3.3 Trigonometric Substitution

Learning Objectives

3.3.1 Solve integration problems involving the square root of a sum or difference of two squares.

In this section, we explore integrals containing expressions of the form $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$, and $\sqrt{x^2 - a^2}$, where the values of *a* are positive. We have already encountered and evaluated integrals containing some expressions of this type, but many still remain inaccessible. The technique of **trigonometric substitution** comes in very handy when evaluating these integrals. This technique uses substitution to rewrite these integrals as trigonometric integrals.

Integrals Involving $\sqrt{a^2 - x^2}$

Before developing a general strategy for integrals containing $\sqrt{a^2 - x^2}$, consider the integral $\int \sqrt{9 - x^2} dx$. This integral cannot be evaluated using any of the techniques we have discussed so far. However, if we make the substitution $x = 3\sin\theta$, we have $dx = 3\cos\theta d\theta$. After substituting into the integral, we have

$$\int \sqrt{9 - x^2} dx = \int \sqrt{9 - (3\sin\theta)^2} 3\cos\theta d\theta.$$

After simplifying, we have

$$\int \sqrt{9 - x^2} dx = \int 9\sqrt{1 - \sin^2\theta} \cos\theta d\theta.$$

Letting $1 - \sin^2 \theta = \cos^2 \theta$, we now have

$$\int \sqrt{9 - x^2} dx = \int 9 \sqrt{\cos^2 \theta} \cos \theta d\theta.$$

Assuming that $\cos \theta \ge 0$, we have

$$\int \sqrt{9 - x^2} dx = \int 9\cos^2\theta d\theta.$$

At this point, we can evaluate the integral using the techniques developed for integrating powers and products of trigonometric functions. Before completing this example, let's take a look at the general theory behind this idea. To evaluate integrals involving $\sqrt{a^2 - x^2}$, we make the substitution $x = a\sin\theta$ and $dx = a\cos\theta$. To see that this actually makes sense, consider the following argument: The domain of $\sqrt{a^2 - x^2}$ is [-a, a]. Thus, $-a \le x \le a$. Consequently, $-1 \le \frac{x}{a} \le 1$. Since the range of $\sin x$ over $[-(\pi/2), \pi/2]$ is [-1, 1], there is a unique angle θ satisfying $-(\pi/2) \le \theta \le \pi/2$ so that $\sin\theta = x/a$, or equivalently, so that $x = a\sin\theta$. If we substitute $x = a\sin\theta$ into $\sqrt{a^2 - x^2}$, we get

$$\begin{split} \sqrt{a^2 - x^2} &= \sqrt{a^2 - (a\sin\theta)^2} & \text{Let } x = a\sin\theta \text{ where } -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}. \text{ Simplify.} \\ &= \sqrt{a^2 - a^2\sin^2\theta} & \text{Factor out } a^2. \\ &= \sqrt{a^2(1 - \sin^2\theta)} & \text{Substitute } 1 - \sin^2 x = \cos^2 x. \\ &= \sqrt{a^2\cos^2\theta} & \text{Take the square root.} \\ &= |a\cos\theta| \\ &= a\cos\theta. \end{split}$$

Since $\cos x \ge 0$ on $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ and a > 0, $|a\cos\theta| = a\cos\theta$. We can see, from this discussion, that by making the substitution $x = a\sin\theta$, we are able to convert an integral involving a radical into an integral involving trigonometric functions. After we evaluate the integral, we can convert the solution back to an expression involving *x*. To see how to

do this, let's begin by assuming that 0 < x < a. In this case, $0 < \theta < \frac{\pi}{2}$. Since $\sin \theta = \frac{x}{a}$, we can draw the reference triangle in **Figure 3.4** to assist in expressing the values of $\cos \theta$, $\tan \theta$, and the remaining trigonometric functions in terms of *x*. It can be shown that this triangle actually produces the correct values of the trigonometric functions evaluated at θ for all θ satisfying $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. It is useful to observe that the expression $\sqrt{a^2 - x^2}$ actually appears as the length of one side of the triangle. Last, should θ appear by itself, we use $\theta = \sin^{-1}(\frac{x}{a})$.

The essential part of this discussion is summarized in the following problem-solving strategy.

