Gabber's theorem. Last time, we talked about the result that the characteristic variety $Ch(\mathcal{M})$ of a coherent \mathscr{D}_X -module \mathcal{M} is involutive (with respect to the natural symplectic structure on the cotangent bundle). We saw that the ideal

$$\operatorname{Ann}_{\operatorname{gr}^F \mathscr{D}_X} \operatorname{gr}^F \mathcal{M} \subseteq \operatorname{gr}^F \mathscr{D}_X$$

is closed under the Poisson bracket, and that Theorem 11.2 is equivalent to the radical being closed under the Poisson bracket. This is a problem in algebra, albeit a very difficult one, and there is a purely algebraic proof, due to Gabber.

In fact, Gabber works in the following more general setup. Suppose that R is a Q-algebra, with an increasing algebra filtration $F_{\bullet}R$, such that the associated graded ring $S = \operatorname{gr}^{F}R$ is commutative and noetherian. This means that if $u \in F_{i}R$ and $v \in F_{j}R$, then their commutator $[u, v] = uv - vu \in F_{i+j-1}R$. If we again use the notation $\sigma_{i} \colon F_{i}R \to S_{i}$ for the "symbol" homomorphism, we can therefore define the *Poisson bracket* of two homogeneous elements of S by the formula

$$\{\sigma_i(u), \sigma_j(v)\} = \sigma_{i+j-1}([u, v])$$

After extending this bilinearly, we obtain a Poisson bracket $\{-, -\}: S \otimes_{\mathbb{Q}} S \to S$, and one can check that it satisfies the same identities as the Poisson bracket on a symplectic manifold. But note that this is more general than the case R = D(A), because Gabber is not assuming that S is nonsingular.

Theorem 12.1 (Gabber). Using the notation from above, suppose that M is a finitely generated R-module with a good filtration $F_{\bullet}M$, and consider the ideal

$$J = \sqrt{\operatorname{Ann}_{\operatorname{gr}^F R} \operatorname{gr}^F M} \subseteq \operatorname{gr}^F R.$$

If $P \subseteq \operatorname{gr}^F R$ is minimal among prime ideals containing J, then $\{P, P\} \subseteq P$. In particular, one has $\{J, J\} \subseteq J$.

The minimal primes containing the ideal J correspond, geometrically, to the irreducible components of $\operatorname{Supp} \operatorname{gr}^F M$ inside the scheme $\operatorname{Spec} S$. So Gabber's theorem is saying that every irreducible component of the support is "involutive", in the sense that its ideal is closed under the Poisson bracket. In the case of \mathscr{D} -modules, this is saying that every irreducible component of the characteristic variety of a coherent \mathscr{D} -module is involutive.

Holonomic \mathscr{D} -modules. One consequence of Theorem 11.2 is that Bernstein's inequality holds for algebraic \mathscr{D} -modules: If X is a nonsingular algebraic variety of dimension n, and \mathcal{M} a coherent \mathscr{D}_X -module, then either $\mathcal{M} = 0$, or every irreducible component of $Ch(\mathcal{M})$ has dimension $\geq n$. As in the case of the Weyl algebra, the most important \mathscr{D} -modules are those for which the dimension of the characteristic variety is as small as possible.

Definition 12.2. A coherent \mathscr{D}_X -module \mathcal{M} is called *holonomic* if $\mathcal{M} \neq 0$ and dim $Ch(\mathcal{M}) = n$, or if $\mathcal{M} = 0$.

If \mathcal{M} is nonzero and holonomic, then each irreducible component of its characteristic variety has dimension n, and is therefore (by Theorem 11.2) a Lagrangian subvariety of T^*X . Since the ideal defining $Ch(\mathcal{M})$ is homogeneous, these Lagrangians are moreover *conical*, that is, closed under the natural \mathbb{G}_m -action on T^*X by rescaling in the fiber direction. Here are some typical examples of conical Lagrangian subvarieties.

Example 12.3. If $Y \subseteq X$ is a nonsingular subvariety, then the conormal bundle $N^*_{Y|X}$ is a nonsingular Lagrangian subvariety of T^*X . Since it is a vector bundle

of rank dim X – dim Y over Y, it is clearly conical. More generally, suppose that $Y \subseteq X$ is an arbitrary reduced and irreducible subvariety. The set of nonsingular points Y_{reg} is Zariski-open and dense in Y, and so the conormal bundle $N^*_{Y_{\text{reg}}|X}$ is locally closed, conical, and Lagrangian. Its Zariski closure

$$T_Y^* X = \overline{N_{Y_{\text{reg}}|X}^*}$$

is therefore a conical Lagrangian subvariety of T^*X . It is called the *conormal* variety of Y in X.

