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2.7 | Integrals, Exponential Functions, and Logarithms

Learning Objectives

2.7.1 Write the definition of the natural logarithm as an integral.
2.7.2 Recognize the derivative of the natural logarithm.

2.7.3 Integrate functions involving the natural logarithmic function.
2.7.4 Define the number e through an integral.

2.7.5 Recognize the derivative and integral of the exponential function.
2.7.6 Prove properties of logarithms and exponential functions using integrals.

2.7.7 Express general logarithmic and exponential functions in terms of natural logarithms and
exponentials.

We already examined exponential functions and logarithms in earlier chapters. However, we glossed over some key details
in the previous discussions. For example, we did not study how to treat exponential functions with exponents that are
irrational. The definition of the number e is another area where the previous development was somewhat incomplete. We
now have the tools to deal with these concepts in a more mathematically rigorous way, and we do so in this section.

For purposes of this section, assume we have not yet defined the natural logarithm, the number e, or any of the integration
and differentiation formulas associated with these functions. By the end of the section, we will have studied these concepts
in a mathematically rigorous way (and we will see they are consistent with the concepts we learned earlier).

We begin the section by defining the natural logarithm in terms of an integral. This definition forms the foundation for
the section. From this definition, we derive differentiation formulas, define the number e, and expand these concepts to

logarithms and exponential functions of any base.

The Natural Logarithm as an Integral

Recall the power rule for integrals:

n+1
fx"dx=f1+1 +C, n#—1.

Clearly, this does not work when n = —1, as it would force us to divide by zero. So, what do we do with %dx? Recall

X
from the Fundamental Theorem of Calculus that %dt is an antiderivative of 1/x. Therefore, we can make the following
1

definition.

Definition

For x > 0, define the natural logarithm function by

25 2.24
lnx=/1%dt. ( )

X 1
For x > 1, this is just the area under the curve y = 1/¢ from 1 to x. For x < 1, we have / %dt = —/ %dt, so in
1 x

this case it is the negative of the area under the curve from xto 1 (see the following figure).
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(@) (b)

Figure 2.75 (a) When x > 1, the natural logarithm is the area under the
curve y = 1/t from 1tox. (b) When x < 1, the natural logarithm is the

negative of the area under the curve from x to 1.

Notice that In 1 = 0. Furthermore, the function y = 1/t > 0 for x > 0. Therefore, by the properties of integrals, it is clear
that In x is increasing for x > 0.

Properties of the Natural Logarithm

Because of the way we defined the natural logarithm, the following differentiation formula falls out immediately as a result
of to the Fundamental Theorem of Calculus.

Theorem 2.15: Derivative of the Natural Logarithm

For x > 0, the derivative of the natural logarithm is given by

din,=1
dxlnx— =

Theorem 2.16: Corollary to the Derivative of the Natural Logarithm

The function In x is differentiable; therefore, it is continuous.

A graph of Inx is shown in Figure 2.76. Notice that it is continuous throughout its domain of (0, o).
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Figure 2.76 The graph of f(x) = Inx shows that it is a

continuous function.
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Example 2.35

Calculate the following derivatives:

a. %ln(5x3 -2)

b, d%(lnox))z

Solution

We need to apply the chain rule in both cases.

d (53 _n) o _15x%
a dxln(Sx 2)_5)63_2

d 2 _ 2(n(3x))-3 _ 2(n(3x)
b. “Hin(3x)? = =gR= = =

@ 2.35 Calculate the following derivatives:

a. %ln(sz + x)

b Lfin(?))

Calculating Derivatives of Natural Logarithms

Note that if we use the absolute value function and create a new function In|x|, we can extend the domain of the natural

logarithm to include x < 0. Then (d/(dx))ln |x| = 1/x. This gives rise to the familiar integration formula.

Theorem 2.17: Integral of (1/u) du

The natural logarithm is the antiderivative of the function f(u) = 1/u:
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1y =
Ldu=1n1ul + C.

