MAT 126.01, Prof. Bishop, Thursday, Sept. 24, 2020 Section 2.1, Area between curves

If $g \leq f$ on $[a, b]$ then the area between the graphs of f and g and the lines $x=a, x=b$ is

$$
\int_{a}^{b} f(x)-g(x) d x
$$

If $f<g$ we have to reverse summation.
If f and g cross inside $[a, b]$ we have to break integral into pieces (compound region).

Find area between x^{2} and x^{3} for $0 \leq x \leq 1$.

Find area between $\sin x$ and $\cos x$ for $0 \leq x \leq \pi / 4$.

Find area of region between $6 x$ and above x^{2}.
First find where these graphs cross.

Find the total area of region between $4 x$ and above x^{3}. Total area $=$ all regions count as positive.

Find area of region $\left\{(x, y): 1 \leq y \leq 4 /\left(1+x^{2}\right)\right\}$.

Quiz 4 review:
Find e^{-x} in the graph below.

Find $\ln e^{x}$ in the graph below.

Compute the area of the shaded region.
(a) $\pi / 6$
(b) $\pi / 4$
(c) $\pi / 3$
(d) $\pi / 2$
(e) $2 \pi / 3$
(f) $3 \pi / 4$
(g) π
(h) $\frac{1}{2} \tan ^{-1}(2)$
(i) $\tan ^{-1}(2)$
(j) $2 \tan ^{-1}(2)$

Compute the total area of the shaded region (all regions count as positive area).

Compute the area of the shaded region on the right.
(a) $2 \ln (2)$
(b) $2 \ln (3)$
(c) $4 \ln (2)$
(d) $8 \ln (2)-4$
(e) $4 \ln (4)-3$
(f) $12 \ln (3)-8$
(g) $6 \ln (3)-6$
(h) $9 \ln (9)-8$
(i) $8 \ln (8)-4$

Compute the area of the shaded region on the right.
(a) $e^{-a^{2}}-1$
(b) $e^{-a^{2}}$
(c) $e^{a}-1$
(d) $\frac{1}{2}\left(e^{a}-1\right)$
(f) $\frac{1}{2} e^{-a^{2}}$
(g) $\frac{1}{2}\left(e^{-a^{2}}-1\right)$
(h) $\frac{1}{2}\left(1-e^{a^{2}}\right)$
(e) $e^{a^{2}}$
(i) $\frac{1}{2} e^{-a^{2}}-1$

Match each formula for the area to the region it describes.

$$
\begin{aligned}
& \int_{-\sqrt{2}}^{\sqrt{2}} x^{2} d x \\
& \int_{0}^{2} 2 x-x^{2} d x \\
& 2 \int_{0}^{2} 2+x-x^{2} d x
\end{aligned}
$$

