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LECTURE 13: MARCH 25

The transfer module. Last time, we looked at the example of distributions
to understand what the pushforward of an algebraic Z-module under a closed
embedding should be. In the case of i: R¥ «— R” defined by i(z1,...,21) =
(x1,...,2x,0,...,0), we concluded that the pushforward of a right Ax(R)-module
of the form
Ar(R)/(Py, ..., Pyn)Ar(R)
should be the right A, (R)-module
An(R)/(Plv ceey Pm; Th41y--- ,I’n)An(R)

Let me know explain how to define the pushforward under a closed embedding in
general. Let i: Y — X be a closed embedding, with X nonsingular of dimension n
and Y nonsingular of dimension r. The definition uses the transfer module

1
Dy sx = Oy @i16, 1 Dx,

which is a (Zy,i71 Zx)-bimodule. In other words, Zy _, x is both a left Zy-module
and a right i~!Zx-module, and the two structures commute with each other. The
right i~!Zx-module structure is the obvious one, induced by right multiplication
on the second factor of the tensor product. The left Zy-module structure is less
obvious, and involves both factors. Remember that since X and Y are both non-
singular, we have a short exact sequence

0— Y 6—1> 1" Ix = Oy Ri-16x i_lyX — Ny|X — 0,

where Ny |x is the normal bundle of ¥V in X, a locally free &y-module of rank
dim X —dimY. Now 9y acts on Yy _, x as follows:

0-(foP)=0(f)oP+f &) (1o P),

where 0 € Fy, f € Oy, and P € i~'9x are local sections. I will leave it as an
exercise to show that this extends to a left Zy-module structure.

Ezxample 13.1. Let us write out everything in local coordinates. Choose local

coordinates x1,...,z, on X, in such a way that Y is defined by the equations
Tpy1 =+ =z, =0. We write d1, ..., 0, for the corresponding vector fields on X;
then y1 = z1,...,y, = , are local coordinates on Y, with vector fields 9y,, ..., 0y, .

The morphism d6;: Fy — i*Ix sends 9,, to 1 ® J;, and so we get
Oy, - (f@P)=0y,f@P+ f®0;P,
where 0; P is the product in Zx.

Lemma 13.2. The transfer module Dy _,x contains a copy of Py and is a locally
free left Dy -module of infinite rank.

Proof. Since Dy . x = Oy ®;-14, i~19Px, the transfer module has a global section
given by 1 ® 1. This embeds a copy of Zy into Py _, x, by letting Py act on 1 ® 1.
In local coordinates as above, we have

Oy, -(1®1)=1®0;.
More generally, for any differential operator @ =), fo0y on Y, we get

Q (1®1)=> fa®0* =) fa@d* - 0.

This shows that the resulting morphism 2y — %y _, x is injective.



63

Since we are working locally, every differential operator P on X can be written
uniquely in the form P = EB gp0®, where 3 € N". By restriction, each gs €
I'(X, Ox) defines an element gz € I'(Y, Oy ), and we have

foP=> fogd = > ST fgp@ol ol | ol o
5 57‘+17"‘7B7‘L /617---;57“

This shows that the morphism 2y ®y k[Oy41, - ..,0n] = Py x, given by multipli-
cation, is an isomorphism. More formally, consider the subalgebra

7% = P Ox -0 - 02 C .
aeN"
Then we have Zx = Z¥ @k k[Or+1,- - ., 0], and therefore
Dy x 2 (Oy ®i-16y i DX) @k k[Ori1,. .., On),

and the discussion above shows that 0y ®;-14, 1 19Y identifies with the copy of
.@y inside @yﬁx. O

Definition 13.3. The pushforward of a right Zy-module is defined as
iwM =i, (M @9y Dy_x);
it becomes a right Zx-module through the morphism Zx — i,i ' Zx.
Note that the pushforward is an exact functor, in the sense that if
0>M > MM =0
is a short exact sequence of right Zy-modules, then
0—=i M - igM—i M -0

is a short exact sequence of right Zx-modules. The reason is that the tensor
product over Py is exact (because Py _, x is locally free as a left Zy-module) and
that i, is exact (because i: Y — X is a closed embedding).

