## Study Problems

## MAT 360

1. True or False?

- <u>**T**</u> Any two points of  $\mathbb{E}^2$  are joined by a unique line.
- <u>**F**</u> Any two points of  $S^2$  are joined by a unique line.
- <u>**T**</u> Any two points of  $\mathbb{P}^2$  are joined by a unique line.
- <u>**T**</u> Any two points of  $\mathcal{H}^2$  are joined by a unique line.
- <u>**F**</u> Any two lines in  $\mathbb{E}^2$  meet in a unique point.
- <u>**F**</u> Any two lines in  $S^2$  meet in a unique point.
- <u>**T**</u> Any two lines in  $\mathbb{P}^2$  meet in a unique point.
- <u>**F**</u> Any two lines in  $\mathcal{H}^2$  meet in a unique point.
- <u>**T**</u> Any isometry of  $\mathbb{P}^2$  is a rotation about some point.
- <u>**F**</u> Any isometry of  $S^2$  is a rotation about some point.
- <u>**F**</u> The isometry group of  $\mathbb{E}^2$  is Abelian.
- **<u>F</u>** The isometry group of  $S^2$  is Abelian.
- <u>**F**</u> The isometry group of  $\mathbb{P}^2$  is Abelian.
- <u>**F**</u> The isometry group of  $\mathcal{H}^2$  is Abelian.

2. Consider the points

$$A = (\sin \beta, 0, \cos \beta), \quad B = (0, \sin \alpha, \cos \alpha), \quad C = (0, 0, 1)$$

in  $S^2 \subset \mathbb{R}^3$ .

Assume for simplicity that  $0<\alpha,\beta<\pi!!!$ 

(a) Compute the (spherical) distances a = BC, b = AC, and c = AB.

$$a = \cos^{-1} \langle (0, \sin \alpha, \cos \alpha), (0, 0, 1) \rangle = \cos^{-1} (\cos \alpha) = \alpha$$
  

$$b = \cos^{-1} \langle (\sin \beta, 0, \cos \beta), (0, 0, 1) \rangle = \cos^{-1} (\cos \beta) = \beta$$
  

$$c = \cos^{-1} \langle (0, \sin \alpha, \cos \alpha), (\sin \beta, 0, \cos \beta) \rangle = \cos^{-1} (\cos \alpha \cos \beta)$$

(b) Show that  $\angle ACB$  is a right angle (in the spherical sense).

$$\begin{split} \angle ACB &= \cos^{-1} \left\langle \frac{(0,0,1) \times (\sin\beta, 0, \cos\beta)}{|(0,0,1) \times (\sin\beta, 0, \cos\beta)|} , \frac{(0,0,1) \times (0, \sin\alpha, \cos\alpha)}{|(0,0,1) \times (0, \sin\alpha, \cos\alpha)|} \right\rangle \\ &= \cos^{-1} \left\langle \frac{(0, \sin\beta, 0)}{|\sin\beta|} , \frac{(-\sin\alpha, 0, 0)}{|-\sin\alpha|} \right\rangle \\ &= \cos^{-1} \langle (0,1,0), (-1,0,0) \rangle \\ &= \cos^{-1} 0 \\ &= \frac{\pi}{2}. \end{split}$$

(c) Show that  $(\cos a)(\cos b) = \cos c$ .

By part (a),  $\cos c = \cos \alpha \cos \beta = (\cos a)(\cos b)$ .

(d) Does one have  $a^2 + b^2 = c^2$  when, for example,  $\alpha = \beta = \pi/4$ ?

No, because when  $\alpha = \beta = \frac{\pi}{4}$ ,  $a = b = \frac{\pi}{4}$ , while

$$c = \cos^{-1}(\cos^2\frac{\pi}{4}) = \cos^{-1}((\frac{1}{\sqrt{2}})^2) = \cos^{-1}(\frac{1}{2}) = \frac{\pi}{3},$$

and obviously  $\left(\frac{\pi}{4}\right)^2 + \left(\frac{\pi}{4}\right)^2 \neq \left(\frac{\pi}{3}\right)^2$ .

