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Is Gauss Quadrature Better
than Clenshaw–Curtis?∗

Lloyd N. Trefethen†

Abstract. We compare the convergence behavior of Gauss quadrature with that of its younger
brother, Clenshaw–Curtis. Seven-line MATLAB codes are presented that implement both
methods, and experiments show that the supposed factor-of-2 advantage of Gauss quadra-
ture is rarely realized. Theorems are given to explain this effect. First, following O’Hara
and Smith in the 1960s, the phenomenon is explained as a consequence of aliasing of
coefficients in Chebyshev expansions. Then another explanation is offered based on the
interpretation of a quadrature formula as a rational approximation of log((z + 1)/(z − 1))
in the complex plane. Gauss quadrature corresponds to Padé approximation at z = ∞.
Clenshaw–Curtis quadrature corresponds to an approximation whose order of accuracy at
z =∞ is only half as high, but which is nevertheless equally accurate near [−1, 1].
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1. Introduction. Every numerical analysis textbook has a chapter on numerical
integration. Most of these present two families of (n+1)-point quadrature rules: first
Newton–Cotes formulas, based on equally spaced points, and then Gauss formulas,
based on optimal (in a sense) points. For example, this is the pattern in the books
by Henrici (1964), Isaacson and Keller (1966), Acton (1970), Dahlquist and Björck
(1974), Stoer and Bulirsch (1980), Fröberg (1985), Golub and Ortega (1992), Kress
(1998), and Süli and Mayers (2003) [1, 11, 22, 30, 35, 37, 39, 51, 53].

A fundamental question to ask about any family of quadrature formulas is, does
it converge as n→∞, and if so, how fast?

It has been known for a long time that the Newton–Cotes formulas do not con-
verge for a general integrand f . They converge only if f is analytic in a large re-
gion surrounding the interval of integration, and even then only in the absence of
rounding errors: the problem is the O(2n) amplification associated with the Runge
phenomenon [18, 46, 47]. Gauss quadrature formulas, by contrast, converge for any
continuous f and have no problems with rounding errors. Moreover, they would ap-
pear to have a factor-of-2 advantage in efficiency for finite n: whereas the (n+1)-point
Newton–Cotes formula exactly integrates polynomials of degree n, the (n + 1)-point
Gauss formula exactly integrates polynomials of degree 2n + 1. Gauss quadrature
nodes and weights take some work to calculate, but this can be done in O(n2)
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68 LLOYD N. TREFETHEN

operations by solving a tridiagonal eigenvalue problem, as shown by Golub and
Welsch [31].1

However, Gauss quadrature is not the only alternative to Newton–Cotes. Here
we shall compare it with Clenshaw–Curtis quadrature, a family of formulas based on
sampling the integrand at Chebyshev points that can be implemented in O(n log n)
operations using the fast Fourier transform (FFT). Clenshaw–Curtis formulas are
mentioned in the numerical analysis textbooks of Johnson and Riess (1982), Ueberhu-
ber (1997), Neumaier (2001), and Heath (2002), as well as more briefly in endnotes or
exercises in Gautschi (1997) and Cheney and Kincaid (1999) [9, 27, 34, 38, 43, 57, 58].
They can also be found in monographs on numerical integration, including Davis and
Rabinowitz (1967, 1975, and 1984), Brass (1977), Engels (1980), Evans (1993), Krom-
mer and Ueberhuber (1998), and Kythe and Schäferkotter (2005) [6, 12, 18, 19, 40, 41].

Like Newton–Cotes quadrature, Clenshaw–Curtis quadrature integrates polyno-
mials of degree n exactly. Like Gauss quadrature, it converges for all continuous f and
has no problems with rounding errors. Thus on the face of it we seem to have a method
that is as robust as Gauss and faster to implement for a given n, but “half as efficient.”

But here there is a surprise. In practice, Clenshaw–Curtis does not turn out to
be half as efficient as Gauss. In fact, for most integrands, the two formulas are about
equally accurate. This observation was made in 1968 by O’Hara and Smith [45] and
reported in one or two subsequent publications, notably the books by Evans [19] and
Kythe and Schäferkotter [41]. It has not become widely known, however, and has
not found its way into the numerical analysis textbooks. The aim of this paper is
to publicize this phenomenon and expand our understanding of it with the aid of
new numerical experiments (section 3), new theorems (sections 4 and 5, especially
Theorem 5.1), and a new analysis involving rational approximation in the complex
plane (section 6). In a nutshell, our conclusion is that the Clenshaw–Curtis and Gauss
formulas have essentially the same accuracy unless f is analytic in a sizable neighbor-
hood of the interval of integration—in which case both methods converge so fast that
the difference hardly matters. Figures 4 and 5 summarize the reason for this behavior.

Our concern throughout this article is the convergence of quadrature formulas
in their “pure” form. There are many practical issues of quadrature we do not
touch upon, such as indefinite integration, extrapolation, error estimation, nonuni-
form weight functions, stability and conditioning, compound formulas, adaptivity,
endpoint and interior singularities, changes of variables, unbounded domains, and
multiple dimensions. (For information about some of these matters, see, for exam-
ple, [19] and [50].) We are a long way here from the design of general-purpose integra-
tion software! One reason for this emphasis is that the Gauss and Clenshaw–Curtis
formulas are so basic that it is worthwhile to understand their fundamental properties
in detail. Another is that even in their pure forms, quadrature formulas are used a
great deal in practice as parts of other numerical computations. For example, both
the Gauss and Clenshaw–Curtis formulas are employed in the numerical solution of
ODEs and PDEs by spectral methods [7, 55]. Another example, the one that got
me involved in this topic, is the chebfun system in object-oriented MATLAB, which
takes advantage of the power and speed of Clenshaw–Curtis quadrature to integrate
functions on the fly that may be defined by as many as millions of data points [4].

All in all, it would seem that the Gauss and Clenshaw–Curtis formulas should
perhaps be regarded as equally valuable and fundamental, with the former having an
edge in elegance and the latter in simplicity.

1An indispensable source of information on Gauss quadrature is the masterful 1981 survey by
Gautschi [26].
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2. Gauss and Clenshaw–Curtis Formulas. Throughout this article we are con-
cerned with what are known as interpolatory quadrature formulas. A continuous
function f on [−1, 1] is given (transplantation to a general interval [a, b] is trivial),
and we seek to approximate the integral

I = I(f) =
∫ 1

−1
f(x)dx(2.1)

by sums

In = In(f) =
n∑
k=0

wkf(xk)(2.2)

for various n, where the nodes {xk} depend on n but not f . The weights {wk} are
defined uniquely by the property that In is equal to the integral of the degree ≤n
polynomial interpolant through the data points. Thus, by construction, (2.2) gets the
exactly correct answer if f is a polynomial of degree ≤n.

