Θ(u1, u2) = Θ1(u1) + Θ2(u2).

Thus, the diagram

X⊕RN1

ι1;X
▲▲

▲▲
▲

%%▲▲
▲

DΘ1

&&
X

ιX;N1✇✇✇✇

;;✇✇✇✇

ιX;N2

●●
●●

##●●
●

ιX;N // X⊕RN
DΘ // Y

X⊕RN2

ι2;X
rrr

99rrrrr
DΘ2

88

of Fredholm operators commutes.

By the Commutativity I property, the diagram

λ(DΘ1)
A1

,,
λ(ιX;N1)⊗ λ(ι1;X)⊗ λ(DΘ)

id⊗C̃ι1;X,DΘ //

C̃ιX;N1
,ι1;X

⊗id

��

λ(ιX;N1)⊗ λ(DΘ1)

C̃ιX;N1
,DΘ1
��

λ(DΘ)
A //

IΘ2;DΘ1

22

IΘ1;DΘ2
◦ĨR;D

,,

λ(ιX;N )⊗ λ(DΘ)
C̃ιX;N,DΘ // λ(D)

λ(ιX;N2)⊗ λ(ι2;X)⊗ λ(DΘ)
id⊗C̃ι2;X,DΘ //

C̃ιX;N2
,ι2;X

⊗id

OO

λ(ιX;N2)⊗ λ(DΘ2)

C̃ιX;N2
,DΘ2

OO

λ(DΘ2)
A2

22

(5.2)
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also commutes (excluding the dotted arrows). We define the isomorphisms A,A1, A2 in this dia-
gram by

A(σ) = 1⊗ (Ω∗
N ◦λ(π2))⊗ σ, Ak(σk) = 1⊗ (Ω∗

Nk
◦λ(π2))⊗ σk, (5.3)

where π2 : c(ιX;Nk) −→ R
Nk is the isomorphism induced by the projection X⊕R

Nk −→ R
Nk .

By (4.40),
IΘ;D = C̃ιX;N ,DΘ

◦A , IΘk;D = C̃ιX;Nk
,DΘk

◦Ak , k = 1, 2. (5.4)

Let R : X⊕RN −→X⊕RN be the isomorphism given by

R(x, u1, u2) = (x, u2, u1) ∀ (x, u1, u2) ∈ X⊕R
N1⊕RN2

and

ĨR;D≡ĨR,idY ;DΘ
: λ(DΘ) −→ λ(DΘ◦R

−1) = λ
(
IR,idY (DΘ)

)
,

ĨR;N1≡Ĩid
X⊕R

N2
,R−1;ι

X⊕R
N2 ;N1

: λ(ιX⊕RN2 ;N1
) −→ λ

(
R−1◦ιX⊕RN2 ;N1

)
= λ(ι2;X)

be the corresponding isomorphisms as in (2.5).

Let C1, C2∈R
∗ be such that

C̃ι0;N1
,ι1

(
1⊗Ω∗

N1
⊗ 1⊗(Ω∗

N2
◦λ(πR;N2))

)
= C11⊗ Ω∗

N ,

C̃ι0;N2
,ι2

(
1⊗Ω∗

N2
⊗ 1⊗(Ω∗

N1
◦λ(πL;N1))

)
= C21⊗ Ω∗

N ,

where πR;N2 : c(ι1) −→ R
N2 and πL;N1 : c(ι2) −→ R

N1 are are the isomorphisms induced by the
projections πR;N2 and πL;N1 . By the Compositions II and Normalization III properties applied to
the diagram

0 // X

id
��

id // X

ιX;N1
��

// 0

ι0;N1
��

// 0

0 // X

id
��

ιX;N1 // X⊕RN1

ι1;X
��

π2 // RN1

ι1
��

// 0

0 // X
ιX;N // X⊕RN

π2 // RN // 0 ,

the diagram

λ(ι0;N1)⊗λ(ι1)

C̃ι0;N1
,ι1

��

Ĩ −1
π2,π2;ιX;N1

⊗Ĩ −1
π2,π2;ι1;X // λ(ιX;N1)⊗λ(ι1;X)

