Study Problems

MAT 360

1. True or False?

T Any two points of \mathbb{E}^{2} are joined by a unique line.
F Any two points of S^{2} are joined by a unique line.
T Any two points of \mathbb{P}^{2} are joined by a unique line.
T Any two points of \mathcal{H}^{2} are joined by a unique line.
F Any two lines in \mathbb{E}^{2} meet in a unique point.
F Any two lines in S^{2} meet in a unique point.
T Any two lines in \mathbb{P}^{2} meet in a unique point.
F Any two lines in \mathcal{H}^{2} meet in a unique point.
T Any isometry of \mathbb{P}^{2} is a rotation about some point.
F Any isometry of S^{2} is a rotation about some point.
F The isometry group of \mathbb{E}^{2} is Abelian.
F The isometry group of S^{2} is Abelian.
F The isometry group of \mathbb{P}^{2} is Abelian.
F The isometry group of \mathcal{H}^{2} is Abelian.
2. Consider the points

$$
A=(\sin \beta, 0, \cos \beta), \quad B=(0, \sin \alpha, \cos \alpha), \quad C=(0,0,1)
$$

in $S^{2} \subset \mathbb{R}^{3}$.
Assume for simplicity that $0<\alpha, \beta<\pi!!!$
(a) Compute the (spherical) distances $a=B C, b=A C$, and $c=A B$.

$$
\begin{aligned}
a & =\cos ^{-1}\langle(0, \sin \alpha, \cos \alpha),(0,0,1)\rangle=\cos ^{-1}(\cos \alpha)=\alpha \\
b & =\cos ^{-1}\langle(\sin \beta, 0, \cos \beta),(0,0,1)\rangle=\cos ^{-1}(\cos \beta)=\beta \\
c & =\cos ^{-1}\langle(0, \sin \alpha, \cos \alpha),(\sin \beta, 0, \cos \beta)\rangle=\cos ^{-1}(\cos \alpha \cos \beta)
\end{aligned}
$$

(b) Show that $\angle A C B$ is a right angle (in the spherical sense).

$$
\begin{aligned}
\angle A C B & =\cos ^{-1}\left\langle\frac{(0,0,1) \times(\sin \beta, 0, \cos \beta)}{|(0,0,1) \times(\sin \beta, 0, \cos \beta)|}, \frac{(0,0,1) \times(0, \sin \alpha, \cos \alpha)}{|(0,0,1) \times(0, \sin \alpha, \cos \alpha)|}\right\rangle \\
& =\cos ^{-1}\left\langle\frac{(0, \sin \beta, 0)}{|\sin \beta|}, \frac{(-\sin \alpha, 0,0)}{|-\sin \alpha|}\right\rangle \\
& =\cos ^{-1}\langle(0,1,0),(-1,0,0)\rangle \\
& =\cos ^{-1} 0 \\
& =\frac{\pi}{2}
\end{aligned}
$$

(c) Show that $(\cos a)(\cos b)=\cos c$.

By part (a), $\cos c=\cos \alpha \cos \beta=(\cos a)(\cos b)$.
(d) Does one have $a^{2}+b^{2}=c^{2}$ when, for example, $\alpha=\beta=\pi / 4$?

No, because when $\alpha=\beta=\frac{\pi}{4}, a=b=\frac{\pi}{4}$, while

$$
c=\cos ^{-1}\left(\cos ^{2} \frac{\pi}{4}\right)=\cos ^{-1}\left(\left(\frac{1}{\sqrt{2}}\right)^{2}\right)=\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}
$$

and obviously $\left(\frac{\pi}{4}\right)^{2}+\left(\frac{\pi}{4}\right)^{2} \neq\left(\frac{\pi}{3}\right)^{2}$.
3. Consider the points

$$
A=(\sinh \beta, 0, \cosh \beta), \quad B=(0, \sinh \alpha, \cosh \alpha), \quad C=(0,0,1)
$$

