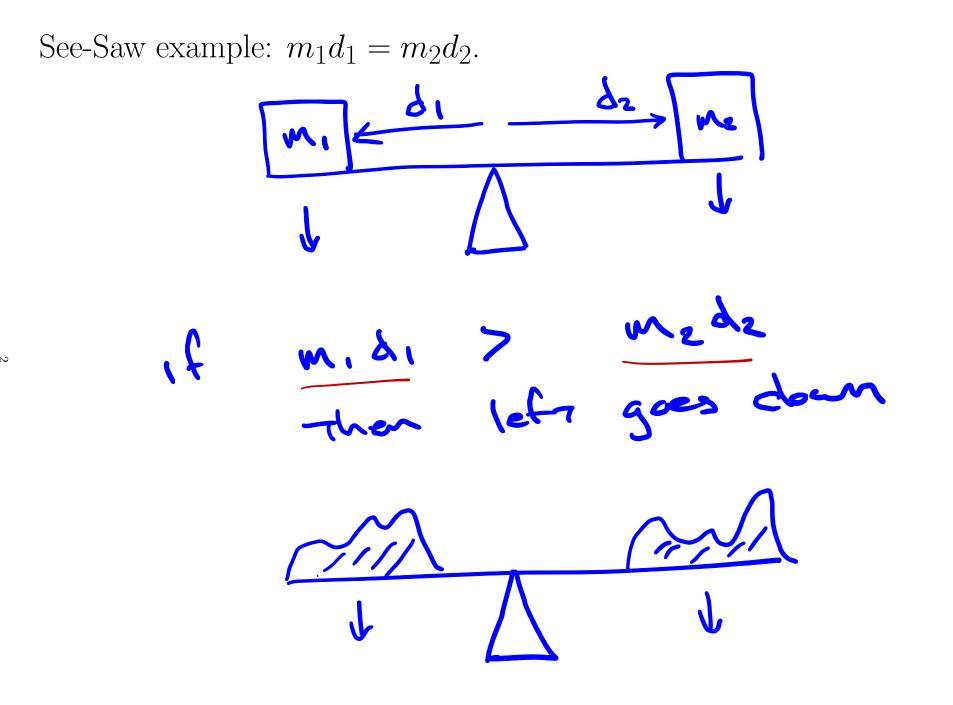
MAT 126.01, Prof. Bishop, Tuesday, Oct 13, 2020 Section 2.6 Moments and Centers of Mass Theorem of Pappus



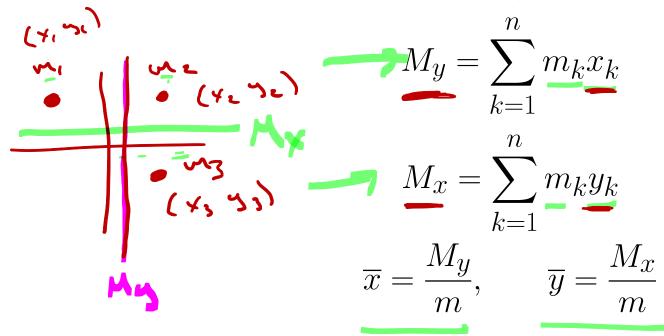
Center of weight of a finite number of masses on line:

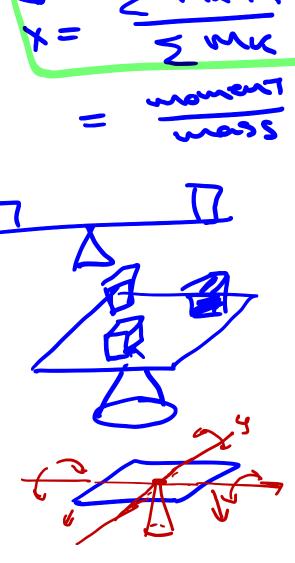
$$\overline{x} = \frac{\sum_{k=1}^{n} m_{k} x_{k}}{\sum_{k=1}^{n} m_{k}} = \frac{\mathcal{M}}{\mathcal{M}}$$

$$[m_{1}] = \frac{\sum_{k=1}^{n} m_{k}}{\sum_{k=1}^{n} m_{k}} = \frac{\mathcal{M}}{\mathcal{M}}$$

$$[m_{1}] = \frac{\mathcal{M$$

Moments with respect to x-axis and y-axis :





Moment w.r.t. x-axis is on the y-axis and vice versa.

