MAT 126.01, Prof. Bishop, Thursday, 12, 2020 Midterm 3 review

Midterms 1 adn 2: percentage, ave =55

Midterm is 25 points, 6 pages.
Several problems have multiple parts worth one point each.
No books or calculators are allowed.
One sheet (2-sided) of formulas and notes are allowed.
A sheet is on the webpage. You may bring it, or make your own.

- Page 1: 2 integration by parts, 1 theorem of Pappus
- Page 2: 3 problems on Newton's law of cooling.
- Page 3: 5 on center of mass. Compute area, integrals for M_{y}, M_{x}, give x, y coordinates.
- Page 4: 5 on partial fractions: long division, find A and B , integrate. Formula/Graph.
- Page 5: 4 problems: two indefinite integrals, then use to evaluate improper integral.
- Page 6: 5 on trig integrals: 3 choosing strategy. 2 setting up arclength, evaluate.

Page 1:

1. Integrate by parts:

$$
\begin{aligned}
\text { ts: } \int \begin{aligned}
& \int_{u}^{x e^{x} d x}=u v-\int v d u \\
& d v=x e^{x}-\int e^{x} 1 d x \\
& d u=1 d x \\
& v=e^{x}=x e^{x}-e^{x} \\
& \\
& 1 \cdot k^{x}+x e^{x}-e^{x}
\end{aligned}
\end{aligned}
$$

2. Use integration by parts to evaluate $\int x^{2} \sin (2 x) d x$.

$$
d u=2 x d y \quad v=\frac{-1}{2} \cos (2 x)
$$

$$
\begin{aligned}
& =u v-\int v d u \\
& =x^{2}\left(-\frac{1}{2} \cos (2 x)\right)-\int\left(-\frac{y}{x}\right) \cos (2 x) 62 x d x \\
& =-\frac{x^{2}}{2} \cos (2 x)+\underbrace{\int x \cos (2 x) d x}_{u=x}=\cos (2 x) \\
& d u=d x \quad v=\frac{1}{2} \sin 3 x \\
& =-\frac{x^{2}}{2} \cos (2 x)+[\frac{x}{2} \sin 2 x-\underbrace{\int 1 \cdot \frac{1}{2} \sin 2 x}_{1}] \\
& -\frac{1}{2} \cdot \frac{1}{2} \cos (2 x) \\
& =-\frac{x^{2}}{2} \cos (2 x)+\frac{x}{2} \sin (2 x)-\frac{1}{4} \cos (2 x)
\end{aligned}
$$

3. Let S be a disk of radius 3 centered at $(x, y)=(4,2)$. Use the theorem of Pappus to compute the volume obtained by rotating S around the y-axis.

$$
\begin{aligned}
\text { Vol }= & \text { Area } \times \begin{array}{c}
\text { dist raveled } \\
\\
\\
\\
\text { by center of } \\
\text { mass }
\end{array} \\
= & (\pi \cdot 9) \cdot(2 \pi \cdot 4) \\
= & 9 \cdot \pi \cdot 8 \pi \\
= & 72 \pi^{2} .
\end{aligned}
$$

Page 2:
4. A turkey 60° s placed in a 400° ea degree oven. Give the formula for the turkey's temperature at time t according to Newton's law of cooling.

$$
\begin{aligned}
T=\left(T_{0}-T_{a}\right) e^{-k t}+T_{a} \quad & -340 e^{-k t}+400 \\
& =400-340 e^{-k t}
\end{aligned}
$$

5. If the turkey in the previous problem is at 150° degrees after one hour,

$$
\begin{array}{ll}
\text { what is the value of } k>0 ? & e^{-k}=\frac{250}{340} \\
150=400-340 e^{-k-1} & -k=\ln \frac{250}{300} \\
340 e^{-k}=250 & k=-\ln \frac{250}{340}=\ln \frac{340}{250}
\end{array}
$$

6. Using the equation from Problem 4, when does the turkey reach 200° ? (leave k as a symbol)

$$
\begin{aligned}
& k \text { as a symbol) } \\
& 200=400-340 e^{-k T} \\
& 340 e^{-6 \pi}=\frac{200}{340}
\end{aligned} \quad \begin{aligned}
& -k T=\ln 200 / 340 \\
& t=\frac{\ln \frac{340}{200}}{R}
\end{aligned}
$$

