$(\mathbf{2})$

Name	ID	Section

THIS QUIZ IS WORTH 10 POINTS. NO BOOKS, NOTES OR CALCULATORS ARE ALLOWED.

Write the correct answer in the box.

Which formula gives the surface area obtained by rotating the graph of f(1)for $a \leq x \leq b$ around the x-axis?

(a)
$$2\pi \int_{a}^{b} |f(x)| \sqrt{1 + (f'(x))^{2}} dx$$
 (c) $2\pi \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$ (e) $2\pi \int_{a}^{b} |f'(x)| \sqrt{1 + (f(x))^{2}} dx$
(b) $\pi \int_{a}^{b} |f'(x)| \sqrt{1 + (f(x))^{2}} dx$ (d) $2\pi \int_{a}^{b} x \sqrt{1 + (f'(x))^{2}} dx$ (f) none of the above

What is the surface area obtained by rotating the graph of f on $0 \leq a \leq$ (2) $\overline{x \leq b}$ around the *y*-axis?

(a)
$$2\pi \int_{a}^{b} |f(x)| \sqrt{1 + (f'(x))^{2}} dx$$
 (c) $2\pi \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$ (e) $2\pi \int_{a}^{b} x \sqrt{1 + (f(x))^{2}} dx$
(b) $2\pi \int_{a}^{b} |f'(x)| \sqrt{1 + (f(x))^{2}} dx$ (d) $2\pi \int_{a}^{b} x \sqrt{1 + (f'(x))^{2}} dx$ (f) none of the above

(3) Which formula gives the arclength of the graph of
$$f$$
 with $a \le x \le b$?
(a) $2\pi \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$ (c) $\int_{a}^{b} x \sqrt{1 + (f'(x))^{2}} dx$ (e) $\int_{a}^{b} |f'(x)| \sqrt{1 + (f(x))^{2}} dx$
(b) $\int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$ (d) $2\pi \int_{a}^{b} x \sqrt{1 + (f(x))^{2}} dx$ (f) none of the above
(4) Which formula gives the arclength of the graph of x^{2} over $[-1, 1]$?

(a)
$$\int_{-1}^{1} \sqrt{1 + x^2} dx$$
 (b) $\int_{-1}^{1} \sqrt{1 + 4x^2} dx$ (c) $\int_{-1}^{1} (1 + 2x) dx$ (d) $\int_{-1}^{1} (1 - 2x) dx$ (e) $\int_{-1}^{1} (1 - 4x^2) dx$ (f) $\int_{-1}^{1} (1 - 4x^2) dx$ (i) none of the above

Which integral gives the arclength of the graph of sin(x) between 0 and π ? (5)(a) $\int_{0}^{\pi} \sqrt{1 - \cos^{2} x} dx$ (b) $\int_{0}^{\pi} (1 + \sin^{2} x) dx$ (c) $\int_{0}^{\pi} (1 + \cos^{2} x) dx$ (d) $\int_{0}^{\pi} (1 + \sin x) dx$ (e) $\int_{0}^{\pi} (1 + \cos x) dx$ (f) $\int_{0}^{\pi} \sqrt{1 + \sin^{2} x} dx$ (g) $\int_{0}^{\pi} \sqrt{1 - \sin^{2} x} dx$ (g) $\int_{0}^{\pi} \sqrt{$

(6) What is the formula for the surface area of the graph of 1/x for x in [1, 2] when rotated around the y-axis?

(7) What is the formula for the area of the surface formed by rotating the graph of 1/x between x = 1 and x = 2 around the x-axis?

(a) $2\pi \int_{1}^{2} x \sqrt{1 + x^{-2}} dx$	(e) $2\pi \int_{1}^{2} \frac{\sqrt{1+x^{-4}}}{x} dx$ (f) $2\pi \int_{1}^{2} \frac{\sqrt{1-x^{-4}}}{x} dx$
(b) $\pi \int_{1}^{2} \frac{\sqrt{1-x^{-2}}}{x} dx$ (c) $2\pi \int_{1}^{2} x \sqrt{1+2x^{-2}} dx$	(c) $\pi \int_{1}^{2} x \sqrt{1 + 2x^{-4}} dx$ (b) $2\pi \int_{1}^{2} x \sqrt{1 + 4x^{-4}} dx$
(d) $\int_{1}^{2} \sqrt{1 + 4x^{-2}} dx$	(i) none of the above (i)

(8)

Which has **smaller** area: the surface in Problem 6 (rotating around x-axis) or the surface in Problem 7 (rotating around y-axis)? Put a "6" or "7" in the box.

(9)

A water tank is shaped like the parabola x^2 on [0, 2] is rotated around the y-axis (see figure on right). The tank is 4 feet high and currently has 3 feet of water in it. The work required to pump all this water over the upper edge of the tank is 62.4 lb/ft³ (the work needed to lift one cubic foot of water one foot high) times which integral below?

(a) $\pi \int_0^3 y^2 (4-y) dy$	(e) $\pi \int_0^4 y(4-y)dy$
	(f) $\pi \int_0^3 y(4-y) dy$
(c) $2\pi \int_0^3 y(4-y)dy$	(g) $\pi \int_0^4 \sqrt{y} (4-y) dy$
(d) $2\pi \int_0^3 \sqrt{y} (4-y) dy$	(h) none of the above

(10) Coulomb's Law says that two negatively charged particles repel each other with a force kq_1q_2/x^2 Newtons, where q_1, q_2 are the sizes of the charges, x is the distance between them, and k is Coulomb's constant. If two particles have the same charge $q_1 = q_2 = q$ and are 2 meters apart, how much work in Newton-meters is needed to decrease this distance to 1 meter?

(a)
$$k^2 q^2/2$$
 (c) $kq^2/2$ (e) $kq^2/4$ (g) $\frac{3}{4}kq^2$ (i) $kq/2$
(b) $\frac{3}{8}kq$ (d) $2kq^2/2$ (f) kq (h) $\frac{2}{6}kq^2$ (j) none of the above

Answers: 1A, 2D, 3B, 4B, 5G, 6G, 7E, 8=7, 9F, 10C