MAT 126.01, Prof. Bishop, Tuesday, Oct 6, 2020 Some HW 6 problems
Section 2.4, Arc length and surface area

HW 6, Prob 6, Part A:

$$
a=2 \quad b=7
$$

Compute the area between the parabola $y=a x-b x^{2}$ and the x-axis.

$$
\begin{aligned}
0=a x-b x^{2} & =\underbrace{x}_{a / b} \begin{aligned}
(a-b x) \\
a-b x=0 \\
a=b x
\end{aligned} \\
\int_{0}^{a / b} a x-b x^{2} d x & =\frac{a}{b} x^{2}-\left.\frac{b}{3} x^{3}\right|_{0} ^{a / b} \\
& =\frac{a^{3}}{2 b^{2}}-\frac{a^{3}}{3 b^{2}} \\
& =\frac{3 a^{3}-2 a^{3}}{6 b^{2}}=\frac{a^{3}}{6 b^{2}}
\end{aligned}
$$

HW 6, Prob 6, Part B:
What is the slope of the line $y=t x$ that cuts this region into two equal area peices?

Compose are between para. Δ line (green) set $=\frac{1}{2}$ trail area $=\frac{1}{2} \cdot \frac{a^{3}}{6 b^{2}}$

$$
\begin{aligned}
a x-b x^{2} & =5 x \\
a x-5 x & =b x^{2} \\
a-\pi & =b x \\
\frac{a-5}{b} & =x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\frac{a-t}{b}} {\left[a x-b x^{2}-t x\right] d x } \\
&=\int_{0}^{\frac{a-t}{b}}(a-t) x-b x^{2} d x \\
&=\frac{(a-\pi)}{2} x^{2}-\left.\frac{b}{3} x^{3}\right|_{0} ^{a-\pi / b} \\
&=\frac{(a-t)}{2}\left(\frac{a-t}{b}\right)^{2}-\frac{b}{3}\left(\frac{a-t}{b}\right)^{3} \\
&=\frac{(a-t)^{3}}{2 b^{2}}-\frac{(a-t)^{3}}{3 b^{2}} \\
&=\frac{3(a-t)^{3}-2(a-t)^{3}}{6 b^{2}} \\
&=\frac{(a-t)^{3}}{6 b^{2}}=\text { Area between } \\
& \text { cues }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(a-t)^{3}}{6 b^{2}}=\frac{1}{2} \cdot \frac{a^{3}}{6 b^{2}} \\
&(a-\pi)=2^{-1 / 3} a \\
& \pi=a-a a^{-1 / 3} \\
& a=2 \quad a\left(1-2^{-1 / 3}\right. \\
& a=7 \quad 2\left(1-2^{-1 / 3}\right)
\end{aligned}
$$

HW 6, Prob 11:
The base of a volume in the $x y$-plane is bounded by $x=-y^{2}+4 y+127$ and $x=y^{2}-26 y+179$. Every cross section perpendicular to the y-axis is a semi-circle. Find the volume.

$$
\begin{aligned}
\text { Area } & =\frac{\pi}{2} r^{2} \\
& =\frac{\pi}{2}\left(\frac{2}{2}\right)^{2} \\
& =\frac{\pi}{8} d^{2}
\end{aligned}
$$

$$
\begin{array}{r}
0=2\left(y^{2}-15 y+26\right) \\
=2(y-2)(y-13) \\
y=2 \quad y=13
\end{array}
$$

$$
\begin{aligned}
& \frac{\pi}{8} \int_{a}^{13} d^{2} d y \\
= & \frac{\pi}{8} \int_{2}^{13}\left(-2 y^{2}+30 y-52\right)^{2} d y \\
= & \frac{\pi}{8} \int_{a}^{13} y^{4}-30 y^{3}+2774 x^{2}+780 y+676 \\
d^{0} & \left.\vdots=\frac{\pi}{8} E \frac{1}{5} y^{5}-\frac{30}{4} y^{4}+\frac{277}{3} y^{3}-\frac{780}{2} y^{2}+676 y\right]_{2}^{13} \\
& =\frac{\pi \cdot 161051}{60}
\end{aligned}
$$

HW 6, Prob 11: The base of a volume is shown. Suppose the cross sections pgrpendicular to the x-axis are squares. What is the volume?

$$
\left.\begin{array}{rl}
1^{\text {ST }}= & \int_{0}^{2}\left(2 \cdot \frac{5}{2} x\right)^{2} d x
\end{array}\right)=\int_{0}^{2} 25 x^{2} d x .
$$

$$
\begin{aligned}
\text { Toral vol } & =\frac{200}{3}+400 \\
& =\frac{1400}{3}
\end{aligned}
$$

Arclength: The arclength of the graph of f over $[a, b]$ is

What is the arclength of graph of $\sin (x)$ between 0 and π ?

$$
\int_{0}^{\pi} \sqrt{1+\cos ^{2}(x)} d x
$$

If f on $[a, b]$ is rotated around the x-axis, the surface area is

$$
2 \pi \int_{a}^{b}|f(x)| \sqrt{1+\left|f^{\prime}(x)\right|^{2}} d x
$$

If f on $[a, b]$ is rotated around the y-axis. The surface area is

$$
2 \pi \int_{a}^{b} x \sqrt{1+\left|f^{\prime}(x)\right|^{2}} d x . \quad e^{y}
$$

What is surface area when $\sin (x)$ on $[0, \pi]$ is rotated around the x-axis?