Problem-Solving Strategy: Integrating Expressions Involving $\sqrt{a^2 - x^2}$

1. It is a good idea to make sure the integral cannot be evaluated easily in another way. For example, although this method can be applied to integrals of the form $\int \frac{1}{\sqrt{a^2 - x^2}} dx$, $\int \frac{x}{\sqrt{a^2 - x^2}} dx$, and $\int x \sqrt{a^2 - x^2} dx$,

they can each be integrated directly either by formula or by a simple u-substitution.

- **2**. Make the substitution $x = a \sin \theta$ and $dx = a \cos \theta d\theta$. *Note*: This substitution yields $\sqrt{a^2 x^2} = a \cos \theta$.
- 3. Simplify the expression.
- 4. Evaluate the integral using techniques from the section on trigonometric integrals.
- 5. Use the reference triangle from **Figure 3.4** to rewrite the result in terms of *x*. You may also need to use some trigonometric identities and the relationship $\theta = \sin^{-1}(\frac{x}{a})$.

The following example demonstrates the application of this problem-solving strategy.

Example 3.21

Integrating an Expression Involving $\sqrt{a^2 - x^2}$

Evaluate
$$\int \sqrt{9 - x^2} dx$$
.

Solution

Begin by making the substitutions $x = 3\sin\theta$ and $dx = 3\cos\theta d\theta$. Since $\sin\theta = \frac{x}{3}$, we can construct the reference triangle shown in the following figure.

Thus,

$$\int \sqrt{9 - x^2} dx = \int \sqrt{9 - (3\sin\theta)^2} 3\cos\theta d\theta$$
$$= \int \sqrt{9(1 - \sin^2\theta)} 3\cos\theta d\theta$$
$$= \int \sqrt{9\cos^2\theta} 3\cos\theta d\theta$$
$$= \int 3|\cos\theta| 3\cos\theta d\theta$$
$$= \int 9\cos^2\theta d\theta$$
$$= \int 9\left(\frac{1}{2} + \frac{1}{2}\cos(2\theta)\right) d\theta$$
$$= \frac{9}{2}\theta + \frac{9}{4}\sin(2\theta) + C$$
$$= \frac{9}{2}\theta + \frac{9}{4}(2\sin\theta\cos\theta) + C$$
$$= \frac{9}{2}\sin^{-1}\left(\frac{x}{3}\right) + \frac{9}{2} \cdot \frac{x}{3} \cdot \frac{\sqrt{9 - x^2}}{3} + C$$
$$= \frac{9}{2}\sin^{-1}\left(\frac{x}{3}\right) + \frac{x\sqrt{9 - x^2}}{2} + C.$$

Substitute $x = 3\sin\theta$ and $dx = 3\cos\theta d\theta$. Simplify. Substitute $\cos^2\theta = 1 - \sin^2\theta$. Take the square root. Simplify. Since $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\cos\theta \ge 0$ and $|\cos\theta| = \cos\theta$. Use the strategy for integrating an even power of $\cos\theta$. Evaluate the integral. Substitute $\sin(2\theta) = 2\sin\theta\cos\theta$. Substitute $\sin^{-1}(\frac{x}{3}) = \theta$ and $\sin\theta = \frac{x}{3}$. Use the reference triangle to see that $\cos\theta = \frac{\sqrt{9-x^2}}{3}$ and make this substitution. Simplify.

Example 3.22

Integrating an Expression Involving $\sqrt{a^2 - x^2}$

Evaluate
$$\int \frac{\sqrt{4-x^2}}{x} dx$$
.

Solution

First make the substitutions $x = 2\sin\theta$ and $dx = 2\cos\theta d\theta$. Since $\sin\theta = \frac{x}{2}$, we can construct the reference triangle shown in the following figure.

Thus,

$$\int \frac{\sqrt{4-x^2}}{x} dx = \int \frac{\sqrt{4-(2\sin\theta)^2}}{2\sin\theta} 2\cos\theta d\theta$$
$$= \int \frac{2\cos^2\theta}{\sin\theta} d\theta$$
$$= \int \frac{2(1-\sin^2\theta)}{\sin\theta} d\theta$$
$$= \int (2\csc\theta - 2\sin\theta) d\theta$$
$$= 2\ln|\csc\theta - \cot\theta| + 2\cos\theta + C$$
$$= 2\ln\left|\frac{2}{x} - \frac{\sqrt{4-x^2}}{x}\right| + \sqrt{4-x^2} + C.$$

Substitute $x = 2\sin\theta$ and $= 2\cos\theta d\theta$. Substitute $\cos^2\theta = 1 - \sin^2\theta$ and simplify. Substitute $\sin^2\theta = 1 - \cos^2\theta$. Separate the numerator, simplify, and use $\csc\theta = \frac{1}{\sin\theta}$. Evaluate the integral. Use the reference triangle to rewrite the expression in terms of *x* and simplify.