C̃ιX;N1
,ι1:X

��
λ(ι0;N )

Ĩ −1
π2,π2;ιX;N // λ(ιX;N )

commutes. Thus,

C̃ιX;N1
,ι1;X

(
1⊗(Ω∗

N1
◦λ(π2))⊗ 1⊗(Ω∗

N2
◦λ(πR;N2;X))

)
= C11⊗ (Ω∗

N ◦λ(π2)) , (5.5)

where πR;N2;X : c(ι1;X)−→R
N2 is the isomorphism induced by the projection X⊕RN −→R

N2 onto
the last N2 Euclidean coordinates. Similarly,

C̃ιX;N2
,ι2;X

(
1⊗(Ω∗

N2
◦λ(π2))⊗ 1⊗(Ω∗

N1
◦λ(πL;N1;X))

)
= C2 1⊗ (Ω∗

N ◦λ(π2)), (5.6)
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where πL;N1;X : c(ι2;X)−→R
N1 is the isomorphism induced by the projection X⊕RN −→R

N1 onto
the first N1 Euclidean coordinates.

Since (DΘ1)Θ2 =DΘ and ιX⊕RN1 ;N2
= ι1;X ,

{
id⊗C̃ι1;X;,DΘ

}−1(
A1(IΘ2;DΘ1

(σ))
)

=
{
id⊗C̃ι1;X;,DΘ

}−1(
1⊗(Ω∗

N1
◦λ(π2))⊗ C̃ι1;X;,DΘ

(1⊗(Ω∗
N2
◦λ(πR;N2))⊗ σ)

)

= 1⊗(Ω∗
N1
◦λ(π2))⊗ 1⊗(Ω∗

N2
◦λ(πR;N2))⊗ σ.

Combining this with (5.4), the commutativity of the upper rectangle in (5.2), and (5.5), we obtain

I−1
Θ;D ◦ IΘ1;D = C1 I

−1
Θ2;DΘ1

. (5.7)

On the other hand, (DΘ2)Θ1 =DΘ◦R
−1 and ιX⊕RN2 ;N1

=R◦ι2;X . By the Composition I property

applied to DΘ◦R
−1◦ιX⊕RN2 ;N1

and the Normalization III property, the diagram

λ(ιX⊕RN2 ;N1
)⊗ λ(DΘ)

ĨR;N1
⊗id

//

id⊗ĨR;D

��

λ(ι2;X)⊗ λ(DΘ)

C̃ι2;X,DΘ

��
λ(ιX⊕RN2 ;N1

)⊗ λ(DΘ◦R
−1)

C̃
ι
X⊕R

N2 ;N1
,DΘ◦R−1

// λ(DΘ2)

commutes. Since
ĨR;N1

(
1⊗(Ω∗

N1
◦λ(πR;N1))

)
= 1⊗ (Ω∗

N1
◦λ(πL;N1)) ,

the last commutative diagram gives

{
id⊗C̃ι2;X;,DΘ

}−1(
A2

(
IΘ1;DΘ2

(ĨR;D(σ))
))

= 1⊗(Ω∗
N2
◦λ(π2))⊗ 1⊗(Ω∗

N1
◦λ(πL;N1))⊗ σ .

Combining this with (5.4), the commutativity of the lower rectangle in (5.2), and (5.6), we obtain

I−1
Θ;D ◦ IΘ2;D = C2 Ĩ

−1
R;D ◦ I

−1
Θ1;DΘ2

. (5.8)

From (5.7) and (5.8), we conclude that

I−1
Θ2;D

◦ IΘ1;D = (C1/C2) IΘ1;DΘ2
◦ ĨR;D ◦ I

−1
Θ2;DΘ1

.

The outer maps on the right-hand side above are continuous over UX;Θ1∩UX;Θ2 by Corollary 5.2,
while the middle map is continuous over UX;Θ1∩UX;Θ2 by Lemma 5.1.

