MAT 126.01, Prof. Bishop, Thursday, Oct 1, 2020

 Section 2.3, Volumes by ShellsQuiz 5 review

Recall disk method from last time.

If the graph of $f \geq 0$ on $[a, b]$ is revolved around the x-axis, the volume of the solid obtained is

$$
\pi \int_{a}^{b} f(x)^{2} d x
$$

Derive volume of sphere $V=\frac{4}{3} \pi r^{3}$ using disk method.

Volumes of revolution: shell method.

If the graph of $f \geq 0$ on $[a, b]$ is revolved around the y-axis, the volume of the solid obtained is

$$
2 \pi \int_{a}^{b} x f(x) d x
$$

Derive volume of sphere $V=\frac{4}{3} \pi r^{3}$ using shell method.

Suppose x^{2} on $[0,2]$ is revolved around y-axis. What is the resulting volume? Use shell method.

Suppose $f(x)=e^{-x^{2}}$ on $[0, \infty)$ is revolved aroind the y-axis. What is the volume generated?

Quiz 5:

3 problems on recognizing x-axis rotations.
Find integral formula for disk method
Evaluate same integral
3 problems on recognizing y-axis rotations.
Find integral formula using shell method.
Compute a volume using shell method.

Rotate $\sin ^{2}(x)$ on $[0, \pi]$ around the x-axis.

Rotate $\sin (x)$ on $[0,2 \pi]$ around the y-axis.

The region below is $\left\{0 \leq y \leq e^{-x}: 0 \leq x<\infty\right\}$, rotated around the x-axis. What is the integral formula for the volume using the disk method?

Compute the volume of the region above.

Suppose the region $\{(x, y): 0<\sin (x), 0 \leq x \leq \pi\}$ is rotated aroind the y-axis. What integral gives the volume using the shell method?

Suppose the region $\{(x, y): 0 \leq \sqrt{x}, 0 \leq x \leq 1\}$ is rotated around the y-axis. Compute the volume of this regions (give a numerical answer).

