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Lecture 10: March 6

Algebraic D-modules. Let me first recall the definition of an algebraic D-module
from last time. As before, X is an algebraic variety over a field k, nonsingular of
constant dimension n. We denote by DX the sheaf of algebraic di↵erential operators
on X, and by FjDX the subsheaf of operators of order  j. Then each FjDX is a
coherent sheaf of OX -modules, and DX itself is quasi-coherent.

Definition 10.1. An algebraic D-module is a quasi-coherent sheaf of OX -modules
M, together with a left (or right) action by DX .

Since DX is noncommutative, we again have to distinguish between left and right
modules. In the case of a left D-module M, the set of sections M = �(U,M) over
any a�ne open subset U ✓ X is thus a left module over the algebra of di↵erential
operators D(A), where A = �(U,OX). The quasi-coherence condition means that
the restriction of M to the open set U is uniquely determined by this D(A)-module.
Recall from Lecture 9 that the algebra D(A) is generated, as an A-subalgebra of
Endk(A), by the derivations Derk(A), subject to the relation [�, f ] = �(f) for all
� 2 Derk(A) and all f 2 A. The left D(A)-action on M is therefore the same thing
as a k-linear mapping

Derk(A)⌦k M ! M, � ⌦m 7! �m,

such that (f�)m = f(�m), �(fm) = f�(m) + �(f)m and �(⌘m) � ⌘(�m) = [�, ⌘]m
for all �, ⌘ 2 Derk(A), all f 2 A, and all m 2 M . Globally, to turn a quasi-coherent
sheaf of OX -modules M into a left DX -module, we need a k-linear morphism

TX ⌦k M ! M

that satisfies those three conditions locally. (You can work out for yourself what
happens for right D-modules.)

Example 10.2. Since the algebra of di↵erential operators on the a�ne space An
k is

the Weyl algebra An(k), an algebraic D-module on An
k is (up to the equivalence

between quasi-coherent sheaves and modules) the same thing as a left (or right)
module over An(k).

Here are some examples of left and right D-modules.

Example 10.3. The structure sheaf OX is a left DX -module. Indeed, for every a�ne
open subset U ✓ X, the algebra of di↵erential operatorsD(A) acts onA = �(U,OX)
by construction.

Example 10.4. Every algebraic vector bundle with integrable connection is a left
DX -module. Let E be the corresponding locally free sheaf of OX -modules; in
Hartshorne’s notation, the vector bundle is then V(E ⇤). A connection is a k-linear
morphism r : E ! ⌦1

X/k ⌦OX E that satisfies the Leibniz rule. In other words,

for every a�ne open subset U ✓ X and every pair of sections s 2 �(U,E ) and
f 2 �(U,OX), the connection should satisfy

r(fs) = fr(s) + df ⌦ s.

We can also regard the connection as a k-linear morphism r : TX ⌦k E ! E , but
we use the di↵erential geometry notation r✓(s) instead of r(✓⌦s) for ✓ 2 �(U,TX)
and s 2 �(U,E ). In this notation, we have

(10.5) rf✓(s) = fr✓(s),

and the Leibniz rule becomes

(10.6) r✓(fs) = fr✓(s) + ✓(f)s.
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The connection is called integrable if

(10.7) r✓ � r⌘ �r⌘ � r✓ = r[✓,⌘]

for every pair of vector fields ✓, ⌘ 2 �(U,TX). This is equivalent to the vanishing
of the curvature operator in ⌦2

X/k ⌦OX EndOX (E ). The conditions in (10.5), (10.6)

and (10.7) are exactly saying that the action of TX on E extends to a left action
by the sheaf of di↵erential operators DX , and so E becomes a left D-module.

In general, the left action of DX on a left D-module M may be considered
(formally) as a connection operatorr : M ! ⌦1

X/k⌦OXM that satisfies the Leibniz
rule and is integrable, in the sense that it locally satisfies the conditions expressed
in (10.5), (10.6) and (10.7).

