MAT 126.01, Prof. Bishop, Thursday, Oct 1, 2020 Section 2.3, Volumes by Shells Quiz 5 review

Recall disk method from last time.

If the graph of $f \ge 0$ on [a, b] is revolved around the x-axis, the volume of the solid obtained is

$$\pi \int_{a}^{b} f(x)^{2} dx.$$

Derive volume of sphere $V = \frac{4}{3}\pi r^3$ using disk method.

Volumes of revolution: shell method.

If the graph of $f \ge 0$ on [a, b] is revolved around the y-axis, the volume of the solid obtained is

$$2\pi \int_{a}^{b} x f(x) dx.$$

Derive volume of sphere $V = \frac{4}{3}\pi r^3$ using shell method.

Suppose x^2 on [0,2] is revolved around y-axis. What is the resulting volume? Use shell method.

Suppose $f(x) = e^{-x^2}$ on $[0, \infty)$ is revolved around the y-axis. What is the volume generated?

Quiz 5:

3 problems on recognizing x-axis rotations.

Find integral formula for disk method

Evaluate same integral

3 problems on recognizing y-axis rotations.

Find integral formula using shell method.

Compute a volume using shell method.

Rotate $\sin^2(x)$ on $[0, \pi]$ around the x-axis.

Rotate $\sin(x)$ on $[0, 2\pi]$ around the y-axis.

The region below is $\{0 \le y \le e^{-x} : 0 \le x < \infty\}$, rotated around the x-axis. What is the integral formula for the volume using the disk method?

Compute the volume of the region above.

Suppose the region $\{(x,y): 0 < \sin(x), 0 \le x \le \pi\}$ is rotated around the y-axis. What integral gives the volume using the shell method?

Suppose the region $\{(x,y): 0 \le \sqrt{x}, 0 \le x \le 1\}$ is rotated around the y-axis. Compute the volume of this regions (give a numerical answer).