in $\mathcal{H}^{2} \subset \mathbb{R}^{3}$.
(a) Compute the hyperbolic distances $a=B C, b=A C$, and $c=A B$.
$a=\cosh ^{-1}|\mathbb{B}((0, \sinh \alpha, \cosh \alpha),(0,0,1))|=\cosh ^{-1}(\cosh \alpha)=\alpha$
$\left.b=\cosh ^{-1} \mid \mathbb{B}(\sinh \beta, 0, \cosh \beta),(0,0,1)\right) \mid=\cosh ^{-1}(\cosh \beta)=\beta$
$\left.c=\cosh ^{-1} \mid \mathbb{B}(0, \sinh \alpha, \cosh \alpha),(\sinh \beta, 0, \cosh \beta)\right) \mid=\cosh ^{-1}(\cosh \alpha \cosh \beta)$
(b) Show that $\angle A C B$ is a right angle (in the hyperbolic sense).

$$
\begin{aligned}
\angle A C B & =\cos ^{-1} \mathbb{B}\left(\frac{(0,0,1) \times_{\mathbb{B}}(\sinh \beta, 0, \cosh \beta)}{\left|(0,0,1) \times_{\mathbb{B}}(\sinh \beta, 0, \cosh \beta)\right|_{\mathbb{B}}}, \frac{(0,0,1) \times_{\mathbb{B}}(0, \sinh \alpha, \cosh \alpha)}{\left|(0,0,1) \times_{\mathbb{B}}(0, \sinh \alpha, \cosh \alpha)\right|_{\mathbb{B}}}\right) \\
& =\cos ^{-1} \mathbb{B}\left(\frac{(0, \sinh \beta, 0)}{|\sinh \beta|}, \frac{(-\sinh \alpha, 0,0)}{|-\sinh \alpha|}\right) \\
& =\cos ^{-1} \mathbb{B}((0,1,0),(-1,0,0)) \\
& =\cos ^{-1} 0 \\
& =\frac{\pi}{2} .
\end{aligned}
$$

(c) Show that $(\cosh a)(\cosh b)=\cosh c$.

By part (a), $\cosh c=\cosh \alpha \cosh \beta=(\cosh a)(\cosh b)$.
(d) Does one have $a^{2}+b^{2}=c^{2}$ when, for example, $\alpha=\beta=\cosh ^{-1}(\sqrt{2})$?

No. When $\alpha=\beta=\cosh ^{-1}(\sqrt{2}), a=b=\ln (1+\sqrt{2})$, whereas $c=$ $\cosh ^{-1}(2)=\ln (2+\sqrt{3})$, so that $c-\sqrt{a^{2}+b^{2}}=\ln \frac{2+\sqrt{3}}{(1+\sqrt{2})^{\sqrt{2}}} \neq 0$.
4. (a) Suppose that $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear map such that

$$
\mathbb{B}(L(\vec{v}), L(\vec{w}))=\mathbb{B}(\vec{v}, \vec{w})
$$

for every $\vec{v}, \vec{w} \in \mathbb{R}^{3}$, and such that

$$
\mathbb{B}(L((0,0,1)),(0,0,1))<0
$$

where \mathbb{B} denotes the Minkowski inner product

$$
\mathbb{B}(\vec{v}, \vec{w})=v_{1} w_{1}+v_{2} w_{2}-v_{3} w_{3} .
$$

Prove that L maps $\mathcal{H}^{2} \subset \mathbb{R}^{3}$ to itself, and that

$$
\left.L\right|_{\mathcal{H}^{2}}: \mathcal{H}^{2} \rightarrow \mathcal{H}^{2}
$$

