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Lecture 12: March 13

Gabber’s theorem. Last time, we talked about the result that the characteristic
variety Ch(M) of a coherent DX -module M is involutive (with respect to the
natural symplectic structure on the cotangent bundle). We saw that the ideal

AnngrF DX
grFM ✓ grFDX

is closed under the Poisson bracket, and that Theorem 11.2 is equivalent to the
radical being closed under the Poisson bracket. This is a problem in algebra, albeit
a very di�cult one, and there is a purely algebraic proof, due to Gabber.

In fact, Gabber works in the following more general setup. Suppose that R is
a Q-algebra, with an increasing algebra filtration F•R, such that the associated
graded ring S = grFR is commutative and noetherian. This means that if u 2 FiR

and v 2 FjR, then their commutator [u, v] = uv � vu 2 Fi+j�1R. If we again
use the notation �i : FiR ! Si for the “symbol” homomorphism, we can therefore
define the Poisson bracket of two homogeneous elements of S by the formula

{�i(u),�j(v)} = �i+j�1

�
[u, v]

�
.

After extending this bilinearly, we obtain a Poisson bracket {�,�} : S ⌦Q S ! S,
and one can check that it satisfies the same identities as the Poisson bracket on a
symplectic manifold. But note that this is more general than the case R = D(A),
because Gabber is not assuming that S is nonsingular.

Theorem 12.1 (Gabber). Using the notation from above, suppose that M is a

finitely generated R-module with a good filtration F•M , and consider the ideal

J =
q
AnngrFR grFM ✓ grFR.

If P ✓ grFR is minimal among prime ideals containing J , then {P, P} ✓ P . In

particular, one has {J, J} ✓ J .

The minimal primes containing the ideal J correspond, geometrically, to the irre-
ducible components of Supp grFM inside the scheme SpecS. So Gabber’s theorem
is saying that every irreducible component of the support is “involutive”, in the
sense that its ideal is closed under the Poisson bracket. In the case of D-modules,
this is saying that every irreducible component of the characteristic variety of a
coherent D-module is involutive.

Holonomic D-modules. One consequence of Theorem 11.2 is that Bernstein’s
inequality holds for algebraic D-modules: If X is a nonsingular algebraic variety of
dimension n, andM a coherent DX -module, then eitherM = 0, or every irreducible
component of Ch(M) has dimension � n. As in the case of the Weyl algebra, the
most important D-modules are those for which the dimension of the characteristic
variety is as small as possible.

Definition 12.2. A coherent DX -module M is called holonomic if M 6= 0 and
dimCh(M) = n, or if M = 0.

If M is nonzero and holonomic, then each irreducible component of its charac-
teristic variety has dimension n, and is therefore (by Theorem 11.2) a Lagrangian
subvariety of T

⇤
X. Since the ideal defining Ch(M) is homogeneous, these La-

grangians are moreover conical, that is, closed under the natural Gm-action on
T

⇤
X by rescaling in the fiber direction. Here are some typical examples of conical

Lagrangian subvarieties.

Example 12.3. If Y ✓ X is a nonsingular subvariety, then the conormal bundle
N

⇤
Y |X is a nonsingular Lagrangian subvariety of T ⇤

X. Since it is a vector bundle
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of rank dimX � dimY over Y , it is clearly conical. More generally, suppose that
Y ✓ X is an arbitrary reduced and irreducible subvariety. The set of nonsingular
points Yreg is Zariski-open and dense in Y , and so the conormal bundle N

⇤
Yreg|X is

locally closed, conical, and Lagrangian. Its Zariski closure

T
⇤
Y X = N

⇤
Yreg|X

is therefore a conical Lagrangian subvariety of T
⇤
X. It is called the conormal

variety of Y in X.

In fact, every conical Lagrangian subvariety of T ⇤
X is a conormal variety.

