
Lecture 1: January 28

Overview. The purpose of this course is to give an introduction to the theory of
algebraic D-modules. I plan to cover roughly the following topics:

– modules over the Weyl algebra An

– D-modules on smooth algebraic varieties
– functors on D-modules (and how they relate to PDE)
– holonomic D-modules, regularity (with a focus on what it means)
– b-functions, localization along a hypersurface
– D-modules of normal crossing type (as a class of examples)
– Riemann-Hilbert correspondence (with proofs in the normal crossing case)
– some applications, either to representation theory or to algebraic geometry

The website for the course,

http://www.math.stonybrook.edu/~cschnell/mat615,

contains a list of useful references.

Introduction. Very briefly, D-modules were invented in Japan (by Mikio Sato,
Masaki Kashiwara, and others) and France (by Alexander Grothendieck, Zogman
Mebkhout, and others). It has its origins in the field of “algebraic analysis”, which
means the study of partial di↵erential equations with algebraic tools. The theory
of algebraic D-modules was further developed by Joseph Bernstein.

Systems of linear equations. D-modules arise naturally from systems of linear
partial di↵erential equations. To get a better understanding of how this works, let
us first look at the example of a system of linear equations

(1.1)
qX

j=1

ai,jxj = 0, i = 1, . . . , p,

with coe�cients ai,j in a field K (such as R or C). In linear algebra, one usually
transforms such a system in various ways, for example by making a substitution in
the unknowns x1, . . . , xq, or by taking linear combinations of the equations. One
can associate to the system in (1.1) a single K-vector space that is invariant under
such transformations. Consider the linear mapping

' : Kp ! Kq, '(y1, . . . , yp) =

 
pX

i=1

yiai,1, . . . ,
pX

i=1

yiai,q

!
,

built from the coe�cient matrix of the system in (1.1), and define the K-vector
space V = ker' = Kq/'(Kp). It sits in the exact sequence

Kp Kq V 0,
' ⇡

and the solution space to (1.1) can be recovered from V as

HomK(V,K) =
�
f : Kq ! K

�� f � ' = 0
 
.

Indeed, a linear mapping from V to K is the same thing as a linear mapping
f : Kq ! K whose composition with ' is equal to zero.

Kp Kq V

K

'

0

⇡

f

1

http://www.math.stonybrook.edu/~cschnell/mat615
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Now f is uniquely determined by the q scalars xj = f(ej) 2 K, where ej denotes
the j-th coordinate vector in Kq. Since f � ' = 0, we get

X

i,j

yiai,jxj = 0

for every (y1, . . . , yp) 2 Kp. This means exactly that (x1, . . . , xq) 2 Kq is a solution
to the system of linear equations in (1.1).

The same construction can be applied to systems of linear equations with coef-
ficients in other rings. For example, let R = K[x1, . . . , xn] be the polynomial ring
in n variables, and consider the system of linear equations

(1.2)
qX

j=1

fi,juj = 0, i = 1, . . . , p,

with polynomial coe�cients fi,j 2 R. As before, we can associate to the system an
R-module M = coker', defined as the cokernel of the morphism of R-modules

' : Rp ! Rq, '(v1, . . . , vp) =

 
pX

i=1

vifi,1, . . . ,
pX

i=1

vifi,q

!
,

and the space of solutions (u1, . . . , uq) 2 Rq to the system in (1.2) can be recov-
ered from M as HomR(M,R). This formulation has the advantage that we can
describe solutions over other R-algebras S, such as the ring of formal power series
K[[x1, . . . , xn]], in the same way, by taking HomR(M,S).

Note. The polynomial ring R is noetherian, meaning that every ideal of R is finitely
generated. This implies that every submodule of a finitely generated R-module
is again finitely generated. In particular, every finitely generated R-module is
isomorphic to the cokernel of ' : Rp ! Rq for some p, q 2 N. Studying systems
of linear equations with coe�cients in R is therefore the same thing as studying
finitely generated R-modules.

