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Lecture 13: March 25

The transfer module. Last time, we looked at the example of distributions
to understand what the pushforward of an algebraic D-module under a closed
embedding should be. In the case of i : Rk

,! Rn, defined by i(x1, . . . , xk) =
(x1, . . . , xk, 0, . . . , 0), we concluded that the pushforward of a right Ak(R)-module
of the form

Ak(R)/(P1, . . . , Pm)Ak(R)
should be the right An(R)-module

An(R)/(P1, . . . , Pm, xk+1, . . . , xn)An(R).

Let me know explain how to define the pushforward under a closed embedding in
general. Let i : Y ,! X be a closed embedding, with X nonsingular of dimension n

and Y nonsingular of dimension r. The definition uses the transfer module

DY!X = OY ⌦i�1OX
i
�1

DX ,

which is a (DY , i
�1

DX)-bimodule. In other words, DY!X is both a left DY -module
and a right i�1

DX -module, and the two structures commute with each other. The
right i

�1
DX -module structure is the obvious one, induced by right multiplication

on the second factor of the tensor product. The left DY -module structure is less
obvious, and involves both factors. Remember that since X and Y are both non-
singular, we have a short exact sequence

0 ! TY
�i
�! i

⇤
TX = OY ⌦i�1OX

i
�1

TX ! NY |X ! 0,

where NY |X is the normal bundle of Y in X, a locally free OY -module of rank
dimX � dimY . Now TY acts on DY!X as follows:

✓ · (f ⌦ P ) = ✓(f)⌦ P + f · �i(✓) · (1⌦ P ),

where ✓ 2 TY , f 2 OY , and P 2 i
�1

DX are local sections. I will leave it as an
exercise to show that this extends to a left DY -module structure.

Example 13.1. Let us write out everything in local coordinates. Choose local
coordinates x1, . . . , xn on X, in such a way that Y is defined by the equations
xr+1 = · · · = xn = 0. We write @1, . . . , @n for the corresponding vector fields on X;
then y1 = x1, . . . , yr = xr are local coordinates on Y , with vector fields @y1 , . . . , @yr .
The morphism �i : TY ! i

⇤
TX sends @yj to 1⌦ @j , and so we get

@yj · (f ⌦ P ) = @yjf ⌦ P + f ⌦ @jP,

where @jP is the product in DX .

Lemma 13.2. The transfer module DY!X contains a copy of DY and is a locally

free left DY -module of infinite rank.

Proof. Since DY!X = OY ⌦i�1OX
i
�1

DX , the transfer module has a global section
given by 1⌦ 1. This embeds a copy of DY into DY!X , by letting DY act on 1⌦ 1.
In local coordinates as above, we have

@yj · (1⌦ 1) = 1⌦ @j .

More generally, for any di↵erential operator Q =
P

↵ f↵@
↵
y on Y , we get

Q · (1⌦ 1) =
X

↵

f↵ ⌦ @
↵ =

X

↵

f↵ ⌦ @
↵1
1 · · · @

↵r
r .

This shows that the resulting morphism DY ! DY!X is injective.
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Since we are working locally, every di↵erential operator P on X can be written
uniquely in the form P =

P
� g�@

� , where � 2 Nn. By restriction, each g� 2

�(X,OX) defines an element ḡ� 2 �(Y,OY ), and we have

f ⌦ P =
X

�

f ⌦ g�@
� =

X

�r+1,...,�n

0

@
X

�1,...,�r

fḡ� ⌦ @
�1
1 · · · @

�r
r

1

A · @
�r+1

r+1 · · · @
�n
n .

This shows that the morphism DY ⌦k k[@r+1, . . . , @n] ! DY!X , given by multipli-
cation, is an isomorphism. More formally, consider the subalgebra

D
Y
X =

M

↵2Nr

OX · @
↵1
1 · · · @

↵r
r ✓ DX .

Then we have DX
⇠= D

Y
X ⌦k k[@r+1, . . . , @n], and therefore

DY!X
⇠= (OY ⌦i�1OX

i
�1

D
Y
X )⌦k k[@r+1, . . . , @n],

and the discussion above shows that OY ⌦i�1OX
i
�1

D
Y
X identifies with the copy of

DY inside DY!X . ⇤
Definition 13.3. The pushforward of a right DY -module is defined as

i+M = i⇤
�
M⌦DY DY!X

�
;

it becomes a right DX -module through the morphism DX ! i⇤i
�1

DX .

Note that the pushforward is an exact functor, in the sense that if

0 ! M
0
! M ! M

00
! 0

is a short exact sequence of right DY -modules, then

0 ! i+M
0
! i+M ! i+M

00
! 0

is a short exact sequence of right DX -modules. The reason is that the tensor
product over DY is exact (because DY!X is locally free as a left DY -module) and
that i⇤ is exact (because i : Y ,! X is a closed embedding).