Page 3:
7. What is the area of the region $S=\left\{(x, y): 0 \leq x \leq 1, x^{3} \lesseqgtr y \leq x\right\}$?

$$
\begin{aligned}
\text { Area } & =\int_{0}^{1} x-x^{3} d x \\
& =\frac{1}{2} x^{2}-\left.\frac{1}{4} x^{4}\right|_{0} ^{1} \\
& =\left(\frac{1}{2}-\frac{1}{4}\right)-(0-0)=\frac{1}{4}
\end{aligned}
$$

8. For the region above, what is the formula for M_{y}, the moment around the y-axis?

$$
\begin{aligned}
M_{y} & =\int_{0}^{1} x(f(x)-g(x)) d x \\
& =\int_{0}^{1} x\left(x-x^{3}\right) d x
\end{aligned}
$$

$$
=\int_{0}^{1} x^{2}-x^{4}=\frac{1}{3} x^{3}-\left.\frac{1}{5} x^{5}\right|_{0} ^{1}
$$

9. For the region above, what is the formula for M_{x}, the moment around the x-axis?

$$
\begin{aligned}
M_{x} & =\int_{0}^{1} \frac{1}{2}\left(f(x)^{2}-g(x)^{2}\right) d x \\
& =\frac{1}{2} \int_{0}^{1} x^{2}-x^{6} d x
\end{aligned}
$$

10. For the region above, what \bar{x}, the x-coordinate of the center of mass?

$$
\begin{aligned}
\bar{x}=\frac{M_{y}}{a+e a}=\frac{2 / 15}{1 / 4} & =4 \cdot \frac{2}{15}=8 / 15 \\
M_{g}=S_{0}^{1} x^{2}-x^{4} & =\frac{1}{3} x^{3}-\left.\frac{1}{5} x^{5}\right|_{0} ^{1} \\
& =\left(\frac{1}{3}-\frac{1}{5}\right)-(0-0) \\
& =\frac{5-3}{15}=\frac{2}{15}
\end{aligned}
$$

11. For the region above, what \bar{y}, the y-coordinate of the center of mass?

$$
\begin{aligned}
& \begin{aligned}
\bar{y}=\frac{M_{x}}{a r e a}=\frac{2 / 21}{1 / 4} & =4 \frac{2}{21}=8 / 21 \\
M_{y}=\frac{1}{2} S_{0}^{1} x^{2}-x^{6} & =\frac{1}{2}\left(\frac{1}{3} x^{3}-\frac{1}{7} x^{7}\right)_{0}^{1} \\
& =\frac{1}{2}\left(\frac{1}{3}-\frac{1}{7}\right) \\
& =\frac{1}{2}\left(\frac{7-3}{21}\right)=\frac{1}{2} \frac{4}{21}=\frac{2}{21}
\end{aligned}
\end{aligned}
$$

Page 4: Problems 12-15 all involve the same rational function and each step depends on the previous ones. Take extra care to check your answers, e.g., put your answers over a common denominator or plug in some values to check them.
12. Use long division of polynomials to write $r(x)=\left(2 x^{3}+3 x^{2}-4\right) /\left(x^{2}-4\right)$ in the form $p_{1}(x)+p_{2}(x) / q(x)$ where p_{2} has lower degree than q.

$$
\begin{gathered}
x^{2}-4 \frac{2 x+3}{2 x^{3}+3 x^{2}+0 x-4} \\
\frac{2 x^{3}-8 x}{03 x^{2}+8 x-4} \\
\frac{3 x^{2}-12}{08 x+8}
\end{gathered}=2 x+3+\frac{8 x+8}{x^{2}-4}
$$