(winh respect 70)

Find center of mass of

2 kg at (-1, 3),
6 kg at (1, 1),
4 kg at (2, -3),

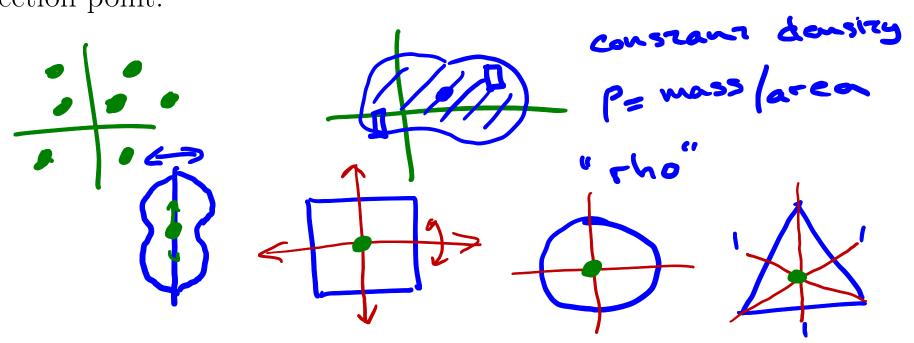
 $M_{y} = 2(-1) + 6(1) + 4(2)$ = - 2 + 6 + 8 = 12 6 (1,1) $M_{X} = 2(3) + 6(1) + 4(-3) \\ = 6 + 6 - 12 = 0$ • (2-3) 4 m = 2 + 6 + 4 = 12 $\frac{My}{m} = \frac{12}{12} = 1$ $\frac{Mx}{m} = \frac{12}{12} = 1$

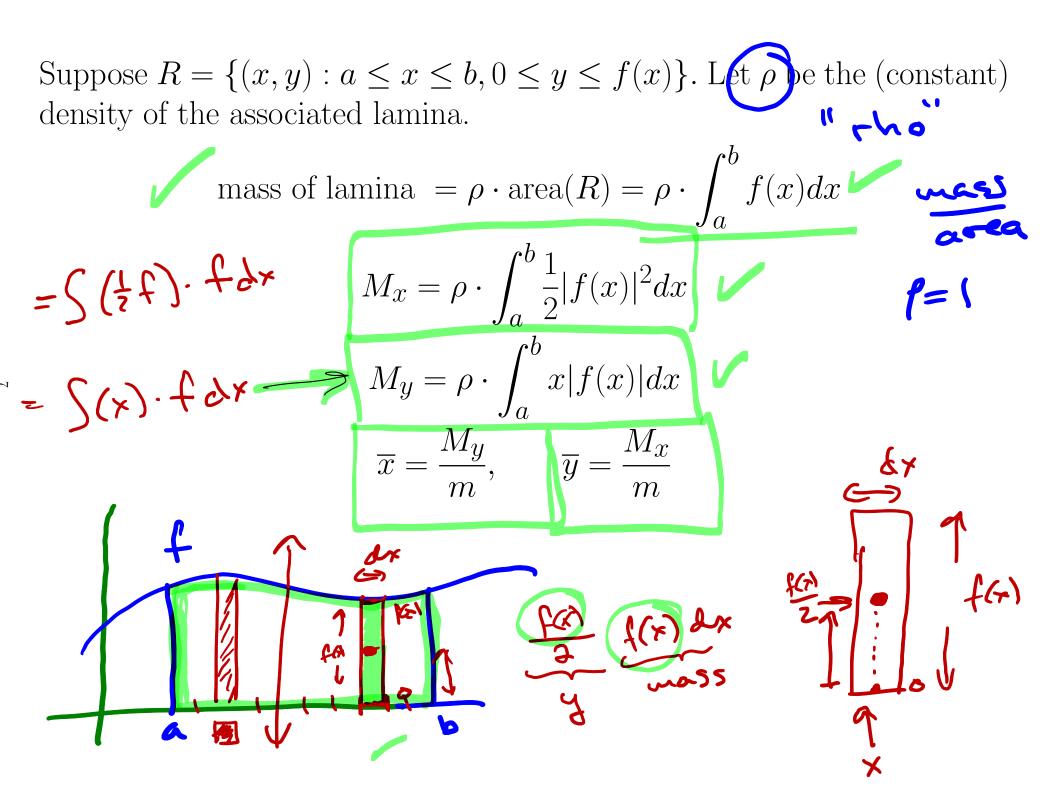
lamina = thin plate represented by region in the plane, constant density.