Proposition 12.4. Let W ✓ T
⇤
X be an irreducible subvariety that is conical and

Lagrangian. Then Y = p(W ) is an irreducible subvariety of X, and W = T
⇤
Y X.

Proof. The statement is local, and so we may assume that X = SpecA is a�ne
and that T ⇤

X = X ⇥An
k . Since W ✓ X ⇥An

k is conical, it is defined by an ideal in
A[⇠1, . . . , ⇠n] that is homogeneous in the variables ⇠1, . . . , ⇠n. This ideal also defines
a closed subvariety W̃ ✓ X ⇥ Pn�1

k , and since the projection p1 : X ⇥ Pn�1
k ! X

is proper, it follows that Y = p(W ) = p1(W̃ ) is an irreducible subvariety of X.
It remains to show that W = T

⇤
Y X. Since both subvarieties are irreducible of

dimension n, it will be enough to show that the general point of W is contained in
the conormal bundle to Yreg.

Let (x, ⇠) 2 W be a general nonsingular point. By generic smoothness, we have
x 2 Yreg and the map on tangent spaces T(x,⇠)W ! TxY is surjective. Choose local
coordinates x1, . . . , xn in a neighborhood of the point x, such that Y is defined by
the equations xk+1 = · · · = xn = 0. If we again denote by x1, . . . , xn, ⇠1, . . . , ⇠n

the resulting coordinates on T
⇤
X,then the conormal bundle to Yreg is defined by

the equations ⇠1 = · · · = ⇠k = xk+1 = · · · = xn = 0. Since W is a Lagrangian
subvariety, the subspace

T(x,⇠)W ✓ T(x,⇠)

�
T

⇤
X
�
= TxX � (TxX)⇤

is n-dimensional and Lagrangian. Its image under the projection to TxX is the
subspace TxY . If we denote vectors in TxX � (TxX)⇤ by (a1, . . . , an, b1, . . . , bn),
then this image is the set of vectors with ak+1 = · · · = an = 0. For dimension
reasons, T(x,⇠)W must contain an (n� k)-dimensional space of vectors of the form
(0, . . . , 0, b1, . . . , bn), and from the Lagrangian condition, we get b1 = · · · = bk = 0.

Now we use the fact that W is conical. Since (x, ⇠) 2 W , the entire line (x, k ·⇠) is
contained in W , and so the tangent vector to the line, which is (0, . . . , 0, ⇠1, . . . , ⇠n),
must belong to T(x,⇠)W . But as we saw, this implies that ⇠1 = · · · = ⇠k = 0, and
so (x, ⇠) lies on the conormal bundle to Yreg. Since (x, ⇠) was a general point of W ,
we deduce that W ✓ T

⇤
Y X, which su�ces to conclude the proof. ⇤

This proposition has interesting implications for holonomic D-modules. Suppose
that M is a nonzero holonomic DX -module. Its characteristic variety is a finite
union of conical Lagrangian subvarieties, and so there are finitely many irreducible
subvarieties Y1, . . . , Ym ✓ X, without loss of generality distinct, such that

Ch(M) =
m[

i=1

T
⇤
Yi
X.

Now there are two possibilities. If say Y1 = X, then U = X \ (Y2 [ · · · [ Ym) is
a dense Zariski-open subset, and the restriction of M to U has its characteristic
variety equal to the zero section. By Proposition 10.12, it follows that M

��
U

is
locally free of finite rank, and therefore a vector bundle with integrable connection.
The connection acquires some kind of singularities at the remaining subvarieties
Y2, . . . , Yn. The other possibility is that Y1, . . . , Yn 6= X. In that case, the restriction
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of M to X \ (Y1 [ · · · [ Yn) is trivial, which says that M is supported on the
union Y1 [ · · · [ Yn. Either way, M is generically a vector bundle with integrable
connection.

