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Lecture 11: March 11

Global good filtrations. Let us return for the moment to the topic of good
filtrations. I said last time that, by the same argument as in the case of An, every
coherent DX -module locally admits a good filtration. But in fact, good filtrations
also exist globally, because of the finiteness inherent in the definitions.

Lemma 11.1. Let M be an algebraic DX-module. If M is coherent, then there

exists a good filtration F•M by coherent OX-modules.

Proof. It will be enough to construct an OX -submodule F ✓ M that is coherent
over OX and that generates M as a DX -module. Once we have that, we can define
a filtration by setting

FjM = FjDX · F ✓ M,

and for the same reason as in the case of the Weyl algebra, each FjM is coherent
over OX , and the filtration F•M is good.

Since X is of finite type over k, it is quasi-compact, and so we can cover X

by finitely many a�ne open subsets U1, . . . , Um. Then �(Ui,M) is finitely gen-
erated over �(Ui,DX), and after choosing a finite set of generators and taking
the �(Ui,OX)-submodule of �(Ui,M) generated by this set, we certainly obtain a
coherent OUi -module FUi ✓ M

��
Ui

that has the desired properties on Ui.
To turn these locally defined subsheaves into global objects, we use the following

fact from Hartshorne’s book: Suppose that G is a quasi-coherent sheaf on an alge-
braic varietyX. If we have a nonempty open subset U ✓ X, and a coherent subsheaf
FU ✓ G

��
U
, then there is a coherent subsheaf F ✓ G such that F

��
U
= FU . When

applied to our situation, this says that there are coherent OX -modules F1, . . . ,Fn

such that Fi

��
Ui

= FUi . Then the image of

F1 � · · ·+�Fm ! M

is an OX -submodule of M that is coherent over OX (because it is the image of a
coherent OX -module) and generates M as a DX -module. ⇤

This result is peculiar to the algebraic setting, and does not hold at all for
analytic D-modules.

Characteristic varieties are involutive. Recall the definition of the character-
istic variety from last time. If M is a coherent DX -module, we can choose a global
good filtration F•M, which makes the associated graded module grFM coherent

over grFDX
⇠= SymTX . If ‡grFM denotes the corresponding coherent sheaf on the

cotangent bundle T
⇤
X, then

Ch(M) = Supp‡grFM.

Equivalently, the characteristic variety is the reduced closed subscheme of the cotan-
gent bundle corresponding to the homegeneous ideal

q
AnngrF DX

grFM ✓ grFDX .

The most important result about the characteristic variety is the following theorem.

Theorem 11.2. Ch(M) is involutive with respect to the natural symplectic struc-

ture on T
⇤
X. In particular, every irreducible component of Ch(M) has dimension

� n.

Note that this gives a lot more information about the characteristic variety than
Bernstein’s inequality. This result was first proved by analytic methods, but Gabber
later discovered an algebraic proof. Bernstein’s inequality can of course be proved
by more elementary means. We are not going to prove Theorem 11.2; instead, I
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will review some basic facts about symplectic geometry, so that we can understand
at least the statement, and where the di�culties lie.

Symplectic vector spaces. Let us start with a brief discussion of symplectic
vector spaces. Let V be a finite-dimensional vector space over a field k. Usually, k
will be field of real or complex numbers, but the definition works over any field of
characteristic 6= 2. A symplectic form is a bilinear form

� : V ⌦k V ! k

that is anti-symmetric and non-degenerate. In other words, one has �(v, w) =
��(w, v) for every v, w 2 V , and if we denote by V

⇤ = Homk(V, k) the dual vector
space, then the induced linear mapping

V ! V
⇤
, w 7! �(�, w),

is an isomorphism (called the “Hamiltonian isomorphism”). For every linear func-
tional ✓ 2 V

⇤, one therefore has a unique element H✓ 2 V such that ✓(v) = �(v,H✓)
for all v 2 V .