## 3. Consider the points

$$A = (\sinh\beta, 0, \cosh\beta), \quad B = (0, \sinh\alpha, \cosh\alpha), \quad C = (0, 0, 1)$$

in  $\mathcal{H}^2 \subset \mathbb{R}^3$ .

(a) Compute the hyperbolic distances a = BC, b = AC, and c = AB.

$$a = \cosh^{-1} \left| \mathbb{B} \left( (0, \sinh \alpha, \cosh \alpha), (0, 0, 1) \right) \right| = \cosh^{-1} (\cosh \alpha) = \alpha$$
  

$$b = \cosh^{-1} \left| \mathbb{B} \left( \sinh \beta, 0, \cosh \beta, (0, 0, 1) \right) \right| = \cosh^{-1} (\cosh \beta) = \beta$$
  

$$c = \cosh^{-1} \left| \mathbb{B} \left( 0, \sinh \alpha, \cosh \alpha \right), (\sinh \beta, 0, \cosh \beta) \right) \right| = \cosh^{-1} (\cosh \alpha \cosh \beta)$$

(b) Show that  $\angle ACB$  is a right angle (in the hyperbolic sense).

$$\begin{split} \angle ACB &= \cos^{-1} \mathbb{B} \Big( \frac{(0,0,1) \times_{\mathbb{B}} (\sinh\beta, 0, \cosh\beta)}{|(0,0,1) \times_{\mathbb{B}} (\sinh\beta, 0, \cosh\beta)|_{\mathbb{B}}} , \frac{(0,0,1) \times_{\mathbb{B}} (0, \sinh\alpha, \cosh\alpha)}{|(0,0,1) \times_{\mathbb{B}} (0, \sinh\alpha, \cosh\alpha)|_{\mathbb{B}}} \Big) \\ &= \cos^{-1} \mathbb{B} \Big( \frac{(0, \sinh\beta, 0)}{|\sinh\beta|} , \frac{(-\sinh\alpha, 0, 0)}{|-\sinh\alpha|} \Big) \\ &= \cos^{-1} \mathbb{B} \left( (0,1,0), (-1,0,0) \right) \\ &= \cos^{-1} 0 \\ &= \frac{\pi}{2}. \end{split}$$

(c) Show that  $(\cosh a)(\cosh b) = \cosh c$ .

By part (a),  $\cosh c = \cosh \alpha \cosh \beta = (\cosh a)(\cosh b)$ .

(d) Does one have  $a^2 + b^2 = c^2$  when, for example,  $\alpha = \beta = \cosh^{-1}(\sqrt{2})$ ?

No. When  $\alpha = \beta = \cosh^{-1}(\sqrt{2}), \ a = b = \ln(1 + \sqrt{2}), \text{ whereas } c = \cosh^{-1}(2) = \ln(2 + \sqrt{3}), \text{ so that } c - \sqrt{a^2 + b^2} = \ln\frac{2 + \sqrt{3}}{(1 + \sqrt{2})^{\sqrt{2}}} \neq 0.$ 

4. (a) Suppose that  $L: \mathbb{R}^3 \to \mathbb{R}^3$  is a linear map such that

$$\mathbb{B}\Big(L(\vec{v}), L(\vec{w})\Big) = \mathbb{B}\Big(\vec{v}, \vec{w}\Big)$$

for every  $\vec{v}, \vec{w} \in \mathbb{R}^3$ , and such that

$$\mathbb{B}\Big(L\left((0,0,1)\right) \ , \ (0,0,1)\Big) < 0.$$

where  $\mathbb{B}$  denotes the Minkowski inner product

$$\mathbb{B}(\vec{v}, \vec{w}) = v_1 w_1 + v_2 w_2 - v_3 w_3.$$

Prove that L maps  $\mathcal{H}^2 \subset \mathbb{R}^3$  to itself, and that

$$L|_{\mathcal{H}^2}: \mathcal{H}^2 \to \mathcal{H}^2$$

is an isometry.

