MAT 331 Fall 2017, Project 7
 Volumes of n-dimensional balls

This project is to use Monte Carlo sampling to verify the formulas for the volume of a unit ball in \mathbb{R}^{n}. The correct formulas and some explanation can be found on the Wikipedia page
https://en.wikipedia.org/wiki/Volume_of_an_n-ball
as well as many other sources. e.g., some textbooks on higher dimensional analysis.
(1) Look up the recursive formula the volume of a unit ball in n-space. Use this formula to make a table of numerical values of these volumes for $n=1,2, \ldots 10$. (You should already know the volumes of the unit ball in 1 and 2 dimensions, perhaps even for 3).
(2) Look up the formula for the volume of the n-ball in terms of Euler's Gamma function

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

MATLAB has a built-in function for this. Use it to compute the volumes a second time. Make a table to compare the values in (1) and (2) are they the same?
(3) Use random sampling to estimate the volume of a unit n-ball by randomly choosing N points in $[-1,1]^{n}$ (choose a n-long vector with each coordinate chosen at random in $[-1,1]$), and then testing if this vector is in the unit ball (i.e., its Euclidean norm is less than 1). Choose a large value of N, say $N=1,000,000$ and make a table of the estimated volumes. How does it compare to the values you got in part (1)?