The dimension of a symplectic vector space is always an even number. One way
to see this is as follows. Pick a nonzero vector w 2 V , and consider the linear
subspace L = k · w ✓ V . Since �(w,w) = 0, one has L contained in the subspace

L
? =

�
v 2 V

�� �(v, w) = 0
 
.

The fact that � is nondegenerate implies that L? = dimV � 1. One easily checks
that the quotient space L

?
/L, with the bilinear form induced by �, is again a

symplectic vector space. Since dimV = 2 + dimL
?
/L, the claim now follows by

induction.

Example 11.3. If V is any finite-dimensional k-vector space, then V � V
⇤ is a

symplectic vector space, with symplectic form given by
�
(v1, ✓1), (v2, ✓2)

�
7! ✓1(v2)� ✓2(v1).

In fact, every symplectic vector space is isomorphic to this model (after a suitable
choice of basis).

Given a subspace W ✓ V , one defines

W
? =

�
v 2 V

�� �(v, w) = 0 for every w 2 W
 
.

Under the Hamiltonian isomorphism V ⇠= V
⇤, the subspaceW? corresponds exactly

to the kernel of the restriction homomorphism V
⇤
! W

⇤, and therefore

dimW + dimW
? = dimV.

Definition 11.4. Let W ✓ V be a linear subspace.

(1) W is called involutive if W?
✓ W ; then dimW �

1
2 dimV .

(2) W is called Lagrangian if W? = W ; then dimW = 1
2 dimV .

(3) W is called isotropic if W?
◆ W ; then dimW 

1
2 dimV .

Note that an involutive (or isotropic) subspace is Lagrangian i↵ dimW = 1
2 dimV .

Example 11.5. Consider the symplectic vector space V �V
⇤. If W ✓ V is any linear

subspace, then W � ker(V ⇤
! W

⇤) is always a Lagrangian subspace of V � V
⇤.

It is clearly isotropic: if v1, v2 are vectors in W , and ✓1, ✓2 are linear functionals
whose restriction to W is trivial, then ✓1(v2)� ✓2(v1) = 0. Since

dimW + dimker(V ⇤
! W

⇤) = dimV

is exactly half the dimension of V � V
⇤, it follows that the subspace is Lagragian.
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Symplectic algebraic varieties. A nonsingular algebraic varietyX is called sym-

plectic if the tangent space TxX at every closed point x 2 X is a symplectic vector
space, and the symplectic forms vary in an algebraic way from point to point. More
precisely, there should exist a global algebraic two-form � 2 �(X,⌦2

X/k) whose re-
striction �x : TxX ⌦k TxX ! k gives a symplectic form on TxX for every closed
point x 2 X. Of course, this implies that dimX is even.

Example 11.6. The example we care about is the cotangent bundle T
⇤
X of a non-

singular algebraic variety X of dimension n. Note that dimT
⇤
X = 2n. If we choose

local coordinates x1, . . . , xn on X, then the di↵erentials dx 1, . . . , dxn give a local
trivialization for ⌦1

X/k, and so we obtain local coordinates x1, . . . , xn, ⇠1, . . . , ⇠n on
the cotangent bundle. In these coordinates,

�X =
nX

i=1

d⇠i ^ dx i

is a symplectic form. Indeed, at any closed point (x, ⇠) 2 T
⇤
X, we have

T(x,⇠)

�
T

⇤
X
�
= TxX � (TxX)⇤,

because the fiber of p : T ⇤
X ! X over the point x is the cotangent space (TxX)⇤,

and because a vector space is isomorphic to its own tangent space. Under this
isomorphism, the two-form �X corresponds exactly to the standard symplectic form
in Example 11.3. In more functorial language, one can describe �X as follows. As
with any vector bundle, the pullback p

⇤⌦1
X/k has a tautological global section,

whose image under p⇤⌦1
X/k ! ⌦1

T⇤X/k gives a one-form

↵X 2 �
�
T

⇤
X,⌦1

T⇤X/k

�
.