In fact, every conical Lagrangian subvariety of T^*X is a conormal variety.

Proposition 12.4. Let $W \subseteq T^*X$ be an irreducible subvariety that is conical and Lagrangian. Then Y = p(W) is an irreducible subvariety of X, and $W = T^*_Y X$.

Proof. The statement is local, and so we may assume that $X = \operatorname{Spec} A$ is affine and that $T^*X = X \times \mathbb{A}_k^n$. Since $W \subseteq X \times \mathbb{A}_k^n$ is conical, it is defined by an ideal in $A[\xi_1, \ldots, \xi_n]$ that is homogeneous in the variables ξ_1, \ldots, ξ_n . This ideal also defines a closed subvariety $\tilde{W} \subseteq X \times \mathbb{P}_k^{n-1}$, and since the projection $p_1 \colon X \times \mathbb{P}_k^{n-1} \to X$ is proper, it follows that $Y = p(W) = p_1(\tilde{W})$ is an irreducible subvariety of X. It remains to show that $W = T_Y^*X$. Since both subvarieties are irreducible of dimension n, it will be enough to show that the general point of W is contained in the conormal bundle to Y_{reg} .

Let $(x,\xi) \in W$ be a general nonsingular point. By generic smoothness, we have $x \in Y_{\text{reg}}$ and the map on tangent spaces $T_{(x,\xi)}W \to T_xY$ is surjective. Choose local coordinates x_1, \ldots, x_n in a neighborhood of the point x, such that Y is defined by the equations $x_{k+1} = \cdots = x_n = 0$. If we again denote by $x_1, \ldots, x_n, \xi_1, \ldots, \xi_n$ the resulting coordinates on T^*X , then the conormal bundle to Y_{reg} is defined by the equations $\xi_1 = \cdots = \xi_k = x_{k+1} = \cdots = x_n = 0$. Since W is a Lagrangian subvariety, the subspace

$$T_{(x,\xi)}W \subseteq T_{(x,\xi)}(T^*X) = T_xX \oplus (T_xX)^*$$

is *n*-dimensional and Lagrangian. Its image under the projection to $T_x X$ is the subspace $T_x Y$. If we denote vectors in $T_x X \oplus (T_x X)^*$ by $(a_1, \ldots, a_n, b_1, \ldots, b_n)$, then this image is the set of vectors with $a_{k+1} = \cdots = a_n = 0$. For dimension reasons, $T_{(x,\xi)}W$ must contain an (n-k)-dimensional space of vectors of the form $(0, \ldots, 0, b_1, \ldots, b_n)$, and from the Lagrangian condition, we get $b_1 = \cdots = b_k = 0$.

Now we use the fact that W is conical. Since $(x, \xi) \in W$, the entire line $(x, k \cdot \xi)$ is contained in W, and so the tangent vector to the line, which is $(0, \ldots, 0, \xi_1, \ldots, \xi_n)$, must belong to $T_{(x,\xi)}W$. But as we saw, this implies that $\xi_1 = \cdots = \xi_k = 0$, and so (x,ξ) lies on the conormal bundle to $Y_{\text{reg.}}$. Since (x,ξ) was a general point of W, we deduce that $W \subseteq T_Y^*X$, which suffices to conclude the proof.

This proposition has interesting implications for holonomic \mathscr{D} -modules. Suppose that \mathcal{M} is a nonzero holonomic \mathscr{D}_X -module. Its characteristic variety is a finite union of conical Lagrangian subvarieties, and so there are finitely many irreducible subvarieties $Y_1, \ldots, Y_m \subseteq X$, without loss of generality distinct, such that

$$\operatorname{Ch}(\mathcal{M}) = \bigcup_{i=1}^{m} T_{Y_i}^* X.$$

Now there are two possibilities. If say $Y_1 = X$, then $U = X \setminus (Y_2 \cup \cdots \cup Y_m)$ is a dense Zariski-open subset, and the restriction of \mathcal{M} to U has its characteristic variety equal to the zero section. By Proposition 10.12, it follows that $\mathcal{M}|_U$ is locally free of finite rank, and therefore a vector bundle with integrable connection. The connection acquires some kind of singularities at the remaining subvarieties Y_2, \ldots, Y_n . The other possibility is that $Y_1, \ldots, Y_n \neq X$. In that case, the restriction of \mathcal{M} to $X \setminus (Y_1 \cup \cdots \cup Y_n)$ is trivial, which says that \mathcal{M} is supported on the union $Y_1 \cup \cdots \cup Y_n$. Either way, \mathcal{M} is generically a vector bundle with integrable connection.

