MAT 126.01, Prof. Bishop, Thursday, Sept. 10, 2020

Thursday, September 10, 2020 Section 1.5, Substitution

- \blacktriangleright Recall the chain rule for derivatives.
- ► Substitution rule for integrals (indefinite integrals).
- ► Substitution rule for integrals (definite integrals).
- ► Polynomial examples
- ► Trigonometric examples
 - \triangleright Review common trig formulas
 - \triangleright Using trig identities to simplify integrals.

Substitution Rule:

Suppose
$$f, g, g'$$
 are continuous. The

$$\int f(g(x))g'(x)dx = \int (f(g(x))'dx = f(g(x)) + C.$$

$$\int \sin^2(x) \cos(x) dx = \int [\sin(x)]^2 \cos(x) dx$$

Example: Let $u = \sin(x)$, so $\frac{du}{dx} = \cos(x)$ or $du = \cos(x)dx$. $\int \sin^2(x)\cos(x)dx = \int [u]^2 du = \frac{1}{3}u^3 + C$ Sometimes we need to multiply and divide by a factor to get du correct.

Find $\int \sqrt{3x+2}dx$

Find $\int x \sin(x^2) dx$

Find $\int (x+1) \cos(x^2 + 2x + 1) dx$

Find $\int \sin^{10}(x) \cos(x) dx$

Using substitution with definite integrals is a little trickier. You you also have to change the limits of integration:

Find $\int_0^1 x \sin(\pi x^2) dx$.

Find $\int_{1}^{2} \frac{2\ln(x^2+1)}{x^2+1} dx$.

Find
$$\int_2^4 \frac{x}{\sqrt{x-1}} dx$$
.

Find
$$\int_1^2 \frac{2\ln(x^2+1)}{x^2+1} dx$$
.

Sometimes some algebra or trig identites are helpful:

Find $\int \cos^3(x) dx$.

Sometimes some algebra or trig identites are helpful:

Find $\int_0^\pi \sin^2(x) dx$.