What is surface area when \sqrt{x} on $[0,1]$ is rotated around the x-axis?

$$
\begin{array}{r}
\int_{2} 2 \pi f(x) \sqrt{1+\left|f^{\prime}\right|} d x \\
f=\sqrt{x} \\
f^{\prime}=\frac{1}{2} \frac{1}{\sqrt{x}}=\frac{1}{2} x^{-1 / 2} \\
\\
\int_{0}^{1} 2 \pi \sqrt{x} \sqrt{1+\frac{1}{4} \frac{1}{x}} d x \\
=2 \pi \int_{0}^{1} \sqrt{x+1 / 4} d x \\
=2 \pi S \sqrt{u} d u=2 \pi \frac{2}{3} u^{3 / 2} d u=d x \\
=\left.\frac{4 \pi}{3}\left(1+\frac{1}{4}\right)^{\frac{3}{2}}\right|_{0} ^{1}=\frac{4 \pi}{3}\left(\left(\frac{5}{4}\right)^{3 / 2}-\left(\frac{1}{4}\right)^{3 / 2}\right) \\
\end{array}
$$

What is surface area when \sqrt{x} on $[0,1]$ is rotated around the y-axis?

$$
\begin{aligned}
& \quad \int_{0}^{1} 2 \pi x \sqrt{1+\left|f^{\prime}\right|^{2}} d x \\
& =2 \pi S_{0}^{1} x \sqrt{1+\frac{1}{4 x}} d x \\
& =\sqrt{2 \pi \int_{0}^{1} \sqrt{x^{2}+x / 4} d x} \\
& 2 \sqrt{3}=\sqrt{12} \\
& =\sqrt{403}
\end{aligned}
$$

Which is larger: the area of \sqrt{x} on $[0,1]$ rotated around the x-axis or the y-axis?

Thursday
(1) word problem $] 45$ physical app
(2) Renew Q az $6:$] 30

GFFICE HOURS
HW G,Q $10 \quad y=2-\frac{2}{9} x^{2}, \quad y=0$

$$
\begin{gathered}
2-\frac{2}{9} x^{2}=0 \\
2=\frac{2}{9} x^{2} \\
9=x^{2} \\
\pm 3=x
\end{gathered}
$$

base $=$ heigh
Area $=\frac{1}{2} b \cdot h$

$$
=\frac{1}{2} b^{2}
$$

$$
\begin{aligned}
& x^{2}=\frac{a}{2}(2-y) \\
& x= \pm \sqrt{\frac{a}{2}(2-y)} \\
& b=2 \sqrt{\frac{a}{2}(2-y)}
\end{aligned}
$$

$$
\begin{aligned}
b^{2} & =4 \frac{a}{2}(2-y) \\
& =18(2-y)
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{2} \frac{1}{2} b^{2} d y \\
& =\int_{0}^{2} \frac{1}{2}(18(2-y)) d y \quad 1 \quad 1 \\
& =9 \int_{0}^{2} 2-y d y \\
& =9\left[2 y-\frac{1}{2} y^{2}\right]_{0}^{2} \\
& =9\left[4-\frac{1}{2} 4-0-0\right] \\
& =9[4-2] \\
& =18
\end{aligned} 2^{n d} .
$$

On Quiz S (This week)

$$
\begin{aligned}
& \overbrace{\sim}^{s m} \overbrace{}^{5 m^{2}}
\end{aligned}
$$

HW G, Q. 17
R bounded by $f(x)=3 \sqrt{x}, f(x)=x$
(1) Rozare x-aris (2) y-axis.

$$
\begin{aligned}
3 \sqrt{x} & =x \\
3 & =\sqrt{x} \\
9 & =x
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{9} \pi\left[f^{2}-g^{2}\right] d x & =\pi \int_{0}^{9}(3 \sqrt{x})^{2}-(x)^{2} \\
& =\pi \int_{0}^{9} 9 x-x^{2} d x \\
& =\pi\left[\frac{a}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{9} \\
& =\pi\left[\frac{a^{3}}{2}-\frac{a^{3}}{3}-0\right]
\end{aligned}
$$

$$
\begin{aligned}
\int f^{2}-g^{2} & =\frac{\pi}{6} \cdot 9^{3} \\
S(f-g)^{2} & =\frac{729 \pi}{6} \\
& =\frac{243 \pi}{2} \\
f(f(x) & \pi f(x)^{2}
\end{aligned}
$$

HW 6, \# 17 Part b.

$$
\begin{aligned}
& =2 \pi \int_{0}^{9} x^{3 / 2}-\frac{1}{3} x^{2} d x \\
& =2 \pi\left[\frac{2}{5} x^{5 / 2}-\frac{1}{3} \frac{1}{3} x^{3}\right]_{0}^{9} \\
& =2 \pi\left[\frac{2}{5} 9^{5 / 2}-\frac{1}{9} 9^{3}-0-0\right] \\
& =2 \pi\left[\frac{2}{5} a^{5 / 2}-a^{2}\right] \\
& a^{2} \cdot \sqrt{9} \\
& =2 \pi 9^{2}\left[\frac{2}{5} \sqrt{9}-1\right] \\
& =2 \pi a^{2}\left[\frac{6}{5}-1\right] \\
& =2 \pi 9^{2} \frac{1}{5}=\frac{\pi \cdot 2 \cdot 81}{5} \\
& =\frac{162}{5} \pi
\end{aligned}
$$

