MAT 126.01, Prof. Bishop, Thursday, Nov 19, 2020 Section 7.2 Calculus of Parametric Curves

- Find derivatives and tangents to parametric curves
- Find area under a parametric curve.
- Arclength of parametric curve.
- Area of rotated parametric curve.

Derivatives of parametric equations:

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}
$$

Example: calcuate derivative at time $t$ of $x(t)=t^{2}-3, y(t)=2 t-1$.


What is tangent line at $t=2$ ?

Second derivatives:

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t} \frac{d y}{d x}}{\frac{d x}{d t}}
$$

Find second derivative of

$$
x(t)=t^{2}-3, \quad y(t)=2 t-1
$$

Area under a parametric curve:

$$
A=\int_{a}^{b} y(t) x^{\prime}(t) d t
$$

Area under a cycloid.

$$
x(t)=t-\sin (t), \quad y(t)=1-\cos (t)
$$



What is the area of the ellipse $\frac{1}{4} x^{2}+y^{2} \leq 1$ ?

Arclength of a parametric curve:

$$
\text { length }=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

What is length of circle $x(t)=2 \cos (t), \quad y(t)=2 \sin (t)$.

Surface area of revolution

$$
\text { area }=2 \pi \int_{a}^{b} y(t) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}
$$

Find surface area of a sphere of radius $r$.

