Lecture 1: January 28

Overview. The purpose of this course is to give an introduction to the theory of algebraic \mathscr{D}-modules. I plan to cover roughly the following topics:

- modules over the Weyl algebra A_{n}
- \mathscr{D}-modules on smooth algebraic varieties
- functors on \mathscr{D}-modules (and how they relate to PDE)
- holonomic \mathscr{D}-modules, regularity (with a focus on what it means)
- b-functions, localization along a hypersurface
- \mathscr{D}-modules of normal crossing type (as a class of examples)
- Riemann-Hilbert correspondence (with proofs in the normal crossing case)
- some applications, either to representation theory or to algebraic geometry

The website for the course,
http://www.math.stonybrook.edu/~cschnell/mat615,
contains a list of useful references.
Introduction. Very briefly, \mathscr{D}-modules were invented in Japan (by Mikio Sato, Masaki Kashiwara, and others) and France (by Alexander Grothendieck, Zogman Mebkhout, and others). It has its origins in the field of "algebraic analysis", which means the study of partial differential equations with algebraic tools. The theory of algebraic \mathscr{D}-modules was further developed by Joseph Bernstein.

Systems of linear equations. \mathscr{D}-modules arise naturally from systems of linear partial differential equations. To get a better understanding of how this works, let us first look at the example of a system of linear equations

$$
\begin{equation*}
\sum_{j=1}^{q} a_{i, j} x_{j}=0, \quad i=1, \ldots, p \tag{1.1}
\end{equation*}
$$

with coefficients $a_{i, j}$ in a field K (such as \mathbb{R} or \mathbb{C}). In linear algebra, one usually transforms such a system in various ways, for example by making a substitution in the unknowns x_{1}, \ldots, x_{q}, or by taking linear combinations of the equations. One can associate to the system in (1.1) a single K-vector space that is invariant under such transformations. Consider the linear mapping

$$
\varphi: K^{p} \rightarrow K^{q}, \quad \varphi\left(y_{1}, \ldots, y_{p}\right)=\left(\sum_{i=1}^{p} y_{i} a_{i, 1}, \ldots, \sum_{i=1}^{p} y_{i} a_{i, q}\right)
$$

built from the coefficient matrix of the system in (1.1), and define the K-vector space $V=\operatorname{ker} \varphi=K^{q} / \varphi\left(K^{p}\right)$. It sits in the exact sequence

$$
K^{p} \xrightarrow{\varphi} K^{q} \xrightarrow{\pi} V \longrightarrow 0,
$$

and the solution space to (1.1) can be recovered from V as

$$
\operatorname{Hom}_{K}(V, K)=\left\{f: K^{q} \rightarrow K \mid f \circ \varphi=0\right\}
$$

Indeed, a linear mapping from V to K is the same thing as a linear mapping $f: K^{q} \rightarrow K$ whose composition with φ is equal to zero.

Now f is uniquely determined by the q scalars $x_{j}=f\left(e_{j}\right) \in K$, where e_{j} denotes the j-th coordinate vector in K^{q}. Since $f \circ \varphi=0$, we get

$$
\sum_{i, j} y_{i} a_{i, j} x_{j}=0
$$

for every $\left(y_{1}, \ldots, y_{p}\right) \in K^{p}$. This means exactly that $\left(x_{1}, \ldots, x_{q}\right) \in K^{q}$ is a solution to the system of linear equations in (1.1).

The same construction can be applied to systems of linear equations with coefficients in other rings. For example, let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables, and consider the system of linear equations

$$
\begin{equation*}
\sum_{j=1}^{q} f_{i, j} u_{j}=0, \quad i=1, \ldots, p \tag{1.2}
\end{equation*}
$$

with polynomial coefficients $f_{i, j} \in R$. As before, we can associate to the system an R-module $M=\operatorname{coker} \varphi$, defined as the cokernel of the morphism of R-modules

$$
\varphi: R^{p} \rightarrow R^{q}, \quad \varphi\left(v_{1}, \ldots, v_{p}\right)=\left(\sum_{i=1}^{p} v_{i} f_{i, 1}, \ldots, \sum_{i=1}^{p} v_{i} f_{i, q}\right)
$$