Example 2.36

Calculating Integrals Involving Natural Logarithms

Calculate the integral

dx.
X +4

Solution
Using u -substitution, let u = x2+4. Then du = 2xdx and we have

/2x dx— f%du%lnlul+€=%ln|x2+4|+C=%ln(x2+4)+C.

@ 2.36

Although we have called our function a “logarithm,” we have not actually proved that any of the properties of logarithms
hold for this function. We do so here.

Theorem 2.18: Properties of the Natural Logarithm

If a, b> 0 and r is a rational number, then
i. In1=0
ii. In(ab)=Ina+1Inb

i ln(%) =lna—Inb

iv. In(@")=rlna

1
i. By definition, In1 = ldt =0.
y /4
ii. We have

ab a ab
_ 1,._ /1 1
ln(ab)—/l tdt—fl tdt+/a Lay,

Use u-substitution on the last integral in this expression. Let u = t/a. Then du = (1/a)dt. Furthermore, when

t=a,u=1, andwhen t =ab, u =b. So we get

In(ab) = fldt+/ Lot = fldt+/ %% /ldt+f Liu=tna+mnb.

iii. Note that

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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O

dyeor _rx" "y
Lin(x') = L — = £,

Furthermore,

d_ I
dx(r Inx) =%

Since the derivatives of these two functions are the same, by the Fundamental Theorem of Calculus, they must differ
by a constant. So we have
Inx")=rlnx+C

for some constant C. Taking x = 1, we get

In(1") = rin()+C
0 = r0+C
c =0

Thus In(x") = rIn x and the proof is complete. Note that we can extend this property to irrational values of r later

in this section.
Part iii. follows from parts ii. and iv. and the proof is left to you.

Example 2.37

Using Properties of Logarithms

Use properties of logarithms to simplify the following expression into a single logarithm:

In9—2In3+ ln(%).

Solution
We have

ln9—21n3+ln(%)=ln(32)—21n3+1n(3_1)=2ln3—21n3—ln3 = —In3.

@ 2.37 Use properties of logarithms to simplify the following expression into a single logarithm:

In8—In2— ln(%).

Defining the Number e

Now that we have the natural logarithm defined, we can use that function to define the number e.

Definition

The number e is defined to be the real number such that

Ine=1.

To put it another way, the area under the curve y = 1/¢ between # =1 and t = e is 1 (Figure 2.77). The proof that such

a number exists and is unique is left to you. (Hint: Use the Intermediate Value Theorem to prove existence and the fact that



224 Chapter 2 | Applications of Integration

In x is increasing to prove uniqueness.)

14

Figure 2.77 The area under the curve from 1 to e is equal
to one.

The number e can be shown to be irrational, although we won’t do so here (see the Student Project in Taylor and
Maclaurin Series). Its approximate value is given by

e~ 2.71828182846.
The Exponential Function

We now turn our attention to the function e*. Note that the natural logarithm is one-to-one and therefore has an inverse
function. For now, we denote this inverse function by exp x. Then,

exp(In x) = x for x > 0 and In(exp x) = x for all x.

The following figure shows the graphs of exp x and In x.

exp x

-54

Figure 2.78 The graphs of Inx and exp x.

We hypothesize that exp x = e”. For rational values of x, this is easy to show. If x is rational, then we have
In(e*) = xIne = x. Thus, when x is rational, e* =exp x. For irrational values of x, we simply define e* as the

inverse function of In x.
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Chapter 2 | Applications of Integration 225

Definition

For any real number x, define y = e¢* to be the number for which

Iny = In(e®) = x. (2.25)

Then we have ¢* = exp(x) forall x, and thus

In

e = xforx > 0andIn(e”) = x (2.26)

for all x.

Properties of the Exponential Function

Since the exponential function was defined in terms of an inverse function, and not in terms of a power of e, we must

verify that the usual laws of exponents hold for the function e*.