Recall that  $\mathcal{H}^2 \subset \mathbb{R}^3$  is the set of  $\vec{v} = (v_1, v_2, v_3)$  with  $\mathbb{B}(\vec{v}, \vec{v}) = -1$ and  $v_3 > 0$ . For any such  $\vec{v}$ , we then have  $\mathbb{B}(L(\vec{v}), L(\vec{v})) = \mathbb{B}(\vec{v}, \vec{v}) = -1$ . In particular, if  $\vec{w} = L(\vec{v})$ , then  $w_3^2 = 1 + w_1^2 + w_2^2 \ge 1$ , so that  $w_3 = -\mathbb{B}(L(\vec{v}), (0, 0, 1)) \ne 0$  for all  $\vec{v} \in \mathcal{H}^2$ . Because  $f(\vec{v}) = -\mathbb{B}(L(\vec{v}), (0, 0, 1))$  is continuous function, and since any two points of  $\mathcal{H}^2$  can be joined by a curve in  $\mathcal{H}^2 \subset \mathbb{R}^3$ , the intermediate value theorem implies that the sign of  $f(\vec{v}) =$  $w_3$  is the same for all  $\vec{v} \in \mathcal{H}^2$ . But since  $f((0, 0, 1)) = -\mathbb{B}(L((0, 0, 1)), (0, 0, 1)) > 0$ , we conclude that  $f(\vec{v}) > 0$  for all  $\vec{v} \in \mathcal{H}^2$ . Hence  $L(\mathcal{H}^2) \subset \mathcal{H}^2$ .

If L is such a linear transformation, and if  $\vec{e}_1, \vec{e}_2, \vec{e}_3$  is the standard basis for  $\mathbb{R}^3$ , then we have

$$\mathbb{B}(L(\vec{e}_j), L(\vec{e}_k)) = g_{jk}$$

where  $g_{jk}$  are the entries of the matrix

$$G = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

The condition that  $\mathbb{B}(L(\vec{v}), L(\vec{w})) = \mathbb{B}(\vec{v}, \vec{w})$  is thus equivalent to the requirement that the matrix A of L satisfy  $A^tGA = G$ , or in other words that

$$GA^tGA = I,$$

where  $A^t$  denotes the transpose matrix of A. In particular, L is always invertible; indeed,  $L^{-1}$  is the linear transformation with matrix  $A^{-1} = GA^tG$ . This inverse  $L^{-1}$  automatically satisfies  $\mathbb{B}\left(L^{-1}(\vec{v}), L^{-1}(\vec{w})\right) = \mathbb{B}\left(LL^{-1}(\vec{v}), LL^{-1}(\vec{w})\right) =$  $\mathbb{B}\left(\vec{v}, \vec{w}\right)$ . The condition that  $\mathbb{B}\left(L\left((0, 0, 1)\right), (0, 0, 1)\right) < 0$  just says that the  $a_{33}$  entry of A is positive; and since A and  $GA^tG$  have the same entry in this slot, we conclude that  $L^{-1}$  also sends  $\mathcal{H}^2$  to itself. This proves that  $L|_{\mathcal{H}^2}$  is a bijection.

Now if  $\vec{v}, \vec{w} \in \mathcal{H}^2$ , we have

$$d(L(\vec{v}), L(\vec{w})) = \cosh^{-1} |\mathbb{B}(L(\vec{v}), L(\vec{w}))| = \cosh^{-1} |\mathbb{B}(\vec{v}, \vec{w})| = d(\vec{v}, \vec{w})$$

- so  $L|_{\mathcal{H}^2}$  is an isometry.
- (b) Use this to show that the linear map with matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cosh \alpha & \sinh \alpha \\ 0 & \sinh \alpha & \cosh \alpha \end{bmatrix}$$

is an isometry of  $\mathcal{H}^2$  for any  $\alpha \in \mathbb{R}$ .

Let us check that the above matrix A satisfies  $A^tGA = G$ . Indeed,

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cosh \alpha & \sinh \alpha \\ 0 & \sinh \alpha & \cosh \alpha \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cosh \alpha & \sinh \alpha \\ 0 & \sinh \alpha & \cosh \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cosh \alpha & -\sinh \alpha \\ 0 & \sinh \alpha & -\cosh \alpha \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cosh \alpha & \sinh \alpha \\ 0 & \sinh \alpha & \cosh \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cosh^{2} \alpha - \sinh^{2} \alpha & 0 \\ 0 & 0 & \sinh^{2} \alpha - \cosh^{2} \alpha \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Since the  $a_{33}$  entry in the matrix is also positive, this linear transformation is an isometry of  $\mathcal{H}^2$ .