Holonomic \mathscr{D} -modules and duality. Our earlier results about duality for holonomic modules still hold in this context; indeed, the assumptions we made in Lecture 6 apply to the case R = D(A). In general, if \mathcal{M} is a coherent left (or right) \mathscr{D}_X -module, then each

$$\mathcal{E}xt^{\mathfrak{I}}_{\mathscr{D}_{X}}(\mathcal{M},\mathscr{D}_{X})$$

is again a coherent right (or left) \mathscr{D}_X -module. On an affine open subset $U \subseteq X$ with $A = \Gamma(U, \mathscr{O}_X)$, the corresponding D(A)-module is of course $\operatorname{Ext}^j_{D(A)}(M, D(A))$, where $M = \Gamma(U, \mathcal{M})$. One then has

$$\mathcal{E}xt^{j}_{\mathscr{D}_{\mathbf{Y}}}(\mathcal{M},\mathscr{D}_{\mathbf{X}}) = 0 \quad \text{for } j \ge n+1,$$

as well as the useful identity

$$\min\left\{ j \ge 0 \mid \mathcal{E}xt^{j}_{\mathscr{D}_{X}}(\mathcal{M}, \mathscr{D}_{X}) \neq 0 \right\} + \dim \operatorname{Ch}(\mathcal{M}) = 2n.$$

If \mathcal{M} is a nonzero holonomic \mathscr{D}_X -module, then $\mathcal{E}xt^j_{\mathscr{D}_X}(\mathcal{M}, \mathscr{D}_X) = 0$ for every $j \neq n$, and one can again define the *holonomic dual* by

$$\mathcal{M}^* = \mathcal{E}xt^n_{\mathscr{D}_X}(\mathcal{M}, \mathscr{D}_X).$$

As before, one has $(\mathcal{M}^*)^* \cong \mathcal{M}$, and $\operatorname{Ch}(\mathcal{M}^*) = \operatorname{Ch}(\mathcal{M})$. The holonomic dual is again an exact contravariant functor from the category of left (or right) holonomic \mathscr{D}_X -modules to the category of right (or left) holonomic \mathscr{D}_X -modules.

Direct images under closed embeddings. In the next few lectures, we are going to look at various operations on algebraic \mathscr{D} -modules, such as pushing forward or pulling back along a morphism of algebraic varieties. This will also give us many new examples of \mathscr{D} -modules. We will be especially interested in the effect of these functors on holonomic \mathscr{D} -modules. Things are somewhat similar to the case of coherent sheaves, formally, but there are also some interesting differences. Let us start with the simplest case, namely pushing forward along a closed embedding.

Example 12.5. Consider the closed embedding $i: \mathbb{A}_k^{n-1} \to \mathbb{A}_k^n$ defined by the equation $x_n = 0$. If \mathcal{M} is a \mathscr{D} -module on \mathbb{A}_k^{n-1} , then its pushforward $i_*\mathcal{M}$ is not a \mathscr{D} -module on \mathbb{A}_k^n . The problem is that x_1, \ldots, x_n and $\partial_1, \ldots, \partial_{n-1}$ act in a natural way on $i_*\mathcal{M}$, but we don't know what to do with ∂_n . In terms of rings and modules, the closed embedding corresponds to the quotient morphism $k[x_1, \ldots, x_{n-1}, x_n] \to k[x_1, \ldots, x_{n-1}]$, and the \mathscr{D} -module to a module \mathcal{M} over the Weyl algebra $\mathcal{A}_{n-1}(k)$. We can consider \mathcal{M} as a module over $k[x_1, \ldots, x_n]$, with x_n acting trivially, but we cannot let ∂_n act trivially this would violate the commutator relation $[\partial_n, x_n] = 1$.