Holonomic D-modules and duality. Our earlier results about duality for holo-
nomic modules still hold in this context; indeed, the assumptions we made in Lec-
ture 6 apply to the case R = D(A). In general, if M is a coherent left (or right)
DX -module, then each

Ext
j
DX

(M,DX)

is again a coherent right (or left) DX -module. On an a�ne open subset U ✓ X with
A = �(U,OX), the corresponding D(A)-module is of course ExtjD(A)

�
M,D(A)

�
,

where M = �(U,M). One then has

Ext
j
DX

(M,DX) = 0 for j � n+ 1,

as well as the useful identity

min
n
j � 0

��� Extj
DX

(M,DX) 6= 0
o
+ dimCh(M) = 2n.

If M is a nonzero holonomic DX -module, then Ext
j
DX

(M,DX) = 0 for every j 6= n,
and one can again define the holonomic dual by

M
⇤ = Ext

n
DX

(M,DX).

As before, one has (M⇤)⇤ ⇠= M, and Ch(M⇤) = Ch(M). The holonomic dual is
again an exact contravariant functor from the category of left (or right) holonomic
DX -modules to the category of right (or left) holonomic DX -modules.

Direct images under closed embeddings. In the next few lectures, we are going
to look at various operations on algebraic D-modules, such as pushing forward or
pulling back along a morphism of algebraic varieties. This will also give us many
new examples of D-modules. We will be especially interested in the e↵ect of these
functors on holonomic D-modules. Things are somewhat similar to the case of
coherent sheaves, formally, but there are also some interesting di↵erences. Let us
start with the simplest case, namely pushing forward along a closed embedding.

Example 12.5. Consider the closed embedding i : An�1
k ! An

k defined by the equa-
tion xn = 0. If M is a D-module on An�1

k , then its pushforward i⇤M is not a
D-module on An

k . The problem is that x1, . . . , xn and @1, . . . , @n�1 act in a natural
way on i⇤M, but we don’t know what to do with @n. In terms of rings and modules,
the closed embedding corresponds to the quotient morphism k[x1, . . . , xn�1, xn] !
k[x1, . . . , xn�1], and the D-module to a module M over the Weyl algebra An�1(k).
We can consider M as a module over k[x1, . . . , xn], with xn acting trivially, but we
cannot let @n act trivially this would violate the commutator relation [@n, xn] = 1.

Suppose that i : X ! Y is a closed embedding between two nonsingular algebraic
varieties, and M an algebraic DX -module. For the same reason as above, i⇤M is
not in general a DY -module. To motivate the correct definition, let us first look at
the example of distributions.

Example 12.6. Consider the closed embedding

i : Rk
! Rn

, i(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0).

Suppose that we have a distribution D on Rk; recall that D is a continuous linear
functional on the space of compactly supported smooth functions C

1
0 (Rk), and

that hD,'i denotes the real number obtained by evaluating D on a test function
'. The pushforward distribution i⇤D is defined in the obvious way:

hi⇤D, i = hD, 
��
Rki,
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for any  2 C
1
0 (Rn). The point is of course that we know how to pull back

functions. Now suppose that D satisfies a system of partial di↵erential equations.
Can we figure out the partial di↵erential equations satisfied by i⇤D?

Recall that the Weyl algebra Ak(R) acts on the space of distributions by formal
integration by parts: if ' 2 C

1
0 (Rk) and P 2 Ak(R), then

hD · P,'i = hD,P'i.

Therefore D determines a right ideal

I(D) =
�
P 2 Ak(R)

�� D · P = 0
 
✓ Ak(R),

and also a right Ak(n)-module Ak(n)/I(D). In these terms, we are trying to find
the right ideal I(i⇤D) from I(D). This is actually fairly easy.

First, the functions xk+1, . . . , xn vanish on Rk, and so every di↵erential operator
of the form Q = xk+1Qk+1 + · · ·+ xnQn 2 An(R) annihilates i⇤D, because

⌦
i⇤D ·Q, 

↵
=

nX

j=k+1

⌦
i⇤D · xjQj , 

↵
=

nX

j=k+1

⌦
D,xjQj 

��
Rk

↵
= 0.