and the space of solutions $\left(u_{1}, \ldots, u_{q}\right) \in R^{q}$ to the system in (1.2) can be recovered from M as $\operatorname{Hom}_{R}(M, R)$. This formulation has the advantage that we can describe solutions over other R-algebras S, such as the ring of formal power series $K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$, in the same way, by taking $\operatorname{Hom}_{R}(M, S)$.
Note. The polynomial ring R is noetherian, meaning that every ideal of R is finitely generated. This implies that every submodule of a finitely generated R-module is again finitely generated. In particular, every finitely generated R-module is isomorphic to the cokernel of $\varphi: R^{p} \rightarrow R^{q}$ for some $p, q \in \mathbb{N}$. Studying systems of linear equations with coefficients in R is therefore the same thing as studying finitely generated R-modules.

Systems of linear partial differential equations. We now apply the same construction to systems of linear partial differential equations with coefficients in the polynomial ring. The role of the polynomial ring $R=K\left[x_{1}, \ldots, x_{n}\right]$ is played by the Weyl algebra $A_{n}=A_{n}(K)$. The elements of A_{n} are linear partial differential operators of the form

$$
P=\sum_{i_{1}, \ldots, i_{n}} f_{i_{1}, \ldots, i_{n}}\left(x_{1}, \ldots, x_{n}\right) \frac{\partial^{i_{1}}}{\partial x_{1}^{i_{1}}} \cdots \frac{\partial^{i_{n}}}{\partial x_{n}^{i_{n}}},
$$

where $f_{i_{1}, \ldots, i_{n}} \in R$, and the sum is finite. To simplify the notation, we put $\partial_{j}=$ $\partial / \partial x_{j}$, and write the above sum in multi-index notation as

$$
P=\sum_{\alpha, \beta} c_{\alpha, \beta} x^{\alpha} \partial^{\beta}
$$

where $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$, and $\partial^{\beta}=\partial_{1}^{\beta_{1}} \cdots \partial_{n}^{\beta_{n}}$. We can multiply two differential operators in the obvious way, using the relations

$$
\begin{equation*}
\left[x_{i}, x_{j}\right]=0, \quad\left[\partial_{i}, \partial_{j}\right]=0, \quad\left[\partial_{i}, x_{j}\right]=\delta_{i, j}, \tag{1.3}
\end{equation*}
$$

where $\delta_{i, j}=1$ if $i=j$, and $\delta_{i, j}=0$ otherwise. The relation $\left[\partial_{i}, \partial_{j}\right]=0$ expresses the equality of mixed partial derivatives; the relation $\left[\partial_{i}, x_{j}\right]=\delta_{i, j}$ is a consequence of the product rule:

$$
\frac{\partial}{\partial x_{i}}\left(x_{j} f\right)=\frac{\partial x_{j}}{\partial x_{i}} f+x_{j} \frac{\partial f}{\partial x_{j}}=\delta_{i, j} f+x_{j} \frac{\partial}{\partial x_{i}} f
$$

Multiplication of differential operators turns A_{n} into a non-commutative ring. Differential operators naturally act on polynomials, by the usual (algebraic) rules for computing derivatives of polynomials; if we denote the action of a differential operator P on a polynomial f by the symbol $P f$, we obtain a linear mapping

$$
A_{n} \times R \rightarrow R, \quad(P, f) \mapsto P f
$$

This makes the polynomial ring R into a left module over the Weyl algebra A_{n}.
The action on polynomials leads to the following more intrinsic description of the Weyl algebra: A_{n} is the smallest subring of the ring of K-linear endomorphisms

$$
\operatorname{Hom}_{K}\left(K\left[x_{1}, \ldots, x_{n}\right], K\left[x_{1}, \ldots, x_{n}\right]\right)
$$

that contains $K\left[x_{1}, \ldots, x_{n}\right]$ and the partial derivative operators $\partial_{1}, \ldots, \partial_{n}$. Algebraically, one can also describe the Weyl algebra by generators and relations: A_{n} is the non-commutative K-algebra generated by the $2 n$ symbols $x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}$, subject to the relations in (1.3).

