MAT 126.01, Prof. Bishop, Tuesday, Oct 13, 2020 Section 2.6 Moments and Centers of Mass Theorem of Pappus

See-Saw example: $m_{1} d_{1}=m_{2} d_{2}$.

Center of weight of a finite number of masses on line:

$$
\bar{x}=\frac{\sum_{k=1}^{n} m_{k} x_{k}}{\sum_{k=1}^{n} m_{k}} \frac{M}{m}
$$

Moments with respect to x-axis and y-axis :

$$
\begin{gathered}
M_{y}=\sum_{k=1}^{n} m_{k} x_{k} \\
M_{x}=\sum_{k=1}^{n} m_{k} y_{k} \\
\bar{x}=\frac{M_{y}}{m}, \quad \bar{y}=\frac{M_{x}}{m}
\end{gathered}
$$

Moment w.r.t. x -axis is on the y-axis and vice versa.

Find center of mass of

$$
\begin{gathered}
2 \mathrm{~kg} \text { at }(-1,3), \\
6 \mathrm{~kg} \text { at }(1,1), \\
4 \mathrm{~kg} \text { at }(2,-3),
\end{gathered}
$$

lamina $=$ thin plate represented by region in the plane, constant density.
centroid $=$ center of mass.

Symmetry Principle: if a region is symmetric with respec to a line, then the centroid in on that line

Corollary: if there are two lines of symmetry the centroid is at the intersection point.

Suppose $R=\{(x, y): a \leq x \leq b, 0 \leq y \leq f(x)\}$. Let ρ be the (constant) density of the associated lamina.

$$
\begin{aligned}
\text { mass of lamina } & =\rho \cdot \operatorname{area}(R)=\rho \cdot \int_{a}^{b} f(x) d x \\
M_{x} & =\rho \cdot \int_{a}^{b} \frac{1}{2}|f(x)|^{2} d x \\
M_{y} & =\rho \cdot \int_{a}^{b} x|f(x)| d x \\
\bar{x} & =\frac{M_{y}}{m}, \quad \bar{y}=\frac{M_{x}}{m}
\end{aligned}
$$

Find the center of mass of region below $y=\sqrt{x}$ and above $[0,4]$.

Suppose $R=\{(x, y): a \leq x \leq b, g(x) \leq y \leq f(x)\}$. Let ρ be the (constant) density of the associated lamina.

$$
\begin{aligned}
\text { mass of lamina } & =\rho \cdot \operatorname{area}(R)=\rho \cdot \int_{a}^{b} f(x)-g(x) d x \\
M_{x}= & \rho \cdot \int_{a}^{b} \frac{1}{2}\left(|f(x)|^{2}-|g(x)|^{2}\right) d x \\
M_{y} & =\rho \cdot \int_{a}^{b} x(f(x)-g(x)) d x \\
\bar{x} & =\frac{M_{y}}{,} \quad \bar{y}=\frac{M_{x}}{m}
\end{aligned}
$$

Find the center of mass of the region bounded above by $y=4-x^{2}$ and below by $y=0$. (Use symmetry).

Find the center of mass of the region bounded above by $y=1-x^{2}$ and below by $y=x-1$.

Theorem of Pappus: If R is a planar region and L a line not hitting L then the volume formed by rotating R around L is the area of R multiplied by the distance traveled by the center of mass around L.

Let R be the circle of radius 1 centered at $(4,0)$. What is the volume of the torus formed by rotating this around the y-axis?

Proof of Theorem of Pappus: By method of shells

$$
\begin{gathered}
\qquad=2 \pi \int_{a}^{b}(f(x)-g(x)) d x \\
\text { Area }=m=\int_{a}^{b}(f(x)-g(x)) d x
\end{gathered}
$$

Distance traveled by center of mass

$$
d=2 \pi \bar{x}=2 \pi \frac{M_{y}}{m}=\frac{2 \pi \int_{a}^{b} x(f(x)-g(x)) d x}{\int_{a}^{b}(f(x)-g(x)) d x}
$$

So $V=d A$.

An equilateral triangle of with side length one is rotated around one of its sides. What is the resulting volume?

