SAMPLE MIDTERM 2 MAT 125 Spring 2004 Midterm 2 is 8:30-10:00pm, Tuesday 3/30/04 Exam locations given in table on right

room	sections
Javits 100	1,2,5,8,9,11,13
Javits 102	6,7,12
Javits 103	15
Javits 109	3,10
Lib All, W0 512	4,14
Physics P-113	ELC 4

- 1. Find the derivtive of each function.
 - (i) x^8
 - (ii) $\sin(x)$
 - (iii) e^x
 - (iv) $\sin(x)e^x$
 - (v) $e^x/(1+x)$
 - (vi) $\cos(1+x^2)$
 - (vii) $\sin^2(x)$
 - (viii) $x^2 \cos(x) e^x$
 - (ix) $\sin(xe^x)$
 - (x) $\sqrt{\cos(x^2)}$
- 2. Find each of the following limits (or say that it does not exist).
 - (i) $\lim_{x\to 0} 1/|x|$.
 - (ii) $\lim_{x\to 0^+} \log(x)$
 - (iii) $\lim_{x\to 2} (x+2)/(x-2)$
 - (iv) $\lim_{x\to+\infty} (x^2+x)/(2x^2+x+1)$
 - (v) $\lim_{x\to +\infty} (x^2)/(x^3+2)$.
- 3. In the following figure, a function f and its first two derivatives, f' and f'', are graphed. Label each graph by putting a f, f' or f'' in the adjacent box.

4. Draw the tangent line to the graph at the marked point and estimate its slope. Use this estimate to write the formula for the tangent line.

- 5. The DERIVATIVE of f is graphed below. Answer the questions about f.
 - (i) At what interior points does f have a local maximum?

- (iii) Which is larger: f''(3.5) or f''(7.5)?
- (iv) Where does f take its global maximum?
- (v) What is the maximum value of f'(x)?
- (vi) Is f concave down on the interval $0 \le x \le 4$?

6. Each figure shows a function and its derivative. Label the graphs to show which is f and which is f'.

- 7. Use the limit definition of derivative to compute the derivative of $f(x) = \sqrt{x}$.
- 8. Where is the function $f(x) = x^4 2x^3 + x + 2$ concave down?