MAT 126.01, Prof. Bishop, Tuesday, Nov 17, 2020 Last minute questions on Midterm 3 Section 7.1 Parametric equations In a usual function the y coordiate is given as a function of x

$$y = f(x)$$
.

In a parametric equation the x and y coordinates are both given as functions of a third parameter t

 $(x(\underline{t}),y(t))$

If x(t) = t, the two ideas are the same.

But in general a parametric equation describes curves that are not graphs of functions.

Easiest case is when x(t) = t. Then plot of (x(t), y(t)) is just graph of y(t).

$$y = f(x) \qquad (x, f(x))$$

$$y(x) = f(x) \qquad \uparrow$$

Eliminating the parameter.

Idea is to write the two equations x = x(t) and y = y(t) as one equation involving x and y.

Example: Find equation for $x(t) = 2\cos(t)$, $y(t) = \sin(t)$. What kind of shape is this?

Find a parametrization of $y = 2x^2 - 3$. $\chi(x) = \chi$ $\chi(x) = \chi^2 - \zeta$ Find a different parametrization of $y = 2x^2 - 3$.

 $\begin{aligned} \chi(\pm) &= 2\pm -1 \\ \chi &= 2\pm -1 \\ \chi &= 2\pm \\ \chi &= 1 \\ \chi &= 1 \\ \chi &= 1 \end{aligned}$

$$y(t) = 2x^{2} - 3$$

= 2(2x-1)^{2} - 3
= 2(4x^{2} - 4x + 1)^{-3}
= 8x^{2} - 8x - 1

What curve does a point on a rolling wheel follow? Called a cycloid. Assume radius is a.

Assume wheel takes time 2π to make one rotation (makes equation easier).

Then center moves by x(t) = at, y(t) = a. 21 Point on bottom of wheel moves by : 0 $x(t) = at + a\sin(-t) = at - a\sin t = a(t - \sin t),$ $y(t) = a - a\cos(-t) = a(1 - \cos t),$ X

A wheel of radius b rolling inside a circle of radius a:

$$x(t) = (a - b)\cos t + b\cos(\frac{a - b}{b}t),$$
$$y(t) = (a - b)\sin t + b\sin(\frac{a - b}{b}t),$$

 $\int_{2}^{\infty} \frac{1}{x \ln^{4} x} dx$ $du = \frac{1}{x} dx$ $\left[\int \frac{1}{x \ln^4 x} \frac{dx}{dx} \right] = \int \frac{1}{u^4} dx = \int \frac{1}{u^4} dy$ $=\frac{1}{-3}u^{-3}$ = = T_1 X $\int_{2}^{\infty} = \lim_{x \to \infty} \left[-\frac{1}{3} \frac{1}{1^{3}x} \right]_{2}^{x}$ $= \lim_{x \to \infty} \left(-\frac{1}{2} \frac{1}{1\sqrt{3}x} \right) - \left(-\frac{1}{3} \frac{1}{1\sqrt{3}a} \right)$ $0 + \frac{1}{3(1-2)^3}$

So rer dx $= -xe^{-x} - \int (-e^{-x}) dx$ S xe dx $\frac{1}{dv} = -\frac{1}{dv} = -\frac{1}{dv} = -\frac{1}{2} = -\frac{1}{2$ $= -\chi e^{-\chi} - e^{-\chi}$

So rerdr = lim Sot $= \left[- x e^{-x} - e^{-x} \right] - \left[0 e^{-x} - e^{-x} \right]$ =