MAT 126.01, Prof. Bishop, Thursday, Oct 22, 2020 Section 2.8: Exponential Growth and Decay Quiz 7 review

Definition of exponential growth:

$$
\begin{gathered}
y=y_{0} e^{k t}, k>0 \\
y=y_{0} \exp (k t), k>0
\end{gathered}
$$

A population of bacteria grows according to

$$
f(t)=200 e^{.02 t}
$$

where t is in minutes. How many bacteria are there after 5 hours?

When are there 100, 000 bacteria?

Evaluate

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

If a bank account has an annual interest rate of r percent paid once a year, and P is the original amount, then after one year the account is worth

$$
P(1+r)
$$

After t years it is worth

$$
P(1+r)^{t}
$$

Compounded n times in one year gives

$$
P\left(1+\frac{r}{n}\right)^{n} .
$$

Continuous compounding is the limit compounding period $\rightarrow 0$.

$$
\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n}=P e^{r}
$$

If we continuously compound for t years the value is

$$
P e^{r t}
$$

Assume the fish population in a pond grows exponentially. Suppose it starts at 500 and after 6 months is a 1000. How long before the population hits 10,000 ?

Exponential decay:

$$
y=y_{0} e^{-k x}, k>0
$$

Carbon 14 is a material that accumulates in living things, and stops accumulating when they die. The amount of Carbon 14 then starts to decay exponentially as it changes to Nitrogen-14.

The half-life of Carbon-14 is 5730 . Find k in the decay equation

$$
y=y_{0} e^{-k t}
$$

Some pottery contains only 70% of its original Carbon-14. How old is it?

Newton's law of cooling: If an object with initial temperature T_{0} is placed in an environment with constant temperature T_{a} (a for ambient) its temperature at time t

$$
T=\left(T_{0}-T_{a}\right) e^{-k t}+T_{a}
$$

This says the object goes to the ambient temperature exponentially fast.

Quiz 7 review:

- 2 questions: finding center of mass by eye
- 3 questions: given region find mass, x-moment, y-moment
- 1 question: theorem of Pappus
- 2 questions: derivative of exponentials
- 2 questions: Newton's law of cooling

For each figure say where center of mass is: the origin, or what quadrant, or which axis (e.g., positive x-axis, negative y-axis,...).

Compute the mass, x-moment and y-moment for the following region.

An equilateral triangle with base $[1,2]$ on the x-axis is rotated around the y-axis. Use the Theorem of Pappus to compute the volume of this region.

Compute the derivative of $f(x)=x^{\sqrt{x}}$.

What is minimal value of f on $(0,1)$?

A 40° degree turkey is put into a 350° degree oven. What is the temperature as a function of time, according to Newton's law of cooling? Leave k as a parameter.

After an hour, the turkey is at 100°. What is the value of k.

When does the turkey reach 330° ?

