MAT 126.01, Prof. Bishop, Tuesday, Nov 17, 2020 Last minute questions on Midterm 3 Section 7.1 Parametric equations

In a usual function the y coordiate is given as a function of x

$$
y=f(x) .
$$

In a parametric equation the x and y coordinates are both given as functions of a third parameter t

$$
(x(\underline{t}), y(t))
$$

If $x(t)=t$, the two ideas are the same.
But in general a parametric equation describes curves that are not graphs of functions.

Easiest case is when $x(t)=t$. Then plot of $(x(t), y(t))$ is just graph of $y(t)$.

$$
y=f(x)
$$

$$
(t, f(t))
$$

$$
y(t)=f(t)
$$

$$
x(t)=t
$$

Eliminating the parameter.
Idea is to write the two equations $x=x(t)$ and $y=y(t)$ as one equation involving x and y.

Example: $x(t)=t^{2}-3, y(t)=2 t+1$.

Example: $x(t)=\cos (t), y(t)=\sin (t)$.

$$
\begin{aligned}
x^{2}+y^{2} & =\cos ^{2}+\sin ^{2} \\
& =1 \\
x^{2}+y^{2} & =1
\end{aligned}
$$

Example: Find equation for $x(t)=2 \cos (t), y(t)=\sin (t)$. What kind of shape is this?

Example: Find equation for $x(t)=\sec (t), y(t)=\tan (t)$. What kind of shape is this?

$$
\begin{aligned}
& \begin{array}{l}
x=\sec \quad y=\tan \\
\frac{\cos ^{2}}{\cos ^{2}}+\frac{\sin ^{2}}{\cos ^{2}}=\frac{1}{\cos ^{2}} \\
1+\tan ^{2}=\sec ^{2} \\
1=\sec ^{2}-\tan ^{2}
\end{array} \\
& 1=x^{2}-y^{2}
\end{aligned}
$$

Find a parametrization of $y=2 x^{2}-3$.

$$
\begin{aligned}
& x(t)=t \\
& y(t)=2 t^{2}-3
\end{aligned}
$$

Find a different parametrization of $y=2 x^{2}-3$.

$$
\begin{gathered}
x(t)=2 t-1 \\
x=2 t-1 \\
x+1=2 t \\
\frac{x+1}{2}=t
\end{gathered}
$$

$$
\begin{aligned}
y(t) & =2 x^{2}-3 \\
& =2(2 t-1)^{2}-3 \\
& =2\left(4 t^{2}-4 t t\right)-3 \\
& =8 t^{2}-8 \pi-1
\end{aligned}
$$

What curve does a point on a rolling wheel follow? Called a cycloid.
Assume radius is a.
Assume wheel takes time 2π to make one rotation (makes equation easier).
Then center moves by $x(t)=a t, y(t)=a$.

$$
\frac{d_{157}}{\operatorname{Tin}}=\frac{2 \pi a}{2 \pi}
$$

Point on bottom of wheel moves by

$$
=0
$$

$$
\begin{aligned}
x(t)=a t+a \sin (-t)=a t-a \sin t=a(t-\sin t), \\
y(t)=a-a \cos (-t)=a(1-\cos t),
\end{aligned}
$$

A wheel of radius b rolling inside a circle of radius a :

$$
\begin{aligned}
& x(t)=(a-b) \cos t+b \cos \left(\frac{a-b}{b} t\right), \\
& y(t)=(a-b) \sin t+b \sin \left(\frac{a-b}{b} t\right),
\end{aligned}
$$

MAT 126 Office Hours
Tue Nov 17

$$
\approx 11: 05-11: 55
$$

$$
\begin{aligned}
& \int_{2}^{\infty} \frac{1}{x \ln ^{4} x} d x \\
& \begin{array}{l}
u=\ln x \\
d u=\frac{1}{x} d x
\end{array} \\
& \begin{array}{r}
\int \frac{1}{x \ln ^{4} x} d x
\end{array}=\int \frac{1}{u^{4}} d u=\int u^{-4} d u \\
& =\frac{1}{-3} u^{-3} \\
& =\frac{-1}{3} \frac{1}{\ln ^{3} x}
\end{aligned} \quad \begin{array}{r}
\int_{2}^{\infty}=\lim _{x \rightarrow \infty}\left[-\frac{1}{3} \frac{1}{\ln ^{3} x}\right]_{2}^{x} \\
=\lim _{x \rightarrow \infty}\left(-\frac{1}{3} \frac{1}{\left.\ln ^{3} \pi\right)-\left(-\frac{1}{3} \frac{1}{\ln ^{3} 2}\right)}\right. \\
=0 \frac{1}{3} \frac{1}{(\ln 2)^{3}}
\end{array}
$$

$$
\begin{aligned}
& \int_{0}^{\infty} x e^{-x} d x \\
& \int_{\underbrace{x}_{u} \underbrace{x}_{d v} d x}^{e^{-x} d x}=-x e^{-x}-\int\left(-e^{-x}\right) d y \\
& d u=1 d x v \\
& =-x e^{-x}+\int e^{-x} d x \\
& \\
& \begin{aligned}
\int_{0}^{\infty} x e^{-x} d x & =\lim _{x-\infty} \int_{0}^{x} \\
& =\left[-x e^{-x}-e^{-x}\right]-\left[0 e^{0}-e^{0}\right] \\
& =0-1=1
\end{aligned}
\end{aligned}
$$

