MAT 126.01, Prof. Bishop, Tuesday, Sept. 29, 2020 Discuss Midterm 1 Section 2.2, Volumes by Slicing

Quizzes 1-3: percentage

Precalculus volume formulas:

Derive volume of sphere $V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \text { Vol of slice }=d x \cdot \text { area of disk } \\
& \text { aude } \pi \cdot f(x)^{2} \\
& \left(r_{-}^{5} \pi\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x\right.
\end{aligned}
$$

Derive volume of sphere $V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \pi r^{3} \\
& V=\int_{-r}^{r} \pi\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x \\
& =\pi \int_{-r}^{r}\left(r^{2}-x^{2}\right) d x \\
& =\left.\pi\left(r^{2} x-\frac{1}{3} x^{3}\right)\right|_{-r} ^{r} \\
& =\pi\left[\left(r^{3}-\frac{1}{3} r^{3}\right)+\left(+r^{3}-\frac{1}{3} r^{3}\right)\right] \\
& =2 \pi \cdot \frac{2}{3} r^{3}=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Derive volume of cone $V=\frac{1}{3} \pi r^{2} h$

σ

$$
\begin{aligned}
& \frac{s}{x}=\frac{r}{h} \\
& s=x \cdot \frac{r}{h}
\end{aligned}
$$

$$
\begin{aligned}
\stackrel{x}{\stackrel{a r}{h}} \stackrel{h}{\int_{0}^{h} \pi x^{2} \frac{r^{2}}{h^{2}} d x} & =\pi \frac{r^{2}}{h^{2}} \int_{0}^{h} x^{2} d x=\pi \frac{r^{2}}{h^{2}}\left(\frac{1}{3} x^{3}\right)_{0}^{h} \\
& =\pi \frac{r^{2}}{h^{2}}\left(\frac{1}{3} h^{3}-0\right) \\
& =\pi r^{2} \frac{1}{3} h
\end{aligned}
$$

If the graph of $f \geq 0$ on $[a, b]$ is revolved around the x-axis, the volume of the solid obtained is sphere $f=\sqrt{r^{2}-x^{2}}$

$$
\pi \int_{a}^{b} f(x)^{2} d x
$$

cone $f=x \cdot \frac{r}{h}$

$$
\stackrel{\leftrightarrow}{d x} \cdot \text { area disk }=d x \pi f(x)^{2}
$$

Suppose $1 / x$ on $[1,2]$ is revolved around x-axis. What is the resulting volume ${ }^{2}=f(f)$

$$
\begin{aligned}
& V_{0}==\int_{1}^{2} \pi f(x)^{2} d x=\int_{1}^{2} \pi\left(\frac{1}{x}\right)^{2} \\
& =\int_{1}^{2} \pi x^{-2} d x \\
& =\pi\left(-\left.\frac{1}{x}\right|_{1} ^{2}\right)=\pi\left(-\frac{1}{2}-(-1)\right) \\
& =\pi / 2
\end{aligned}
$$

Suppose $1 / x$ on $[1, \infty)$ i. revolved around x-axis. What is the resulting volume?
$(1, \infty)$ net x-axis. What is the resulting

$$
\left.\begin{array}{l}
\pi / 2 \\
=\int_{1}^{\infty} \pi f(x)^{2} d x \\
=\pi\left(\frac{1}{\pi}\right)^{2} d x \\
=\left.\pi\left(-\frac{1}{\pi}\right)\right|_{1} ^{\infty} x^{-2} d x \quad \frac{1}{\infty}=0 \\
=\pi(0-(-1))=\pi
\end{array}\right]
$$

Washer method

If $f \geq g \geq 0[a, b]$ and the region

$$
\{(x, y): a \leq x \leq b, g(x) \leq y \leq f(x)\}
$$

iss revolved around the x-axis, the volume of the solid obtained is

$$
\pi \int_{a}^{b}\left(f(x)^{2}-g(x)^{2}\right) d x=\pi \int f^{2}-\pi \int \mathbf{g}^{2}
$$

Suppose a cylinder of radius $1 / 2$ along the x-axis is removed from a sphere of radius 1 centered at the origin. How much volume remains?

$$
\begin{aligned}
& d \\
= & \pi\left(\frac{3}{4} \frac{\sqrt{3}}{2}-\frac{1}{8} \frac{3 \sqrt{3}}{8}\right)-(-\cdots) \\
= & 2 \pi\left(\frac{3}{4} \frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{8}\right) \\
= & 2 \pi\left(\frac{3 \sqrt{3}}{8}-\frac{\sqrt{3}}{8}\right) \\
= & 2 \pi \frac{2 \sqrt{3}}{8} \\
= & \frac{4 \sqrt{3} \pi}{8}
\end{aligned}
$$

sphere $=$ croce rozzied around x-axis
office Hoors

$$
11.15-12: 00
$$

a^{x} expanemical $e^{x} 2^{x}$
x^{a} power $x^{2}, \begin{aligned} & x \\ & x^{1 / 2}\end{aligned}$

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{x^{2}+a}} \\
& \int \frac{1}{u \sqrt{u^{2}-a^{2}}} d u=\frac{u}{a} \sec ^{-1}\left(\frac{a x}{a}\right) \\
& \int \frac{d x}{x \ln x \sqrt{(\ln x)^{2}-1}}= \\
&=\int \frac{1}{\ln x \sqrt{\operatorname{lu}^{2} x^{-1}} \cdot \frac{d x}{x}}=\int \frac{1}{u \sqrt{u^{2}-1}} d a \\
& \frac{u=\ln x}{} d u=\frac{1}{x} d x=u \sec ^{-1} u+c \\
&=\ln x \sec ^{-1}(\ln x)+C
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{\cos (\ln x)}{x} d x \\
& u=\ln x d u=\frac{1}{x} d x \\
& =\int \cos (u) d u
\end{aligned}
$$