The inclusion DY ,! DY!X induces an inclusion of i⇤M into the pushforward
i+M. In local coordinates as in the lemma, we get

i+M
⇠= i⇤M⌦k k[@r+1, . . . , @n],

and so the problem that i⇤M is not a DX -module is solved by simply creating
a new copy of i⇤M for every monomial in @r+1, . . . , @n. Note the the submodule
i⇤M is annihilated by the equations xr+1, . . . , xn of Y , but because of the relation
[@j , xj ] = 1, this is no longer true for i+M. In general, every section of i⇤M is
annihilated by the ideal sheaf IY ✓ OX , and every section of i+M is annihilated
by some power of IY .

Example 13.4. Let’s compute the pushforward of DY . We have

i+DY = i⇤
�
DY ⌦DY DY!X

�
= i⇤DY!X = i⇤

�
OY ⌦i�1OX

i
�1

DX

�
.

The natural morphism DX ! i+DY , given by sending P 2 DX to 1⌦ P , is clearly
surjective, and its kernel is exactly the right ideal IY DX . Thus i+DY

⇠= DX/IY DX .

Example 13.5. Let us compare the definition with the calculation from last time.
Consider the closed embedding i : Ar

k ,! An
k , corresponding to the quotient mor-

phism k[x1, . . . , xn] ! k[x1, . . . , xr]. Let’s compute the pushforward of the right
Ar-module M = Ar/(P1, . . . , Pm)Ar. By the previous example, the pushforward of
Ar itself is given by An/(xr+1, . . . , xn)An. Using the presentation

A
�m
r Ar

(P1,...,Pm)
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for M and the exactness of i+, we see that the pushforward of M is the cokernel
of the induced morphism

�
An/(xr+1, . . . , xn)An

��m
An/(xr+1, . . . , xn)An.

One then checks that for the endomorphism of Ar given by left multiplication by
a di↵erential operator P 2 Ar, the induced endomorphism of An/(xr+1, . . . , xn)An

is still left multiplication by P . Thus that the pushforward of M is isomorphic to

An/(P1, . . . , Pm, xr+1, . . . , xn)An,

in agreement with the calculation we did for distributions last time.

Coherence and characteristic variety. Now let us study the e↵ect of the push-
forward functor on coherence and on the characteristic variety.

Lemma 13.6. If M is a coherent right DY -module, then i+M is a coherent right

DX-module.

Proof. Since M is coherent over DY , we can find a coherent OY -module F ✓ M

such that F · DY = M. Using the embedding of i⇤M into i+M, the coherent
OX -module i⇤F embeds into i+M, and one checks in local coordinates that it
generates i+M as a right DX -module. Therefore i+M is coherent. ⇤

To understand the e↵ect of pushing forward on the characteristic variety, we
need to investigate in more detail what happens to a good filtration. Suppose
that M is a coherent right DY -module, and choose a good filtration F•M, so
that each FjM is a coherent OY -module. Using the embedding of i⇤M into the
pushforward i+M = i⇤(M ⌦DY DY!X), each FjM therefore defines a subsheaf
i⇤(FjM) ✓ i+M. To get a filtration that is compatible with the DX -module
structure, we now define

(13.7) Fj(i+M) = i⇤(FjM) + i⇤(Fj�1M) · F1DX + i⇤(Fj�2M) · F2DX + · · ·

Since FjM = 0 for j ⌧ 0, there are only finitely many terms, and so each Fj(i+M)
is a coherent OX -module. To check that this gives a good filtration, we work in
local coordinates. So let U ✓ X be an a�ne open subset, with local coordinates
x1, . . . , xn 2 A = �(U,OX), such that Y is defined by the ideal I = (xr+1, . . . , xn).
Set B = A/I, and let M = �(U \ Y,DY ); this is a right D(B)-module, of course,
but we may also consider it as an A-module on which I acts trivially. From our
earlier discussion,

�(U, i+M) ⇠= M ⌦k k[@r+1, . . . , @n] =
def

M̃,

and the above filtration is given by

FjM̃ = FjM ⌦ 1 + (Fj�1M ⌦ 1) · F1D(A) + (Fj�2M ⌦ 1) · F2D(A) + · · · .

We can write this in more compact notation as

FjM̃ =
X

↵

Fj�|↵|M ⌦ @
↵r+1

r+1 · · · @
↵n
n .

The associated graded module is therefore given by

(13.8) grF M̃ = grFM ⌦k k[@r+1, . . . , @n],

with the grading in which every @j has degree 1. Concretely,

grFj M̃ =
M

↵

grFj�|↵| M ⌦ @
↵r+1

r+1 · · · @
↵n
n .
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Now grF M̃ is a graded module over grFD(A) ⇠= A[@1, . . . , @n]. Let us describe the
module structure in more detail. Recall that grFM is a finitely generated graded
module over grFD(B) ⇠= B[@1, . . . , @r]. From (13.8), we get

grF M̃ ⇠= grFM ⌦B[@1,...,@r] B[@1, . . . , @n],

and since I ✓ A acts trivially on grF M̃ by construction, this is actually an isomor-
phism of A[@1, . . . , @n]-modules. Since grFM is finitely generated over B[@1, . . . , @r],
this shows that grF M̃ is finitely generated over grFD(A), and so the filtration in
(13.7) is indeed good.

