MAT 126.01, Prof. Bishop, Thursday, Sept. 24, 2020 Section 2.1, Area between curves If $g \leq f$ on [a, b] then the area between the graphs of f and g and the lines x = a, x = b is

$$\int_{a}^{b} f(x) - g(x)dx.$$

If f < g we have to reverse summation.

If f and g cross inside [a, b] we have to break integral into pieces (compound region).

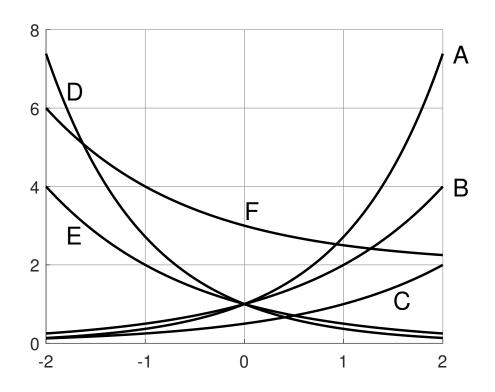
Find area between x^2 and x^3 for $0 \le x \le 1$.

Find area between $\sin x$ and $\cos x$ for $0 \le x \le \pi/4$.

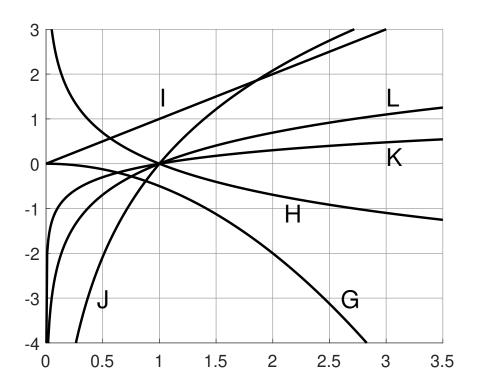
Find area of region between 6x and above x^2 . First find where these graphs cross. Find the total area of region between 4x and above x^3 . Total area = all regions count as positive. Find area of region $\{(x, y) : 1 \le y \le 4/(1 + x^2)\}.$

Quiz 4 review:

Find e^{-x} in the graph below.



Find $\ln e^x$ in the graph below.



Compute the area of the shaded region.

(a) $\pi/6$

(b) $\pi/4$

(c) $\pi/3$

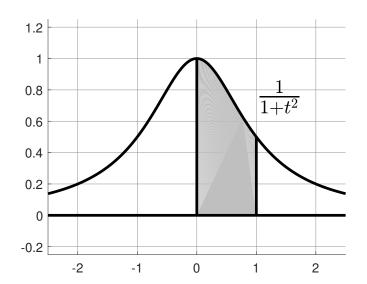
(d) $\pi/2$

(e) $2\pi/3$

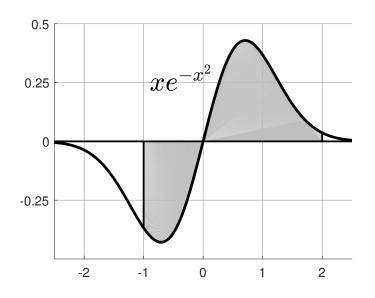
(f) $3\pi/4$

(g) π (h) $\frac{1}{2} \tan^{-1}(2)$

(i) $\tan^{-1}(2)$ (j) $2 \tan^{-1}(2)$



Compute the total area of the shaded region (all regions count as positive area).



Compute the area of the shaded region on the right.

(a)
$$2 \ln(2)$$

(b)
$$2 \ln(3)$$

(c)
$$4 \ln(2)$$

(d)
$$8\ln(2) - 4$$

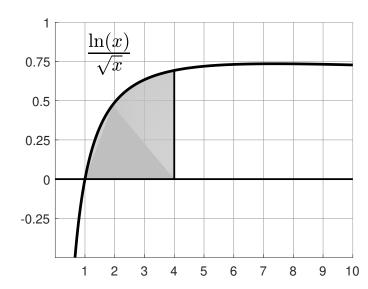
(e)
$$4\ln(4) - 3$$

(f)
$$12 \ln(3) - 8$$

(g)
$$6 \ln(3) - 6$$

(h)
$$9 \ln(9) - 8$$

(i)
$$8 \ln(8) - 4$$



Compute the area of the shaded region on the right.

(a)
$$e^{-a^2} - 1$$

(b)
$$e^{-a^2}$$

(c)
$$e^a - 1$$

(d)
$$\frac{1}{2}(e^a - 1)$$

(e)
$$e^{a^2}$$

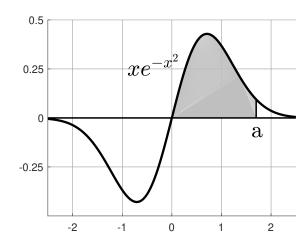
(f)
$$\frac{1}{2}e^{-a^2}$$

(a)
$$e^{-a^2} - 1$$

(b) e^{-a^2}
(c) $e^a - 1$
(d) $\frac{1}{2}(e^a - 1)$
(e) e^{a^2}
(f) $\frac{1}{2}e^{-a^2}$
(g) $\frac{1}{2}(e^{-a^2} - 1)$
(h) $\frac{1}{2}(1 - e^{a^2})$
(i) $\frac{1}{2}e^{-a^2} - 1$

(h)
$$\frac{1}{2}(1 - e^{a^2})$$

(i)
$$\frac{1}{2}e^{-a^2} - 1$$



Match each formula for the area to the region it describes.

$$\int_{-\sqrt{2}}^{\sqrt{2}} x^2 dx$$

$$\int_0^2 2x - x^2 dx$$

$$2\int_0^2 2 + x - x^2 dx$$

