Study Problems

MAT 360

1. True or False?

T Any two points of E? are joined by a unique line.
I Any two points of S? are joined by a unique line.
Any two points of P? are joined by a unique line.
Any two points of H? are joined by a unique line.
Any two lines in E? meet in a unique point.

Any two lines in S? meet in a unique point.

Any two lines in P? meet in a unique point.

Any two lines in H? meet in a unique point.

Any isometry of P? is a rotation about some point.
Any isometry of S? is a rotation about some point.
The isometry group of E? is Abelian.

The isometry group of S? is Abelian.

The isometry group of P? is Abelian.
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The isometry group of H? is Abelian.



2. Consider the points

A= (sinf3,0,cos ), B=(0,sina,cosa), C=(0,0,1)
in §% C R3.
Assume for simplicity that 0 < o, 8 < 7!l

(a) Compute the (spherical) distances a = BC, b = AC, and ¢ = AB.

a = cos '{(0,sina,cosa),(0,0,1)) = cos '(cosa) =
b = cos '{(sinf3,0,cos3),(0,0,1)) = cos™ (cos 6)
c = cos {(0,sina, cosa), (sin 3,0, cos 3)) = (cosacos B)

(b) Show that ZACB is a right angle (in the spherical sense).

JACB — 1< (0,0,1) x (sin 3,0, cos 3) (0,0,1) x (0, sin av, cos ) >

(0,0,1) x (sin3,0,cos 3)| 7 1(0,0,1) x (0, sin a, cos )|
B 4 /(0,sin g, O (—sina,0,0)

B < |sing| 7 |—sina] >

= ((O 1,0),(—1,0,0))
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(c) Show that (cosa)(cosb) = cosc.
By part (a), cosc = cosacos 3 = (cosa)(cosb).

(d) Does one have a* + b* = ¢? when, for example, a = 3 = 7/47

s
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No, because when a = =%, a=b=

N

™

1
¢ = cos™ ! (cos” 7) = cosH(=)?) = cos ' (5) = 3.
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and obviously (§)*+ (5)* # (5)%.



3. Consider the points
A = (sinh 3,0,cosh 3), B = (0,sinha,cosha), C=(0,0,1)
in H? C R3.

(a) Compute the hyperbolic distances a = BC, b = AC, and ¢ = AB.

a = cosh™’ ((O,sinh a, cosh ), (0,0, 1))‘ = cosh™!(cosha) = «

B
b = cosh™ B(sinh 3,0, cosh 3), (0,0, 1))‘ = cosh™!(cosh ) = 3
B

¢ = cosh™!

(0, sinh a, cosh ), (sinh /3, 0, cosh ﬁ)) ‘ — cosh™!(cosh a cosh 3)

(b) Show that ZACB is a right angle (in the hyperbolic sense).

JACE — cos_llB%( (0,0,1) xp (sinh 3,0, cosh [3) (0,0,1) xp (0, sinh a, cosh ) >

1(0,0,1) xg (sinh 3,0,cosh B)|g " [(0,0,1) xg (0, sinh v, cosh &) |

_ CoslIBS(m’Si_nhﬁ’o) | (—sinba,0,0))
| sinh 3| | — sinh |

= cos 'B((0,1,0),(~1,0,0))

= cos 10

_

= 5

(c) Show that (cosha)(coshb) = coshec.
By part (a), cosh ¢ = cosh v cosh § = (cosh a)(cosh b).
(d) Does one have a? + b*> = ¢® when, for example, a = 3 = cosh™ ' (v/2)?

No. When a = 8 = cosh™'(v/2), a = b = In(l + v/2), whereas ¢ =

cosh™(2) = In(2 + v/3), so that ¢ — Va2 + b2 = In (lf:/\g)gﬂ # 0.




4. (a) Suppose that L : R?® — R? is a linear map such that
IB%(L(U), L(w)) - IB%(U, 117)
for every v, € R3, and such that
]B%(L((0,0,l)) , (0,0,1)) <0,
where B denotes the Minkowski inner product
B(7, W) = vyw; + vawg — vzws.

Prove that L maps H? C R? to itself, and that

Llp : H* — H?
is an isometry.
Recall that H? C R? is the set of ¥ = (vy,ve,v3) with B(v,v) = —1
and vz > 0. For any such v, we then have B(L(v), L(?)) = B(v,7) = —1.
In particular, if @ = L(7), then w3 = 1 + w? + w3 > 1, so that ws =

—B(L(v), (0,0,1)) # 0 for all ¥ € H%. Because f(7) = —B(L(7), (0,0,1)) is
continuous function, and since any two points of H? can be joined by a curve
in H? C R?, the intermediate value theorem implies that the sign of f(7) =
ws is the same for all o' € H2. But since f((0,0,1)) = —B (L ((0,0,1)) , (0,0, 1)) >
0, we conclude that f(7) > 0 for all ¥ € H?. Hence L(H?) C H>.