The calculation we have just done has the following geometric interpretation.
The closed embedding i : Y ,! X gives rise to two morphisms between the cotangent
bundles of X and Y :

Y ⇥X T
⇤
X T

⇤
Y

T
⇤
X

p2

di

Here the morphism di : Y ⇥X T
⇤
X ! T

⇤
Y corresponds to the pullback morphism

i
⇤⌦1

X/k ! ⌦1
Y/k between Kähler di↵erentials, and is therefore a morphism of vector

bundles, with kernel the conormal bundle of Y in X. In particular, it is a smooth

morphism of relative dimension dimX�dimY . If we denote by‡grFM the coherent
OT⇤Y -module corresponding to grFM, then the above isomorphism takes the form

(13.9) ‰�grF(i+M) ⇠= (p2)⇤di
⇤‡grFM.

The reason is that, in local coordinates, the morphisms of k-algebras corresponding
to the morphisms between cotangent bundles are

B[@1, . . . , @n] B[@1, . . . , @r]

A[@1, . . . , @n]

and so pulling back via di corresponds to tensoring the B[@1, . . . , @r-module grFM
by B[@1, . . . , @n], and pushing forward via p2 corresponds to consider the result as
a module over A[@1, . . . , @n]. The calculation from above shows that the result is
isomorphic to grF M̃ . Let us summarize the conclusion.

Proposition 13.10. Let i : Y ! X be a closed embedding, and M a coherent right

DY -module. Then the pushforward i+M satisfies

Ch(i+M) = p2

�
di

�1 Ch(M)
�
,

and so dimCh(i+M) = dimCh(M) + dimX � dimY .

Proof. Since the characteristic variety of M is the support of ‡grFM, the formula
for the characteristic variety is an immediate consequence of (13.9). Because di is
a smooth morphism of relative dimension dimY � dimX, whereas p2 is a closed
embedding, the asserted formula for the dimension of the characteristic variety
follows from this. ⇤

The formula for the characteristic variety of the pushforward has several useful
consequences. Firstly, it implies that M is holonomic if and only if i+M is holo-
nomic. The reason is of course that dimCh(i+M)�dimX = dimCh(M)�dimY .
Secondly, it gives another proof for Bernstein’s inequality dimCh(M) � dimX,
independently of symplectic geometry. Recall that, back in Lecture 3, we proved
Bernstein’s inequality for finitely generated modules over the Weyl algebra, by look-
ing at Hilbert functions. We can now deduce from this that Bernstein’s inequality



66

holds for all algebraic D-modules. Suppose then that M is a finitely generated
right DX -module, where X is a nonsingular algebraic variety. Since the question
is local, we may assume that X is a�ne. We can then choose a closed embedding
i : X ,! Am

k into a�ne space. By Proposition 13.10, we have

dimCh(M)� dimX = dimCh(i+M)�m � 0,

where the inequality is a consequence of Bernstein’s inequality for the Weyl algebra.
Thus dimCh(M) � dimX.

Kashiwara’s equivalence. Let i : Y ,! X be a closed embedding. We had al-
ready noted that

i+ : (coherent right DY -modules) ! (coherent right DX -modules)

is an exact functor. One of the first results that Kashiwara proved in his thesis is
a description of the image of this functor. Clearly, every right DX -module of the
form i+M is supported on Y , in the following sense.

Definition 13.11. The support of a coherent right DX -module N is defined as

SuppN = p
�
Ch(N )

�
,

where p : T ⇤
X ! X is the projection.

Since Ch(N ) is conical, its image in X is always a closed algebraic subset. It
follows that SuppN is the complement of the largest Zariski-open subset U ✓ X

such that N
��
U
is trivial. Since every section of i+M is annihilated by a su�ciently

large power of IY , it is clear that Supp(i+M) ✓ Y . (This allows follows from
Proposition 13.10, of course.)

Theorem 13.12 (Kashiwara’s equivalence). The functor i+ is an equivalence of

categories between the category of (coherent) right DY -modules and the category of

(coherent) right DX-modules with support contained in Y .

We will give the proof next time.

Exercises.

Exercise 13.1. Suppose that X = SpecA is a�ne, and that Y is the closed sub-
scheme defined by an ideal I ✓ A, so that Y = SpecB for B = A/I. Show that
the morphism Derk(B) ! B ⌦A Derk(A) puts a left D(B)-module structure on
B ⌦A D(A), and that it commutes with the natural right D(A)-module structure.

Exercise 13.2. Let X = SpecA, with local coordinates x1, . . . , xn 2 A, and let
I = (xr+1, . . . , xn). Show that if M is a finitely generated right D(B)-module,
where B = A/I, then M ⌦k k[@r+1, . . . , xn] is finitely generated as a right D(A)-
module.

Exercise 13.3. Let M be a graded B[@1, . . . , @r]-module. Show that

AnnA[@1,...,@n]

�
M ⌦k k[@r+1, . . . , @n]

�

= (xr+1, . . . , xn) +A[@1, . . . , @n] ·AnnB[@1,...,@r] M,

as ideals in A[@1, . . . , @n].