Newton–Cotes formulas are defined by taking the nodes to be equally spaced
from −1 to 1. The Newton–Cotes formulas of low order are important as building
blocks for discretizations of differential equations and other numerical methods. Their
properties as n → ∞ are very bad, however, and we shall not discuss them further
except for brief reappearances in Figures 1 and 4.

Gauss formulas are defined by choosing the nodes optimally in the sense of max-
imizing the degree of polynomials that (2.2) integrates exactly. Since there are n+ 1
nodes, it is not surprising that the attainable degree is n + 1 orders higher than in
the generic case, i.e., degree 2n + 1. Gauss quadrature formulas were discovered by
Gauss in his mid-thirties [25], and it is a measure of the extraordinary productivity of
Gauss’s career that this great discovery merits hardly a mention in many accounts of
his life. For these formulas are truly powerful. Their impact was mainly theoretical
before the advent of computers, because of the difficulty of determining the nodes and
weights and also of evaluating integrands at irrational arguments, but in the computer
era, especially since the appearance of a paper by Golub and Welsch in 1969 (follow-
ing earlier work of Goertzel in 1954, Wilf in 1962, and Gordon in 1968), it has been
practical as well [31]. We shall not give details but just offer the following MATLAB
function gauss.m, which is almost the same as the code by the same name in [55]:

function I = gauss(f,n) % (n+1)-pt Gauss quadrature of f
beta = .5./sqrt(1-(2*(1:n)).ˆ(-2)); % 3-term recurrence coeffs
T = diag(beta,1) + diag(beta,-1); % Jacobi matrix
[V,D] = eig(T); % eigenvalue decomposition
x = diag(D); [x,i] = sort(x); % nodes (= Legendre points)
w = 2*V(1,i).ˆ2; % weights
I = w*feval(f,x); % the integral

For example, the command gauss(@cos,6) yields 1.68294196961579, which is cor-
rect to full precision. The command gauss(@cos,1000) yields the same result, though
it takes 17 seconds on my laptop.2

2Here are Stroud and Secrest in 1966, working on a Control Data 1604: “The formula for n = 512
took about 4.5 hours to calculate and 0.5 hour to check” [52]. Thus in forty years we have a speedup
from hours on a mainframe to seconds on a laptop. This comparison is complicated, however, by
the fact that the two calculations differed in many ways. For example, Stroud and Secrest worked in
multiple precision and before the days of Golub and Welsch [31]; meanwhile gauss.m uses the Golub–
Welsch algorithm in standard precision but in a form requiring O(n3) rather than O(n2) operations,
since the eig command does not take advantage of the fact that the matrix is tridiagonal.
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The idea of Clenshaw–Curtis quadrature is to use Chebyshev points instead of
optimal nodes. There are three main variations on this theme (see [44] for others):

Chebyshev roots in (−1, 1): Fejér’s “first rule” (1933) [20];
Chebyshev extrema in (−1, 1): Fejér’s “second rule” (1933) [20, 21];
Chebyshev extrema in [−1, 1]: Clenshaw and Curtis (1960) [10].

The first and the third variants are also called “classical” and “practical” Clenshaw–
Curtis formulas, respectively. (A number of the relevant papers published, especially
in the 1960s, make no reference to Fejér.) It seems that the last choice may be the
most accurate [16] as well as having the easiest connection with the FFT,3 and also
the potential advantage of convenient reuse of nodes when n is doubled; it is certainly
the one used mainly in practice. The nodes in question, which we shall simply call
Chebyshev points, are defined by

xj = cos
jπ

n
, 0 ≤ j ≤ n.(2.3)

The Clenshaw–Curtis quadrature formula is the formula (2.2) based on these nodes. A
better name might have been “Chebyshev” or “Fejér”—indeed, Clenshaw and Curtis
call it “the Chebyshev formula”—but the term “Clenshaw–Curtis” is standard.

Clenshaw and Curtis published their paper in 1960, before the introduction of
the FFT in 1965. Soon afterwards, the connection with the FFT was pointed out by
Gentleman [28, 29]. Again we shall not give details but offer a MATLAB code with
the same functionality as gauss.m:

function I = clenshaw_curtis(f,n) % (n+1)-pt C-C quadrature of f
x = cos(pi*(0:n)’/n); % Chebyshev points
fx = feval(f,x)/(2*n); % f evaluated at these points
g = real(fft(fx([1:n+1 n:-1:2]))); % Fast Fourier Transform
a = [g(1); g(2:n)+g(2*n:-1:n+2); g(n+1)]; % Chebyshev coefficients
w = 0*a’; w(1:2:end) = 2./(1-(0:2:n).ˆ2); % weight vector
I = w*a; % the integral

To get full accuracy for the cosine example, we now need clenshaw_curtis(@cos,11).
Increasing n from 11 to 103 or 106 gives the same result. The former runs in less than
a millisecond on my laptop, and the latter takes 1.6 seconds.

From the point of view of integrating polynomials exactly, Clenshaw–Curtis nodes
appear like Newton–Cotes nodes: both are exact merely for degree n. Yet it is clear
from Figure 1 that in a literal sense, at least, they are closer to Gauss nodes. Certainly
they have the same asymptotic distribution as n→∞, the density nπ−1(1− x2)−1/2

that is well known to be optimal in various senses for polynomial approximation on
[−1, 1] [55, Chap. 5].4

3. Experimental Comparison. Figure 2 shows the convergence as n → ∞ of
the Gauss and Clenshaw–Curtis formulas for six functions f(x). (This experiment is
adapted from Outputs 30b and 30c of [55].) We begin with the monomial f(x) = x20,
the algebraic analogue of what in the periodic context would be called a band-limited

3For FFT evaluations of the other two rules, see [59].
4The clustering of optimal grids for polynomial interpolation implies, however, that in certain

cases alternative nonpolynomial methods can be more efficient by a factor as high as π/2. One
method for recovering this factor is described in [2]; we propose another in [33]. For some of the
further implications of this “excessive” clustering of nodes near endpoints, see [14].
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Clenshaw−Curtis

Gauss

Newton−Cotes

Fig. 1 Newton–Cotes, Gauss, and Clenshaw–Curtis quadrature points in [−1, 1] for n = 32. The
latter two sets have asymptotically the same clustering near ±1 as n→∞.

function. Here the factor of 2 is in one sense clearly visible: the Gauss formula is
exact for n ≥ 10, the Clenshaw–Curtis formula for n ≥ 20. Even so, it is apparent
that for smaller values of n, the Gauss advantage in efficiency (i.e., size of n needed to
achieve a certain accuracy) is less than a factor of 2. The second function is ex, which
is entire, i.e., analytic throughout the complex plane. Here again Gauss appears more
efficient than Clenshaw–Curtis, but by less than a factor of 2.