In local coordinates as above, one has ↵X =
P

i ⇠idx i. Then

�X = d↵X 2 �
�
T

⇤
X,⌦2

T⇤X/k

�

is the symplectic form from above.

Let X be a nonsingular algebraic variety with a symplectic form �. Then �x

induces an isomorphism between the tangent space TxX and the cotangent space
(TxX)⇤ at every closed point x 2 X, and this allows us to convert one-forms into
vector fields and vice versa. In particular, every function f 2 �(U,OX) determines
a vector field Hf 2 �(U,TX), with the property that df = �(�, Hf ) as one-forms
on U . The Poisson bracket of two functions f, g 2 �(U,OX) is defined by

{f, g} = Hf (g) = dg(Hf ) = �(Hf , Hg) 2 �(U,OX).

If d� = 0, then one has [Hf , Hg] = H{f,g}.

Example 11.7. In local coordinates x1, . . . , xn, ⇠1, . . . , ⇠n on the cotangent bundle,
the Hamiltonian vector field of a function f is given by

Hf =
nX

i=1

✓
@f

@⇠i

@

@xi
�

@f

@xi

@

@⇠i

◆
,

and consequently, the Poisson bracket can be calculated as

{f, g} =
nX

i=1

✓
@f

@⇠i

@g

@xi
�

@f

@xi

@g

@⇠i

◆
.

We can extend the notion of involutive (or Lagrangian or isotropic) to subvari-
eties of X by looking at their tangent spaces at nonsingular points. Thus a reduced
algebraic subvariety Y ✓ X is called involutive (or Lagrangian or isotropic) if at
every nonsingular closed point x 2 Y , the tangent space TxY ✓ TxX is involutive
(or Lagrangian or isotropic).
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Example 11.8. In the case of the cotangent bundle T
⇤
X, the conormal bundle of a

nonsingular subvariety Z ✓ X is a nonsingular Lagrangian subvariety. At a closed
point x 2 Z, the fiber of the conormal bundle consists of all those cotangent vectors
in (TxX)⇤ that vanish on the subspace TxZ. As a subspace of

T(x,⇠)

�
T

⇤
X
�
= TxX � (TxX)⇤,

the tangent space to the conormal bundle is therefore

TxZ � ker
�
(TxX)⇤ ! (TxZ)⇤

�
,

and this is a Lagrangian subspace by Example 11.5 from above. If we choose local
coordinates x1, . . . , xn on X such that Z is defined by xk+1 = · · · = xn = 0, then
the conormal bundle is defined by ⇠1 = · · · = ⇠k = xk+1 = · · · = xn = 0 in the
corresponding coordinates on the cotangent bundle.

The following lemma gives a way to check whether a reduced subvariety Y ✓ X

is involutive by using the ideal sheaf IY ✓ OX .

Lemma 11.9. Let X be a nonsingular algebraic variety with a symplectic form,

and Y ✓ X a reduced algebraic subvariety. The following conditions are equivalent:

(a) The subvariety Y is involutive.

(b) The ideal sheaf IY is closed under the Poisson bracket, {IY , IY } ✓ IY .

Proof. Without loss of generality, we may assume that X is a�ne, and that Y is
the closed subvariety defined by an ideal I ✓ �(X,OX). Note that Y is assumed
to be reduced. We start with a general observation. Let x 2 Y be a nonsingular
point, and let �x be the symplectic form on TxX. Then

(TxY )? =
�
v 2 TxX

�� �x(v, w) = 0 for every w 2 TxY
 

is spanned by the values at x of the Hamiltonian vector fields Hf , as f ranges over
the elements of the ideal I. Indeed, since x 2 Y is a nonsingular point, a tangent
vector v 2 TxX belongs to the subspace TxY exactly when df(v) = 0 for every
f 2 I. Under the Hamiltonian isomorphism, this condition becomes

�x(v,Hf ) = df(v) = 0,

whence the claim.
Now let us show that {I, I} ✓ I implies that Y is involutive. If x 2 Y is a

nonsingular point, we need to argue that (TxY )? ✓ TxY . In light of the observation
from above, this amounts to saying that, for every f, g 2 I, the function dg(Hf )
vanishes at the point x. But this is the case, because dg(Hf ) = Hf (g) = {f, g} 2 I.

