MAT 331 Fall 2017, Homework 1
Computing $e=2.7182818284590455348848081484902 \ldots$

From calculus, we know that the exponential function $\exp (x)=e^{x}$ can be computed in several ways, e.g.,

$$
\begin{gather*}
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{x^{k}}{k!}, \tag{1}\\
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} . \tag{2}
\end{gather*}
$$

Choose some values of x, say $x=1$, and compute e^{x} using each of the formulas above for $n=1,2, \ldots 10$.

Compare the answers to the value given by the MATLAB function $\exp (x)$ Make a plot of the differences. Plot the logarithm of the differences. Which approximation goes to zero faster as a function of n ? You may need to use the commands digits and vpa to get enough accuracy.

Compare Equation (2) to

$$
\begin{equation*}
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{2^{n}}\right)^{2^{n}} \tag{3}
\end{equation*}
$$

Explain why these approximations might be especially fast to compute on a binary computer.