Systems of linear partial di↵erential equations. We now apply the same
construction to systems of linear partial di↵erential equations with coe�cients in
the polynomial ring. The role of the polynomial ring R = K[x1, . . . , xn] is played
by the Weyl algebra An = An(K). The elements of An are linear partial di↵erential
operators of the form

P =
X

i1,...,in

fi1,...,in(x1, . . . , xn)
@i1

@xi1
1

· · · @in

@xin
n
,

where fi1,...,in 2 R, and the sum is finite. To simplify the notation, we put @j =
@/@xj , and write the above sum in multi-index notation as

P =
X

↵,�

c↵,�x
↵@� ,

where x↵ = x↵1
1 · · ·x↵n

n , and @� = @�1
1 · · · @�n

n . We can multiply two di↵erential
operators in the obvious way, using the relations

(1.3) [xi, xj ] = 0, [@i, @j ] = 0, [@i, xj ] = �i,j ,

where �i,j = 1 if i = j, and �i,j = 0 otherwise. The relation [@i, @j ] = 0 expresses
the equality of mixed partial derivatives; the relation [@i, xj ] = �i,j is a consequence
of the product rule:

@

@xi
(xjf) =

@xj

@xi
f + xj

@f

@xj
= �i,jf + xj

@

@xi
f
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Multiplication of di↵erential operators turns An into a non-commutative ring. Dif-
ferential operators naturally act on polynomials, by the usual (algebraic) rules for
computing derivatives of polynomials; if we denote the action of a di↵erential op-
erator P on a polynomial f by the symbol Pf , we obtain a linear mapping

An ⇥R ! R, (P, f) 7! Pf.

This makes the polynomial ring R into a left module over the Weyl algebra An.
The action on polynomials leads to the following more intrinsic description of

the Weyl algebra: An is the smallest subring of the ring of K-linear endomorphisms

HomK

�
K[x1, . . . , xn],K[x1, . . . , xn]

�

that contains K[x1, . . . , xn] and the partial derivative operators @1, . . . , @n. Alge-
braically, one can also describe the Weyl algebra by generators and relations: An is
the non-commutativeK-algebra generated by the 2n symbols x1, . . . , xn, @1, . . . , @n,
subject to the relations in (1.3).

Now suppose that we have a system of linear partial di↵erential equations

(1.4)
qX

j=1

Pi,juj = 0, i = 1, . . . , p,

with di↵erential operators Pi,j 2 An. As before, we consider the morphism of left
An-modules

' : Ap
n ! Aq

n, '(Q1, . . . , Qp) =

 
pX

i=1

QiPi,1, . . . ,
pX

i=1

QiPi,q

!
,

and associate to the system in (1.4) the left An-module

M = coker' = Aq
n/'(A

p
n).

Note that it becomes necessary to distinguish between left and right An-modules,
because An is non-commutative. We can again recover the solutions to the system
in (1.4) directly from M , as follows. Let S be any commutative K-algebra with
an action by di↵erential operators, meaning that S is a left An-module. Exam-
ples are the polynomial ring R = K[x1, . . . , xn], the ring of formal power series
K[[x1, . . . , xn]], etc. For K = R or K = C, we might also be interested in the ring
of convergent power series, the ring of C1-functions, etc. In any of these examples,
the solutions in S are given by the formula

HomAn(M,S) =
�
f : Aq

n ! S
�� f � ' = 0

 

Indeed, a morphism of left An-modules fromM to S is the same thing as a morphism
of left An-modules f : Aq

n ! An whose composition with ' is equal to zero.

Ap
n Aq

n M

S

'

0

⇡

f

Once again, f is uniquely determined by the q functions uj = f(ej) 2 S, where ej
denotes the j-th coordinate vector in Aq

n. Since f � ' = 0, we get
X

i,j

QiPi,juj = 0

for every (Q1, . . . , Qp) 2 Ap
n, and so (u1, . . . , uq) 2 Sq solves the system of linear

partial di↵erential equations in (1.4).
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Note. The Weyl algebra An is again left noetherian, meaning that every left ideal
of An is finitely generated. (We will prove this next time.) This implies that
every submodule of a finitely generated left An-module is again finitely generated.
Studying systems of linear partial di↵erential equations with coe�cients in R is
therefore the same thing as studying finitely generated left An-modules.