Theorem 2.19: Properties of the Exponential Function

If p and ¢ are any real numbers and r is a rational number, then

- +
i, ePel=¢l T4
P —
e P—q
1l — =
ed
i. (eP) ="

Proof
Note that if p and g are rational, the properties hold. However, if p or ¢ are irrational, we must apply the inverse

function definition of ¢* and verify the properties. Only the first property is verified here; the other two are left to you. We
have

In(e? e?) = In(e?) +In(e?) = p+q = ln(ep +q).

Since In x is one-to-one, then

+
ePel=el T4,

O

As with part iv. of the logarithm properties, we can extend property iii. to irrational values of r, and we do so by the end
of the section.

We also want to verify the differentiation formula for the function y =e*. To do this, we need to use implicit

differentiation. Let y = e¢”*. Then

Iny = x
d = d
dxlny = A
1dy _ 1

Y dx

dy _

ax

Thus, we see
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d

dx
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et =e*

as desired, which leads immediately to the integration formula

fexd

x=e"+C.

We apply these formulas in the following examples.
Example 2.38

Using Properties of Exponential Funct

Evaluate the following derivatives:

d 3t 2
a. e
d_ 3x2
b. dxe
Solution

We apply the chain rule as necessary.
d 3t tz_i 3t+12 _ 3r+12
a. —ete = =e (B+2

2 2
b, 3" = o3 6y
dx

@ 2.38 Evaluate the following derivatives:

2
e
Todx| p5x

b. %(ezzf

ions

Example 2.39

2
Evaluate the following integral: / 2xe™™ dx.

Solution

This OpenStax book is available for free at http://cnx.org/conte

Using Properties of Exponential Functions

Using u -substitution, let u = —x2. Then du = —2x dx, and we have

2 2
/2xe_x dx = —/e”du: —e"+C=—-e"" +C.

nt/col11965/1.2
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@ 239 Eyaluate the following integral: _/ %dx.
e

General Logarithmic and Exponential Functions

We close this section by looking at exponential functions and logarithms with bases other than e. Exponential functions
are functions of the form f(x) = a*. Note that unless a = e, we still do not have a mathematically rigorous definition
of these functions for irrational exponents. Let’s rectify that here by defining the function f(x) = a* in terms of the

exponential function e®. We then examine logarithms with bases other than e as inverse functions of exponential
functions.

Definition

Forany a > 0, and for any real number x, define y = a”* as follows:

x _ xlna

y=a =e

Now a* is defined rigorously for all values of x. This definition also allows us to generalize property iv. of logarithms and
property iii. of exponential functions to apply to both rational and irrational values of r. It is straightforward to show that
properties of exponents hold for general exponential functions defined in this way.

Let’s now apply this definition to calculate a differentiation formula for a*. We have

iax_iexlnaz

dx ~ dx

eMen g = ¢¥lna.

The corresponding integration formula follows immediately.

Theorem 2.20: Derivatives and Integrals Involving General Exponential Functions
Let a > 0. Then,

d x_ x
—dxa =a‘lna
and

/axdx=ﬁax+c.

If a# 1, then the function a* is one-to-one and has a well-defined inverse. Its inverse is denoted by log, x. Then,
y = log, xif and only if x = a”.

Note that general logarithm functions can be written in terms of the natural logarithm. Let y = log,x. Then, x =a”.

Taking the natural logarithm of both sides of this second equation, we get

Inx = In(a”)
Inx = ylna
— Inx

Y = na
= Inx
log x = na

Thus, we see that all logarithmic functions are constant multiples of one another. Next, we use this formula to find a
differentiation formula for a logarithm with base a. Again, let y =log,x. Then,
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Theorem 2.21: Derivatives of General Logarithm Functions

Let a > 0. Then,

1

d. _1
xIlna’

dx

Example 2.40

Calculating Derivatives of General Exponential and Logarithm Functions

log,x =

Evaluate the following derivatives:

a. i(4’.2’2)

Solution
We need to apply the chain rule as necessary.