is an isometry.
Recall that $\mathcal{H}^{2} \subset \mathbb{R}^{3}$ is the set of $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ with $\mathbb{B}(\vec{v}, \vec{v})=-1$ and $v_{3}>0$. For any such \vec{v}, we then have $\mathbb{B}(L(\vec{v}), L(\vec{v}))=\mathbb{B}(\vec{v}, \vec{v})=-1$. In particular, if $\vec{w}=L(\vec{v})$, then $w_{3}^{2}=1+w_{1}^{2}+w_{2}^{2} \geq 1$, so that $w_{3}=$ $-\mathbb{B}(L(\vec{v}),(0,0,1)) \neq 0$ for all $\vec{v} \in \mathcal{H}^{2}$. Because $f(\vec{v})=-\mathbb{B}(L(\vec{v}),(0,0,1))$ is continuous function, and since any two points of \mathcal{H}^{2} can be joined by a curve in $\mathcal{H}^{2} \subset \mathbb{R}^{3}$, the intermediate value theorem implies that the sign of $f(\vec{v})=$ w_{3} is the same for all $\vec{v} \in \mathcal{H}^{2}$. But since $f((0,0,1))=-\mathbb{B}(L((0,0,1)),(0,0,1))>$ 0 , we conclude that $f(\vec{v})>0$ for all $\vec{v} \in \mathcal{H}^{2}$. Hence $L\left(\mathcal{H}^{2}\right) \subset \mathcal{H}^{2}$.

If L is such a linear transformation, and if $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ is the standard basis for \mathbb{R}^{3}, then we have

$$
\mathbb{B}\left(L\left(\vec{e}_{j}\right), L\left(\vec{e}_{k}\right)\right)=g_{j k}
$$

where $g_{j k}$ are the entries of the matrix

$$
G=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

The condition that $\mathbb{B}(L(\vec{v}), L(\vec{w}))=\mathbb{B}(\vec{v}, \vec{w})$ is thus equivalent to the requirement that the matrix A of L satisfy $A^{t} G A=G$, or in other words that

$$
G A^{t} G A=I,
$$

where A^{t} denotes the transpose matrix of A. In particular, L is always invertible; indeed, L^{-1} is the linear transformation with matrix $A^{-1}=G A^{t} G$. This inverse L^{-1} automatically satisfies $\mathbb{B}\left(L^{-1}(\vec{v}), L^{-1}(\vec{w})\right)=\mathbb{B}\left(L L^{-1}(\vec{v}), L L^{-1}(\vec{w})\right)=$ $\mathbb{B}(\vec{v}, \vec{w})$. The condition that $\mathbb{B}(L((0,0,1)),(0,0,1))<0$ just says that the a_{33} entry of A is positive; and since A and $G A^{t} G$ have the same entry in this slot, we conclude that L^{-1} also sends \mathcal{H}^{2} to itself. This proves that $\left.L\right|_{\mathcal{H}^{2}}$ is a bijection.

Now if $\vec{v}, \vec{w} \in \mathcal{H}^{2}$, we have

$$
d(L(\vec{v}), L(\vec{w}))=\cosh ^{-1}|\mathbb{B}(L(\vec{v}), L(\vec{w}))|=\cosh ^{-1}|\mathbb{B}(\vec{v}, \vec{w})|=d(\vec{v}, \vec{w})
$$

so $\left.L\right|_{\mathcal{H}^{2}}$ is an isometry.
(b) Use this to show that the linear map with matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cosh \alpha & \sinh \alpha \\
0 & \sinh \alpha & \cosh \alpha
\end{array}\right]
$$

is an isometry of \mathcal{H}^{2} for any $\alpha \in \mathbb{R}$.
Let us check that the above matrix A satisfies $A^{t} G A=G$. Indeed,

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cosh \alpha & \sinh \alpha \\
0 & \sinh \alpha & \cosh \alpha
\end{array}\right]\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cosh \alpha & \sinh \alpha \\
0 & \sinh \alpha & \cosh \alpha
\end{array}\right]=} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cosh \alpha & -\sinh \alpha \\
0 & \sinh \alpha & -\cosh \alpha
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cosh \alpha & \sinh \alpha \\
0 & \sinh \alpha & \cosh \alpha
\end{array}\right]=} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cosh ^{2} \alpha-\sinh ^{2} \alpha & 0 \\
0 & 0 & \sinh ^{2} \alpha-\cosh ^{2} \alpha
\end{array}\right]=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)}
\end{aligned}
$$

