MAT 126.01, Prof. Bishop, Tuesday, Oct 13, 2020 Section 2.6 Moments and Centers of Mass Theorem of Pappus

See-Saw example: $m_{1} d_{1}=m_{2} d_{2}$.

if $m_{1} d_{1}>m_{2} d_{2}$
Then left goes down

Center of weight of a finite number of masses on line:

$$
\begin{aligned}
& \bar{x}=\frac{\sum_{k=1}^{n} m_{k} x_{k}}{\sum_{k=1}^{n} m_{k}}=\frac{M}{m}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{m_{1}\left(x-x_{1}\right)+m_{2}\left(x-x_{2}\right)+\cdots\left(x-x x_{n}\right) \text { in }}{1 . f-\frac{x_{n}}{x}} \\
& =\left(x_{k+1}-x\right) m_{k+1}+\left(x_{n-1}-x\right) m_{n-1}+\left(x_{n}-x\right) m_{n} \\
& m_{1}\left(x-x_{1}\right)+\cdots+\left(x-x_{n}\right) u_{m}=0 \\
& \sum_{k=1}^{n} m_{k}\left(x-x_{k}\right)=0 \\
& \sum m_{k} x-\sum m_{k} x_{k}=0 \\
& \times \sum m_{k}=\sum m_{k} x_{k}
\end{aligned}
$$

Moments with respect to x-axis and y-axis :

$$
\begin{aligned}
& (x, 3)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}=\frac{M_{y}}{m}, \quad \bar{y}=\frac{M_{x}}{m}
\end{aligned}
$$

 (with respect 70)

Find center of mass of
2 kg at ($-1,3$),
6 kg at $(1,1)$,

4 kg at $(2,-3)$,

$$
\begin{aligned}
M_{y} & =2(-1)+6(1)+4(2) \\
& =-2+6+8=12 \\
M_{x} & =2(3)+6(1)+4(-3) \\
& =6+6-12=0
\end{aligned}
$$

$$
m=2+6+4=12
$$

$$
\begin{aligned}
& \bar{x}=\frac{M_{y}}{m}=\frac{12}{12}=1 \\
& \bar{y}=\frac{M_{x}}{m}=\frac{0}{12}=0
\end{aligned}
$$

lamina $=$ thin plate represented by region in the plane, constant density.
centroid $=$ center of mass.

Symmetry Principle: if a region is symmetric with respec to a line, then the centroid in on that line

Corollary: if there are two lines of symmetry the centroid is at the intersection point.

Suppose $R=\{(x, y): a \leq x \leq b, 0 \leq y \leq f(x)\}$. Lt ρ e the (constant) density of the associated lamina.
"rho

$$
\begin{aligned}
& \text { mass of lamina }=\rho \cdot \operatorname{area}(R)=\rho \cdot \int_{a}^{b} f(x) d x \quad \frac{\text { mass }}{\text { area }} \\
& =\int\left(\frac{1}{2} f\right) \cdot f d x \quad M_{x}=\rho \cdot \int_{a}^{b} \frac{1}{2}|f(x)|^{2} d x \quad \rho=1 \\
& =\int(\boldsymbol{x}) \cdot \mathbf{f} \mathbf{d} \boldsymbol{x} \longrightarrow M_{y}=\rho \cdot \int_{a}^{b} x|f(x)| d x \\
& \bar{x}=\frac{M_{y}}{m}, \quad \bar{y}=\frac{M_{x}}{m}
\end{aligned}
$$

Find the center of mass of region below $y=\sqrt{x}$ and above $[0,4]$.

$$
\begin{aligned}
& \bar{x}=\frac{\mu_{y}}{M} \quad \bar{y}=\frac{M_{x}}{m} \\
& \left.m=\int_{0}^{4} \sqrt{x} d x=\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{4}=\frac{2}{3}(4)^{3 / 2}=\frac{16}{3}\right] \\
& \left.M_{x}=\int_{0}^{4} \frac{f(x)^{2}}{2} d x=\int_{0}^{4} \frac{x}{2}=\left.\frac{1}{4} x^{2}\right|_{0} ^{4}=4 \quad\right] \\
& \left.M_{g}=\int_{0}^{4} x f(x) d x=\int_{0}^{4} x^{3 / 2} d x=\left.\frac{2}{5} x^{5 / 2}\right|_{0} ^{4}=\frac{64}{5}\right] \\
& \bar{y}=\frac{M_{x}}{m}=\frac{4}{16 / 3}=\frac{3}{4} \bar{x}=\frac{M_{y}}{m}=\frac{64 / 5}{16 / 3}=\frac{4 \cdot 3}{5} \\
& =12 / 5 \\
& \approx 2.4
\end{aligned}
$$

Suppose $R=\{(x, y): a \leq x \leq b, g(x) \leq y \leq f(x)\}$. Let ρ be the (constant) density of the associated lamina.