In the next example, we see that we sometimes have a choice of methods.

Example 3.23

Integrating an Expression Involving $\sqrt{a^2 - x^2}$ Two Ways

Evaluate $\int x^3 \sqrt{1-x^2} dx$ two ways: first by using the substitution $u = 1 - x^2$ and then by using a trigonometric substitution.

Solution

Method 1

Let $u = 1 - x^2$ and hence $x^2 = 1 - u$. Thus, du = -2x dx. In this case, the integral becomes

$$\int x^3 \sqrt{1 - x^2} dx = -\frac{1}{2} \int x^2 \sqrt{1 - x^2} (-2x dx)$$
 Make the substitution.

$$= -\frac{1}{2} \int (1 - u) \sqrt{u} du$$
 Expand the expression.

$$= -\frac{1}{2} \int (u^{1/2} - u^{3/2}) du$$
 Evaluate the integral.

$$= -\frac{1}{2} (\frac{2}{3} u^{3/2} - \frac{2}{5} u^{5/2}) + C$$
 Rewrite in terms of x.

$$= -\frac{1}{3} (1 - x^2)^{3/2} + \frac{1}{5} (1 - x^2)^{5/2} + C.$$

Method 2

Let $x = \sin \theta$. In this case, $dx = \cos \theta d\theta$. Using this substitution, we have

$$\int x^3 \sqrt{1 - x^2} dx = \int \sin^3 \theta \cos^2 \theta d\theta$$

= $\int (1 - \cos^2 \theta) \cos^2 \theta \sin \theta d\theta$ Let $u = \cos \theta$. Thus, $du = -\sin \theta d\theta$.
= $\int (u^4 - u^2) du$
= $\frac{1}{5}u^5 - \frac{1}{3}u^3 + C$ Substitute $\cos \theta = u$.
= $\frac{1}{5}\cos^5 \theta - \frac{1}{3}\cos^3 \theta + C$ Use a reference triangle to see that
= $\frac{1}{5}(1 - x^2)^{5/2} - \frac{1}{3}(1 - x^2)^{3/2} + C$.

3.14 Rewrite the integral $\int \frac{x^3}{\sqrt{25-x^2}} dx$ using the appropriate trigonometric substitution (do not evaluate

the integral).

Integrating Expressions Involving $\sqrt{a^2 + x^2}$

For integrals containing $\sqrt{a^2 + x^2}$, let's first consider the domain of this expression. Since $\sqrt{a^2 + x^2}$ is defined for all real values of x, we restrict our choice to those trigonometric functions that have a range of all real numbers. Thus, our choice is restricted to selecting either $x = a \tan \theta$ or $x = a \cot \theta$. Either of these substitutions would actually work, but the standard substitution is $x = a \tan \theta$ or, equivalently, $\tan \theta = x/a$. With this substitution, we make the assumption that $-(\pi/2) < \theta < \pi/2$, so that we also have $\theta = \tan^{-1}(x/a)$. The procedure for using this substitution is outlined in the following problem-solving strategy.

Problem-Solving Strategy: Integrating Expressions Involving $\sqrt{a^2 + x^2}$

1. Check to see whether the integral can be evaluated easily by using another method. In some cases, it is more convenient to use an alternative method.

2. Substitute
$$x = a \tan \theta$$
 and $dx = a \sec^2 \theta d\theta$. This substitution yields
 $\sqrt{a^2 + x^2} = \sqrt{a^2 + (a \tan \theta)^2} = \sqrt{a^2(1 + \tan^2 \theta)} = \sqrt{a^2 \sec^2 \theta} = |a \sec \theta| = a \sec \theta$. (Since $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ and

 $\sec \theta > 0$ over this interval, $|a \sec \theta| = a \sec \theta$.)

- **3**. Simplify the expression.
- 4. Evaluate the integral using techniques from the section on trigonometric integrals.
- 5. Use the reference triangle from **Figure 3.7** to rewrite the result in terms of *x*. You may also need to use some trigonometric identities and the relationship $\theta = \tan^{-1}(\frac{x}{a})$. (*Note*: The reference triangle is based on the assumption that x > 0; however, the trigonometric ratios produced from the reference triangle are the same as the ratios for which $x \le 0$.)

