
MAT 126.01, Prof. Bishop, Tuesday, Oct 13, 2020
Section 2.6 Moments and Centers of Mass

Theorem of Pappus1



See-Saw example: m1d1 = m2d2.
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Center of weight of a finite number of masses on line:

x =

∑n
k=1mkxk∑n
k=1mk

M

m
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Moments with respect to x-axis and y-axis :

My =

n∑
k=1

mkxk

Mx =

n∑
k=1

mkyk

x =
My

m
, y =

Mx

m

Moment w.r.t. x-axis is on the y-axis and vice versa.
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Find center of mass of
2 kg at (−1, 3),

6 kg at (1, 1),

4 kg at (2,−3),
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lamina = thin plate represented by region in the plane, constant density.

centroid = center of mass.

Symmetry Principle: if a region is symmetric with respec to a line,
then the centroid in on that line

Corollary: if there are two lines of symmetry the centroid is at the
intersection point.
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Suppose R = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f (x)}. Let ρ be the (constant)
density of the associated lamina.

mass of lamina = ρ · area(R) = ρ ·
∫ b

a
f (x)dx

Mx = ρ ·
∫ b

a

1

2
|f (x)|2dx

My = ρ ·
∫ b

a
x|f (x)|dx

x =
My

m
, y =

Mx

m
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Find the center of mass of region below y =
√
x and above [0, 4].
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Suppose R = {(x, y) : a ≤ x ≤ b, g(x) ≤ y ≤ f (x)}. Let ρ be the
(constant) density of the associated lamina.

mass of lamina = ρ · area(R) = ρ ·
∫ b

a
f (x)− g(x)dx

Mx = ρ ·
∫ b

a

1

2
(|f (x)|2 − |g(x)|2)dx

My = ρ ·
∫ b

a
x(f (x)− g(x))dx

x =
My

,
y =

Mx

m
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Find the center of mass of the region bounded above by y = 4 − x2 and
below by y = 0. (Use symmetry).
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Find the center of mass of the region bounded above by y = 1 − x2 and
below by y = x− 1.
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Theorem of Pappus: If R is a planar region and L a line not hitting L
then the volume formed by rotating R around L is the area of R multiplied
by the distance traveled by the center of mass around L.

12



Let R be the circle of radius 1 centered at (4, 0). What is the volume of
the torus formed by rotating this around the y-axis?
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Proof of Theorem of Pappus: By method of shells

V = 2π

∫ b

a
(f (x)− g(x))dx.

Area = m =

∫ b

a
(f (x)− g(x))dx

Distance traveled by center of mass

d = 2πx = 2π
My

m
=

2π
∫ b
a x(f (x)− g(x))dx∫ b
a (f (x)− g(x))dx

So V = dA.

14



An equilateral triangle of with side length one is rotated around one of its
sides. What is the resulting volume?
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