2 2 2 2
a, i(4’ 2! ) = 1(22’ 2! ) -4 (22““ ! ) =22 1n2)(2 + 21)

dt T dt dr
d 24— 1
b. Logg(7x? +4) s aim 5140

@ 2.40 Evaluate the following derivatives:

d gt
a. dt4

b. %log3(\/x2 +1 '
Example 2.41

Integrating General Exponential Functions
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Evaluate the following integral: / %dx.

Solution
Use wu-substitution and let # = —3x. Then du = —3dx and we have
3 _ A=3x g ug, — __1 ~u — __1 »-3
/Fdx—f32 dx = - [2"du Lovic= - Loz c

3
@ 241 g aluate the following integral: [ x%2* dx.
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2.7 EXERCISES

For the following exercises, find the derivative %

295. y =In(2x)

296. y=In(2x+ 1)

297. y =ﬁ

For the following exercises, find the indefinite integral.

dt
298. f g
299. dx

1+x

For the following exercises, find the derivative dy/dx.

(You can use a calculator to plot the function and the
derivative to confirm that it is correct.)

In(x)

300. [T] y =32
301 [T] y = xIn(x)
302. [T] y = log;ox
303. [T] y = In(sin x)
304. [T] y = In(Inx)
305. [T] y =7 In(4x)
306. [T] y = In((4x)’)
307. [T] y = In(tan x)
308. [T] y = In(tan(3x))

309. [T] y= ln(coszx)

For the following exercises, find the definite or indefinite
integral.

1
dx
310. /;) 34x

1
dr
311. fo T
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2

312. _xdx_

’/0 241

2 3

313, [ Xdx
0x“+1
e

314. dx
2xlnx

e
dx
315. —_—
/2 (x In(x))?
cos xdx
316. /W

/4
317. f tan x dx
0

318. /cot(3x)dx

2
319, /(lnx; dx

For the following exercises, compute dy/dx by

differentiating In y.

320. y=\x2+1
321 y=V2+1Vx%* =1

322, y=eSin¥
323, y=x"1¥
34, y=e
325. y=x°

326, y=x“Y

327. y= VIV Ux
328. y= x—l/lnx
329. y=e 0¥

For the following exercises, evaluate by any method.
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10 10x
dt _ dt
330. /5 -/ 4

e’ -1
331. /1 %+f_2%

1
d [ dt
332. I-) 4
2
X
d [ dt
333 o). G

d
334. dxln(sec X + tan x)
For the following exercises, use the function Inx. If you

are unable to find intersection points analytically, use a
calculator.

335. Find the area of the region enclosed by x =1 and
y =15 above y =Inux.

336. [T] Find the arc length of Inx from x=1 to
x=2.

337. Find the area between Inx and the x-axis from
x=1tox=2.

338. Find the volume of the shape created when rotating

this curve from x=1tox =2 around the x-axis, as
pictured here.

05
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339. [T] Find the surface area of the shape created when
rotating the curve in the previous exercise from x =1 to

x = 2 around the x-axis.

If you are unable to find intersection points analytically in
the following exercises, use a calculator.

340. Find the area of the hyperbolic quarter-circle
enclosed by x =2andy =2 above y = 1/x.

341. [T] Find the arc length of y=1/x from

x=1tox=4.

342. Find the area under y = 1/x and above the x-axis

from x = 1tox = 4.

For the following exercises, verify the derivatives and
antiderivatives.

343. d%cln(x +Vx2+1 ’ = 1

1+ x2

s )=

2
345. iln[” 1—x ): __ 1

dx . x\/l — x2
346, diln(x +Vx2—a?)=——L
x 2_ 2

d _
u7. [ T s = Inlinin 0) + €