Given f ∈ C[−1, 1] and n ≥ 0, let p∗n be the unique best approximation to f
on [−1, 1] of degree ≤n with respect to the supremum norm ‖ · ‖ = ‖ · ‖∞, and
define E∗n = ‖f − p∗n‖. The solid curves in each panel of Figure 2 show the errors E∗n
and E∗2n+1. (We computed these numbers via Carathéodory–Fejér approximation [32]
using the chebfun system [4], a convenient environment for all kinds of explorations
related to this paper.) We shall analyze these curves in the next section, but, for now,
we mention just the essential point: Clenshaw–Curtis quadrature converges faster
than E∗n.

The next four functions are successively less smooth. First we have e−x
2
, which is

again entire, but now with stronger growth O(e|x|
2
) as x→∞ in the complex plane.

Here again we see a difference between Gauss and Clenshaw–Curtis quadrature, but
with an efficiency ratio less than 2. Next comes f(x) = (1+16x2)−1, which is analytic
in a neighborhood of [−1, 1] but not throughout the complex plane, and now we see
that the two quadrature formulas are quite close together. (This example is discussed
further in section 6.) For the last two functions, there is again little difference between
Gauss and Clenshaw–Curtis quadrature. We see this for both the C∞ function e−1/x2

and the nonsmooth function |x|3.
These and similar experiments suggest the following conclusions:
• As expected, Gauss quadrature matches best degree 2n + 1 polynomial ap-
proximation: |I − In| ≈ E∗2n+1.
• However, Clenshaw–Curtis quadrature does much better than |I − In| ≈ E∗n.
In fact, for functions that are not analytic in a sizable neighborhood of [−1, 1],
it too comes close to |I − In| ≈ E∗2n+1.

• Thus Gauss quadrature significantly outperforms Clenshaw–Curtis quadra-
ture only for functions analytic in a sizable neighborhood of [−1, 1].

• For such functions, the convergence of both methods is very fast. Thus
Clenshaw–Curtis essentially never requires many more function evaluations
than Gauss to converge to a prescribed accuracy.

We are not the first to observe these surprises. Clenshaw and Curtis themselves
recorded the same effect [10]:

It may be of interest to note that a program based on the proposed method
has been prepared for theDeuce at the National Physical Laboratory. The
upper limitM of the number of terms is 64, and the program evaluated the
integral

∫ +1
−1 |x + 1

2 |
1
2 dx with an error of 0.00078. This may be compared
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Fig. 2 Convergence in floating-point arithmetic of Gauss (dots) and Clenshaw–Curtis (circles)
quadrature for six functions f on [−1, 1] for n ranging from 1 to 30. The first function is
polynomial, the second and third entire, the fourth analytic, the fifth C∞, and the sixth C2.
The solid curves show the minimax approximation errors E∗n (upper) and E∗2n+1 (lower).

with the error of 0.00317 committed by the 32-point Gauss formula, and
of 0.00036 by the 64-point Gauss formula. We see that the Chebyshev
formula, which is much more convenient than the Gauss, may sometimes
nevertheless be of comparable accuracy.

Figure 3 examines this function considered by Clenshaw and Curtis for a collection
of values of n. There is no advantage whatever for Gauss quadrature. (The reason
the plot does not match the numbers they reported is that it shows data for n = 64,
whereas their numbers correspond to n = 63.)

A more comprehensive claim of the practical equivalence of Clenshaw–Curtis and
Gauss quadrature appeared in a 1968 paper of O’Hara and Smith [45], building on
related work by Elliott [16]. They wrote

. . . the Clenshaw–Curtis method gives results nearly as accurate as Gaus-
sian quadratures for the same number of abscissae . . .
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16 256 4096 65536

10
−8

10
−4

10
0

|x+0.5|1/2

n

| I
 −

 I n |

Fig. 3 Convergence of Gauss (dots) and Clenshaw–Curtis (circles) quadrature for the example
f(x) = |x + 1

2 |
1/2 of Clenshaw and Curtis, shown on log-log axes. The Gauss formula is

applied only up to n = 210, since larger values take too much time and memory. Of course,
the point of this experiment is to elucidate fundamental convergence properties; there are
many ways in which a function this simple could be integrated numerically with far fewer
sample points.

and gave a justification of this statement based on magnitudes of Chebyshev coef-
ficients. Their conclusions were highlighted subsequently in the book of Evans [19].
We turn to such matters in the next two sections, and for the O’Hara and Smith
argument in particular, see (5.5) and the discussion just afterwards. For a variety of
convergence estimates for Gauss, Clenshaw–Curtis, and related quadrature formulas,
a particularly valuable reference is the book by Brass (in German) [6].

4. Quadrature, Polynomial Approximation, andChebyshev Expansions. How
can we explain the surprising accuracy of Clenshaw–Curtis quadrature? To prepare
the way, we begin with a discussion of some connections between quadrature formulas,
polynomial approximations, and Chebyshev expansions. Though the flavor of these
developments is standard, some of the estimates we give are sharper than those one
normally finds in the literature; this applies to (4.6), (4.10), (4.12), and (4.13), as
well as the Jackson theorem of footnote 6. (This does not mean they are as sharp as
possible! In particular, G. Mastroianni has pointed out to me that stronger estimates
can be obtained based on results in [13] and [14].) We consider Chebyshev expansions
for two reasons: first, because they provide near-best polynomial approximations and
thus near-sharp bounds on Gauss quadrature errors; second, because they have a
special connection with Clenshaw–Curtis quadrature.

Given a continuous function f on [−1, 1], let the degree ≤n polynomial best
approximation p∗n and error E∗n be defined as in the last section. The rationale for
including the solid curves in Figure 2 is the following result due to Bernstein [5].