Find the center of mass of the region bounded above by $y=4-x^{2}$ and below by $y=0$. (Use symmetry).

$$
\begin{aligned}
4-x^{2} & =0 \\
4 & =x^{2} \\
\pm 2 & =x
\end{aligned}
$$

$$
\begin{aligned}
& m=S_{-2}^{2}\left(4-x^{2}\right)=\left(4 x-\frac{1}{3} x^{3}\right)_{-2}^{2}=16-\frac{16}{3} \\
& m=32 / 3 \\
& \mu_{x}=S_{-2}^{2} \frac{1}{2}\left(4-x^{2}\right)^{2}=\frac{1}{2} \int_{-2}^{2}\left(16-8 x^{2}+x^{4}\right) \\
&=\frac{1}{2}\left[16 x-\frac{8}{3} x^{3}+\frac{1}{5} x^{5}\right]_{-2}^{2} \\
&=\frac{1}{2}\left[64-\frac{188}{3}+\frac{64}{5}\right]
\end{aligned}
$$

Find the center of mass of the region bounded above by $y=1-x^{2}$ and below by $y=x-1$.

$$
\begin{aligned}
1-x^{2} & =x-1 \\
0 & =x^{2}+x-2 \\
& =(x+2)(x-1) \\
& x=-2 \quad x=1
\end{aligned}
$$

$$
\begin{aligned}
& m=\int_{-2}(1-x \\
& M_{x}=\int_{-2}^{1} \frac{1}{2}\left(f^{2}-g^{2}\right)=\int_{-2}^{1} \frac{1}{2}\left(\left(1-x^{2}\right)^{2}-(x-1)^{2}\right) d x \\
& M_{y}=\int_{-2}^{1} x(f-g)=\int_{-2}^{1} x\left(\left(1-x^{2}\right)-(x-1)\right) d x
\end{aligned}
$$

$$
\bar{x}=\frac{\mu_{y}}{m} \quad \bar{y}=\frac{\mu_{x}}{m}
$$

Theorem of Pappus: If R is a planar region and L a line not hitting L then the volume formed by rotating R around L is the area of R multiplied by the distance traveled by the center of mass around L.

Let R be the circle of radius 1 centered at $(4,0)$. What is the volume of the torus formed by rotating this around the y-axis?

$Y_{0} I=$ area distance travel distance

$$
\begin{aligned}
& \text { stoner } \\
& =2 \pi \bar{x} \\
& =2 \pi \cdot 4 \\
& =8 \pi
\end{aligned}
$$

Proof of Theorem of Pappus: By method of shells

$$
\begin{gathered}
\qquad=2 \pi \int_{a}^{b} \boldsymbol{x}(f(x)-g(x)) d x \\
\text { Area }=m=\int_{a}^{b}(f(x)-g(x)) d x
\end{gathered}
$$

Distance traveled by center of mass

$$
d=\underline{2 \pi \bar{x}}=2 \pi \frac{M_{y}}{m}=\frac{2 \pi \int_{a}^{b} x(f(x)-g(x)) d x}{\int_{a}^{b}(f(x)-g(x)) d x}
$$

So $V=d A$.

An equilateral triangle of with side length one is rotated around one of its sides. What is the resulting volume?

\bar{x}
Area $=\left(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2}\right)_{2}=\frac{\sqrt{3}}{4}$

MAT 126
office Hours
$H W 7, Q 6$

$$
f(x)=6 \sqrt{x}=6 x^{1 / 2}
$$

$$
y=6 \sqrt{x} \quad 2.3 \leq x \leq 4.2
$$

$$
\begin{aligned}
& =6 x^{2} \\
& f^{\prime}(x)=3 x^{-1 / 2}
\end{aligned}
$$

roncie around x-axis. Find surface area.

$$
\begin{aligned}
& \int_{a}^{b} 2 \pi f(x) \cdot \sqrt{1+\left|f^{2}(x)\right|^{2}} d x \\
& =2 \pi \int_{2.3}^{4.2} 6 \sqrt{x} \sqrt{1+a / x} d x= \\
& =\frac{12 \pi \int \sqrt{x+a}}{u=x+a} d u=x \\
& 2 \pi \sigma \sqrt{x+\sigma^{2} / 4} \\
& \frac{12 \pi \sqrt{x+9}}{2 \pi 6 \sqrt{x} \sqrt{1+9 / x}}=1=12 \pi \frac{2}{3} u^{3 / 2} \quad=12 \times\left.\frac{2}{3}(x+9)^{3 / 2}\right|_{2.3} ^{4.2} \\
& \begin{array}{l}
=12 \pi S \sqrt{u} \\
=12 \pi \frac{2}{3} u^{3 / 2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& q_{1}=q \\
& \begin{array}{l}
8_{2}=q \\
\longleftrightarrow x \rightleftarrows
\end{array} \\
& \text { QuIz } \\
& 6 x^{\text {ch }} 10 \\
& \text { Force }=k \cdot q_{0} q_{2} \frac{1}{x^{2}} \longleftarrow \\
& \int_{x / 2}^{x} F \cdot d d t=\int_{x / 2}^{x} \sum_{2} \frac{v \varepsilon_{1} q_{1}}{t^{2}} d t \\
& =k \varepsilon_{2} \varepsilon_{2} \int \frac{1}{\pi^{2}} d t \\
& =k q q_{2} \quad-\left.\frac{1}{x}\right|_{x / 2} ^{x} \\
& =k q_{1} \varepsilon_{2}\left[-\frac{1}{x}-\left(-\frac{1}{x / 2}\right)\right) \\
& -\quad \frac{2}{\pi}-\frac{1}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& =k q_{c} \cdot \frac{1}{x} \\
& =\frac{k q^{2}}{x}
\end{aligned}
$$