Now suppose that we have a system of linear partial differential equations

$$
\begin{equation*}
\sum_{j=1}^{q} P_{i, j} u_{j}=0, \quad i=1, \ldots, p \tag{1.4}
\end{equation*}
$$

with differential operators $P_{i, j} \in A_{n}$. As before, we consider the morphism of left A_{n}-modules

$$
\varphi: A_{n}^{p} \rightarrow A_{n}^{q}, \quad \varphi\left(Q_{1}, \ldots, Q_{p}\right)=\left(\sum_{i=1}^{p} Q_{i} P_{i, 1}, \ldots, \sum_{i=1}^{p} Q_{i} P_{i, q}\right)
$$

and associate to the system in (1.4) the left A_{n}-module

$$
M=\operatorname{coker} \varphi=A_{n}^{q} / \varphi\left(A_{n}^{p}\right)
$$

Note that it becomes necessary to distinguish between left and right A_{n}-modules, because A_{n} is non-commutative. We can again recover the solutions to the system in (1.4) directly from M, as follows. Let S be any commutative K-algebra with an action by differential operators, meaning that S is a left A_{n}-module. Examples are the polynomial ring $R=K\left[x_{1}, \ldots, x_{n}\right]$, the ring of formal power series $K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$, etc. For $K=\mathbb{R}$ or $K=\mathbb{C}$, we might also be interested in the ring of convergent power series, the ring of C^{∞}-functions, etc. In any of these examples, the solutions in S are given by the formula

$$
\operatorname{Hom}_{A_{n}}(M, S)=\left\{f: A_{n}^{q} \rightarrow S \mid f \circ \varphi=0\right\}
$$

Indeed, a morphism of left A_{n}-modules from M to S is the same thing as a morphism of left A_{n}-modules $f: A_{n}^{q} \rightarrow A_{n}$ whose composition with φ is equal to zero.

Once again, f is uniquely determined by the q functions $u_{j}=f\left(e_{j}\right) \in S$, where e_{j} denotes the j-th coordinate vector in A_{n}^{q}. Since $f \circ \varphi=0$, we get

$$
\sum_{i, j} Q_{i} P_{i, j} u_{j}=0
$$

for every $\left(Q_{1}, \ldots, Q_{p}\right) \in A_{n}^{p}$, and so $\left(u_{1}, \ldots, u_{q}\right) \in S^{q}$ solves the system of linear partial differential equations in (1.4).

Note. The Weyl algebra A_{n} is again left noetherian, meaning that every left ideal of A_{n} is finitely generated. (We will prove this next time.) This implies that every submodule of a finitely generated left A_{n}-module is again finitely generated. Studying systems of linear partial differential equations with coefficients in R is therefore the same thing as studying finitely generated left A_{n}-modules.

One advantage of this point of view is that we can describe the solutions to the system in a uniform way, by applying the solution functor $\operatorname{Hom}_{A_{n}}(M,-)$. We shall see later on that the solution functor is not exact (in the sense of homological algebra), and that it is natural to consider its derived functors. We shall also see that for so-called "regular holonomic" systems, one can recover the system up to isomorphism from its solutions (in the derived sense); this is the content of the famous Riemann-Hilbert correspondence.

Example 1.5. The exponential function $u=e^{x}$ solves the ordinary differential equation $u^{\prime}=u$, which we can write in the form $(\partial-1) u=0$. The corresponding left A_{1}-module is $A_{1} / A_{1}(\partial-1)$. The function $v=e^{1 / x}$ solves the ordinary differential equation $-x^{2} v^{\prime}=v$, whose associated A_{1}-module is $A_{1} / A_{1}\left(x^{2} \partial+1\right)$. Later on, when we discuss regularity, we shall see how the essential singularity of v at the point $x=0$ affects the properties of the A_{1}-module $A_{1} / A_{1}\left(x^{2} \partial+1\right)$.

Another advantage is that we can transform the system in (1.4) without changing the isomorphism class of the A_{n}-module M.