Figure 3.7 A reference triangle can be constructed to express the trigonometric functions evaluated at θ in terms of *x*.

Example 3.24

Integrating an Expression Involving $\sqrt{a^2 + x^2}$

Evaluate $\int \frac{dx}{\sqrt{1+x^2}}$ and check the solution by differentiating.

Solution

Begin with the substitution $x = \tan \theta$ and $dx = \sec^2 \theta d\theta$. Since $\tan \theta = x$, draw the reference triangle in the following figure.

Figure 3.8 The reference triangle for Example 3.24.

C

С.

Thus,

Substitute $x = \tan \theta$ and $dx = \sec^2 \theta d\theta$. This substitution makes $\sqrt{1 + x^2} = \sec \theta$. Simplify.

Evaluate the integral.

Use the reference triangle to express the result in terms of *x*.

To check the solution, differentiate:

$$\frac{d}{dx} \left(\ln \left| \sqrt{1 + x^2} + x \right| \right) = \frac{1}{\sqrt{1 + x^2} + x} \cdot \left(\frac{x}{\sqrt{1 + x^2}} + 1 \right)$$
$$= \frac{1}{\sqrt{1 + x^2} + x} \cdot \frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}}$$
$$= \frac{1}{\sqrt{1 + x^2}}.$$

Since $\sqrt{1 + x^2} + x > 0$ for all values of x, we could rewrite $\ln \left| \sqrt{1 + x^2} + x \right| + C = \ln \left(\sqrt{1 + x^2} + x \right) + C$, if desired.

Example 3.25

Evaluating $\int \frac{dx}{\sqrt{1+x^2}}$ Using a Different Substitution

Use the substitution $x = \sinh \theta$ to evaluate $\int \frac{dx}{\sqrt{1 + x^2}}$.

Solution

Because $\sinh\theta$ has a range of all real numbers, and $1 + \sinh^2\theta = \cosh^2\theta$, we may also use the substitution $x = \sinh\theta$ to evaluate this integral. In this case, $dx = \cosh\theta d\theta$. Consequently,

$$\int \frac{dx}{\sqrt{1+x^2}} = \int \frac{\cosh\theta}{\sqrt{1+\sinh^2\theta}} d\theta \qquad \text{Substitute } x = \sinh\theta \text{ and } dx = \cosh\theta d\theta.$$

$$= \int \frac{\cosh\theta}{\sqrt{1+\sinh^2\theta}} d\theta \qquad \text{Substitute } 1 + \sinh^2\theta = \cosh^2\theta.$$

$$= \int \frac{\cosh\theta}{\sqrt{\cosh^2\theta}} d\theta \qquad \sqrt{\cosh^2\theta} = |\cosh\theta|$$

$$= \int \frac{\cosh\theta}{|\cosh\theta|} d\theta \qquad |\cosh\theta| = \cosh\theta \operatorname{since } \cosh\theta > 0 \text{ for all } \theta.$$

$$= \int \frac{\cosh\theta}{\cosh\theta} d\theta \qquad \text{Simplify.}$$

$$= \int 1 d\theta \qquad \text{Evaluate the integral.}$$

$$= \theta + C \qquad \text{Since } x = \sinh\theta, \text{ we know } \theta = \sinh^{-1}x.$$

$$= \sinh^{-1}x + C.$$

Analysis

This answer looks quite different from the answer obtained using the substitution $x = \tan \theta$. To see that the solutions are the same, set $y = \sinh^{-1} x$. Thus, $\sinh y = x$. From this equation we obtain:

$$\frac{e^y - e^{-y}}{2} = x.$$

After multiplying both sides by $2e^y$ and rewriting, this equation becomes:

$$e^{2y} - 2xe^y - 1 = 0$$

Use the quadratic equation to solve for e^{y} :

$$e^y = \frac{2x \pm \sqrt{4x^2 + 4}}{2}.$$

Simplifying, we have:

$$e^y = x \pm \sqrt{x^2 + 1}.$$

Since $x - \sqrt{x^2 + 1} < 0$, it must be the case that $e^y = x + \sqrt{x^2 + 1}$. Thus,

$$y = \ln\left(x + \sqrt[3]{x^2} + 1\right).$$

Last, we obtain

$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}).$$

After we make the final observation that, since $x + \sqrt{x^2 + 1} > 0$,

$$\ln(x + \sqrt{x^2 + 1}) = \ln|\sqrt{1 + x^2} + x|,$$

we see that the two different methods produced equivalent solutions.