Write the fractional part of r in its partial fraction expansion:

$$
\frac{p_{2}(x)}{q(x)}=\frac{A}{X-2}+\frac{B}{X+2} .
$$

$$
\begin{aligned}
& \text { 13. Find } A \text {. } \\
& \text { 14. Find } B \text {. } \\
& \begin{aligned}
\left(x, M(x+2) \frac{8 x+8}{(x-L)(x+2)}\right. & =\frac{A(x-x)(x+8)}{x}+\frac{B}{x+2}(x-2)(y / B) \\
\psi & =A(x+2)+B(x-2) \\
8 x+8 & =(A+B) x+2 A-2 B
\end{aligned} \\
& \begin{array}{l}
=A(x+2) \\
=(A+B) x+2 A-2 B
\end{array} \\
& x=2 \\
& 8 \cdot 2+8=A 4+B \cdot 0 \\
& \Rightarrow 8=A+B . L
\end{aligned}
$$

$$
\begin{gathered}
x=2 \\
8 \cdot 2+8=A 4+B \cdot 0 \\
24=4 A \\
6=A \\
x=-2 \\
-16+8=0 A-4 B \\
-8=-4 B, B=2
\end{gathered}
$$

? $+8=2 A-2 B E$

$$
4=A-B
$$

$$
12=2 A+0
$$

$$
\begin{aligned}
& 12=2 A \\
& 6=A, B=2
\end{aligned}
$$

15. Compute $\int_{0}^{1} \frac{2 x^{3}+3 x^{2}-4}{x^{2}-4} d x$.

$$
\begin{aligned}
& \int_{0}^{1} 2 x+3+\frac{6}{x-2}+\frac{2}{x+2} \\
& {\left[x^{2}+3 x+6 \ln |x-2|+2 \ln |x+2|\right]_{0}^{1}} \\
& =[1+3+6 \cdot 0+2 \ln 3] \\
& -[0+0+6 \ln 2+2 \ln 2] \\
& =4+2 \ln 3-8 \ln 2]
\end{aligned}
$$

16. d Which a possible partial fraction expansion for the graph below?
(a) $\frac{A}{x-4}+\frac{B x+C}{(x+4)^{2}}+\frac{\square}{1+(x+1)^{2}}$
(e) $\frac{A}{x+1}+\frac{B x+C}{(x-4)^{2}}+\frac{D}{1+(x+1)^{2}}$
(b) $\frac{A}{x+3}+\frac{B x+C}{x^{2}}+\frac{D}{1+(x-3)^{2}}$

(c) $\frac{A}{x-2}+\frac{B x+C}{(x+4)^{2}}+\frac{D}{1+(x+1)^{2}}$
(d) $\frac{A}{x+2}+\frac{B x+C}{(x-1)^{2}}+\underbrace{\frac{D}{1+(x-4)^{2}}}_{\boldsymbol{V}}$
(g) $\frac{A}{x}+\frac{B x+C}{(x+2)^{2}}+\frac{D}{1+(x-4)^{2}}$

$$
\frac{1}{x+2}
$$

(h) none of these

Page 5:
17. Evaluate

$$
\begin{aligned}
& =x^{2}\left(-\frac{1}{2} e^{-x^{2}}\right) \\
& \quad+\int\left(+\frac{1}{2} e^{-x^{2}}\right) \not x^{x^{3} e^{-x^{2}} d x d x} \begin{aligned}
& \int \underbrace{x^{2}}_{u} \cdot \underbrace{x e^{-x^{2}}}_{d v}=-\frac{x^{2}}{2} e^{-x^{2}}+\int x e^{-x^{2}} d x \\
& d u=2 x d x \\
& v=-\frac{1}{2} e^{-x^{2}}=-\frac{x^{2}}{2} e^{-x^{2}}-\frac{1}{2} e^{-x^{2}}
\end{aligned}
\end{aligned}
$$

18. Evaluate the improper integral $\int_{1}^{\infty} x^{3} e^{-x^{2}} d x$.

$$
\begin{aligned}
=\lim _{x \rightarrow \infty} S_{1}^{t} \underbrace{-x^{2}}=e^{-\left.x^{2}\left(-\frac{x^{2}}{2}-\frac{1}{2}\right)\right|_{1} ^{\pi}} \\
=\underbrace{e^{-x^{2}}\left(-\frac{1}{2}\right)}_{\rightarrow 0}-\underbrace{e^{-1}\left(-\frac{1}{2}-\frac{1}{2}\right)}
\end{aligned}
$$

