
Study Problems

MAT 360

1. True or False?

T Any two points of E2 are joined by a unique line.

F Any two points of S2 are joined by a unique line.

T Any two points of P2 are joined by a unique line.

T Any two points of H2 are joined by a unique line.

F Any two lines in E2 meet in a unique point.

F Any two lines in S2 meet in a unique point.

T Any two lines in P2 meet in a unique point.

F Any two lines in H2 meet in a unique point.

T Any isometry of P2 is a rotation about some point.

F Any isometry of S2 is a rotation about some point.

F The isometry group of E2 is Abelian.

F The isometry group of S2 is Abelian.

F The isometry group of P2 is Abelian.

F The isometry group of H2 is Abelian.
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2. Consider the points

A = (sin β, 0, cos β), B = (0, sin α, cos α), C = (0, 0, 1)

in S2 ⊂ R3.

Assume for simplicity that 0 < α, β < π!!!

(a) Compute the (spherical) distances a = BC, b = AC, and c = AB.

a = cos−1〈(0, sin α, cos α), (0, 0, 1)〉 = cos−1(cos α) = α

b = cos−1〈(sin β, 0, cos β), (0, 0, 1)〉 = cos−1(cos β) = β

c = cos−1〈(0, sin α, cos α), (sin β, 0, cos β)〉 = cos−1(cos α cos β)

(b) Show that ∠ACB is a right angle (in the spherical sense).

∠ACB = cos−1
〈 (0, 0, 1)× (sin β, 0, cos β)

|(0, 0, 1)× (sin β, 0, cos β)|
,

(0, 0, 1)× (0, sin α, cos α)

|(0, 0, 1)× (0, sin α, cos α)|

〉
= cos−1

〈(0, sin β, 0)

| sin β|
,

(− sin α, 0, 0)

| − sin α|

〉
= cos−1〈(0, 1, 0), (−1, 0, 0)〉
= cos−1 0

=
π

2
.

(c) Show that (cos a)(cos b) = cos c.

By part (a), cos c = cos α cos β = (cos a)(cos b).

(d) Does one have a2 + b2 = c2 when, for example, α = β = π/4?

No, because when α = β = π
4
, a = b = π

4
, while

c = cos−1(cos2 π

4
) = cos−1((

1√
2
)2) = cos−1(

1

2
) =

π

3
,

and obviously (π
4
)2 + (π

4
)2 6= (π

3
)2.
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3. Consider the points

A = (sinh β, 0, cosh β), B = (0, sinh α, cosh α), C = (0, 0, 1)

in H2 ⊂ R3.

(a) Compute the hyperbolic distances a = BC, b = AC, and c = AB.

a = cosh−1
∣∣∣B(

(0, sinh α, cosh α), (0, 0, 1)
)∣∣∣ = cosh−1(cosh α) = α

b = cosh−1
∣∣∣B(

sinh β, 0, cosh β), (0, 0, 1)
)∣∣∣ = cosh−1(cosh β) = β

c = cosh−1
∣∣∣B(

0, sinh α, cosh α), (sinh β, 0, cosh β)
)∣∣∣ = cosh−1(cosh α cosh β)

(b) Show that ∠ACB is a right angle (in the hyperbolic sense).

∠ACB = cos−1 B
( (0, 0, 1)×B (sinh β, 0, cosh β)

|(0, 0, 1)×B (sinh β, 0, cosh β)|B
,

(0, 0, 1)×B (0, sinh α, cosh α)

|(0, 0, 1)×B (0, sinh α, cosh α)|B

)
= cos−1 B

((0, sinh β, 0)

| sinh β|
,

(− sinh α, 0, 0)

| − sinh α|

)
= cos−1 B ((0, 1, 0), (−1, 0, 0))

= cos−1 0

=
π

2
.

(c) Show that (cosh a)(cosh b) = cosh c.

By part (a), cosh c = cosh α cosh β = (cosh a)(cosh b).

(d) Does one have a2 + b2 = c2 when, for example, α = β = cosh−1(
√

2)?

No. When α = β = cosh−1(
√

2), a = b = ln(1 +
√

2), whereas c =

cosh−1(2) = ln(2 +
√

3), so that c−
√

a2 + b2 = ln 2+
√

3

(1+
√

2)
√

2
6= 0.
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4. (a) Suppose that L : R3 → R3 is a linear map such that

B
(
L(~v), L(~w)

)
= B

(
~v, ~w

)
for every ~v, ~w ∈ R3, and such that

B
(
L ((0, 0, 1)) , (0, 0, 1)

)
< 0,

where B denotes the Minkowski inner product

B(~v, ~w) = v1w1 + v2w2 − v3w3.

Prove that L maps H2 ⊂ R3 to itself, and that

L|H2 : H2 → H2

is an isometry.