Theorem 4.1. If the weights wk in (2.2) are nonnegative, as is true for both
Gauss and Clenshaw–Curtis quadrature, then, for any f ∈ C[−1, 1] and n ≥ 0,

|I − In| ≤ 4E∗n,(4.1)
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and In → I as n→∞. In the special case of Gauss quadrature, (4.1) can be improved
to

|I − In| ≤ 4E∗2n+1.(4.2)

Proof. We take advantage of the fact that since (2.2) integrates polynomials of
degree ≤n exactly, (I− In)(f) = (I− In)(f −p∗n). From (2.2), using the fact that the
interval [−1, 1] has length 2, we thus have

|I(f)− In(f)| = |I(f − p∗n)− In(f − p∗n)|

≤ |I(f − p∗n)|+ |In(f − p∗n)| ≤ 2E∗n +
n∑
k=0

|wk|E∗n.(4.3)

Since the quadrature formula is interpolatory,
∑

wk = 2, and if the weights are
nonnegative, this implies

∑
|wk| = 2, from which (4.1) follows, and similarly (4.2) in

the case of Gauss quadrature since in that case p∗n can be replaced by p∗2n+1. The
positivity of the weights was proved for Gauss quadrature by Stieltjes in 1884 and for
Clenshaw–Curtis quadrature by Imhof in 1963 [36]. The convergence of In to I is a
consequence of (4.1) together with the Weierstrass approximation theorem.

Theorem 4.1 tells us that if the best approximants to f converge rapidly as n→∞,
then In will converge rapidly to I. The next step is to combine this theorem with
results of approximation theory to the effect that if f is smooth, its best approxi-
mants converge rapidly. We shall consider some results of this kind derived from the
Chebyshev series for a function f ∈ C[−1, 1]. The logic of the development can be
summarized like this:

smooth function f

⇓
rapidly decreasing Chebyshev coefficients

⇓
rapidly converging Chebyshev partial sums

⇓
rapidly converging best approximations

⇓
rapidly converging quadrature

However, we shall see in the next section that sharper results can sometimes be
obtained by bypassing steps 3 and 4 and going directly from the Chebyshev coefficients
to the quadrature formulas.

Let Tj denote the Chebyshev polynomial of degree j, Tj(x) = cos(j cos−1 x),
which equioscillates between j + 1 extrema ±1 on [−1, 1]. The Chebyshev series for
f ∈ C[−1, 1] is defined by [49, p. 165]

f(x) =
∞∑
j=0

′
ajTj(x), aj =

2
π

∫ 1

−1

f(x)Tj(x)√
1− x2

dx,(4.4)

where the prime indicates that the term with j = 0 is multiplied by 1/2. (These
formulas are nothing more than the transplantation to x = cos θ of the Fourier series
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for the 2π-periodic even function f(cos θ).) The equals sign in the first formula is
justified under the mild condition that f is Dini-continuous, in which case the series
converges uniformly to f ; this is true in particular if f is Hölder continuous for any
Hölder exponent > 0 [49, p. 168].

Our first step is to show that if f is smooth, its Chebyshev coefficients decrease
rapidly. We consider two smoothness conditions: a kth derivative satisfying a con-
dition related to bounded variation, or analyticity in a neighborhood of [−1, 1]. Re-
garding the former, let ‖ · ‖T be the Chebyshev-weighted 1-norm defined by

‖u‖T =
∥∥∥∥ u′(x)√

1− x2

∥∥∥∥
1
.(4.5)

This norm is defined via a Stieltjes integral for any u of bounded variation (see, e.g.,
[61, p. 220]), though ‖u‖T may be infinite depending on the behavior near x = ±1.
The condition of interest for our theorems is that ‖f (k)‖T should be finite, where f (k)

is the kth derivative of f .5

Theorem 4.2. If f, f ′, . . . , f (k−1) are absolutely continuous on [−1, 1] and if
‖f (k)‖T = V <∞ for some k ≥ 0, then for each n ≥ k + 1,

|an| ≤
2V

πn(n− 1) · · · (n− k)
.(4.6)

If f is analytic with |f(z)| ≤M in the region bounded by the ellipse with foci ±1 and
major and minor semiaxis lengths summing to ρ > 1, then for each n ≥ 0,

|an| ≤
2M
ρn

.(4.7)

Proof. For (4.7), see [49, p. 175]. As for (4.6), I do not know if this result can be
found in print; I am grateful to Endre Süli for suggesting the following argument. We
proceed by transplanting to the θ = cos−1 x variable and integrating by parts k + 1
times; the assumptions ensure that the first k derivatives exist in the ordinary sense
and that f (k) can in turn be written as a Stieltjes integral. Since dx = − sin θdθ and√
1− x2 = sin θ, the first integration by parts can be written as

an =
2
π

∫ 1

−1

f(x)Tn(x)√
1− x2

dx

=
2
π

∫ π

0
f(cos θ) cos(nθ)dθ

=
2
πn

∫ π

0
f ′(cos θ) sin(nθ) sin θdθ;

the boundary terms vanish because of the sine. The trigonometric identity sin θ1 sin θ2 =
1
2 cos(θ1 − θ2)− 1

2 cos(θ1 + θ2) converts this to

an =
2
πn

∫ π

0
f ′(cos θ)

[
cos((n− 1)θ)

2
− cos((n+ 1)θ)

2

]
dθ,

5Our attention to this condition derives from a moral principle: the exponent should come out
right for the function f(x) = |x|. For this function we can take k = 1 in Theorem 4.2, giving
an = O(n−2).
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which implies

|an| ≤
2
πn
‖f ′(cos θ)‖1

∥∥∥∥cos((n− 1)θ)
2

− cos((n+ 1)θ)
2

∥∥∥∥
∞

=
2
πn
‖f(x)‖T

∥∥∥∥cos((n− 1)θ)
2

− cos((n+ 1)θ)
2

∥∥∥∥
∞

since dθ = dx/
√
1− x2. The L∞ norm is bounded by 1, and thus we have established

|an| ≤ 2V (0)/πn with V (0) = ‖f‖T . Further integrations by parts bring in higher
derivatives of f and corresponding higher variations up to V (k) = V = ‖f (k)‖T . More
and more cosine terms appear, but the coefficients are such that their sum always has
L∞ norm at most 1. Just as the first integration by parts introduced a factor n in the
denominator, the second leads to factors n−1 and n+1, the third to factors n−2, n,
and n+ 2, and so on. To keep the formulas simple we do not keep track of all these
different denominators but weaken the inequality slightly by replacing them all with
n − 1 at the second differentiation, n − 2 at the third, and so on up to n − k at the
(k + 1)st differentiation. The result is (4.6).

Our next step is to consider polynomial approximations obtained as partial sums
of the Chebyshev series. For any n ≥ 0, define

fn(x) =
n∑
j=0

′
ajTj(x)(4.8)

and

ETn = ‖f − fn‖ ≤
∞∑

j=n+1

|aj |.(4.9)

(The polynomial fn can be interpreted as the least-squares projection of f onto the
set of polynomials of degree ≤n with respect to the weight (1 − x2)−1/2. It can
also be obtained from f by convolution in the θ variable with a certain n-dependent
kernel [49, p. 166].) The following theorem is a corollary of Theorem 4.2 and (4.9).