19. Evaluate $\int \frac{d x}{x \sqrt{\ln x}}$. $=\int \frac{d u}{\sqrt{u}}=\int u^{-1 / 2} d u$

$$
\begin{aligned}
& u=\ln x \\
& d u=\frac{1}{x} d x
\end{aligned}
$$

$$
\begin{aligned}
& =2 u^{1 / 2} \\
& =2 \sqrt{\ln x}
\end{aligned}
$$

$$
\approx \int_{2}^{\infty} \frac{1}{x}=\infty
$$

20. Evaluate the improper integral $\int_{2}^{\infty} \frac{d x}{x \sqrt{\ln x}}$.

$$
=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{d x}{x \sqrt{\operatorname{lon} x}}=\lim _{t \rightarrow \infty} \frac{2 \sqrt{\ln t}-\partial \sqrt{\ln 2}}{}
$$

$$
\lim _{x \rightarrow \infty} L^{\text {Line }}
$$

$$
1 / 10
$$

$$
=\infty
$$

Diverges

Page 6: For each integral, select the appropriate strategy from the list.
\qquad 22. $i \int \tan ^{5} x d x$
23. f $\int \cos (10 x) \cos (7 x) d x$

Trigonometric integration strategies:
(a) Replace $\sin ^{2} x$ by $1-\cos ^{2} x$ and the use substitution $u=\cos x$.
(b) Replace $\cos ^{2} x$ by $1-\sin ^{2} x$ and the use substitution $u=\sin x$.
(c) Use $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$ or $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$, then (a) or (b).
(d) Use $\sin (a x) \sin (b x)=\frac{1}{2} \cos ((a-b) x)-\frac{1}{2} \cos ((a+b) x)$.
(e) Use $\sin (a x) \cos (b x)=\frac{1}{2} \sin ((a-b) x)+\frac{1}{2} \sin ^{\prime \prime}((a+b) x)$.
(f) Use $\cos (a x) \cos (b x)=\frac{1}{2} \cos ((a-b) x)+\frac{1}{2} \cos ((a+b) x)$.
(g) Rewrite $\sec ^{j} x=\sec ^{j-2} x \sec ^{2} x$ and use $\sec ^{2} x=\tan ^{2} x+1$. Then let $u=\tan x$.
(h) Rewrite $\tan ^{k} x \sec ^{j} x=\tan ^{k-1} \sec ^{j-1} x \tan x \sec x$ and use $\tan ^{2}=\sec ^{2}-1$.

Then use $u=\sec x$
(i) Use $\tan ^{k} x=\tan ^{k-2} x \tan ^{2} x=\tan ^{k-2} x\left(\sec ^{2} x-1\right)=\tan ^{k-2} x \sec ^{2} x-\tan ^{k-2} x$. Repeat if necessary.
(j) Use $\tan ^{2} x=\sec ^{2} x-1$. Then integrate by parts the powers of $\sec x$.
24. What integral gives the arclength of $y=x^{2}$ over $[0,1 / 2]$?

$$
\begin{array}{ll}
\int_{a}^{b} \sqrt{1+\mid f^{\prime}(x) 1^{2}} d x & \int_{0}^{1 / 2} \sqrt{1+4 x^{2}} d x \\
f(x)=x^{2} \quad f^{\prime}(x)=2 x
\end{array}
$$