Corollary 5.4 (Continuity of (2.27)). Let (Ψt)t be a collection of exact triple isomorphisms as
in (2.27) satisfying the Naturality II, Normalization II,III, and Compositions I,II properties. For
any Banach vector spaces X,Y,X ′, Y ′, X ′′, Y ′′, the bundle map

Ψ: π∗LdetX′,Y ′ ⊗ π∗RdetX′′,Y ′′ −→ π∗CdetX,Y

over T (X,Y ;X ′, Y ′;X ′′, Y ′′) is continuous with respect to the topologies provided by Proposi-
tion 5.3.
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Proof. We abbreviate T (X,Y ;X ′, Y ′;X ′′, Y ′′) as T . Let t0 ∈ T be as in (2.6), with all seven
homomorphisms carrying subscript 0, and

Θ′ : RN
′

−→ Y ′ and Θ̃′′ : RN
′′

−→ Y

be homomorphisms such that D′
0 ∈UX′;Θ′ and D′′

0 ∈UX′′;jY ;0◦Θ̃′′ . Let N =N ′+N ′′, i : RN
′

−→R
N

be the inclusion as RN
′

×0N
′′

, and j : RN −→ R
N ′′

be the projection onto the last N ′′ coordinates,
and Ai,j ∈R

∗ be as in (4.42). For each t∈T as in (2.6), define

Θt : R
N −→ X, Θt(x

′, x′′) = iY
(
Θ′(x′)

)
+ Θ̃′′(x′′) ∀ (x′, x′′) ∈ R

N ′

⊕RN
′′

,

Θ′′
t : R

N ′′

−→ X ′′, Θ′′
t (x

′′) = jY
(
Θ̃′′(x′′)

)
∀x′′ ∈RN

′′

.

Thus, the diagram s(t) given by

0 // RN
′ i //

Θ′

��

R
N j //

Θt

��

R
N ′′ //

Θ′′
t

��

0

0 // Y ′ iY // Y
jY // Y ′ // 0

commutes for every exact triple t as in (2.6), and we obtain an embedding

T −→ T (X⊕RN , Y ;X ′⊕RN
′

, Y ′;X ′′⊕RN
′′

, Y ′′), t −→ ts(t).

By Lemma 4.12, the diagram

λ(D′
Θ′)⊗ λ(D′′

Θ′′
t
)

Ψts(t) //

IΘ′;D′⊗IΘ′′
t
;D′′

��

λ(DΘt
)

IΘt;D

��
λ(D′)⊗ λ(D′′)

(−1)(indD
′)N′′

Ai,jΨt // λ(D)

commutes. By the definition of the topologies on the determinant line bundles, the vertical arrows in
the above diagram induce continuous line-bundle isomorphisms over the open subset of T consisting
of the exact triples t as in (2.6) so that D′∈UX′;Θ′ and D′′∈UX′′;Θ′′

t
. By Lemma 5.1, the top arrow

induces a continuous line-bundle isomorphism over the same open subset. Thus, the bottom arrow
in this diagram induces a continuous line-bundle isomorphism as well.

Remark 5.5. For the collection of exact triple isomorphisms (2.27) given by (4.10), C1=(−1)N1N2

and C2=1 in the proof of Proposition 5.3, as can be seen from (4.22).

5.2 Continuity of dualization isomorphisms

We begin by verifying the Normalization I′ property on page 17; see Lemma 5.6. This allows
us to confirm the continuity of (2.38) over F∗(X,Y ); see Lemma 5.7. The continuity of (2.36)
over F(X,Y ) then follows from the Dual Exact Triples property on page 19; see the proof of
Corollary 5.8. For each D∈F(X,Y ), let

qD : Y −→ c(D), qD(y) = y + ImD,

be the projection map as before.
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Lemma 5.6 (Normalization I′). Let (Ψt)t be a collection of exact triple isomorphisms as in (2.27)
satisfying the Naturality II, Normalization II,III, and Compositions I,II properties. For any Banach
vector spaces X and Y , D0 ∈F

′(X,Y ), and right inverse S : c(D0)−→ Y for qD0, there exists a
neighborhood UD0,S of D0 in F ′(X,Y ) so that the bundle isomorphism (2.35) is well-defined and
continuous with respect to the topology provided by Proposition 5.3.

