
1. Gauss-Jacobi quadrature and Legendre polynomials

Simpson’s rule for evaluating an integral
∫ b

a
f(t)dt gives the correct answer with

error of about O(n−4) (with a constant that depends on f , in particular, it depends

on the size of the fourth derivative of f). However, we can do much better than

Simpson’s rule for evaluating integrals.

Suppose w is defined and integrable on [a, b] and we want to evaluate
∫ b

a

p(t)w(t)dt,

for p ∈ Pn (the polynomials of degree n). Think of w = 1 or w(t) = (t − a)α as

the main examples. If we are given any n+ 1 distinct points {xk}n0 ⊂ [a, b] then p is

determined by its values at these points, i.e., the map

p → {p(x0), . . . p(xn)}

is an invertible map Pn → R
n. Thus there must be real numbers wk so that

∫ b

a

p(t)w(t)dt =
n

∑

k=0

wkp(xk),(1)

holds for all p ∈ Pn.

What are these weights more explicitly? Given the point set {xk}n0 define the

Lagrange polynomials

Lk(x) =
∏

0≤j≤n,j 6=k

x− xj

xk − xj

.

This is equal to 1 at xk and equal to 0 at the other xj ’s. We must have

p(x) =
n

∑

k=0

p(xk)Lk(x),

for any p ∈ Pn, since both sides are degree n polynomials that agree at n+ 1 points.

Thus
∫ b

a

p(x)w(x)dx =

∫ b

a

n
∑

k=0

p(xk)Lk(x)w(x)dx =
n

∑

k=0

p(xk)[

∫ b

a

Lk(x)w(x)dx].

Thus (1) holds with wk =
∫ b

a
Lk(x)w(x)dx.

We can simplify this further by noting that if

pn(x) = (x− x1) · · · (x− xn) =
n
∏

k=1

(x− xk),

1
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then

Lk(x) =
∏

0≤j≤n,j 6=k

x− xj

xk − xj

=
pn(x)

(x− xk)p′n(xk)
,

since both sides are degree n polynomials that are 1 at xk and 0 at xj, j 6= k (this

derivation uses l’Hopital’s rule). Thus

wk =

∫ b

a

pn(x)

(x− xk)p′n(xk)
w(x)dx.(2)

When w(t) = 1 is the constant function, then these weights are integrals of polyno-

mials and can be computed exactly.

The discussion so far assumes that we are given the points {xk}. If we are allowed
to choose these points, then we have n+1 additional degrees of freedom, so we might

hope to correctly evaluate integrals for even higher degree polynomials. In fact, we

can choose n+1 points {xk}n0 so that (1) holds for all polynomials of degree ≤ 2n+1.

The secret is to choose a polynomial p of degree n+1 which is orthogonal to every

polynomial q of lesser degree, i.e., so that

〈p, q〉w =

∫ b

a

p(t)q(t)w(t)dt = 0,

for all q ∈ Pn. Now let {xk} be the zeros of p and let {wk} be the weights which

make (1) true for polynomials of degree ≤ n. If f is a polynomial of degree ≤ 2n+1,

then long division of polynomials shows that we can write f = a+ bp where a, b are

polynomials of degree ≤ n. Thus
∫ b

a

f(t)w(t)dt =

∫ b

a

a(t)w(t)dt+

∫ b

a

b(t)p(t)w(t)dt

=
∑

k

wka(xk) + 0

=
∑

k

wkf(xk),

where the last line holds since f = a on the zeros of p.

To see that it is not possible to increase the degree of f to 2n + 2, consider the

function
∏n

k=0(t − xk)
2. It vanishes at the points {xk} so

∑

k wkf(xk) = 0, but
∫ b

a
f(t)w(t)dt > 0, at least if w > 0 since f > 0 except at n+ 1 points.
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Lemma 1. Given a sequence of orthonormal polynomials {pk}nk=1 we have

wk =
kn
kn−1

〈pn−1, pn−1〉
pn−1(xk)p′n(xk)

,

where {xk}n1 are the zeros of pn and kn is the leading coefficient of pn (i.e., the

coefficient of xn in pn).

To prove this we need two preliminary results. The first is:

Lemma 2. Let

Kn(x, y) =
n

∑

k=0

pk(x)pk(y).