If L is such a linear transformation, and if €7, €3, €3 is the standard basis
for R3, then we have

B(L(€)), L(€k)) = gjn

where gj, are the entries of the matrix

The condition that IB%(L(U), L(IU)) = B(ﬁ, 15) is thus equivalent to the re-

quirement that the matrix A of L satisfy A'GA = G, or in other words
that
GA'GA =1,
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where A’ denotes the transpose matrix of A. In particular, L is always invert-
ible; indeed, L~ is the linear transformation with matrix A=! = GA!G. This

inverse L~! automatically satisfies B (L_l (0), L7! (u7)> =B (LL‘1 (0), LL™! (’LB)) =
IB%(zT, @B) The condition that IB%(L ((0,0,1)) , (0,0, 1)) < 0 just says that the

asz entry of A is positive; and since A and G A'G have the same entry in this
slot, we conclude that L=! also sends H? to itself. This proves that L]y is
a bijection.

Now if o, € H?, we have

d(L(?), L(w)) = cosh™" [B(L(0), L(w))| = cosh™" |B(0, w)| = d(v, @)
S0 L|ye2 is an isometry.

(b) Use this to show that the linear map with matrix

1 0 0
0 cosha sinha
0 sinha cosha

is an isometry of H? for any a € R.

Let us check that the above matrix A satisfies A/GA = G. Indeed,

1 0 0 1 0 0 1 0 0
0 cosha sinha 0 1 O O cosha sinha | =
0 sinha cosha sinha cosh «

1 0 0
0 cosha -— smh «Q O cosh a sinha | =
0 sinha —cosha sinha cosh «

0

0

1 0 1 0 0
0 cosh?a — sinh? a = 01 0
0 0 sinh? o — cosh? « 00 -1

Since the azs entry in the matrix is also positive, this linear transformation
is an isometry of H2.

(c) Similarly, show that the linear map with matrix

cos@ —sinf 0
sinf cos@ O
0 0 1



is an isometry of H? for any 0 € R.

This time, the key calculation is

cosf)  sinf 0 1 0 O cos) —sinf 0
—sinf@ cosf 0 01 0 sinf cosf@ 0 | =
0 0 1 00 —1 0 0 1
cosf sinf 0 cos@ —sinf 0
—sinf cosf 0 sinf cosf@ 0 | =
0 0 -1 0 0 1
cos? 6 + sin® 6 0 0 1 0 0
0 cos’f+sin’0 0 | =]01 0
0 0 —1 00 —1

Since the ags entry in the matrix is again positive, this linear transformation
also induces an isometry of H2.

(d) Using the isometries constructed in (c¢) and (b), in that order, show that
if x € H? is any point, then there is an isometry H? — H? which sends z to
the point (0,0, 1).

The transformations constructed in (c) are ordinary rotations of R* around
the x3-axis. By applying such a rotation, we may move z to a point of the
x1x3-plane with x3 > 0. Moreover, this new point will still lie in H?, and
so will be of the form z3 = coshu, 7 = sinhu for some u. Now apply
the transformation constructed in (b), with @ = —u, to move our point to

(0,0, 1).



5. (a) Find the equation for the projective line ¢; joining the points [1,1, 1]
and [2,3, 1] in P,.

Since (1,1,1) x (2,3,1) = (=2,1, 1), the line in question is given by
—2r1 + 29+ 23 = 0.

As a double-check, notice that two solutions of this equation are (z1, x2, r3) =
(1,1,1) and (xy, 29, 23) = (2,3, 1).

(b) Find the equation for the projective line ¢ which passes through [0, 0, 1]
and is orthogonal (in the elliptic sense) to ¢, at ¢4 N 45.

This is equivalent to finding the line which joins the pole of ¢; to [0,0,1].
Now the pole of ¢; is a multiple of (=2, 1, 1) by part (a), and since

(—2,1,1) x (0,0,1) = (1,2,0),
the line in question is therefore given by the equation

T —|—2’172 = 0.

6. Consider the following configuration of lines in the projective place P?:

loo

7 =

Delete the indicated line /.., and identify the complement P? — /., with the
affine plane R2. Draw the resulting configuration of ordinary lines in the
affine plane.

Answer:




7. We have seen that every isometry of E? can be represented by a 3 x 3
matrix with real coefficients. But every isometry of S? can also be represented
by a 3 x 3 matrix. Describe the set of 3 x 3 matrices which simultaneously
represent isometries of both E? and S2. Does this collection of matrices form
a group?

The intersection of two subgroups is always a subgroup. In our case, we are

taking the intersection of two subgroups of GL(3), so the intersection will

certainly be a group. In our case, we are looking at the set of elements of

O(3) which send €3 = (0,0,1) to itself. The first two columns of such a

matrix must be orthogonal to €3, and mutually orhtogonal. So the group in
question is

cosf) Fsinf 0

sinf +cosf 0

0 0 1

Y

which is of course isomorphic to O(2).