Suppose that $i: X \to Y$ is a closed embedding between two nonsingular algebraic varieties, and \mathcal{M} an algebraic \mathscr{D}_X -module. For the same reason as above, $i_*\mathcal{M}$ is not in general a \mathscr{D}_Y -module. To motivate the correct definition, let us first look at the example of distributions.

Example 12.6. Consider the closed embedding

 $i: \mathbb{R}^k \to \mathbb{R}^n, \quad i(x_1, \dots, x_k) = (x_1, \dots, x_k, 0, \dots, 0).$

Suppose that we have a distribution D on \mathbb{R}^k ; recall that D is a continuous linear functional on the space of compactly supported smooth functions $C_0^{\infty}(\mathbb{R}^k)$, and that $\langle D, \varphi \rangle$ denotes the real number obtained by evaluating D on a test function φ . The pushforward distribution i_*D is defined in the obvious way:

$$\langle i_*D,\psi\rangle = \langle D,\psi\big|_{\mathbb{R}^k}\rangle,$$

for any $\psi \in C_0^{\infty}(\mathbb{R}^n)$. The point is of course that we know how to pull back functions. Now suppose that D satisfies a system of partial differential equations. Can we figure out the partial differential equations satisfied by i_*D ?

Recall that the Weyl algebra $A_k(\mathbb{R})$ acts on the space of distributions by formal integration by parts: if $\varphi \in C_0^{\infty}(\mathbb{R}^k)$ and $P \in A_k(\mathbb{R})$, then

$$\langle D \cdot P, \varphi \rangle = \langle D, P\varphi \rangle.$$

Therefore D determines a right ideal

$$I(D) = \left\{ P \in A_k(\mathbb{R}) \mid D \cdot P = 0 \right\} \subseteq A_k(\mathbb{R}),$$

and also a right $A_k(n)$ -module $A_k(n)/I(D)$. In these terms, we are trying to find the right ideal $I(i_*D)$ from I(D). This is actually fairly easy.

First, the functions x_{k+1}, \ldots, x_n vanish on \mathbb{R}^k , and so every differential operator of the form $Q = x_{k+1}Q_{k+1} + \cdots + x_nQ_n \in A_n(\mathbb{R})$ annihilates i_*D , because

$$\left\langle i_*D \cdot Q, \psi \right\rangle = \sum_{j=k+1}^n \left\langle i_*D \cdot x_j Q_j, \psi \right\rangle = \sum_{j=k+1}^n \left\langle D, x_j Q_j \psi \right|_{\mathbb{R}^k} \right\rangle = 0.$$

We can write any $Q \in A_n(\mathbb{R})$ in the form

$$Q = x_{k+1}Q_{k+1} + \dots + x_nQ_n + \sum_{\alpha \in \mathbb{N}^{n-k}} P_\alpha \partial_{k+1}^{\alpha_{k+1}} \cdots \partial_n^{\alpha_n}$$

where $P_{\alpha} \in A_k(\mathbb{R})$ only involves $x_1, \ldots, x_k, \partial_1, \ldots, \partial_k$. Suppose that $Q \in I(i_*D)$. If we act on a test function of the form $\varphi\eta$, with $\varphi \in C_0^{\infty}(\mathbb{R}^k)$ and $\eta \in C_0^{\infty}(\mathbb{R}^{n-k})$, we obtain

$$\left\langle i_* D \cdot Q, \varphi \eta \right\rangle = \sum_{\alpha \in \mathbb{N}^{n-k}} \frac{\partial^{\alpha_{k+1} + \dots + \alpha_n} \eta}{\partial x_{k+1}^{\alpha_{k+1}} \cdots \partial x_n^{\alpha_n}} (0) \cdot \left\langle D, P_\alpha \varphi \right\rangle.$$

By choosing η appropriately, we can pick out the individual terms, and so

$$0 = \langle D, P_{\alpha}\varphi \rangle = \langle D \cdot P_{\alpha}, \varphi \rangle$$

for every $\alpha \in \mathbb{N}^{n-k}$ and every $\varphi \in C_0^{\infty}(\mathbb{R}^k)$. In other words, each P_{α} belongs to I(D). It is easy to see that the converse is also true, and so we conclude that

$$I(i_*D) = (x_{k+1}, \dots, x_n)A_n(\mathbb{R}) + I(D)A_n(\mathbb{R}).$$

Here is another way to put this. Remembering that right (and left) ideals in the Weyl algebra are finitely generated, we have $I(D) = (P_1, \ldots, P_r)A_k(\mathbb{R})$, and so the right $A_k(\mathbb{R})$ -module determined by the distribution D is

$$A_k(\mathbb{R})/(P_1,\ldots,P_r)A_k(\mathbb{R}).$$

Then the right $A_n(\mathbb{R})$ -module determined by the distribution i_*D is

$$A_n(\mathbb{R})/(P_1,\ldots,P_r,x_{k+1},\ldots,x_n)A_n(\mathbb{R}).$$

This is much larger than the other module, but has a natural action by $A_n(\mathbb{R})$.