centroid = center of mass.

Symmetry Principle: if a region is symmetric with respec to a line, then the centroid in on that line

Corollary: if there are two lines of symmetry the centroid is at the intersection point.





Find the center of mass of region below $y = \sqrt{x}$ and above [0, 4]. = [X $\int_{0}^{4} \sqrt{x} \, dx = \frac{2}{3} \chi^{3/2} \Big|_{0}^{4} = \frac{2}{3} \left(4\right)^{3/2} = \frac{16}{3}$ $= \int_{0}^{4} \frac{f(x)}{2} dx = \int_{0}^{4} \frac{x}{2} = \frac{1}{4} x^{2} \Big|_{0}^{4} = 4$ $M_{g} = \int_{0}^{4} \chi f(x) dx = \int_{0}^{4} \chi^{3/2} dx = \frac{2}{5} \chi^{5/2} \int_{0}^{4} = \frac{64}{5}$ $\frac{M_{Y}}{m} = \frac{4}{16/3} = \frac{3}{4} = \frac{M_{y}}{7} = \frac{M_{y}}{m} = \frac{64/5}{16/3} = 4$ 10 S

Suppose $R = \{(x, y) : a \leq x \leq b, g(x) \leq y \leq f(x)\}$. Let ρ be the (constant) density of the associated lamina.

mass of lamina
$$= \rho \cdot \operatorname{area}(R) = \rho \cdot \int_{a}^{b} f(x) - g(x) dx$$

$$M_{x} = \rho \cdot \int_{a}^{b} \frac{1}{2} (|f(x)|^{2} - |g(x)|^{2}) dx \quad (a+b)(a-b)$$

$$M_{y} = \rho \cdot \int_{a}^{b} x(f(x) - g(x)) dx$$

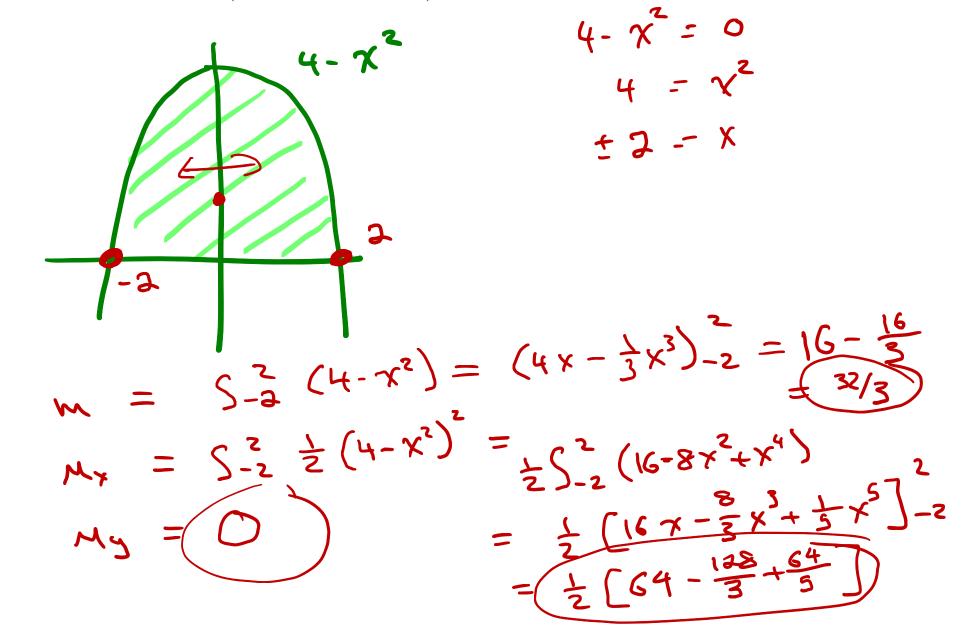
$$\overline{x} = \frac{M_{y}}{m} \quad \overline{y} = \frac{M_{x}}{m}$$