(c) Similarly, show that the linear map with matrix

$$\begin{array}{c} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{array}$$

is an isometry of  $\mathcal{H}^2$  for any  $\theta \in \mathbb{R}$ .

This time, the key calculation is

$$\begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{pmatrix} \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos^2\theta + \sin^2\theta & 0 & 0\\ 0 & \cos^2\theta + \sin^2\theta & 0\\ 0 & 0 & -1 \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{bmatrix}$$

Since the  $a_{33}$  entry in the matrix is again positive, this linear transformation also induces an isometry of  $\mathcal{H}^2$ .

(d) Using the isometries constructed in (c) and (b), in that order, show that if  $x \in \mathcal{H}^2$  is any point, then there is an isometry  $\mathcal{H}^2 \to \mathcal{H}^2$  which sends x to the point (0, 0, 1).

The transformations constructed in (c) are ordinary rotations of  $\mathbb{R}^3$  around the  $x_3$ -axis. By applying such a rotation, we may move x to a point of the  $x_1x_3$ -plane with  $x_3 > 0$ . Moreover, this new point will still lie in  $\mathcal{H}^2$ , and so will be of the form  $x_3 = \cosh u$ ,  $x_1 = \sinh u$  for some u. Now apply the transformation constructed in (b), with  $\alpha = -u$ , to move our point to (0, 0, 1). 5. (a) Find the equation for the projective line  $\ell_1$  joining the points [1, 1, 1] and [2, 3, 1] in  $\mathbb{P}_2$ .

Since  $(1,1,1) \times (2,3,1) = (-2,1,1)$ , the line in question is given by

$$-2x_1 + x_2 + x_3 = 0.$$

As a double-check, notice that two solutions of this equation are  $(x_1, x_2, x_3) = (1, 1, 1)$  and  $(x_1, x_2, x_3) = (2, 3, 1)$ .

(b) Find the equation for the projective line  $\ell_2$  which passes through [0, 0, 1] and is orthogonal (in the elliptic sense) to  $\ell_1$  at  $\ell_1 \cap \ell_2$ .

This is equivalent to finding the line which joins the pole of  $\ell_1$  to [0, 0, 1]. Now the pole of  $\ell_1$  is a multiple of (-2, 1, 1) by part (a), and since

$$(-2, 1, 1) \times (0, 0, 1) = (1, 2, 0),$$

the line in question is therefore given by the equation

$$x_1 + 2x_2 = 0.$$

6. Consider the following configuration of lines in the projective place  $\mathbb{P}^2$ :



Delete the indicated line  $\ell_{\infty}$ , and identify the complement  $\mathbb{P}^2 - \ell_{\infty}$  with the affine plane  $\mathbb{R}^2$ . Draw the resulting configuration of ordinary lines in the affine plane.

Answer:



7. We have seen that every isometry of  $\mathbb{E}^2$  can be represented by a  $3 \times 3$  matrix with real coefficients. But every isometry of  $S^2$  can *also* be represented by a  $3 \times 3$  matrix. Describe the set of  $3 \times 3$  matrices which simultaneously represent isometries of *both*  $\mathbb{E}^2$  and  $S^2$ . Does this collection of matrices form a group?

The intersection of two subgroups is always a subgroup. In our case, we are taking the intersection of two subgroups of GL(3), so the intersection will certainly be a group. In our case, we are looking at the set of elements of O(3) which send  $\vec{e}_3 = (0, 0, 1)$  to itself. The first two columns of such a matrix must be orthogonal to  $\vec{e}_3$ , and mutually orthogonal. So the group in question is

$$\left\{ \begin{pmatrix} \cos\theta & \mp\sin\theta & 0\\ \sin\theta & \pm\cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} \right\},\$$

which is of course isomorphic to O(2).