Theorem 4.3. If f, f ′, . . . , f (k−1) are absolutely continuous on [−1, 1] and if
‖f (k)‖T = V <∞ for some k ≥ 1, then for each n ≥ k + 1,

ETn ≤
2V

πk(n− k)k
.(4.10)

If f is analytic with |f(z)| ≤M in the region bounded by the ellipse with foci ±1 and
major and minor semiaxis lengths summing to ρ > 1, then for each n ≥ 0,

ETn ≤
2M

(ρ− 1)ρn
.(4.11)

Proof. Equation (4.11) follows readily from (4.7) and (4.9). (This bound is
erroneously reported without the factor of 2 on p. 133 of [42].) Similarly, (4.10)
follows from (4.6) and (4.9) if we use the inequality

∞∑
j=n+1

1
j(j − 1) · · · (j − k)

≤
∞∑

j=n+1

1
(j − k)k+1 ≤

∫ ∞
n

dx

(x− k)k+1 =
1

k(n− k)k
.
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Now how does ETn , the error of the truncated Chebyshev series, compare with
the best approximation error E∗n? In one direction the answer is obvious, since the
optimality of E∗n implies E∗n ≤ ETn .

6 In the other direction it is well known that the
gap is never bigger than O(log n). The following theorem states this result together
with another lower bound on E∗n.

Theorem 4.4. For any f ∈ C[−1, 1] and n ≥ 0,

π

4
|an+1| ≤ E∗n ≤ ETn ≤

(
2 +

4
π2 log(2n+ 1)

)
E∗n.(4.12)

In particular, ETn < 4.2E∗n for n ≤ 100 and ETn < 7.9E∗n for n ≤ 106.
Proof. The first inequality is due to Bernstein; see [8, p. 131] or [49, p. 171].

The last inequality follows from the fact that the Lebesgue constant for Cheby-
shev projection, which is the same as the Lebesgue constant for Fourier projection
defined originally by Lebesgue (1909), is bounded by 1 + (4/π2) log(2n + 1) [23].
The ∼(4/π2) log n dependence was known already to Fejér (1910) and Bernstein
(1912).

By combining Theorems 4.1 and 4.3, we get bounds on I−In, which Theorem 4.4
indicates are likely to be reasonably sharp. Here are bounds for Gauss quadrature.
The bound (4.14) is due to Rabinowitz, appearing as equation (18) of [48] and also as
Theorem 90 of [6]. Bounds based on the assumption of analyticity in an ellipse were
first derived by Bernstein [5]; for a discussion, see [26, p. 114].

Theorem 4.5. Let Gauss quadrature be applied to a function f ∈ C[−1, 1]. If
f, f ′, . . . , f (k−1) are absolutely continuous on [−1, 1] and ‖f (k)‖T = V <∞ for some
k ≥ 1, then for each n ≥ k/2,

|I − In| ≤
32V

15πk(2n+ 1− k)k
.(4.13)

If f is analytic with |f(z)| ≤M in the region bounded by the ellipse with foci ±1 and
major and minor semiaxis lengths summing to ρ > 1, then for each n ≥ 0,

|I − In| ≤
64M

15(1− ρ−2)ρ2n+2 .(4.14)

Partial proof. Suppose the factors 32/15 and 64/15 in these statements are in-
creased to 8 and the factor 1− ρ−2 in the denominator of (4.14) is decreased to 1− ρ.
Then (4.13) follows from (4.2) and (4.10), and (4.14) from (4.2) and (4.11). The
sharpening of these factors to complete the proof requires consideration of individual
Chebyshev coefficients and is discussed in the next section.

The bounds of Theorem 4.5 are valid for Clenshaw–Curtis quadrature, except
with 2n + 1 replaced by n. However, we do not write these inequalities down, as
we have seen that they are highly pessimistic and our aim is to explain that effect.
Ideally, we would like to establish bounds for Clenshaw–Curtis quadrature that are
not much different from those of Theorem 4.5—i.e., with “2n”, not “n”. The next
section will present such an extension to Clenshaw–Curtis quadrature of (4.13), and
section 6 will point the way toward a possible extension of (4.14).

6Thus (4.10) provides a proof of a variant of one of the Jackson theorems of approximation
theory [8, p. 147]: E∗n ≤ 2V/πk(n− k)k.
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5. Explanation 1: Chebyshev Expansions and Aliasing. Let us immediately
state our conclusion: the first half of Theorem 4.5 holds for Clenshaw–Curtis as well
as Gauss quadrature. The sole change needed is to replace the condition n ≥ k/2 by
the condition that n is sufficiently large. Thus Clenshaw–Curtis has essentially the
same algebraic rate of convergence as Gauss quadrature for several-times-differentiable
functions.

Theorem 5.1. Let Clenshaw–Curtis quadrature be applied to a function f ∈
C[−1, 1]. If f, f ′, . . . , f (k−1) are absolutely continuous on [−1, 1] and ‖f (k)‖T = V <
∞ for some k ≥ 1, then for all sufficiently large n,

|I − In| ≤
32V

15πk(2n+ 1− k)k
.(5.1)

“Sufficiently large n” means n > nk for some nk that depends on k but not f or V .
Notice the key implication: the factor 2−k in the error bound (4.13) for Gauss

quadrature, which one thinks of as coming from its doubled order of accuracy, ap-
plies to Clenshaw–Curtis quadrature too. In this section we shall derive this bound.
The theorem is new, but it is built on the ideas of Elliott [16] and O’Hara and
Smith [45] from forty years ago, combined with the “rough and ready” estimates of
Rabinowitz [48].

The crucial fact is that of aliasing. Elementary algebra shows that on the grid
in [0, 2π] of 2n equally spaced points θj = πj/n, 0 ≤ j ≤ 2n − 1, the functions
cos((n + p)πθj) and cos((n − p)πθj) are indistinguishable for any integer p. We say
that the wave numbers (n+ p)π and (n− p)π are aliases of one another on this grid.
Transplanting to the variable x = cos θ gives the following result.