$$f \quad f(x) + g(x) \quad (f(x) - g(x)) dx$$

$$\overline{x} = \frac{M_{y}}{m} \quad \overline{y} - coor$$

$$y - coor$$

Find the center of mass of the region bounded above by $y = 4 - x^2$ and below by y = 0. (Use symmetry).

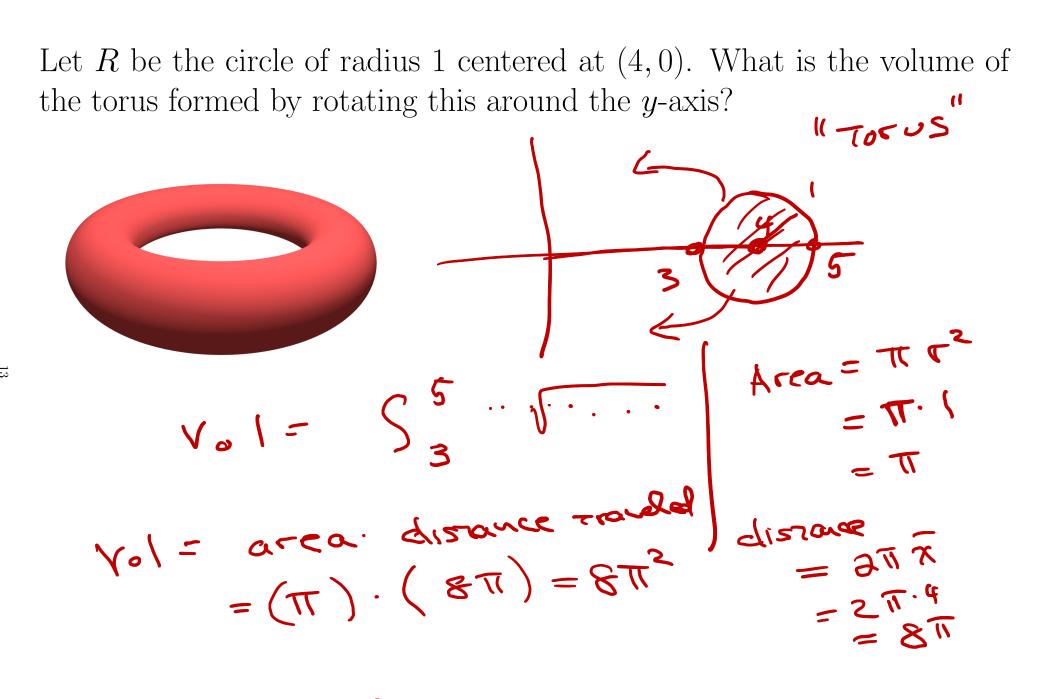


Find the center of mass of the region bounded above by $y = 1 - x^2$ and below by y = x - 1.



Theorem of Pappus: If R is a planar region and L a line not hitting L then the volume formed by rotating R around L is the area of R multiplied by the distance traveled by the center of mass around L.