Example 10.8. Unlike in the case of a�ne space, we cannot turn left D-modules
into right D-modules by changing signs, since we might not be able to do this
consistently on all a�ne open subsets. Instead, the primary example of a right
D-module is the canonical bundle !X =

Vn ⌦1
X/k, whose sections are the algebraic

n-forms. If U ✓ X is an a�ne open subset with local coordinates x1, . . . , xn, then
!X is locally free of rank one, spanned by dx 1 ^ · · · ^ dxn. The tangent sheaf TX

acts on !X by Lie di↵erentiation. Given ! 2 �(U,!X) and ✓, ✓1, . . . , ✓n 2 �(U,TX),
the formula for the Lie derivative is

(Lie✓ !)(✓1, . . . , ✓n) = ✓ · !(✓1, . . . , ✓n)�
nX

i=1

!
�
✓1, . . . , [✓, ✓i], . . . , ✓n

�
.

One can check quite easily that the following relations hold:

Lie✓(f!) = f Lie✓ ! + ✓(f)! = Lief✓ !

Lie[✓,⌘] ! = Lie✓ Lie⌘ ! � Lie⌘ Lie✓ !

This almost looks like !X should be a left DX -module, but note that (10.5) is not
satisfied since Lief✓ ! 6= f Lie✓ !. But if we instead define

!X ⌦k TX ! !X , ! ⌦ ✓ 7! ! · ✓ = �Lie✓(!)

and also write the OX -action on !X on the right, we obtain

! · ✓(f) = (�Lie✓ !)f + Lie✓(!f) = (! · ✓)f � (!f) · ✓

! · [✓, ⌘] = �Lie[✓,⌘] ! = Lie✓ Lie⌘ ! � Lie⌘ Lie✓ ! = (! · ✓) · ⌘ � (! · ⌘) · ✓.

These are exactly the relations defining DX , and so we obtain on !X the structure
of a right DX -module. In local coordinates, we have

(fdx 1 ^ · · · ^ dxn) · P = (P�
f)dx 1 ^ · · · ^ dxn,

where P
� =

P
(�@)↵f↵ is the formal adjoint of P =

P
f↵@

↵. In local coordinates,
the left D-module structure on OX and the right D-module structure on !X are
therefore related to each other exactly as in the case of the Weyl algebra.

Good filtrations and characteristic variety. As in the case of the Weyl al-
gebra, we study D-modules using filtrations. Let M be a left DX -module. We
consider increasing filtrations F•M by coherent OX -submodules FjM such that

FiDX · FjM ✓ Fi+jM

for all i, j 2 Z. We also assume that the filtration is exhaustive, meaning that
[

j2Z
FjM = M.
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Note that each FjM is assumed to be coherent over OX . We say that such a
filtration is good if the associated graded module

grFM =
M

j2Z
FjM/Fj�1M

is locally finitely generated over grFDX . This implies that FjM = 0 for j ⌧ 0.
Now suppose that U ✓ X is an a�ne open subset, and set A = �(U,OX) and

M = �(U,M). By the same argument as in the case of the Weyl algebra, one shows
that M is finitely generated over D(A) if and only if admits a good filtration F•M
by finitely generated A-modules; again, this means that FiD(A) ·FjM ·Fi+jM and
grFM is finitely generated over grFD(A).

Definition 10.9. We say that a left (or right) DX -module is coherent if it is locally
finitely generated over DX .

Note that this is not the same thing as being OX -coherent; in fact, most coherent
DX -modules are not coherent over OX . Every coherent DX -module has a good
filtration locally, meaning on each a�ne open subset; in fact, we will see next time
that coherent DX -modules always admit a global good filtration F•M.

Given a good filtration F•M (globally or locally), the associated graded grFM
is coherent over the sheaf of OX -algebras

grFDX
⇠= SymTX

⇠= p⇤OT⇤X ,

where p : T ⇤
X ! X again means the cotangent bundle. By the correspondence

between coherent sheaves on T
⇤
X and finitely generated modules over p⇤OT⇤X , we

thus obtain a coherent sheaf of OT⇤X -modules on the cotangent bundle that we

denote by the symbol ‡grFM.

Definition 10.10. The characteristic variety Ch(M) is the closed algebraic subset

of T ⇤
X given by the support of ‡grFM, with the reduced scheme structure.

As in the case of the Weyl algebra, any two good filtrations onM are comparable;
for the same reason as before, this implies that the subsheaf

q
AnngrF DX

grFM ✓ grFDX

is independent of the choice of good filtration. If we denote by JM ✓ OT⇤X the
corresponding coherent sheaf of ideals on the cotangent bundle, then Ch(M) is the
closed subscheme defined by JM. We are going to show later on that Bernstein’s
inequality carries over to arbitrary coherent D-modules: as long as M 6= 0, every
irreducible component of Ch(M) has dimension at least n.