Theorem 5.2. For any integer p with 0 ≤ p ≤ n,

Tn+p(xj) = Tn−p(xj) (0 ≤ j ≤ n)(5.2)

on the Chebyshev grid (2.3). Consequently Clenshaw–Curtis quadrature gives the same
result for both functions,

In(Tn+p) = In(Tn−p) = I(Tn−p) =



0 if n± p is odd,

2
1− (n− p)2

if n± p is even,
(5.3)

and the error in integrating Tn+p is

I(Tn+p)− In(Tn+p) =



0 if n± p is odd,

8pn
n4 − 2(p2 + 1)n2 + (p2 − 1)2

if n± p is even.
(5.4)

Proof. The equality (5.2) was established in the discussion above it. Since
Clenshaw–Curtis quadrature is exact for polynomials of degree ≤n, the identity
(5.3) follows from the standard formula

∫ 1
−1 Tj(x)dx = 2/(1 − j2) for the integral

of a Chebyshev polynomial of even order (which appeared in the penultimate line of
clenshaw_curtis in section 2). Finally, taking the difference of the integrals with
j = n+ p and j = n− p gives (5.4).

From (5.4) we can see why Clenshaw–Curtis quadrature is unexpectedly accurate.
Suppose n is even for simplicity. Then the first few terms in the Chebyshev expansion
of f that contribute to the error I(f)− In(f) are

an+2Tn+2, an+4Tn+4, . . . .
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However, the exact integrals of these Chebyshev polynomials are small, of order
O(n−2), and, thanks to aliasing, their values as computed by Clenshaw–Curtis quadra-
ture will also be small. From (5.4), we see that if n is large, the errors associated with
the terms above are approximately

16
n3 |an+2|,

32
n3 |an+4|, . . . .(5.5)

The numbers grow as the subscript increases from n towards 2n, but even for a
“typical” term an+p, the error will be of order n−2. For a numerical illustration,
suppose n = 50. Then the (n + 1)-point Clenshaw–Curtis formula integrates T52
inexactly, but the error is only about 0.0001. Similarly its errors for T60, T70, T80,
and T90 are about 0.0006, 0.002, 0.006, and 0.02, respectively. By contrast the Gauss
formula with n = 50 integrates all the polynomials up to T101 exactly, but after that
its error jumps immediately to order 1: for T102, about −1.6.

We can now derive (5.1) and, in the process, explain how the constants 8 and
1 − ρ in our partial proof of Theorem 4.5 can be improved to 32/15 and 64/15 and
1− ρ−2.

Proof of Theorem 5.1 and completion of proof of Theorem 4.5. From the Cheby-
shev expansion of f we know that the quadrature error can be written as

I(f)− In(f) =
∞∑
j=0

′
aj
(
I(Tj)− In(Tj)

)
.

This implies

|I(f)− In(f)| ≤ S1 + S2 + S3 + S4,

where

S1 =
n∑
j=0

′ |aj |
∣∣I(Tj)− In(Tj)

∣∣ ,

S2 =
2n−�n1/3	∑
j=n+1

|aj |
∣∣I(Tj)− In(Tj)

∣∣ ,

S3 =
2n+1∑

j=2n+1−�n1/3	

|aj |
∣∣I(Tj)− In(Tj)

∣∣ ,

S4 =
∞∑

j=2n+2

|aj |
∣∣I(Tj)− In(Tj)

∣∣ .

The term S1 is zero since the quadrature formula is interpolatory. First let us consider
Gauss quadrature. In this case S2 and S3 are zero too, so our only task is to estimate
S4. In the last section, we implicitly used the inequality |I(Tj)− In(Tj)| ≤ 4 for each
j. However, since j ≥ 4 and Tj is odd when j is odd, from (5.3) it can be seen that
we actually have

|I(Tj)− In(Tj)| ≤
{
32/15 if j is even,

0 if j is odd,
(5.6)
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since 2 + 2/(42 − 1) = 32/15. Equations (4.13) and (4.14) follow by combining this
inequality with (4.6) and (4.7), respectively, and, in the case of (4.13), using an
estimate of a sum analogous to that in the proof of Theorem 4.3.

Next let us consider Clenshaw–Curtis quadrature. From (5.4) it can be seen that
the factors

∣∣I(Tj)− In(Tj)
∣∣ that appear in S2 are all of order at worst n−2/3 and, by

Theorem 4.2, the coefficients aj are of order V n−k−1. Thus S2 consists of O(n) terms
of size O(V n−k−5/3), for a total magnitude O(V n−k−2/3). The number S3 consists of
O(n1/3) terms of size O(V n−k−1), for a total magnitude again O(V n−k−2/3). Finally,
consider S4 once more. The statement of Theorem 5.1 allows us the freedom to
increase n a little further. In particular, taking n ≥ 2 is enough to ensure j ≥ 6, in
which case (5.6) holds with the constant 32/15 improved to 2 + 2/(62 − 1) = 72/35.
Combining this with (4.6) and putting the pieces together, we find

S1 + S2 + S3 + S4 ≤ O(V n−k−2/3) +
72V/35

πk(2n+ 1− k)k
<

32V/15
πk(2n+ 1− k)k

for large enough n.

6. Explanation 2: Rational Approximation of log((z + 1)/(z - 1)). The devel-
opment so far has not followed the sequence that led to this article being written.
Some time ago I undertook to investigate analogues for [−1, 1] of observations put
forward in [56] about quadrature and rational approximation on (−∞, 0]. As soon
as images like Figures 4 and 5 appeared, I knew there was a story to be told about
Clenshaw–Curtis quadrature.

To set the stage, we turn to an old idea for estimating the accuracy of quadrature
formulas applied to analytic functions: Cauchy integrals in the complex plane. As
always, we are interested in the relationship of the integral I of (2.1) to its discrete
approximation In of (2.2) for a function f ∈ C[−1, 1]. Suppose that f is analytic in a
neighborhood of [−1, 1], and let Γ be a contour in the region of analyticity that winds
once around [−1, 1] in the counterclockwise direction. Then using Cauchy’s integral
formula we can write

I =
∫ 1

−1
f(x)dx =

∫ 1

−1

1
2πi

∫
Γ

f(z)
z − x

dz dx =
1
2πi

∫
Γ
f(z)φ(z) dz,(6.1)

where φ(z) is given by

φ(z) =
∫ 1

−1

dx

z − x
= log

z + 1
z − 1

.(6.2)

To be precise, φ is defined as the analytic function in C ∪ {∞}\[−1, 1] given by the
branch of log((z+1)/(z− 1)) that is positive for z ∈ (1,∞). At the same time, using
complex residue calculus, we can also express In as a contour integral over Γ:

In =
n∑
k=0

wkf(xk) =
1
2πi

∫
Γ
f(z) rn(z) dz,(6.3)

where rn is defined by

rn(z) =
n∑
k=0

wk
z − xk

.(6.4)
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Combining (6.1) and (6.3) now gives a beautiful result, which Takahasi and Mori
stated in [54] though they were possibly not the first to do so. For more on quadrature
error estimates from contour integrals, see [15].