Recall that H2 ⊂ R3 is the set of ~v = (v1, v2, v3) with B(~v,~v) = −1
and v3 > 0. For any such ~v, we then have B(L(~v), L(~v)) = B(~v,~v) = −1.
In particular, if ~w = L(~v), then w2

3 = 1 + w2
1 + w2

2 ≥ 1, so that w3 =
−B(L(~v), (0, 0, 1)) 6= 0 for all ~v ∈ H2. Because f(~v) = −B(L(~v), (0, 0, 1)) is
continuous function, and since any two points of H2 can be joined by a curve
in H2 ⊂ R3, the intermediate value theorem implies that the sign of f(~v) =

w3 is the same for all ~v ∈ H2. But since f((0, 0, 1)) = −B
(
L ((0, 0, 1)) , (0, 0, 1)

)
>

0, we conclude that f(~v) > 0 for all ~v ∈ H2. Hence L(H2) ⊂ H2.
If L is such a linear transformation, and if ~e1, ~e2, ~e3 is the standard basis

for R3, then we have
B(L(~ej), L(~ek)) = gjk

where gjk are the entries of the matrix

G =

 1 0 0
0 1 0
0 0 −1


The condition that B

(
L(~v), L(~w)

)
= B

(
~v, ~w

)
is thus equivalent to the re-

quirement that the matrix A of L satisfy AtGA = G, or in other words
that

GAtGA = I,
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where At denotes the transpose matrix of A. In particular, L is always invert-
ible; indeed, L−1 is the linear transformation with matrix A−1 = GAtG. This

inverse L−1 automatically satisfies B
(
L−1(~v), L−1(~w)

)
= B

(
LL−1(~v), LL−1(~w)

)
=

B
(
~v, ~w

)
. The condition that B

(
L ((0, 0, 1)) , (0, 0, 1)

)
< 0 just says that the

a33 entry of A is positive; and since A and GAtG have the same entry in this
slot, we conclude that L−1 also sends H2 to itself. This proves that L|H2 is
a bijection.

Now if ~v, ~w ∈ H2, we have

d(L(~v), L(~w)) = cosh−1 |B(L(~v), L(~w))| = cosh−1 |B(~v, ~w)| = d(~v, ~w)

so L|H2 is an isometry.

(b) Use this to show that the linear map with matrix 1 0 0
0 cosh α sinh α
0 sinh α cosh α


is an isometry of H2 for any α ∈ R.

Let us check that the above matrix A satisfies AtGA = G. Indeed, 1 0 0
0 cosh α sinh α
0 sinh α cosh α

 1 0 0
0 1 0
0 0 −1

  1 0 0
0 cosh α sinh α
0 sinh α cosh α

 =

 1 0 0
0 cosh α − sinh α
0 sinh α − cosh α

 1 0 0
0 cosh α sinh α
0 sinh α cosh α

 =

 1 0 0
0 cosh2 α− sinh2 α 0
0 0 sinh2 α− cosh2 α

 =

 1 0 0
0 1 0
0 0 −1


Since the a33 entry in the matrix is also positive, this linear transformation
is an isometry of H2.

(c) Similarly, show that the linear map with matrix cos θ − sin θ 0
sin θ cos θ 0

0 0 1


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is an isometry of H2 for any θ ∈ R.

This time, the key calculation is cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 1 0 0
0 1 0
0 0 −1

  cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 −1

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 =

 cos2 θ + sin2 θ 0 0
0 cos2 θ + sin2 θ 0
0 0 −1

 =

 1 0 0
0 1 0
0 0 −1


Since the a33 entry in the matrix is again positive, this linear transformation
also induces an isometry of H2.

(d) Using the isometries constructed in (c) and (b), in that order, show that
if x ∈ H2 is any point, then there is an isometry H2 → H2 which sends x to
the point (0, 0, 1).

The transformations constructed in (c) are ordinary rotations of R3 around
the x3-axis. By applying such a rotation, we may move x to a point of the
x1x3-plane with x3 > 0. Moreover, this new point will still lie in H2, and
so will be of the form x3 = cosh u, x1 = sinh u for some u. Now apply
the transformation constructed in (b), with α = −u, to move our point to
(0, 0, 1).
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5. (a) Find the equation for the projective line `1 joining the points [1, 1, 1]
and [2, 3, 1] in P2.

Since (1, 1, 1)× (2, 3, 1) = (−2, 1, 1), the line in question is given by

−2x1 + x2 + x3 = 0.

As a double-check, notice that two solutions of this equation are (x1, x2, x3) =
(1, 1, 1) and (x1, x2, x3) = (2, 3, 1).

(b) Find the equation for the projective line `2 which passes through [0, 0, 1]
and is orthogonal (in the elliptic sense) to `1 at `1 ∩ `2.

This is equivalent to finding the line which joins the pole of `1 to [0, 0, 1].
Now the pole of `1 is a multiple of (−2, 1, 1) by part (a), and since

(−2, 1, 1)× (0, 0, 1) = (1, 2, 0),

the line in question is therefore given by the equation

x1 + 2x2 = 0.

6. Consider the following configuration of lines in the projective place P2:

`∞
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Delete the indicated line `∞, and identify the complement P2 − `∞ with the
affine plane R2. Draw the resulting configuration of ordinary lines in the
affine plane.

Answer:
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7. We have seen that every isometry of E2 can be represented by a 3 × 3
matrix with real coefficients. But every isometry of S2 can also be represented
by a 3 × 3 matrix. Describe the set of 3 × 3 matrices which simultaneously
represent isometries of both E2 and S2. Does this collection of matrices form
a group?

The intersection of two subgroups is always a subgroup. In our case, we are
taking the intersection of two subgroups of GL(3), so the intersection will
certainly be a group. In our case, we are looking at the set of elements of
O(3) which send ~e3 = (0, 0, 1) to itself. The first two columns of such a
matrix must be orthogonal to ~e3, and mutually orhtogonal. So the group in
question is 

 cos θ ∓ sin θ 0
sin θ ± cos θ 0

0 0 1

 ,

which is of course isomorphic to O(2).
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