 $(\overline{x},\overline{y}) = P$ Vol = Area (R) · dissance Vol = Area (R) · dissance $= A(R) - 2\pi \pi (\gamma rom)$ = $A(R) - 2\pi \chi (\chi rom)$ = $A - 2\pi \chi (\chi rom)$ (43)



Proof of Theorem of Pappus: By method of shells

$$V = 2\pi \int_{a}^{b} (f(x) - g(x))dx.$$

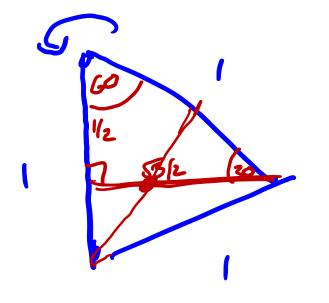
Area = $m = \int_{a}^{b} (f(x) - g(x))dx$

Distance traveled by center of mass

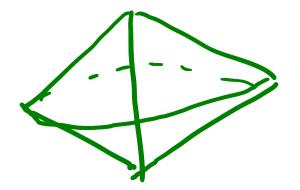
$$d = 2\pi \overline{x} = 2\pi \frac{M_y}{m} = \frac{2\pi \int_a^b x(f(x) - g(x))dx}{\int_a^b (f(x) - g(x))dx} \quad \checkmark$$

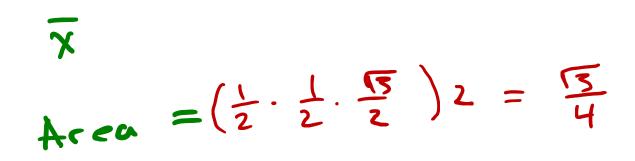
So V = dA.

An equilateral triangle of with side length one is rotated around one of its sides. What is the resulting volume?



π



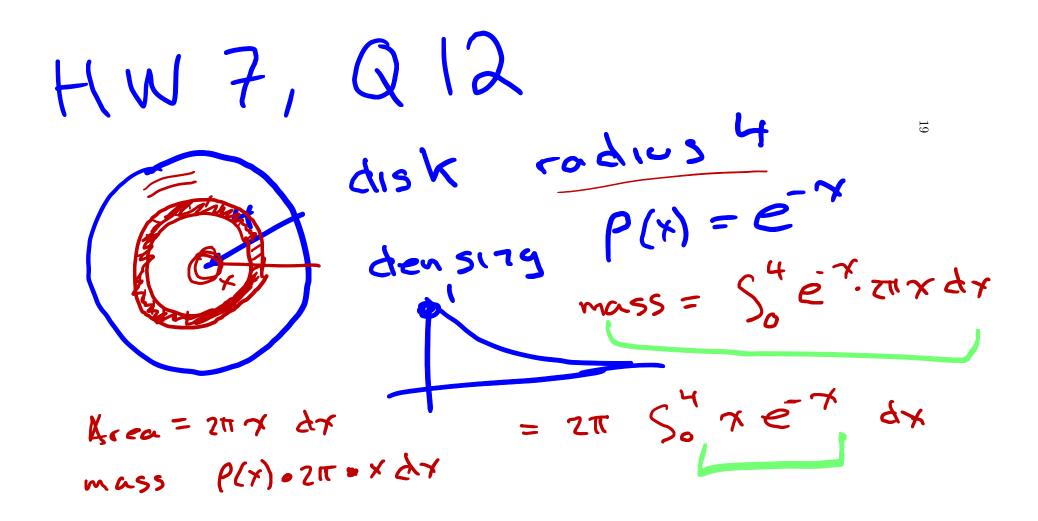


MAT 126 Office Hours

 $f(x) = 66x = 6x'^{2}$ HW7,Q6 f'(x)=3x-12 $2.3 \le x \le 4.2$ y = 6 x around X-axis, Find surface area. $S_a^2 = \pi f(x) \cdot (1 + 1f(x))^2 dx$ $= \frac{2\pi}{2} \int_{-\infty}^{\infty} \frac{4 \cdot a}{6} \int_{-\infty}^{\infty} \frac{1 + \frac{q}{x}}{1 + \frac{q}{x}} dx$ $= 12\pi S [x+q]$ $u = x + q du = \chi$ $2\pi 6\sqrt{x} + \frac{6}{4}$ = 12 TT STU $= 12\pi \frac{3}{2}u^{3/2}$ = $10 \times \frac{2}{3} (\chi + q)^{3} ($ 1211 1 × +9 276 17/1+9/2

er. x12 Force = $k_1 \cdot \ell_2 \cdot \ell_2 = \frac{1}{x^2} + \frac{1}{x^2}$ $\int_{x/2}^{x} F \cdot d_1 dx = \int_{x/2}^{x} \int_{x/2}^{x} \frac{1}{x^2} \frac{1}{x^2}$ $\frac{18}{8}$ = k&& S I at -== \ × 1e - 2882 = k8.8. [-x - (-x2)]