Example 10.11. If E is the left DX -module determined by a vector bundle with
integrable connection, then Ch(E ) is the zero section. The reason is that E is
coherent over OX , which means that setting FjE = 0 for j < 0 and FjE = E for
j � 0 gives a good filtration. Here

AnngrF DX
grFE =

M

j�1

grFj DX ,

and so JE is the ideal of the zero section. Of course, this works more generally for
any D-module that is coherent over OX .

The example has a useful converse.

Proposition 10.12. Let M be a coherent DX-module. If M is coherent over OX ,

then M is actually a locally free OX-module of finite rank (and therefore comes

from a vector bundle with integrable connection).
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Proof. Since M is a quasi-coherent OX -module, it su�ces to check that the local-
ization OX,x ⌦OX M at every closed point x 2 X is a free OX,x-module of finite
rank. This reduces the problem to the following special case: A is a regular local
ring of dimension n, containing a field k, with maximal ideal m and residue field
A/m ⇠= k, and M is a left D(A)-module that is finitely generated over A. Here
D(A) is again the algebra of k-linear di↵erential operators on A. We need to prove
that M is a free A-module of finite rank.

First, some preparations. Since A is regular of dimension n, the maximal ideal
m is generated by n elements x1, . . . , xn whose images in m/m2 are linearly inde-
pendent over k. Let @1, . . . , @n 2 Derk(A) be the corresponding derivations, which
freely generate Derk(A) as an A-module. For every nonzero f 2 A, we define the
order of vanishing as

ord(f) = max
�
` � 0

�� f 2 m`
 
;

this makes sense because the intersection of all powers of the maximal ideal is trivial.
If f = 0, we formally set ord(f) = +1. The key point is that we can reduce the
order of vanishing of f by applying a suitable derivation. Indeed, suppose that
ord(f) = `. The ideal m` is generated by all monomials of degree ` in x1, . . . , xn,
and so we can write

f =
X

|↵|=`

f↵x
↵
,

with at least one f↵ 2 A being a unit (because otherwise f 2 m`+1). Choose a
multi-index ↵ such that f↵ is a unit, and then choose i = 1, . . . , n such that ↵i � 1.
Since @i(xj) = �i,j , we get

@i(f) =
X

|↵|=`

⇣
@i(f↵)x

↵ + f↵↵ix
↵�ei

⌘
,

and this expression clearly belongs to m`�1 but not to m`. Hence ord(@i(f)) = `�1.
As I said, we need to prove that M is a free A-module of finite rank. To do

this, pick a minimal set of generators m1, . . . ,mr 2 M , whose images in M/mM

are linearly independent over k. This gives us a surjective morphism of A-modules

A
�r

! M, (f1, . . . , fr) 7! f1m1 + · · ·+ frmr,

and we are going to show that it is also injective, hence an isomorphism. Suppose
that there was a nontrivial relation f1m1 + · · · + frmr = 0. Then f1, . . . , fr 2 m,
because m1, . . . ,mr are linearly independent modulo mM . In other words, we have

` = min
�
ord(f1), . . . , ord(fr)

 
� 1.

Now the idea is to use the D(A)-module structure to create another relation for
which the value of ` is strictly smaller. By repeating this, we eventually arrive at a
relation with ` = 0, contradicting the fact that m1, . . . ,mr are linearly independent
modulo mM . Here we go. If we apply @i to our relation, we obtain

0 = @i ·

rX

j=1

fjmj =
rX

j=1

[@i, fj ]mj +
rX

j=1

fj(@imj) =
rX

j=1

@i(fj)mj +
rX

j=1

fj(@imj).

We can write each @imj in terms of the generators m1, . . . ,mr as

@imj =
rX

k=1

ai,j,kmk,

and after reindexing, we get the new relation
rX

j=1

⇣
@i(fj) +

rX

k=1

ai,k,jfk

⌘
mj = 0.
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If we now choose j such that ord(fj) = `, and then choose i such that ord(@i(fj)) =
` � 1, then the j-th coe�cient in the new relation belongs to m`�1 but not to m`,
as desired. ⇤

We showed in Lecture 5 that M is coherent over OX if and only if its character-
istic variety is contained in the zero section of the cotangent bundle. This means
that if M is a coherent DX -module with Ch(M) contained in the zero section, then
M is a locally free OX -module of finite rank, and the DX -module structure is the
same as the datum of an integrable connection on M.