Proof. By the Open Mapping Theorem for Banach vector spaces,

UD0,S ≡
{
D∈F ′(X,Y ) : Y = ImD ⊕ ImS

}

is an open neighborhood of D0 in F ′(X,Y ). Let

πX , πS : Y = ImD0 ⊕ ImS −→ ImD0, ImS

be the projection maps and D−1
0 : ImD0−→X be the inverse of the isomorphism

D0 : X −→ ImD0 , x −→ D0x.

For each D∈UD0,S , the map

ψD0;D : Y −→ Y, ψD0;D(y) = D
(
D−1

0 (πX(y))
)
+ πS(y),

is an isomorphism so that

D=ψD0;D◦D0◦id
−1
X and ψD0;D(y)−S(qD0(y)) ∈ ImD ∀ y∈Y.

By the last property,
ĨD0,S;D= ĨidX ,ψD0;D

: λ(D0) −→ λ(D).

Since ψD0;D depends continuously on D, the claim follows from the continuity of (2.27) provided
by Corollary 5.4, along with the Normalization III property.

Lemma 5.7. Let (Ψt)t be a collection of exact triple isomorphisms as in (2.27) satisfying the Nat-
urality II, Normalization II,III, and Compositions I,II properties. For any Banach vector spaces X
and Y , the family of maps D̃D given by (2.38) induces a continuous bundle map

D̃ : detX,Y −→ D
∗detY ∗,X∗

over F∗(X,Y ) with respect to the topologies provided by Proposition 5.3.

Proof. Let D0∈F
∗(X,Y ), T : Y −→X be a right inverse for D0, and

πT : X = κ(D0)⊕ ImT −→ κ(D0), x −→ x− TD0x ∀x∈X,

be the projection map. Thus, the homomorphism

S : c(D∗
0) −→ X∗, α+ ImD∗

0 −→ α|κ(D0) ◦ πT ,

is a right inverse for qD∗
0
. By the Normalization I property on page 12 and Lemma 5.6, it is sufficient

to show that the map

Ĩ−1
D∗

0 ,S;D
∗◦D̃D◦ĨD0,T ;D : λ(D0) −→ λ(D) −→ λ(D∗) −→ λ(D∗

0)

depends continuously on D∈UD0,S . By (2.25), (2.38), and (2.34), this map is given by

x⊗1∗ −→ 1⊗ P
(
λ(DD0)x

)
,

which establishes the claim.
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Corollary 5.8 (Continuity of (2.36)). Let (Ψt)t be a collection of exact triple isomorphisms as
in (2.27) satisfying the Naturality II, Normalization II,III, and Compositions I,II properties. If a
collection of bundle maps

D̃ : detX,Y −→ D
∗detY ∗,X∗

over F(X,Y ) satisfies the Normalization IV∗ and Dual Exact Triples properties, then the maps in
this collection are continuous with respect to the topologies provided by Proposition 5.3.

Proof. Let X,Y be Banach vector spaces. Let D∈F(X,Y ) and Θ: RN −→Y be a homomorphism
so that D∈UX;Θ. By the Dual Exact Triples property for the commutative diagram

0 // X
ιX;N //

D

��

X ⊕ R
N //

DΘ

��

R
N //

j

��

0

0 // Y
idY // Y // 0 // 0 ,

the diagram

λ(D)⊗ λ(j)

D̃j⊗D̃D◦R

��

Ψt // λ
(
DΘ

)

D̃DΘ
��

λ(j∗)⊗ λ(D∗)
Ψt∗ // λ

(
D∗

Θ

)

commutes. By Corollary 5.4, the horizontal arrows in this diagram induce bundle maps that are
continuous with respect to the topologies provided by Proposition 5.3. The right vertical arrow
induces a continuous bundle map over UX;Θ by Lemma 5.7. The isomorphisms R and D̃j on

the left-hand side of this diagram do not depend on D. Thus, the isomorphisms D̃D also induce
continuous bundle maps over UX;Θ.