= 6882. - x

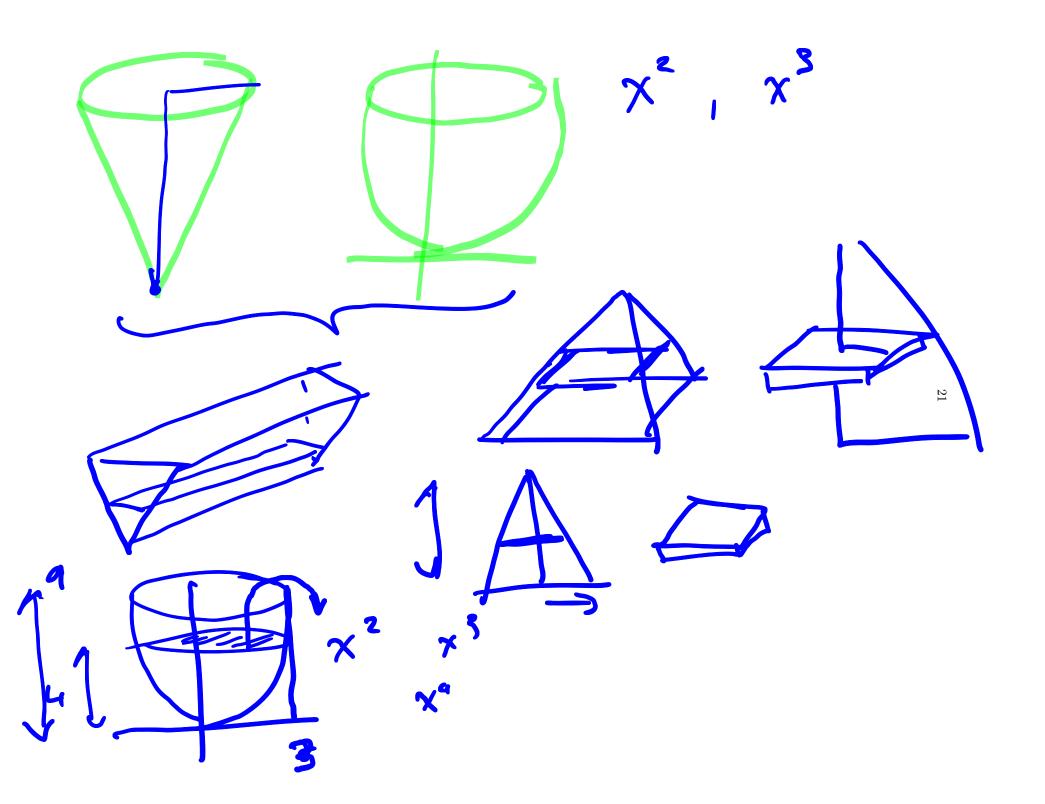


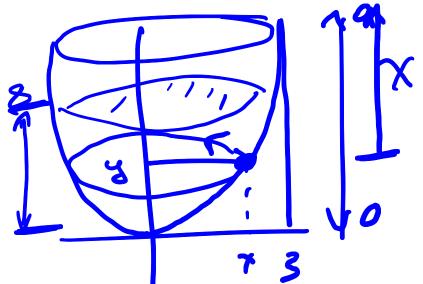
$$(xe^{-x})' = e^{-x} + x(-e^{-x})$$

= $e^{-x} - xe^{-x}$
 $(-xe^{-x} - e^{-x})' = -xe^{-x} + xe^{-x} + xe^{-x}$
= xe^{-x}

$$= 2\pi \left(-xe^{-x} - e^{-x} \right) \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

= $2\pi \left[\left(-4e^{-4} - e^{-4} \right) - \left(\frac{0}{2} - e^{-4} \right) \right]$
= $2\pi \left(\left(-5e^{-4} \right) \right]$