The inclusion 9y — Yy _, x induces an inclusion of i, M into the pushforward
14+ M. In local coordinates as in the lemma, we get

iy M 2 M Qp K[Or g1, -+, Onl,
and so the problem that i,M is not a Px-module is solved by simply creating

a new copy of i,M for every monomial in 0,41,...,0,. Note the the submodule
1,M is annihilated by the equations x,41,...,x, of Y, but because of the relation
[0;,2;] = 1, this is no longer true for iy M. In general, every section of i, M is

annihilated by the ideal sheaf 7y C Oy, and every section of i, M is annihilated
by some power of Zy .

Ezxample 13.4. Let’s compute the pushforward of Zy. We have
i+ Dy =i(Dy @ay Dy—x) =Dy x = ix(Oy @i-10y i Dx).

The natural morphism Zx — i; Yy, given by sending P € Zx to 1 ® P, is clearly
surjective, and its kernel is exactly the right ideal Zy Zx. Thus iy @y = Dx /Iy Dx.

Example 13.5. Let us compare the definition with the calculation from last time.
Consider the closed embedding i: A} — A}, corresponding to the quotient mor-
phism k[z1,...,2,] — k[x1,...,2,]. Let’s compute the pushforward of the right
A,-module M = A,./(Py, ..., Py)A,. By the previous example, the pushforward of
A, itself is given by A, /(xy41,...,2,)A,. Using the presentation

(P1,...;Pm)
e,

Apm A,
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for M and the exactness of iy, we see that the pushforward of M is the cokernel
of the induced morphism

(A (@ i1y s @) A) T —— A f(@gs s ) An.

One then checks that for the endomorphism of A, given by left multiplication by
a differential operator P € A, the induced endomorphism of A, /(x41,...,2Zn)An
is still left multiplication by P. Thus that the pushforward of M is isomorphic to

An/(P17 s 7P’m7x’r+17 s 7xn)An7
in agreement with the calculation we did for distributions last time.

Coherence and characteristic variety. Now let us study the effect of the push-
forward functor on coherence and on the characteristic variety.

Lemma 13.6. If M is a coherent right Dy -module, then i, M is a coherent right
Dx -module.

Proof. Since M is coherent over %y, we can find a coherent &y-module .% C M
such that .% - 2y = M. Using the embedding of i, M into iy M, the coherent
Ox-module i,.# embeds into iy M, and one checks in local coordinates that it
generates i+ M as a right Zx-module. Therefore iy M is coherent. O

To understand the effect of pushing forward on the characteristic variety, we
need to investigate in more detail what happens to a good filtration. Suppose
that M is a coherent right Zy-module, and choose a good filtration Fe M, so
that each F;M is a coherent Oy-module. Using the embedding of .M into the
pushforward i, M = i,(M ®g, Py x), each F;M therefore defines a subsheaf
ix(F;M) C iz M. To get a filtration that is compatible with the Zx-module
structure, we now define

(13.7)  Fi(ipzM) = is(F;M) + i (Fj_1 M) - FLDx + is(Fj_oM) - Py D + -+ -

Since F;M = 0 for j < 0, there are only finitely many terms, and so each F;(i4 M)
is a coherent Ox-module. To check that this gives a good filtration, we work in
local coordinates. So let U C X be an affine open subset, with local coordinates
Z1,...,2y € A=T(U, Ox), such that Y is defined by the ideal I = (2y41,...,Zp).
Set B = A/I, and let M =T'(UNY, Py); this is a right D(B)-module, of course,
but we may also consider it as an A-module on which I acts trivially. From our
earlier discussion,

LU, ieM) 2 M Q¢ k[Opt1,...,0,] = M,
and the above filtration is given by
FjM =F;M®1+ (Fj_1M ®1) - F1D(A) + (Fj_sM ® 1) - F;D(A) + -+ - .
We can write this in more compact notation as
FM =3 Fjja M @01 07
The associated graded module is therefore given by