Example 1.6. Consider the second-order equation $a(x) u^{\prime \prime}+b(x) u^{\prime}+c(x) u=0$, where $a, b, c \in K[x]$. A standard trick is to transform this into a system of two first-order equations $u_{1}^{\prime}-u_{2}=0$ and $a u_{2}^{\prime}+b u_{2}+c u_{1}=0$, by setting $u_{1}=u$ and $u_{2}=u^{\prime}$. The first-order system leads to the left A_{1}-module

$$
M_{1}=\operatorname{coker}\left(A_{1}^{2} \xrightarrow{\left(\begin{array}{ll}
\partial & -1 \\
c & \partial \partial+b
\end{array}\right)} A_{1}^{2}\right)
$$

and the second-order system to the left A_{1}-module

$$
M_{2}=A_{1} / A_{1}\left(a \partial^{2}+b \partial+c\right)
$$

Can you find an isomorphism between M_{1} and M_{2} as left A_{1}-modules?
Left and right A_{n}-modules. I already mentioned that it is necessary to distinguish between left A_{n}-modules and right A_{n}-modules, due to the non-commutativity of the Weyl algebra. Left A_{n}-modules naturally arise from functions, whereas right A_{n}-modules arise naturally from distributions. Let us look at the example of distributions in more detail. The \mathbb{R}-algebra $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ of all compactly supported C^{∞} _ functions on \mathbb{R}^{n} is naturally a left $A_{n}(\mathbb{R})$-module; as before, we denote the action of a differential operator $P \in A_{n}$ on a test function $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ by the symbol $P \varphi$. With the topology of uniform convergence of all derivatives on compact subsets, $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ becomes a topological \mathbb{R}-vector space, and we denote by $\mathrm{Db}\left(\mathbb{R}^{n}\right)$ its topological dual. In other words, a distribution $D \in \operatorname{Db}\left(\mathbb{R}^{n}\right)$ is a continuous linear functional from $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ to \mathbb{R}. We write the natural pairing between distributions and test functions as

$$
\operatorname{Db}\left(\mathbb{R}^{n}\right) \times C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}, \quad(D, \varphi) \mapsto\langle D, \varphi\rangle
$$

In analysis, it is also common to use the more suggestive notation

$$
\langle D, \varphi\rangle=\int_{\mathbb{R}^{n}} D \varphi d \mu
$$

where $d \mu$ is Lebesgue measure. Using formal integration by parts, $\mathrm{Db}\left(\mathbb{R}^{n}\right)$ naturally becomes a right A_{n}-module, by defining

$$
\langle D P, \varphi\rangle=\langle D, P \varphi\rangle
$$

for $D \in \operatorname{Db}\left(\mathbb{R}^{n}\right), P \in A_{n}$, and $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. For example, $D \partial_{j}$ is the distribution obtained by applying D to the test function $\partial \varphi / \partial x_{j}$. If we take any distribution, and act on it by differential operators, we obtain a right A_{n}-module inside $\mathrm{Db}\left(\mathbb{R}^{n}\right)$.

Example 1.7. Consider the delta function $\delta_{0} \in \operatorname{Db}\left(\mathbb{R}^{n}\right)$, defined by $\left\langle\delta_{0}, \varphi\right\rangle=\varphi(0)$. Clearly, $\delta_{0} x_{1}=\cdots=\delta_{0} x_{n}=0$, and in fact, one can show that the right A_{n}-module generated by δ_{0} is isomorphic to

$$
A_{n} /\left(x_{1}, \ldots, x_{n}\right) A_{n}
$$

As an \mathbb{R}-vector space, this is just $\mathbb{R}\left[\partial_{1}, \ldots, \partial_{n}\right]$, but the A_{n}-action is nontrivial.

Exercises.

Exercise 1.1. Construct an isomorphism between the two left A_{1}-modules M_{1} and M_{2} in Example 1.6.
Exercise 1.2. Show that if $P \in A_{n}(\mathbb{R})$ satisfies $(P \varphi)(0)=0$ for every test function $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, then $P \in\left(x_{1}, \ldots, x_{n}\right) A_{n}$.