The example suggest that pushing forward works naturally for right \mathscr{D} -modules. The reason is that distributions give rise to right \mathscr{D} -modules, whereas functions give rise to left \mathscr{D} -modules, and one can push forward distributions, but not functions. It also suggests how to define the pushforward, at least in the special case of modules over the Weyl algebra.

The transfer module. Let me now show you the actual definition. Suppose that $i: X \to Y$ is a closed embedding between two nonsingular algebraic varieties; since X and Y are both nonsingular, X is locally a complete intersection in Y. We will see next time that

$$\mathscr{D}_{X \to Y} = \mathscr{O}_X \otimes_{i^{-1} \mathscr{O}_Y} i^{-1} \mathscr{D}_Y$$

is a $(\mathscr{D}_X, i^{-1}\mathscr{D}_Y)$ -bimodule, which is to say that it has both a left action by \mathscr{D}_X and a right action by $i^{-1}\mathscr{D}_Y$, and the two actions commute. The right action by $i^{-1}\mathscr{D}_Y$ is the obvious one; the left action by \mathscr{D}_X is less obvious and involves both factors in the tensor product. Given a right \mathscr{D}_X -module \mathcal{M} , one then defines its pushforward as

$$i_{+}\mathcal{M} = i_{*}(\mathcal{M} \otimes_{\mathscr{D}_{X}} \mathscr{D}_{X \to Y});$$

this becomes a right \mathscr{D}_Y -module through the natural morphism $\mathscr{D}_Y \to i_* i^{-1} \mathscr{D}_Y$. We will see next time that, in local coordinates, this definition agrees with what happens for distributions.

Exercises.

Exercise 12.1. Let \mathcal{M} be a left \mathscr{D}_X -module and \mathcal{N} a right \mathscr{D}_X -module. Show that the tensor product $\mathcal{N} \otimes_{\mathscr{O}_X} \mathcal{M}$ is naturally a right \mathscr{D}_X -module.

Exercise 12.2. Recall that the canonical line bundle ω_X is a right \mathscr{D}_X -module. Show that the tensor product $\mathscr{D}_X^{\omega} = \omega_X \otimes_{\mathscr{O}_X} \mathscr{D}_X$ is a right \mathscr{D}_X -module in *two* different ways. Show that the two right \mathscr{D}_X -module structures commute with each other, and that there is an automorphism of \mathscr{D}_X^{ω} that interchanges them.

Exercise 12.3. The previous exercise gives a way to convert left \mathscr{D} -modules into right \mathscr{D} -modules and back. Show that if \mathcal{M} is a left \mathscr{D}_X -module, then

$$\mathscr{D}^{\omega}_X \otimes_{\mathscr{D}_X} \mathcal{N}$$

is a right \mathscr{D}_X -module; here one right \mathscr{D}_X -module structure on \mathscr{D}_X^{ω} is used to define the tensor product, and the other one is used to turn the tensor product into a right \mathscr{D}_X -module. Conversely, show that if \mathcal{N} is a right \mathscr{D}_X -module, then

$$\mathcal{H}om_{\mathscr{D}_X}(\mathscr{D}^\omega_X,\mathcal{N})$$

is a left \mathscr{D}_X -module; here one right \mathscr{D}_X -module structure on \mathscr{D}_X^{ω} is used to define $\mathcal{H}om_{\mathscr{D}_X}$, and the other one is used to turn $\mathcal{H}om_{\mathscr{D}_X}$ into a left \mathscr{D}_X -module. Finally, show that the obvious morphism

$$\mathcal{M} \to \mathcal{H}om_{\mathscr{D}_X}(\mathscr{D}_X^\omega, \mathscr{D}_X^\omega \otimes_{\mathscr{D}_X} \mathcal{M})$$

is an isomorphism of left \mathscr{D}_X -modules.