Theorem 6.1. Let f be analytic in a neighborhood of [−1, 1] and let Γ be a
contour contained in the region of analyticity of f that encloses [−1, 1] once in the
counterclockwise direction. Let φ be defined by (6.2) and, for any n ≥ 0, let In be the
result of an arbitrary quadrature formula (2.2) with nodes in [−1, 1]. Then the error
is given by

I − In =
1
2πi

∫
Γ
f(z)(φ(z)− rn(z)) dz,(6.5)

where rn is defined by (6.4), and hence

|I − In| ≤
1
2π
|Γ| ‖f‖Γ ‖φ− rn‖Γ,(6.6)

where |Γ| is the arc length of Γ and ‖ · ‖Γ is the supremum norm over Γ.
This theorem shows that quadrature over [−1, 1] is associated with a problem in

rational approximation: how closely can φ(z) = log((z+1)/(z− 1)) be approximated
in a region of the complex plane near [−1, 1] by a rational function of type (n, n+1),
i.e., with numerator of degree ≤n and denominator of degree ≤n + 1? Note that
φ(∞) = 0, so it makes sense that the degree of the denominator exceeds that of the
numerator. Any sum (6.4) with nonzero weights wk and distinct nodes xk defines
a rational function of type (n, n + 1) and, conversely, if a rational function of type
(n, n+ 1) is expanded in partial fractions, it will have the form (6.4) provided it has
n+ 1 distinct poles.

The idea of relating quadrature formulas to rational functions goes back to Gauss
himself [25, 26]. In fact, Gauss’s original derivation is closer to this way of thinking
than many of the subsequent developments framed in terms of orthogonal polynomi-
als by Jacobi, Christoffel, Stieltjes, and others. Gauss quadrature formulas have a
wonderfully simple characterization in terms of rational approximants.

Theorem 6.2. For any n ≥ 0, the rational function rn of (6.4) associated with
the (n + 1)-point Gauss quadrature formula is the type (n, n + 1) Padé approximant
to φ(z) at z =∞. The function φ− rn has a zero of order exactly 2n+ 3 at z =∞.

Proof. Gauss derived this result by continued fractions [25]; see [26, section
1.2].

A Padé approximant, as always, is defined as the unique rational function of the
specified type that matches the Taylor expansion of the given function at the given
point (here∞) to as high an order as possible [3]. This terminology was not available
in Gauss’s day, but Theorem 6.2 is his nonetheless.

What about Clenshaw–Curtis quadrature?
We begin with an experimental comparison. Figure 4 shows errors |(φ−rn)(z)| as

contour plots in the complex plane for Newton–Cotes, Gauss, and Clenshaw–Curtis
formulas with n = 8 and 16. In each case the innermost contour corresponds to
|φ(z) − rn(z)| = 1 and, moving outward, the levels are 10−1, 10−2, . . . , 10−13. As
z → ∞, all the approximations become very good. Figures like these were drawn
previously by Takahasi and Mori [54], for Gauss quadrature but not Clenshaw–Curtis,
as part of an important series of papers on quadrature formulas and their enhancement
by changes of variables like the double exponential transformation. The only other
publication that I know of where figures like these appear is [56], for quadrature over
(−∞, 0].
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Newton−Cotes n = 8

−4 −2 0 2 4

−2

0

2

Gauss n = 8

−4 −2 0 2 4

Clenshaw−Curtis n = 8

−4 −2 0 2 4

Newton−Cotes n = 16

−2 −1 0 1 2

−1

0

1

Gauss n = 16

−2 −1 0 1 2

Clenshaw−Curtis n = 16

−2 −1 0 1 2

Fig. 4 Contour plots of the error |φ(z) − rn(z)| for the rational approximations associated with
Newton–Cotes, Gauss, and Clenshaw–Curtis quadrature formulas with n = 8 and 16.
The contours, from inner to outer, correspond to 100, 10−1, . . . , 10−13. The Gauss and
Clenshaw–Curtis errors are virtually identical near [−1, 1], explaining their similar accuracy
for functions that are not analytic in a large region of the plane.

What can we infer from such images? Suppose f is analytic in a big region of
the complex plane and does not grow too fast as |z| increases. Then (6.6) implies
that we may get a small bound on |I − In| by integrating over one of the contour
levels far from [−1, 1]. In the extreme case, suppose f is a polynomial of degree k.
Then Theorem 6.2 implies that for Gauss quadrature, (φ − rn)f has a zero of order
2n+ 3− k at ∞. If this number is at least 2, i.e., k ≤ 2n+ 1, then by taking circular
contours Γ of radius R→∞ we get arbitrarily small bounds on I−In, confirming the
exactness of Gauss quadrature for polynomials of degree ≤2n + 1. By reversing the
argument we can see that for any interpolatory formula, including Clenshaw–Curtis
or Newton–Cotes, φ− rn must have a zero of order at least n+ 2 at ∞. If it did not,
taking a large circular contour Γ in (6.5) would imply a nonzero error I − In for some
monomial f(x) = xk with k ≤ n.

At the other extreme, suppose f is analytic in only a small neighborhood of
[−1, 1] or not analytic at all. Then Figure 4 suggests that Newton–Cotes quadrature
will not converge at all, which is indeed the case. But the remarkable thing is what
it suggests about Clenshaw–Curtis quadrature. The figure reveals that near [−1, 1],
the Clenshaw–Curtis rational function is essentially indistinguishable from the Gauss
rational function as an approximation to φ(z). Thus we can expect that for a function
f of this kind, the two quadrature formulas should have about the same accuracy—
exactly what was observed in the last three sections.

Figure 5 shows a close-up for the larger value n = 64. On the left we see contours
for Gauss quadrature, and on the right, Clenshaw–Curtis. Now the pattern is even
more striking. At z = ∞, rn interpolates φ to order 131 for Gauss quadrature and
only order 67 for Clenshaw–Curtis (since n is even, we get one more than the minimal
order n + 2), and that is why the outer curves are twice as far apart on the right as
on the left. The “missing” 64 interpolation points for Clenshaw–Curtis quadrature,

D
ow

nl
oa

de
d 

09
/2

5/
17

 to
 1

29
.4

9.
88

.2
23

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IS GAUSS QUADRATURE BETTER THAN CLENSHAW–CURTIS? 83

n = 64

Clenshaw−CurtisGauss

−1 −0.5 0 0.5 1

−0.25

0

0.25

Fig. 5 Contour plot of the error |φ(z) − rn(z)| as in Figure 4, but for n = 64 and with Gauss on
the left half of the image, Clenshaw–Curtis on the right. The scallops in the curves on the
right reveal the presence of n−2 finite zeros of φ(z)−r(z) lying along a football-shaped curve
surrounding [−1, 1].

however, lie along a football-shaped curve at a certain distance from [−1, 1] (actually
there are 62 of them, not 64). Inside that curve, the two sides of the figure are almost
indistinguishable.