25. Use a trigonometric substitution to compute this arclength.

$$
\begin{aligned}
& \sqrt{1+a^{2} x^{2}} \\
& x=\frac{1}{a} \tan \theta \\
& =\frac{1}{2} \tan \theta \\
& d x=\frac{1}{2} \sec ^{2} \theta \\
& x=0 \quad \theta=0 \\
& x=1 / 2 \\
& 1=\tan \theta \\
& \begin{array}{l}
\square=\int \sqrt{1+4\left(\frac{1}{2} \tan \right)^{2}} \frac{1}{2} \sec ^{2} \theta d \theta \\
\rightarrow=\frac{1}{2} \int_{0}^{\pi / 4} \sec \cdot \sec ^{2} d \theta
\end{array} \\
& =\frac{1}{2} \int_{0}^{\pi / 4} \sec ^{3} \theta d \theta \\
& \pi / 4=\theta \\
& \left.\left.+\frac{1}{2} \ln \backslash \sec \theta+\tan \theta \right\rvert\,\right]_{0}^{\pi / 4} \\
& =\frac{1}{2}\left[\frac{1}{2} \sqrt{2} \cdot 1+\frac{1}{2} \ln (\sqrt{2}+1)\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{2}\left[0+\frac{1}{2} \ln |1+0|\right] \\
& =\frac{1}{4} \sqrt{2}+\frac{1}{4} \ln (\sqrt{2}+1) \\
& \int \sqrt{1+4 x^{2}} \\
& 1+a^{i} x^{2} \\
& \sqrt{1+4 \frac{1}{4} \tan ^{2} \theta} \\
& x=\frac{1}{a} \tan \theta \\
& a=2 \\
& \frac{\sin ^{2}}{\cos ^{2}}+\frac{\cos ^{2}}{\cos ^{2}} \neq \frac{1}{\cos ^{2}} \\
& \tan ^{2}+1=\sec ^{2} \\
& \sqrt{1+4\left(\frac{1}{2} \tan \theta\right)^{2}} \\
& \sqrt{1+\tan ^{2} \theta} \\
& \sqrt{\sec ^{2} \theta} \\
& \sec \theta
\end{aligned}
$$

MAT 126 Nov 12
office Hours

$$
\text { start } \approx 11: 20
$$

Say wheiher euch inproper integral converges or diverges.

$$
\begin{aligned}
& \int_{0}^{1} \frac{1}{\sqrt{x}} d x= \int_{0}^{1} x^{-1 / 2} d x \frac{C_{0 u n e r y e y}}{} \\
& \int_{0}^{1} x^{2} d x= \begin{cases}\infty & P \leq-1 \\
\text { zotoges } & P>-1\end{cases} \\
& \int_{0}^{1} \frac{1}{x^{2}} d x=\int_{0}^{1} x^{-2} d x=\text { Divorgent. }
\end{aligned}
$$

$$
\int_{0}^{1} \frac{1}{x}=\alpha
$$

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{x^{2}} d x=\int_{1}^{\infty} x^{-2} d x=\text { Convarges } \\
& \text { 会 } \quad \frac{1}{x^{2}} \quad S_{1}^{\infty} x^{p}=\left\{\begin{array}{cc}
\infty & p \geq-1 \\
\text { finine } & p<-1
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{x^{6}}{x^{8}+1} d x \leq \int_{-\infty}^{\infty} \frac{1}{x^{7}} d x<\infty \\
& \leq \frac{x^{6}}{x^{8}}=\frac{1}{x^{2}} \quad \text { Converges. } \\
& \int_{1}^{\infty} \frac{x^{5}+3 x^{4}+2 x+5}{3 x^{6}+x^{2}+10 x+2} 2 x=\text { Diverges } \\
& \approx \frac{x^{5}}{x^{6}}=\frac{1}{3 x}=\frac{1}{3} \cdot \frac{1}{x}
\end{aligned}
$$

$$
\int_{1}^{\infty} x^{100} e^{-x} d x \leq S_{1}^{\infty} x^{100} x^{-102}
$$

if x is big ewough $x \geq a$

$$
e^{-x}<x^{-b 2} \text { conv erges }
$$

$$
\operatorname{deg}(p) \leq \log (8)-2
$$

$$
\begin{aligned}
\operatorname{deg}(p) \geq & \operatorname{deg}(q)-1 \\
& \operatorname{diveng} s
\end{aligned}
$$

diverogs

$$
\int_{0}^{\infty} \frac{1}{x^{2}} d x
$$

For any P ecther

$$
\begin{aligned}
& \int_{0}^{1} x^{p} d x=\infty \text { or } S_{1}^{\infty} x^{p} d x=\infty \\
& \int_{0}^{\infty} \frac{1}{x^{2}+1} d x<\infty \quad \frac{1}{x^{2}-1}=\frac{1}{(x-1)(x+1)}
\end{aligned}
$$