Suppose K(x, y) is a polynomial of degree n in both x and y. Then

〈p(x), K(x, y)〉w(x) = p(y),

holds for every polynomial p of degree n iff K = Kn.

Proof. If p is polynomial of degree ≤ n then it has a n expansion in terms of

the basis p(x) =
∑

ampm(x), so

〈p(x), Kn(x)〉w = 〈
∑

ampm(x),
∑

pk(x)pk(y)〉w
=

∑

m,k

ampk(y)〈pm(x), pk(x)〉w

=
∑

k

akpk(y)

= p(y),

so the equality holds when K = Kn. Conversely, some equality holds for K and all

p. Fix w and choose p(x) = Kn(x, w). Then

〈Kn(x, w), K(x, y)〉w = Kn(y, w).

But by our earlier calculation kn has the reproducing property so

〈K(x, w), Kn(x, y)〉w = K(y, w).

Since the two left hand sides equal the same integral, we deduce K(y, w) = Kn(y, w)

for any y, w, which proves the lemma. �

The second preliminary result we need is:
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Theorem 3 (Christoffel-Darboux). With notation as above,

Kn(x, y) =
kn
kn+1

pn+1(x)pn(y)− pn(x)pn+1(y)

x− y

Proof. Let K(x, y) denote the right hand side above. The numerator is a poly-

nomial in x of degree ≤ n + 1 and vanishes when x = y, so K(x, y) is actually a

polynomial in x of degree ≤ n. Similarly for y. Thus to show K = Kn we only have

to show it has the reproducing property of the previous lemma.

A bit of expanding and using 〈pn, pn+1〉w = 0 shows

〈p(x)m,K(x, y)〉w =
kn
kn+1

〈(pn+1(x)pn(y)− pn(x)pn+1(y)),
p(x)− p(y)

x− y
〉w

+
kn
kn+1

p(y)〈pn+1(x),
pn(y)− pn(x)

x− y
〉w

+
kn
kn+1

p(y)〈pn(x),
pn+1(x)− pn+1(y)

x− y
〉w

Note that (p(x)− p(y))/(x− y) has degree ≤ n− 1 as a polynomial in x and hence

is orthogonal to pn. Thus the first inner product is 0. Similarly for the second inner

product. To compute the third inner product, write

kn
kn+1

p(y)
pn+1(x)− pn+1(y)

x− y
= kn[

yn+1 − xn+1

y − x
+ . . . ]

= knx
n + . . .

= pn(x) + q(x, y),

where q is a polynomial of degree ≤ n − 1 and hence orthogonal to pn. Thus the

third inner product equals 〈pn, pn〉w = kn+1/kn, and hence

〈p(x)m,K(x, y)〉w = p(y).

By the previous lemma this implies K = Kn, as desired. �

Lemma 1. We already know from (2) that

wk =
1

p′n(xk)

∫ b

a

pn(x)

x− xk

w(x)dx
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Since pn(xk) = 0,
∫ b

a

pn(x)

x− xk

w(x)dx =
1

pn−1(xk)

∫

pn(x)pn−1(xk)

x− xk

w(x)dx

=
1

pn−1(xk)

∫

pn(x)pn−1(xk)− pn−1(x)pn(xk)

x− xk

w(x)dx

=
1

pn−1(xk)

kn
kn−1

∫

Kn(x, xk)w(x)dx

=
kn

kn−1pn−1(xk)
.

�

For more general functions, the difference between our discrete estimate and the

actual integral can be bounded as follows:

En(f) =

∫ b

a

f(t)w(t)dt−
∑

k

wkf(xk) =
f (2n)(ζ)

(2n)!k2
n

,

where ζ is some point in (a, b) and kn is the coefficient of the power tn in p(t). For

Schwarz-Christoffel integrals, the most relevant case is when w is a Jacobi weight

w(t) = (1− x)α(1 + x)β,

when this estimate is known to be (see []),

En(f) = f (2n)(ζ)
22n+α+β+1Γ(n+ α + 1)Γ(n+ β + 1)Γ(n+ α + β + 1)n!

Γ(2n+ α + β + 1)Γ(2n+ α + β + 2)(2n)!
.

If α = β = 0 then w = 1 and p is a Legendre polynomial. Then the error bound

simplifies to

En(f) = f (2n)(ζ)
22n+1(n!)4

(2n+ 1)((2n)!)3
.