Example 3.26

Finding an Arc Length

Find the length of the curve $y = x^2$ over the interval $[0, \frac{1}{2}]$.

Solution

Because $\frac{dy}{dx} = 2x$, the arc length is given by

$$\int_{0}^{1/2} \sqrt{1 + (2x)^2} dx = \int_{0}^{1/2} \sqrt{1 + 4x^2} dx.$$

To evaluate this integral, use the substitution $x = \frac{1}{2}\tan\theta$ and $dx = \frac{1}{2}\sec^2\theta d\theta$. We also need to change the limits of integration. If x = 0, then $\theta = 0$ and if $x = \frac{1}{2}$, then $\theta = \frac{\pi}{4}$. Thus,

$$\int_{0}^{1/2} \sqrt{1+4x^2} dx = \int_{0}^{\pi/4} \sqrt{1+\tan^2\theta} \frac{1}{2} \sec^2\theta d\theta$$
$$= \frac{1}{2} \int_{0}^{\pi/4} \sec^3\theta d\theta$$
$$= \frac{1}{2} \left(\frac{1}{2} \sec\theta \tan\theta + \ln|\sec\theta + \tan\theta|\right) \Big|_{0}^{\pi/4}$$
$$= \frac{1}{4} (\sqrt{2} + \ln(\sqrt{2} + 1)).$$

After substitution, $\sqrt{1 + 4x^2} = \tan\theta$. Substitute $1 + \tan^2\theta = \sec^2\theta$ and simplify. We derived this integral in the previous section.

Evaluate and simplify.

3.15 Rewrite $\int x^3 \sqrt{x^2 + 4} dx$ by using a substitution involving $\tan \theta$.

Integrating Expressions Involving $\sqrt{x^2 - a^2}$

The domain of the expression $\sqrt{x^2 - a^2}$ is $(-\infty, -a] \cup [a, +\infty)$. Thus, either x < -a or x > a. Hence, $\frac{x}{a} \le -1$ or $\frac{x}{a} \ge 1$. Since these intervals correspond to the range of $\sec \theta$ on the set $\left[0, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \pi\right]$, it makes sense to use the substitution $\sec \theta = \frac{x}{a}$ or, equivalently, $x = a \sec \theta$, where $0 \le \theta < \frac{\pi}{2}$ or $\frac{\pi}{2} < \theta \le \pi$. The corresponding substitution for dx is $dx = a \sec \theta \tan \theta d\theta$. The procedure for using this substitution is outlined in the following problem-solving strategy.

Problem-Solving Strategy: Integrals Involving $\sqrt{x^2 - a^2}$

- 1. Check to see whether the integral cannot be evaluated using another method. If so, we may wish to consider applying an alternative technique.
- 2. Substitute $x = a \sec \theta$ and $dx = a \sec \theta \tan \theta d\theta$. This substitution yields

$$\sqrt{x^2 - a^2} = \sqrt{(a \sec \theta)^2 - a^2} = \sqrt{a^2 (\sec^2 \theta + 1)} = \sqrt{a^2 \tan^2 \theta} = |a \tan \theta|$$

For $x \ge a$, $|a \tan \theta| = a \tan \theta$ and for $x \le -a$, $|a \tan \theta| = -a \tan \theta$.

- 3. Simplify the expression.
- 4. Evaluate the integral using techniques from the section on trigonometric integrals.
- 5. Use the reference triangles from **Figure 3.9** to rewrite the result in terms of *x*. You may also need to use some trigonometric identities and the relationship $\theta = \sec^{-1}(\frac{x}{a})$. (*Note*: We need both reference triangles, since the values of some of the trigonometric ratios are different depending on whether x > a or x < -a.)

Example 3.27

Finding the Area of a Region

Find the area of the region between the graph of $f(x) = \sqrt{x^2 - 9}$ and the *x*-axis over the interval [3, 5].

Solution

First, sketch a rough graph of the region described in the problem, as shown in the following figure.

Figure 3.10 Calculating the area of the shaded region requires evaluating an integral with a trigonometric substitution.