5.3 Orientations along paths

Let X,Y be Banach vector spaces. We denote by

F⋆(X,Y ) ⊂ F∗(X,Y ) ⊂ F(X,Y )

the subspace of isomorphisms between X and Y . If D∈F⋆(X,Y ) is an isomorphism, the element
1⊗1∗ of λ(D) determines an orientation on this line, which we will call the canonical orienta-
tion of λ(D). Below we determine whether the extension of this orientation over a generic path
in F(X,Y ) ending in F⋆(X,Y ) restricts to the canonical orientation over the endpoint as well; see
Proposition 5.9.

Let Dt ∈ F(X,Y ) with t ∈ (−δ, δ) be a continuous path so that Dt ∈ F
⋆(X,Y ) for t 6= 0 and

d(c(D0))=1. By the continuity of the index, this implies that d(κ(D0))=1 as well. Choose

x0 ∈ κ(D)−{0}, y0 ∈ Y −ImD0,

and a closed linear subspace Ẋ⊂X such that the operator

Ḋ0 : Ẋ −→ ImD0, Ḋ0(x) = D0x,
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is an isomorphism. Shrinking δ if necessary, we can assume that

Y = ImDt⊕Ry0 ∀ t∈(−δ, δ).

Let B : (−δ, δ)−→Ẋ and ft : (−δ, δ)−→R be continuous maps so that

Dtx0 = Dt(B(t))+f(t)y0.

By our assumptions, B(0)=0 and f−1(0)={0}. We will call 0∈(−δ, δ) a transverse degeneration of
the path (Dt)t∈(−δ,δ) if f changes sign at t=0. This notion is independent of the choices of x0, y0, Ẋ.

Continuing with the setup above, define

Θ: R −→ Y, Θ(s) = sy0.

Thus, κ((Dt)Θ) is generated by the element (x0−B(t),−f(t)) of X⊕R. Since the operators (Dt)Θ
are surjective, the map

Ĩ : (−δ, δ)×R −→
⊔

t∈(−δ,δ)

λ
(
(Dt)Θ), Ĩ(t, s) =

(
x0−B(t),−f(t)

)
s ∈ λ

(
(Dt)Θ),

is a continuous line bundle isomorphism over (−δ, δ) by the Normalization I property on page 12.
By the Normalization II property on page 12, the isomorphisms (3.2) are given by

ÎΘ;Dt : λ(Dt) −→ λ
(
(Dt)Θ),

ÎΘ;Dt

(
f(t)1⊗1∗

)
= (B(t)−x0, f(t))⊗1

∗ = Ĩ(t,−1) if t 6= 0.

Since the isomorphisms ÎΘ;Dt extend over t=0 by the Exact Triples property on page 13, it follows
that the canonical orientations of λ(Dt) with t 6= 0 do not extend across t = 0 if 0 ∈ (−δ, δ) is a
transverse degeneration of the path (Dt)t∈(−δ,δ). This establishes the following.

Proposition 5.9 (Wall Crossing). Suppose X,Y are Banach vector spaces and (Dt)t∈[0,1] is a
continuous path in F(X,Y ) so that Dt is an isomorphism except for finitely many values of t
in (0, 1). If all degenerations of the path (Dt)t∈[0,1] are transverse, then the canonical orientations
of λ(D0) and λ(D1) extend continuously to orientations of λ(Dt) over [0, 1] if and only if the
number of the degenerations is even.
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[8] H. Gillet and C. Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), no. 3,
473–543.

[9] T. Ekholm, J. Entyre, and M. Sullivan Orientations in Legendrian Contact Homology and
Exact Lagrangian Immersions, Inter. J. Math. 16 (2005), no. 5, 453-532.

[10] Y.-Z. Huang, Two-Dimensional Conformal Geometry and Vertex Operator Algebras, Progress
in Mathematics 148, Birkhäuser 1995.
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