2 0 ≤ y ≤ 8 2 5 y= x² 14 x = A = * * - * (5) = T] 9-3 2157 = 22πη (α-9 compute

 $W = 62.4 \cdot 5^{8}$

25 CJ Bay grand 14 kg mass How heavy is rope theight B J g g storing 20 kg mass K bucket = ?= 20 - 6 y rope from bucker to roof = (25 - y)(-4)kno1 = .4 kg $30 - \frac{16}{16}$ (4 $m = \frac{-6}{35}$ Force = 9.8 mass (4 $m = \frac{-6}{35}$ (4 $m = \frac{-6}{35}$ (4 $m = \frac{-6}{35}$ (4 $m = \frac{-6}{35}$ (5 $m = \frac{-6}{16}$ (6 $m = \frac{-6}{35}$ (6 $m = \frac{-6}{35}$ (7 $m = \frac{-6}{35}$ (7 $m = \frac{-6}{35}$ (8 $m = \frac{-6}{35}$ (9 $m = \frac{-6}{35$ $as mass = (20 - \frac{6}{25}) + .4$ $at height g = (20 - \frac{6}{25}) + .4 + (25 - g).4$

$$W = 9.8 \int_{0}^{25} F \cdot d$$

$$= 98 \int_{0}^{35} \left[\frac{3 \times -\frac{5}{35} \cdot y + (x - (as - y)) \cdot 4}{3 \times -\frac{5}{35} \cdot y + (x - (as - y)) \cdot 4} \right] dy$$

$$= 98 \int_{0}^{25} \left[(ao \cdot 4 + io) F + (as - y) \cdot 4 \cdot y - (ay - y) \right] dy$$

$$= 98 \int_{0}^{25} 30 \cdot 4 - \frac{24}{10} \cdot y - \frac{4}{10} \cdot 4 \cdot y$$

$$= 98 \int_{0}^{25} 30 \cdot 4 - \frac{64}{10} \cdot 4 \cdot y$$

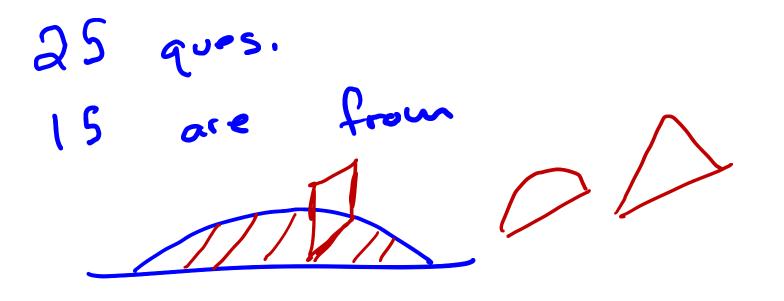
$$= 98 (as) (30 \cdot 4) - (64 \cdot \frac{1}{2} \cdot y^{7}) \Big|_{0}^{25}$$

$$= 98 (as) (30 \cdot 4) - (64 \cdot \frac{1}{2} \cdot y^{7}) \Big|_{0}^{25}$$

$$= 98 (as) (30 \cdot 4) - (64 \cdot \frac{1}{2} \cdot y^{7}) \Big|_{0}^{25}$$

$$= 5488 \quad \text{joles} \quad 7 \quad \sqrt{2}$$

Quizzes Midzerm = нv + in lectore.



Q20 That "by o p'pe よ is always lared of the se face 「 (7 (学))) 23 3 $= \pi \frac{16}{49} \int_{0}^{1} 7y^{2} - y^{3} dy$ () 21 $=\pi\frac{16}{49}\left[\frac{7}{3}3^{3}-\frac{1}{3}y^{4}\right]$ 4y -7 - 7 $= \pi \frac{16}{49} \begin{bmatrix} 1 \\ 49 \end{bmatrix}$

 $= \pi \frac{16}{49.18} \frac{7}{7.7^2}$ = 町 芸、72 $W = (10000) \cdot \pi \cdot \frac{4}{3} \cdot 49$ $= \frac{1960000}{3} TT V$

 $\mathbf{28}$