We can see that the area is $A = \int_{3}^{5} \sqrt{x^2 - 9} dx$. To evaluate this definite integral, substitute $x = 3 \sec \theta$ and $dx = 3 \sec \theta \tan \theta d\theta$. We must also change the limits of integration. If x = 3, then $3 = 3 \sec \theta$ and hence $\theta = 0$. If x = 5, then $\theta = \sec^{-1}\left(\frac{5}{3}\right)$. After making these substitutions and simplifying, we have

Area
$$= \int_{3}^{5} \sqrt{x^{2} - 9} dx$$
$$= \int_{0}^{\sec^{-1}(5/3)} 9 \tan^{2} \theta \sec \theta d\theta$$
Use t
$$= \int_{0}^{\sec^{-1}(5/3)} 9 (\sec^{2} \theta - 1) \sec \theta d\theta$$
Expa
$$= \int_{0}^{\sec^{-1}(5/3)} 9 (\sec^{3} \theta - \sec \theta) d\theta$$
Evalu
$$= \left(\frac{9}{2} \ln|\sec \theta + \tan \theta| + \frac{9}{2} \sec \theta \tan \theta\right) - 9 \ln|\sec \theta + \tan \theta| \begin{vmatrix} \sec^{-1}(5/3) \\ 0 & \text{Simp} \end{vmatrix}$$
$$= \frac{9}{2} \sec \theta \tan \theta - \frac{9}{2} \ln|\sec \theta + \tan \theta| \begin{vmatrix} \sec^{-1}(5/3) \\ 0 & \text{and ta} \end{vmatrix}$$
$$= \frac{9}{2} \cdot \frac{5}{3} \cdot \frac{4}{3} - \frac{9}{2} \ln \left|\frac{5}{3} + \frac{4}{3}\right| - \left(\frac{9}{2} \cdot 1 \cdot 0 - \frac{9}{2} \ln |1 + 0|\right)$$
$$= 10 - \frac{9}{2} \ln 3.$$

2.

 $\tan^2\theta = 1 - \sec^2\theta.$

ınd.

uate the integral.

plify.

luate. Use $\sec(\sec^{-1}\frac{5}{3}) = \frac{5}{3}$ $\tan(\sec^{-1}\frac{5}{3}) = \frac{4}{3}$.

3.16

Evaluate
$$\int \frac{dx}{\sqrt{x^2 - 4}}$$
. Assume that $x >$

3.3 EXERCISES

Simplify the following expressions by writing each one using a single trigonometric function.

- 126. $4 4\sin^2\theta$ 127. $9\sec^2\theta - 9$
- 128. $a^2 + a^2 \tan^2 \theta$

129. $a^2 + a^2 \sinh^2 \theta$

130. $16\cosh^2\theta - 16$

Use the technique of completing the square to express each trinomial as the square of a binomial.

131. $4x^2 - 4x + 1$ 132. $2x^2 - 8x + 3$ 133. $-x^2 - 2x + 4$

Integrate using the method of trigonometric substitution. Express the final answer in terms of the variable.

134.
$$\int \frac{dx}{\sqrt{4 - x^2}}$$

135.
$$\int \frac{dx}{\sqrt{x^2 - a^2}}$$

136.
$$\int \sqrt{4 - x^2} dx$$

$$137. \quad \int \frac{dx}{\sqrt{1+9x^2}}$$

 $138. \quad \int \frac{x^2 dx}{\sqrt{1 - x^2}}$

$$139. \quad \int \frac{dx}{x^2 \sqrt{1-x^2}}$$

$$140. \quad \int \frac{dx}{(1+x^2)^2}$$

141. $\int \sqrt{x^2 + 9} dx$

$$142. \quad \int \frac{\sqrt{x^2 - 25}}{x} dx$$

143.
$$\int \frac{\theta^3 d\theta}{\sqrt{9 - \theta^2}} d\theta$$

144.
$$\int \frac{dx}{\sqrt{x^6 - x^2}}$$

$$145. \quad \int \sqrt{x^6 - x^8} dx$$

$$146. \quad \int \frac{dx}{\left(1+x^2\right)^{3/2}}$$

147.
$$\int \frac{dx}{\left(x^2 - 9\right)^{3/2}}$$

$$148. \quad \int \frac{\sqrt{1+x^2} dx}{x}$$

$$149. \quad \int \frac{x^2 dx}{\sqrt{x^2 - 1}}$$

$$150. \quad \int \frac{x^2 dx}{x^2 + 4}$$

151.
$$\int \frac{dx}{x^2 \sqrt{x^2 + 1}}$$

152.
$$\int \frac{1}{\sqrt{1+x^2}}$$

153.
$$\int_{-1}^{1} (1-x^2)^{3/2} dx$$

In the following exercises, use the substitutions $x = \sinh\theta$, $\cosh\theta$, or $\tanh\theta$. Express the final answers in terms of the variable *x*.

