Name

ID	Section

THIS QUIZ IS WORTH 10 POINTS.

NO BOOKS, NOTES OR CALCULATORS ARE ALLOWED.

Write the correct answer in the box.

(1) \square Which formula gives the surface area obtained by rotating the graph of f for $a \leq x \leq b$ around the x-axis?
(a) $2 \pi \int_{a}^{b}|f(x)| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
(c) $2 \pi \int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
(e) $2 \pi \int_{a}^{b}\left|f^{\prime}(x)\right| \sqrt{1+(f(x))^{2}} d x$
(b) $\pi \int_{a}^{b}\left|f^{\prime}(x)\right| \sqrt{1+(f(x))^{2}} d x$
(d) $2 \pi \int_{a}^{b} x \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
(f) none of the above
(2) \square What is the surface area obtained by rotating the graph of f on $0 \leq a \leq$ $x \leq b$ around the y-axis?
(a) $2 \pi \int_{a}^{b}|f(x)| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
(c) $2 \pi \int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
(e) $2 \pi \int_{a}^{b} x \sqrt{1+(f(x))^{2}} d x$
(b) $2 \pi \int_{a}^{b}\left|f^{\prime}(x)\right| \sqrt{1+(f(x))^{2}} d x$
(d) $2 \pi \int_{a}^{b} x \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
(f) none of the above
(3) \square Which formula gives the arclength of the graph of f with $a \leq x \leq b$?
(a) $2 \pi \int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
(c) $\int_{a}^{b} x \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
(e) $\int_{a}^{b}\left|f^{\prime}(x)\right| \sqrt{1+(f(x))^{2}} d x$
(b) $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
(d) $2 \pi \int_{a}^{b} x \sqrt{1+(f(x))^{2}} d x$
(f) none of the above
(4) \square Which formula gives the arclength of the graph of x^{2} over $[-1,1]$?
(a) $\int_{-1}^{1} \sqrt{1+x^{2}} d x$
(d) $\int_{-1}^{1}(1-2 x) d x$
(g) $\int_{-1}^{1} \sqrt{1-x^{2}} d x$
(b) $\int_{-1}^{1} \sqrt{1+4 x^{2}} d x$
(e) $\int_{-1}^{1}\left(1+4 x^{2}\right) d x$
(h) $\int_{-1}^{1} \sqrt{1-4 x^{2}} d x$
(c) $\int_{-1}^{1}(1+2 x) d x$
(f) $\int_{-1}^{1}\left(1-4 x^{2}\right) d x$
(i) none of the above
(5)
 Which integral gives the arclength of the graph of $\sin (x)$ between 0 and π ?
(a) $\int_{0}^{\pi} \sqrt{1-\cos ^{2} x} d x$
(d) $\int_{0}^{\pi}(1+\sin x) d x$
(g) $\int_{0}^{\pi} \sqrt{1+\cos ^{2} x} d x$
(b) $\int_{0}^{\pi}\left(1+\sin ^{2} x\right) d x$
(e) $\int_{0}^{\pi}(1+\cos x) d x$
(h) $\int_{0}^{\pi} \sqrt{1-\sin ^{2} x} d x$
(c) $\int_{0}^{\pi}\left(1+\cos ^{2} x\right) d x$
(f) $\int_{0}^{\pi} \sqrt{1+\sin ^{2} x} d x$
(i) none of the above
(6) \square What is the formula for the surface area of the graph of $1 / x$ for x in $[1,2]$ when rotated around the y-axis?
(a) $2 \pi \int_{1}^{2} x \sqrt{1-x^{-2}} d x$
(f) $2 \pi \int_{1}^{2} \sqrt{1+x^{4}} d x$
(b) $\pi \int_{1}^{2} \frac{\sqrt{1+x^{-2}}}{x} d x$
(g) $2 \pi \int_{1}^{2} x \sqrt{1+x^{-4}} d x$
(c) $\pi \int_{1}^{2} x \sqrt{1-x^{-2}} d x$
(h) $\pi \int_{1}^{2} x \sqrt{1+x^{4}} d x$
(d) $2 \pi \int_{1}^{2} \sqrt{1+x^{2}} d x$
(i) $\pi \int_{1}^{2} \frac{\sqrt{1-x^{-4}}}{x} d x$
(e) $2 \pi \int_{1}^{2} \sqrt{1+x^{-4}} d x$
(j) none of the above

(7) \square What is the formula for the area of the surface formed by rotating the graph of $1 / x$ between $x=1$ and $x=2$ around the x-axis?
(a) $2 \pi \int_{1}^{2} x \sqrt{1+x^{-2}} d x$
(e) $2 \pi \int_{1}^{2} \frac{\sqrt{1+x^{-4}}}{x} d x$
(b) $\pi \int_{1}^{2} \frac{\sqrt{1-x^{-2}}}{x} d x$
(f) $2 \pi \int_{1}^{2} \frac{\sqrt{1-x^{-4}}}{x} d x$
(c) $2 \pi \int_{1}^{2} x \sqrt{1+2 x^{-2}} d x$
(g) $\pi \int_{1}^{2} x \sqrt{1+2 x^{-4}} d x$
(d) $\int_{1}^{2} \sqrt{1+4 x^{-2}} d x$
(h) $2 \pi \int_{1}^{2} x \sqrt{1+4 x^{-4}} d x$
(i) none of the above

(8) \square Which has smaller area: the surface in Problem 6 (rotating around x-axis) or the surface in Problem 7 (rotating around y-axis)? Put a " 6 " or " 7 " in the box.
(9) \square A water tank is shaped like the parabola x^{2} on $[0,2]$ is rotated around the y-axis (see figure on right). The tank is 4 feet high and currently has 3 feet of water in it. The work required to pump all this water over the upper edge of the tank is $62.4 \mathrm{lb} / \mathrm{ft}^{3}$ (the work needed to lift one cubic foot of water one foot high) times which integral below?
(a) $\pi \int_{0}^{3} y^{2}(4-y) d y$
(e) $\pi \int_{0}^{4} y(4-y) d y$
(b) $2 \pi \int_{0}^{4} y(4-y) d y$
(f) $\pi \int_{0}^{3} y(4-y) d y$
(c) $2 \pi \int_{0}^{3} y(4-y) d y$
(g) $\pi \int_{0}^{4} \sqrt{y}(4-y) d y$
(d) $2 \pi \int_{0}^{3} \sqrt{y}(4-y) d y$
(h) none of the above

\square Coulomb's Law says that two negatively charged particles repel each other with a force $k q_{1} q_{2} / x^{2}$ Newtons, where q_{1}, q_{2} are the sizes of the charges, x is the distance between them, and k is Coulomb's constant. If two particles have the same charge $q_{1}=q_{2}=q$ and are 2 meters apart, how much work in Newton-meters is needed to decrease this distance to 1 meter?
(a) $k^{2} q^{2} / 2$
(c) $k q^{2} / 2$
(e) $k q^{2} / 4$
(g) $\frac{3}{4} k q^{2}$
(i) $k q / 2$
(b) $\frac{3}{8} k q$
(d) $2 k q^{2} / 2$
(f) $k q$
(h) $\frac{2}{6} k q^{2}$
(j) none of the above

Answers: 1A, 2D, 3B, 4B, 5G, 6G, 7E, 8=7, 9F, 10C