Since the a_{33} entry in the matrix is also positive, this linear transformation is an isometry of \mathcal{H}^{2}.
(c) Similarly, show that the linear map with matrix

$$
\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

is an isometry of \mathcal{H}^{2} for any $\theta \in \mathbb{R}$.
This time, the key calculation is

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]=} \\
& {\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]=} \\
& {\left[\begin{array}{ccc}
\cos ^{2} \theta+\sin ^{2} \theta & 0 & 0 \\
0 & \cos ^{2} \theta+\sin ^{2} \theta & 0 \\
0 & 0 & -1
\end{array}\right]=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)}
\end{aligned}
$$

Since the a_{33} entry in the matrix is again positive, this linear transformation also induces an isometry of \mathcal{H}^{2}.
(d) Using the isometries constructed in (c) and (b), in that order, show that if $x \in \mathcal{H}^{2}$ is any point, then there is an isometry $\mathcal{H}^{2} \rightarrow \mathcal{H}^{2}$ which sends x to the point $(0,0,1)$.

The transformations constructed in (c) are ordinary rotations of \mathbb{R}^{3} around the x_{3}-axis. By applying such a rotation, we may move x to a point of the $x_{1} x_{3}$-plane with $x_{3}>0$. Moreover, this new point will still lie in \mathcal{H}^{2}, and so will be of the form $x_{3}=\cosh u, x_{1}=\sinh u$ for some u. Now apply the transformation constructed in (b), with $\alpha=-u$, to move our point to $(0,0,1)$.
5. (a) Find the equation for the projective line ℓ_{1} joining the points $[1,1,1]$ and $[2,3,1]$ in \mathbb{P}_{2}.

Since $(1,1,1) \times(2,3,1)=(-2,1,1)$, the line in question is given by

$$
-2 x_{1}+x_{2}+x_{3}=0
$$

As a double-check, notice that two solutions of this equation are $\left(x_{1}, x_{2}, x_{3}\right)=$ $(1,1,1)$ and $\left(x_{1}, x_{2}, x_{3}\right)=(2,3,1)$.
(b) Find the equation for the projective line ℓ_{2} which passes through $[0,0,1]$ and is orthogonal (in the elliptic sense) to ℓ_{1} at $\ell_{1} \cap \ell_{2}$.
This is equivalent to finding the line which joins the pole of ℓ_{1} to $[0,0,1]$. Now the pole of ℓ_{1} is a multiple of $(-2,1,1)$ by part (a), and since

$$
(-2,1,1) \times(0,0,1)=(1,2,0)
$$

the line in question is therefore given by the equation

$$
x_{1}+2 x_{2}=0 .
$$

6. Consider the following configuration of lines in the projective place \mathbb{P}^{2} :

Delete the indicated line ℓ_{∞}, and identify the complement $\mathbb{P}^{2}-\ell_{\infty}$ with the affine plane \mathbb{R}^{2}. Draw the resulting configuration of ordinary lines in the affine plane.

Answer:

7. We have seen that every isometry of \mathbb{E}^{2} can be represented by a 3×3 matrix with real coefficients. But every isometry of S^{2} can also be represented by a 3×3 matrix. Describe the set of 3×3 matrices which simultaneously represent isometries of both \mathbb{E}^{2} and S^{2}. Does this collection of matrices form a group?

The intersection of two subgroups is always a subgroup. In our case, we are taking the intersection of two subgroups of $G L(3)$, so the intersection will certainly be a group. In our case, we are looking at the set of elements of $O(3)$ which send $\vec{e}_{3}=(0,0,1)$ to itself. The first two columns of such a matrix must be orthogonal to \vec{e}_{3}, and mutually orhtogonal. So the group in question is

$$
\left\{\left(\begin{array}{ccc}
\cos \theta & \mp \sin \theta & 0 \\
\sin \theta & \pm \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\right\}
$$

which is of course isomorphic to $O(2)$.