Consider a simple case like f(t) = et. Then all the derivatives of f are bounded

on [−1, 1] and using Stirling’s formula

n! ∼ nne−n
√
2πn,

we see that

En(e
t) = O(n−2n).

On the other hand, the nth order Taylor series for et only approximates it to within

1/n! ≫ n−n on [−1, 1]. Thus the numerical integration using n points should give

about twice as many correct digits as term-by-term integration of the nth order power
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series. Of course, we can just double the number of terms in the power series to obtain

the same accuracy. Even for fairly small n, both error estimates will be less than

machine precision.

So very efficient numerical integration is possible if we can

(1) find pn+1 ∈ Pn+1 so that pn+1 ⊥ Pn and ‖pn+1‖w = 〈pn+1, pn+1〉w = 1,

(2) find the zeros {xk} of pn+1

(3) find the weights {wk}.
The first step is the main difficulty. Once we have the polynomial p, we can use

Newton’s method to find the roots of pn+1 and the weights are given by

wk = −kn+1

kn

1

pn+1(xk)p′n(xk)
.

Suppose {pk}n0 are orthonormal polynomials of degree k and the coefficient of

xk in pk is ck. We can find a polynomial (orthogonal to Pn, but not necessarily of

unit norm) pn+1 by taking any (n+1)st degree polynomial p and subtracting always

its orthogonal projection onto each of the 1-dimensional subspaces corresponding to

these vectors, i.e.,

pn+1(x) = p(x)−
n

∑

k=0

pk(x)〈p, pk〉w.

Since we get to choose p, we take p = xpn, so that

pn+1(x) = xpn(x)−
n

∑

k=0

pk(x)〈xpn, pk〉w

= xpn(x)− pn(x)〈xpn, pn〉w − pn−1(x)〈xpn, pn−1〉w −
n−2
∑

k=0

pk(x)〈pn, xpk〉w

= xpn(x)− pn(x)〈xpn, pn〉w − pn−1(x)〈xpn, pn−1〉w
= pn(x)(x− 〈xpn, pn〉w)− pn−1(x)〈xpn, pn−1〉w
= pn(x)(x− an)− pn−1(x)bn

We have used the facts that 〈xf, g〉w = 〈f, xg〉w and that pn is perpendicular to xpk

if k < n− 1. The polynomial constructed is not necessarily of unit norm, but we can

fix this by replacing pn+1 by
pn+1

‖pn+1‖w
.
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To implement the method we have to be able to compute the recursion coefficients

an = 〈xpn, pn〉w
bn = 〈xpn, pn−1〉w
cn = ‖pn+1‖w = ‖pn(x− an)− pn−1bn‖w.

Recall that each of these inner products is an integral of the form
∫ b

a

f(t)w(t)dt.

We already know pn (by induction) so we could find its roots and use these to exactly

evaluate such integrals for polynomials of degree ≤ 2n − 1. However, the inner

products above involve polynomials of degree up to 2n+1, and using the roots of pn

will definitely give a wrong answer for
∫ b

a
tp2n(t)w(t)dt. Therefore these coefficients

should be computed by other means.

Here we will only consider the case of Jacobi weights with a singularity at one

endpoint (or possibly neither endpoint), i.e., weights of the form w(x) = (x− a)α on

the interval [a, b]. The most important case is when α = 0 and w(x) = 1 is constant.

We can compute an integral of the form
∫ b

a

(
n

∑

k=0

akx
k)(x− a)αdx,

using the following observation. A polynomial p(x) =
∑n

k=0 akx
k has a Taylor ex-

pansion around any point, including the point a. This Taylor expansion, must also

be a polynomial of degree n. Thus we can write

n
∑

k=0

bk(x− a)k = p(x) =
n

∑

k=0

akx
k.

Then
∫ b

a

(
n

∑

k=0

akx
k)(x− a)αdx =

∫ b

a

n
∑

k=0

bk(x− a)k(x− a)α

=
n

∑

k=0

bk

∫ b

a

(x− a)k+αdx

=
n

∑

k=0

bk
(b− a)k+α+1

k + α + 1
.
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So now we have to compute the {bk} from the {ak}. Note that

n
∑

k=0

akx
k =

n
∑

k=0

ak(x− a+ a)k =
n

∑

k=0

ak[
k

∑

j=0

(x− a)jak−j

(

k

j

)

],

so we get b = (b0, . . . , bn) we just have to apply the matrix

M = (mjk) = ak−j ·
(

k

j

)

,

to the vector a = (a0, . . . , an).

