MAT 126 Fall 2020, Quiz 3

Name	ID	Section

THIS QUIZ IS WORTH 10 POINTS.

NO BOOKS, NOTES OR CALCULATORS ARE ALLOWED.
Write the correct answer in the box.
In problems 1 to $5 F(x)=\int_{0}^{x} f(t) d t$ where f is given by the following figure:

(1) \square What is $F^{\prime}(3)$?
(a) 1 (b) 2 (c) 3 (d) $3.5(\mathrm{e}) 4(\mathrm{f}) 4.5(\mathrm{~g}) 5(\mathrm{~h}) 5.5(\mathrm{i}) 6(\mathrm{j})$ none of these
(2) \square What is $F(6)-F(0)$?
(a) 4 (b) $4.5(\mathrm{c}) 5(\mathrm{~d}) 5.5(\mathrm{e}) 6(\mathrm{f}) 6.5(\mathrm{~g}) 7(\mathrm{~h}) 7.5(\mathrm{i}) 8(\mathrm{j})$ none of these
(3) \square At what point x in $[0,6]$ does F take its maximum value?
(a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) 5 (g) 6 (h) 7 (i) 8 ($\mathbf{~})$ none of these
(4) \square What is the maximum value of F on $[0,6]$?
(a) 4 (b) $4.5(\mathrm{c}) 5(\mathrm{~d}) 5.5(\mathrm{e}) 6(\mathrm{f}) 6.5(\mathrm{~g}) 7(\mathrm{~h}) 7.5(\mathrm{i}) 8(\mathrm{j})$ none of these
(5) \square If $G(x)=\int_{0}^{x^{2}} f(t) d t$, what is $G^{\prime}(1)$?
(a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) 5 (g) 6 (h) 7 (i) 8 (j) none of these
(6) \square A baseball thrown upwards at $48 \mathrm{ft} / \mathrm{sec}$ has a velocity given by $v(t)=48-32 t$. If it starts at height zero, what is it's height as a function of t ?
(a) $h(t)=48 t^{2}-32$ (b) $h(t)=48 t-16 t^{2}$ (c) $h(t)=t(96-32 t)$ (d) $h(t)=96 t-16 t^{2}$
(e) $h(t)=96-32 t^{2}(\mathbf{f})$ none of these
(7) \square If f is given by the figure on the right, which of the following is the largest?
(a) $\int_{0}^{1} f(t) d t$
(b) $\int_{1}^{2} f(t) d t$
(c) $\int_{2}^{3} f(t) d t$
(d) $\int_{3}^{4} f(t) d t$
(e) $\int_{4}^{5} f(t) d t$
(f) $\int_{5}^{6} f(t) d t$

(8) \square A warehouse charges its customers $\$ 2$ per day for every cubic foot of space used for storage. The figure on the right shows the storage used by one company over a month. How much will the company have to pay?
(a) $\$ 40,000$
(h) $\$ 100,000$
(b) $\$ 50,000$
(1) $\$ 120,000$
(c) $\$ 55,000$
(j) $\$ 130,000$
(d) $\$ 60,000$
(k) $\$ 140,000$
(e) $\$ 65,000$
(l) $\$ 150,000$
(f) $\$ 75,000$
(m) $\$ 200,000$
(g) $\$ 85,000$
(n) none of these

| |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| cubic |
| feet |
| fe00 |
| 2,000 |

(9) \square Which integral gives the area of the region bounded above by $y=2 x$ and below by $y=x^{2}$?
(a) $\int_{2}^{4}\left(2 x-x^{2}\right) d x$
(b) $\int_{0}^{4}\left(2 x-x^{2}\right) d x$ (c) $\int_{0}^{2}\left(2 x-x^{2}\right) d x$
(d) $\int_{0}^{2}\left(x^{2}-2 x\right) d x$
(e) $\int_{0}^{2}\left(x^{2}-\frac{1}{3} x^{3}\right) d x$ (f) $\int_{0}^{4}\left(\frac{1}{3} x^{3}-x^{2}\right) d x$ (g) none of these
\square Taking $u=x^{2}+1$ allows you to easily evaluate which of the following integrals?
(a) $\int \sin \left(x^{2}+1\right) d x$ (b) $\int \ln \left(x^{2}-1\right) d x$ (c) $\int x^{2} \cos \left(x^{2}+1\right) d x$
(d) $\int \frac{x^{2}-1}{x^{2}+1} d x$ (e) $\int x e^{x^{2}+1} d x$ (f) $\int(x-1) \sqrt{x^{2}-1} d x$ (g) $\int \sqrt{x^{2}+1} d x$