For the converse, suppose that Y is involutive, so that (TxY )? ✓ TxY at every
nonsingular point x 2 Y . Then we again have {f, g} = dg(Hf ) = 0 at every
nonsingular point of Y , and hence on all of Y because {f, g} is a regular function
and the set of nonsingular points is Zariski-open and dense in Y . Because Y is
reduced, it follows that {f, g} 2 I. ⇤

Involutivity of the characteristic variety. We return to the characteristic va-
rieties of coherent DX -modules. If p : T ⇤

X ! X is the cotangent bundle, then

p⇤OT⇤X
⇠= grFDX ,

and one can use this isomorphism to describe the Poisson bracket in terms of
di↵erential operators. For each j � 0, we denote by

�j : FjDX ! grFj DX
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the “principal symbol” operator. If P is a local section of FiDX , and Q a local
section of FjDX , then their commutator [P,Q] is a local section of Fi+j�1DX . One
can show, using the description of the Poisson bracket in local coordinates, that

{�i(P ),�j(Q)} = �i+j�1

�
[P,Q]

�
.

Now suppose that M is a coherent left DX -module, and that F•M is a good
filtration. It is easy to see, using the alternative description of the Poisson bracket,
that the ideal

AnngrF DX
grFM ✓ grFDX

is closed under the Poisson bracket. This is a local question, and so we may restrict
everything to an a�ne open subset U ✓ X. If we set A = �(U,OX) and R = D(A),
we then have a finitely generated left R-module M , together with a good filtration
F•M , such that grFM is finitely generated over S = grFR. The claim is that the
homogeneous ideal

I = I(M,F•M) = AnnS grFM

is closed under the Poisson bracket on S. Suppose that we have two elements
P 2 FiR and Q 2 FjR such that �i(P ) and �j(Q) belong to the ideal I. Recall
from Lecture 5 that this is equivalent to having

P · FkM ✓ Fi+k�1M and Q · FkM ✓ Fj+k�1M

for every k 2 Z. But then
[P,Q] · FkM ✓ P · Fj+k�1M +Q · Fi+k�1M ✓ F(i+j�1)+k�1M,

and therefore �i+j�1([P,Q]) 2 I. This shows that {I, I} ✓ I.
Why does this argument not prove Theorem 11.2? The issue is that the ideal of

the characteristic variety is not I itself, but
p
I, because the characteristic variety

is by definition reduced. For non-reduced ideals, being closed under the Poisson
bracket does not correspond to the geometric notion of being involutive, because
all points of a nonreduced subscheme can be singular. And the fact that an ideal is
closed under the Poisson bracket does not imply the same property for its radical.
This is what makes Theorem 11.2 nontrivial.

Exercises.

Exercise 11.1. Let X be a nonsingular a�ne variety with a symplectic form. Prove
the following three identities involving the Poisson bracket: for all f, g, h 2 �(X,OX),

{f, g}+ {g, f} = 0

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

{f, gh} = {f, g}h+ g{f, h}.

The first two identities are saying that �(X,OX) is a Lie algebra under the operation
(f, g) 7! {f, g}. The third identity is saying that {f,�} is a derivation of �(X,OX).

Exercise 11.2. Show that if d� = 0, then one has [Hf , Hg] = H{f,g}.

Exercise 11.3. LetX be a nonsingular a�ne variety with local coordinates x1, . . . , xn.
Use the description of the Poisson bracket on T

⇤
X to prove that

{�i(P ),�j(Q)} = �i+j�1

�
[P,Q]

�
,

for every P 2 FiD(A) and every Q 2 FjD(A), where A = �(X,OX).