The following is a first step towards explaining this effect.
Theorem 6.3. Let rn be the rational function (6.4) associated with any interpo-

latory quadrature formula (2.2) with positive weights. Then the function φ(z)− rn(z)
has at least n+ 2 zeros at z =∞ and exactly 2n+ 3 zeros in C ∪ {∞}\[−1, 1] if the
points ±1 are not quadrature nodes, or 2n+ 1 zeros if these points are nodes.

Proof. A proof of the assertion about z = ∞ was sketched above. The result
about total count of zeros in C ∪ {∞}\[−1, 1] can be established by applying the
argument principle to φ(z) − r(z) over a contour Γ that encloses [−1, 1] sufficiently
tightly. Each quadrature node in (−1, 1) contributes a decrease in argument by 2π
as Γ passes nearby in the upper half-plane, then another decrease by 2π as it passes
nearby in the lower half-plane, and the final contributions come from φ(z), whose
argument decreases by π near x = 1 and again by π near x = −1. We omit the
details.

Thus we see that all interpolatory quadrature formulas with positive weights
correspond to rational interpolants to φ(z) of order approximately 2n. What distin-
guishes Gauss quadrature is that all the interpolation takes place at the single point∞.
The rational functions associated with other quadrature formulas can be interpreted
as examples of what approximation theorists call multipoint Padé approximants [3].

Figure 6 explores these interpolation points further, showing the n − 2 zeros of
φ − rn (computed numerically) for four values of n. (When n is odd the number
of finite zeros increases to n − 1 and the number of zeros at z = ∞ shrinks from
n + 3 to n + 2.) Two of the interpolation points are real, lying at approximately
±(1+ 1.7n−2), and the remainder lie in complex conjugate pairs along a curve whose
height shrinks at the rate O(n−1 log n). Some of the details of this behavior are
analyzed in a companion paper with Weideman [60]. In particular it would appear
that a theorem along the following lines is likely to be valid, which would make an
interesting companion to Theorem 5.1: the bound (4.14) applies to Clenshaw–Curtis
as well as Gauss quadrature so long as n ≤ nρ, where nρ is a number that approaches
∞ as ρ shrinks to 1.
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−1

 

−0.5

 

0

 

0.5

 

1

n = 8 n = 16

−1  −0.5  0  0.5  1
−1

 

−0.5

 

0

 

0.5

 

1

n = 32

−1  −0.5  0  0.5  1

n = 64

Fig. 6 Points in the complex plane at which φ(z)− rn(z) = 0 for Clenshaw–Curtis quadrature with
n = 8, 16, 32, 64. In addition there are n+ 3 interpolation points at z =∞.

We shall close with an illustration of the implications of Figure 6. Consider again
the fourth function of Figure 2, f(x) = 1/(1 + 16x2). This function is analytic on
[−1, 1] but has poles at ±i/4. In Figure 6 we see that the curve of interpolation points
crosses ±i/4 somewhere between n = 32 and n = 64. This suggests that for values
of n larger than about 50, the rate of convergence of the Clenshaw–Curtis formula
will be cut in half. To test this prediction, Figure 7 extends the earlier computation
to n = 120 instead of n = 30. As expected, there is a kink in the convergence curve
at n ≈ 50. Based on an early draft of this paper, an exact analysis of this example
has been developed by Weideman and Trefethen [60] and related estimates for more
general functions have been provided by Elliott, Johnston, and Johnston [17]. A
previous analysis of convergence for functions of this form caught the asymptotic
behavior, where Gauss beats Clenshaw–Curtis, but not the transient and the kink [6,
Theorems 81 and 89].

7. Conclusion. Gauss quadrature, one of the jewels of numerical analysis, is a
beautiful and powerful idea. Yet the Clenshaw–Curtis formula has essentially the
same performance for most integrands and can be implemented effortlessly by the
FFT. Figures 4 and 5 offer a visual explanation of why these two quadrature formulas
are so close. Theorems 4.5 and 5.1 make the comparison quantitative.

The observations of this paper may have implications for spectral methods for
the numerical solution of ordinary and partial differential equations [7], where the
debate between Chebyshev (≈Clenshaw–Curtis) and Legendre (≈Gauss) methods is
perennial.

Along the way to Theorem 5.1 on Clenshaw–Curtis quadrature, we have derived
some possibly new results from the consideration of Chebyshev expansions of smooth
functions: on decay of Chebyshev coefficients (see (4.6)), on near-optimality of trun-
cated Chebyshev series (see (4.10) and (4.12)), on Jackson-type bounds for poly-
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0 20 40 60 80 100 120

10
−16

10
−12

10
−8

10
−4

10
0

1/(1+16x2)

| I
−

I n |

n

Fig. 7 Repetition of the fourth panel of Figure 2, but now to the higher value n = 120. Near n = 50,
the rate of convergence is cut abruptly in half as the curve of interpolation points of Figure 6
crosses the poles of f at ±i/4.

nomial best approximations (footnote 6), and on the accuracy of Gauss quadrature
(see (4.13)). We do not claim, however, that any of these results are the best possible,
and, indeed, as pointed out in section 4, they can probably be sharpened with the use
of techniques of [13] and [14].

Though some results are given in [17] and [60], we hope that others will take up the
challenge of explaining Figures 5–7 more fully, perhaps by making use of the potential
theoretic notion of “balayage” [24]. The idea here would be that the differences φ−rn
for Gauss and Clenshaw–Curtis quadrature are controlled by the zeros of this function,
analogous to point charges. For Gauss quadrature all the charges lie at z =∞, while
for Clenshaw–Curtis half of them have been “swept out” from ∞ to a finite curve;
but the potentials generated in both cases are essentially the same near [−1, 1].

This article has questioned the factor of 2 in efficiency that is widely thought
to separate Clenshaw–Curtis and Gauss quadrature. Quite another and independent
matter is the factor of π/2 that both methods lose due to clustering of quadrature
nodes near endpoints, in comparison with the trapezoid rule for a periodic integrand.
As mentioned in footnote 4, new “transplanted Gauss” and “transplanted Clenshaw–
Curtis” methods based on conformal maps are proposed in [33] for recovering this
factor of π/2 (joint work with Nicholas Hale). Combining the results of that paper
and this one, we find that transplanted Clenshaw–Curtis quadrature is both faster
than Gauss quadrature to implement and more accurate.
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