One advantage of this point of view is that we can describe the solutions to
the system in a uniform way, by applying the solution functor HomAn(M,�). We
shall see later on that the solution functor is not exact (in the sense of homological
algebra), and that it is natural to consider its derived functors. We shall also see
that for so-called “regular holonomic” systems, one can recover the system up to
isomorphism from its solutions (in the derived sense); this is the content of the
famous Riemann-Hilbert correspondence.

Example 1.5. The exponential function u = ex solves the ordinary di↵erential
equation u0 = u, which we can write in the form (@�1)u = 0. The corresponding left
A1-module is A1/A1(@ � 1). The function v = e1/x solves the ordinary di↵erential
equation �x2v0 = v, whose associated A1-module is A1/A1(x2@ + 1). Later on,
when we discuss regularity, we shall see how the essential singularity of v at the
point x = 0 a↵ects the properties of the A1-module A1/A1(x2@ + 1).

Another advantage is that we can transform the system in (1.4) without changing
the isomorphism class of the An-module M .

Example 1.6. Consider the second-order equation a(x)u00 + b(x)u0 + c(x)u = 0,
where a, b, c 2 K[x]. A standard trick is to transform this into a system of two
first-order equations u0

1 � u2 = 0 and au0
2 + bu2 + cu1 = 0, by setting u1 = u and

u2 = u0. The first-order system leads to the left A1-module

M1 = coker

 
A2

1

⇣
@ �1
c a@+b

⌘

�������! A2
1

!

and the second-order system to the left A1-module

M2 = A1/A1(a@
2 + b@ + c)

Can you find an isomorphism between M1 and M2 as left A1-modules?

Left and right An-modules. I already mentioned that it is necessary to distin-
guish between leftAn-modules and rightAn-modules, due to the non-commutativity
of the Weyl algebra. Left An-modules naturally arise from functions, whereas right
An-modules arise naturally from distributions. Let us look at the example of dis-
tributions in more detail. The R-algebra C1

0 (Rn) of all compactly supported C1-
functions on Rn is naturally a left An(R)-module; as before, we denote the action
of a di↵erential operator P 2 An on a test function ' 2 C1

0 (Rn) by the symbol
P'. With the topology of uniform convergence of all derivatives on compact sub-
sets, C1

0 (Rn) becomes a topological R-vector space, and we denote by Db(Rn) its
topological dual. In other words, a distribution D 2 Db(Rn) is a continuous linear
functional from C1

0 (Rn) to R. We write the natural pairing between distributions
and test functions as

Db(Rn)⇥ C1
0 (Rn) ! R, (D,') 7! hD,'i.

In analysis, it is also common to use the more suggestive notation

hD,'i =
Z

Rn

D' dµ,
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where dµ is Lebesgue measure. Using formal integration by parts, Db(Rn) naturally
becomes a right An-module, by defining

hDP,'i = hD,P'i
for D 2 Db(Rn), P 2 An, and ' 2 C1

0 (Rn). For example, D@j is the distribution
obtained by applying D to the test function @'/@xj . If we take any distribution,
and act on it by di↵erential operators, we obtain a right An-module inside Db(Rn).

Example 1.7. Consider the delta function �0 2 Db(Rn), defined by h�0,'i = '(0).
Clearly, �0x1 = · · · = �0xn = 0, and in fact, one can show that the right An-module
generated by �0 is isomorphic to

An/(x1, . . . , xn)An.

As an R-vector space, this is just R[@1, . . . , @n], but the An-action is nontrivial.

Exercises.

Exercise 1.1. Construct an isomorphism between the two left A1-modules M1 and
M2 in Example 1.6.

Exercise 1.2. Show that if P 2 An(R) satisfies (P')(0) = 0 for every test function
' 2 C1

0 (Rn), then P 2 (x1, . . . , xn)An.


	Lecture 1: January 28
	Overview
	Introduction
	Systems of linear equations
	Systems of linear partial differential equations
	Left and right An-modules
	Exercises

	Lecture 2: January 30