154.
$$\int \frac{dx}{\sqrt{x^2 - 1}}$$

155.
$$\int \frac{dx}{x\sqrt{1 - x^2}}$$

156.
$$\int \sqrt{x^2 - 1} dx$$

$$157. \quad \int \frac{\sqrt{x^2 - 1}}{x^2} dx$$

$$158. \quad \int \frac{dx}{1-x^2}$$

$$159. \quad \int \frac{\sqrt{1+x^2}}{x^2} dx$$

Use the technique of completing the square to evaluate the following integrals.

$$160. \quad \int \frac{1}{x^2 - 6x} dx$$

$$161. \quad \int \frac{1}{x^2 + 2x + 1} dx$$

$$162. \quad \int \frac{1}{\sqrt{-x^2 + 2x + 8}} dx$$

$$163. \quad \int \frac{1}{\sqrt{-x^2 + 10x}} dx$$

$$164. \quad \int \frac{1}{\sqrt{x^2 + 4x - 12}} dx$$

165. Evaluate the integral without using calculus: $\int_{-3}^{3} \sqrt{9 - x^2} dx.$

166. Find the area enclosed by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

167. Evaluate the integral $\int \frac{dx}{\sqrt{1-x^2}}$ using two different substitutions. First, let $x = \cos\theta$ and evaluate using trigonometric substitution. Second, let $x = \sin\theta$ and use trigonometric substitution. Are the answers the same?

168. Evaluate the integral $\int \frac{dx}{x\sqrt{x^2 - 1}}$ using the substitution $x = \sec \theta$. Next, evaluate the same integral using the substitution $x = \csc \theta$. Show that the results are equivalent.

169. Evaluate the integral $\int \frac{x}{x^2 + 1} dx$ using the form

 $\int \frac{1}{u} du$. Next, evaluate the same integral using $x = \tan \theta$. Are the results the same?

170. State the method of integration you would use to evaluate the integral $\int x\sqrt{x^2 + 1} dx$. Why did you choose this method?

171. State the method of integration you would use to evaluate the integral $\int x^2 \sqrt{x^2 - 1} \, dx$. Why did you choose this method?

172. Evaluate
$$\int_{-1}^{1} \frac{x dx}{x^2 + 1}$$

173. Find the length of the arc of the curve over the specified interval: $y = \ln x$, [1, 5]. Round the answer to three decimal places.

174. Find the surface area of the solid generated by revolving the region bounded by the graphs of $y = x^2$, y = 0, x = 0, and $x = \sqrt{2}$ about the *x*-axis. (Round the answer to three decimal places).

175. The region bounded by the graph of $f(x) = \frac{1}{1 + x^2}$ and the *x*-axis between x = 0 and x = 1 is revolved about the *x*-axis. Find the volume of the solid that is generated.

Solve the initial-value problem for *y* as a function of *x*.

176.
$$(x^2 + 36)\frac{dy}{dx} = 1, y(6) = 0$$

177. $(64 - x^2)\frac{dy}{dx} = 1, y(0) = 3$

178. Find the area bounded by
$$y = \frac{2}{\sqrt{64 - 4x^2}}$$
, $x = 0$, $y = 0$, and $x = 2$.

179. An oil storage tank can be described as the volume generated by revolving the area bounded by $y = \frac{16}{\sqrt{64 + x^2}}$, x = 0, y = 0, x = 2 about the *x*-axis. Find

the volume of the tank (in cubic meters).

180. During each cycle, the velocity *v* (in feet per second) of a robotic welding device is given by $v = 2t - \frac{14}{4+t^2}$, where *t* is time in seconds. Find the expression for the displacement *s* (in feet) as a function of *t* if s = 0 when t = 0.

181. Find the length of the curve $y = \sqrt{16 - x^2}$ between x = 0 and x = 2.