We can write any Q 2 An(R) in the form

Q = xk+1Qk+1 + · · ·+ xnQn +
X

↵2Nn�k

P↵@
↵k+1

k+1 · · · @
↵n
n

where P↵ 2 Ak(R) only involves x1, . . . , xk, @1, . . . , @k. Suppose that Q 2 I(i⇤D).
If we act on a test function of the form '⌘, with ' 2 C

1
0 (Rk) and ⌘ 2 C

1
0 (Rn�k),

we obtain

⌦
i⇤D ·Q,'⌘

↵
=

X

↵2Nn�k

@
↵k+1+···+↵n⌘

@x
↵k+1

k+1 · · · @x
↵n
n

(0) ·
⌦
D,P↵'

↵
.

By choosing ⌘ appropriately, we can pick out the individual terms, and so

0 = hD,P↵'i = hD · P↵,'i

for every ↵ 2 Nn�k and every ' 2 C
1
0 (Rk). In other words, each P↵ belongs to

I(D). It is easy to see that the converse is also true, and so we conclude that

I(i⇤D) = (xk+1, . . . , xn)An(R) + I(D)An(R).

Here is another way to put this. Remembering that right (and left) ideals in the
Weyl algebra are finitely generated, we have I(D) = (P1, . . . , Pr)Ak(R), and so the
right Ak(R)-module determined by the distribution D is

Ak(R)/(P1, . . . , Pr)Ak(R).

Then the right An(R)-module determined by the distribution i⇤D is

An(R)/(P1, . . . , Pr, xk+1, . . . , xn)An(R).

This is much larger than the other module, but has a natural action by An(R).

The example suggest that pushing forward works naturally for right D-modules.
The reason is that distributions give rise to right D-modules, whereas functions give
rise to left D-modules, and one can push forward distributions, but not functions. It
also suggests how to define the pushforward, at least in the special case of modules
over the Weyl algebra.
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The transfer module. Let me now show you the actual definition. Suppose that
i : X ! Y is a closed embedding between two nonsingular algebraic varieties; since
X and Y are both nonsingular, X is locally a complete intersection in Y . We will
see next time that

DX!Y = OX ⌦i�1OY
i
�1

DY

is a (DX , i
�1

DY )-bimodule, which is to say that it has both a left action by DX

and a right action by i
�1

DY , and the two actions commute. The right action by
i
�1

DY is the obvious one; the left action by DX is less obvious and involves both
factors in the tensor product. Given a right DX -module M, one then defines its
pushforward as

i+M = i⇤
�
M⌦DX DX!Y

�
;

this becomes a right DY -module through the natural morphism DY ! i⇤i
�1

DY .
We will see next time that, in local coordinates, this definition agrees with what
happens for distributions.

Exercises.

Exercise 12.1. Let M be a left DX -module and N a right DX -module. Show that
the tensor product N ⌦OX M is naturally a right DX -module.

Exercise 12.2. Recall that the canonical line bundle !X is a right DX -module. Show
that the tensor product D

!
X = !X ⌦OX DX is a right DX -module in two di↵erent

ways. Show that the two right DX -module structures commute with each other,
and that there is an automorphism of D

!
X that interchanges them.

Exercise 12.3. The previous exercise gives a way to convert left D-modules into
right D-modules and back. Show that if M is a left DX -module, then

D
!
X ⌦DX M

is a right DX -module; here one right DX -module structure on D
!
X is used to define

the tensor product, and the other one is used to turn the tensor product into a
right DX -module. Conversely, show that if N is a right DX -module, then

HomDX

�
D

!
X ,N

�

is a left DX -module; here one right DX -module structure on D
!
X is used to define

HomDX , and the other one is used to turn HomDX into a left DX -module. Finally,
show that the obvious morphism

M ! HomDX

�
D

!
X ,D

!
X ⌦DX M

�

is an isomorphism of left DX -modules.