In the special case α = 0, w(t) = 1, the Gauss-Jacobi polynomials specialize to

the Legendre polynomials. These are generated by the recursion

p0 = 1, pn+1 = ((2n+ 1)xpn − npn−1)/(n+ 1).(3)

Here are the first ten Legendre polynomials for the interval [a, b] = [−1, 1], generated

by this recursion:

P1(x) = x,

P2(x) = −
(

1

2

)

+
3x2

2

P3(x) =
−3x

2
+

5x3

2

P4(x) =
3

8
− 15x2

4
+

35x4

8

P5(x) =
15x

8
− 35x3

4
+

63x5

8

P6(x) = −
(

5

16

)

+
105x2

16
− 315x4

16
+

231x6

16

P7(x) =
−35x

16
+

315x3

16
− 693x5

16
+

429x7

16

P8(x) =
35

128
− 315x2

32
+

3465x4

64
− 3003x6

32
+

6435x8

128

P9(x) =
315x

128
− 1155x3

32
+

9009x5

64
− 6435x7

32
+

12155x9

128

P10(x) = −
(

63

256

)

+
3465x2

256
− 15015x4

128
+

45045x6

128
− 109395x8

256
+

46189x10

256
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4 1.999984228457721944767532072144696487557194483115
5 2.000000110284471879766230094981509385528232424409
6 1.999999999477270715570406402679408076715703270262
7 2.00000000000179047139889795228027253968825895516
8 1.99999999999999536042661896677198535555733701582
9 2.0000000000000000094136064072597719396414294942
10 1.9999999999999999999846379297653491184960575953
11 2.0000000000000000000000206013457173278936238709
12 1.999999999999999999999999976892865748089102133
13 2.000000000000000000000000000021998288119455387
14 1.999999999999999999999999999999982001465659210
15 2.00000000000000000000000000000000001279196248
16 1.99999999999999999999999999999999999999202885
17 2.00000000000000000000000000000000000000000439
18 2.0000000000000000000000000000000000000000000

Table 1. Approximating π
2

∫ 1

−1
cos(π

2
t)dt using the roots of the nth

Legendre polynomial.
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4 1.098570353649360421369450714823175319789315274643
5 1.098609241812471960520412741139524450426200089726
6 1.098612068116940643764150014765232798503789743085
7 1.09861227273834560823704233014754244788917670177
8 1.09861228751917825294586526806601222503431516024
9 1.0986122885853231560758415201023000760438081814
10 1.0986122886621485872861135030048483168226650251
11 1.0986122886676806754603956463038864607321813301
12 1.0986122886680788273422876748043133557118525407
13 1.098612288668107471652784971526472129102334449
14 1.098612288668109531789219669531325192092724242
15 1.09861228866810967992129366358635127998592044
16 1.09861228866810969057052073640076421999813943
17 1.09861228866810969133597337241914282263302985
18 1.0986122886681096913909859076206421219228913
19 1.0986122886681096913949391857585049768764517
20 1.0986122886681096913952232475480128000949082
21 1.098612288668109691395243657121154867973554
22 1.098612288668109691395245123430128760261856
23 1.09861228866810969139524522876968496262020
24 1.09861228866810969139524523633688431079351
25 1.09861228866810969139524523688045909892622
26 1.0986122886681096913952452369195041669804
27 1.0986122886681096913952452369223086820056
28 1.0986122886681096913952452369225101173798
29 1.098612288668109691395245236922524585148
30 1.098612288668109691395245236922525624245

Table 2. Approximating log(3) =
∫ 1

−1
1

2+t
dt using the roots of the nth

Legendre polynomial. Mathematica gives the first 50 digits of log 3 as
1.0986122886681096913952452369225257046474905578227
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Figure 1. Some example of Legendre polynomials. The roots of Pn

are the optimal n points to sample to compute an integral of the form
∫ 1

−1
f(t)dt in the sense that they will give the correct answer if f if a

polynomial of degree at most 2n+ 1. Shown are n = 10, 20.