HW7, Q12

$$
\begin{aligned}
&\left(x e^{-x}\right)^{\prime}=e^{-x}+x\left(-e^{-x}\right) \\
&=e^{-x}-x e^{-x} \\
&\left(-x e^{-x}-e^{-x}\right)^{\prime}=-d^{-x}+x e^{-x}+f^{-x} \\
&=x e^{-x} \\
&=\left.2 \pi\left(-x e^{-x}-e^{-x}\right)\right|_{0} ^{4} \\
&=2 \pi\left[\left(-4 e^{-4}-e^{-4}\right)-\left(0-e^{0}\right)\right] \\
&=2 \pi\left(1-5 e^{-4}\right)
\end{aligned}
$$

$$
\frac{\nabla}{A D} A
$$

$0 \leq y \leq 8 \quad Q u l z$
x^{2}
$y=x$
$x=$
x
$6, p d s$
$A=\pi r^{2}=\pi(\sqrt{y})^{2}=\pi y$
$d_{159}=9-y$

$$
w=62.4 \cdot \underbrace{\int_{0}^{8} \pi y(a-y) d y}_{\text {coupute }}
$$

HoW $7, Q 16$
bucket $=20 \mathrm{~kg}$ sand
boiling 25 m
rope $=.4 \mathrm{~kg} / \mathrm{m}$
1 meter rope 20 the buran when bucker reaches bucket it has 14 kg sand, sand leaks at constant rate. Find work lifting sand!
\uparrow D] \uparrow end 14 kg mas
How heavy is rope
t bucker at height
y?
bucket $=$? $=20-\frac{6}{25} y$
knot $=.4 \mathrm{~kg}$
rope from bucker 20 roof $=(25-y)(.4)$

$$
m=\frac{-6}{25}
$$

$$
\begin{array}{r}
\text { Force }=9.8 \mathrm{c}_{\text {mas }}^{19} \\
6.9 .
\end{array}
$$

Tonal mass $\begin{gathered}\text { height } y\end{gathered}=\left(20-\frac{6}{259}\right)+.4$

$$
+(25-y) \cdot 4
$$

$$
\begin{aligned}
& W=9.8 \int_{0}^{25} F \cdot d \\
& =98 \int_{0}^{25}[\underbrace{\left[2 \phi-\frac{6}{25} y+.4-(25-y) .4\right]}_{F} d y \\
& =9.8 \int_{0}^{25}\left[\begin{array}{l}
(20.4+10) \\
30.4-\frac{24}{100} y-.4 y
\end{array}\right] d y \\
& \left.30.4-\frac{24}{100} y-.4 y\right] \\
& =98 \int_{0}^{25} 30.4-.64 y d y \\
& =98(25)(30.4)-\left..64 \frac{1}{2} y^{7}\right|_{0} ^{25} \\
& =9.8(25)(30.4)-(.64) \frac{1}{2} \cdot 25^{2} \\
& =5488 \text { jaules? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Midterm }= \text { Quizzes } \\
&+ \\
& \text { MW } \\
&+ \\
& \text { lect ore }
\end{aligned}
$$

25 ques.
15 are from

HW 7, Q 20
"by o pipe that is al ways lard at is al ways lace of the
the sure
wane.

$$
\begin{aligned}
& 7 \square \\
& y y=\frac{r}{y} \\
& r=\frac{4}{7} y
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow \square \int_{0}^{7} \underbrace{\pi\left(\frac{4}{7} y\right)^{2}}_{A}(7-y) d y= \\
& =\pi \frac{16}{49} \int_{0}^{7} 7 y^{2}-y^{3} d y \\
& =\pi \frac{16}{49}\left[\frac{7}{3} y^{3}-\frac{1}{4} y^{4}\right]_{0}^{7} \\
& =\pi \frac{16}{49}\left[\frac{\sqrt{-4}}{\frac{3}{3}}-\frac{7^{4}}{4}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \pi \frac{16}{4 K \cdot 18} 7^{7} \cdot 7^{2} \\
& =\pi \frac{4}{3} \cdot 7^{2} \\
W & =(10000) \cdot \pi \cdot \frac{4}{3} \cdot 49 \\
& =\frac{1960000}{3} \pi \mathrm{~V}
\end{aligned}
$$