(13.8) grf' M = gr'' M @4, k[0 41, . .., 0y,
with the grading in which every 9; has degree 1. Concretely,

gy M =Par] o M@ o7
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Now grf’ M is a graded module over gr’” D(A) = A[dy,...,d,]. Let us describe the
module structure in more detail. Recall that grf' M is a finitely generated graded
module over grf D(B) = B[dy, ..., 0,]. From (13.8), we get

gI‘FM &~ ngM ®B[31"”,3T] B[@l, .. .,8n],

and since I C A acts trivially on grf’ M by construction, this is actually an isomor-
phism of A[dy, ..., d,]-modules. Since grf’ M is finitely generated over B0, ..., d,],
this shows that grf' M is finitely generated over grf’ D(A), and so the filtration in
(13.7) is indeed good.

The calculation we have just done has the following geometric interpretation.
The closed embedding i: Y < X gives rise to two morphisms between the cotangent
bundles of X and Y:

YV xx T*X %5 T*Y

lpz

X
Here the morphism di: Y xx T*X — T*Y corresponds to the pullback morphism
Z*Qﬁ( e Q%, n between Kéahler differentials, and is therefore a morphism of vector

bundles, with kernel the conormal bundle of ¥ in X. In particular, it is a smooth

morphism of relative dimension dim X —dimY". If we denote by grf M the coherent
Or~y-module corresponding to grf M, then the above isomorphism takes the form

(13.9) gr(is M) = (po). di"grF M.

The reason is that, in local coordinates, the morphisms of k-algebras corresponding
to the morphisms between cotangent bundles are

Bloy,...,0,] «— Bloy,...,0,]

|

Aldy, ..., 0,

and so pulling back via di corresponds to tensoring the B[dy, ..., d,-module grf M
by B0, ...,0,], and pushing forward via py corresponds to consider the result as
a module over A[0y,...,0,]. The calculation from above shows that the result is
isomorphic to gr’ M. Let us summarize the conclusion.

Proposition 13.10. Leti: Y — X be a closed embedding, and M a coherent right
Dy -module. Then the pushforward i+ M satisfies

Ch(iz M) = pa(di~' Ch(M)),
and so dim Ch(iy M) = dim Ch(M) + dim X — dim Y.

Proof. Since the characteristic variety of M is the support of grf M, the formula
for the characteristic variety is an immediate consequence of (13.9). Because di is
a smooth morphism of relative dimension dimY — dim X, whereas po is a closed
embedding, the asserted formula for the dimension of the characteristic variety
follows from this. O

The formula for the characteristic variety of the pushforward has several useful
consequences. Firstly, it implies that M is holonomic if and only if i, M is holo-
nomic. The reason is of course that dim Ch(ix M) —dim X = dim Ch(M) —dim Y.
Secondly, it gives another proof for Bernstein’s inequality dim Ch(M) > dim X,
independently of symplectic geometry. Recall that, back in Lecture 3, we proved
Bernstein’s inequality for finitely generated modules over the Weyl algebra, by look-
ing at Hilbert functions. We can now deduce from this that Bernstein’s inequality
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holds for all algebraic Z-modules. Suppose then that M is a finitely generated
right Zx-module, where X is a nonsingular algebraic variety. Since the question
is local, we may assume that X is affine. We can then choose a closed embedding
i: X — A}" into affine space. By Proposition 13.10, we have

dim Ch(M) — dim X = dim Ch(iyx M) —m >0,
where the inequality is a consequence of Bernstein’s inequality for the Weyl algebra.
Thus dim Ch(M) > dim X.

Kashiwara’s equivalence. Let i: Y < X be a closed embedding. We had al-
ready noted that

iy : (coherent right Zy-modules) — (coherent right Zx-modules)

is an exact functor. One of the first results that Kashiwara proved in his thesis is
a description of the image of this functor. Clearly, every right Zx-module of the
form i, M is supported on Y, in the following sense.

Definition 13.11. The support of a coherent right Zx-module N is defined as
Supp N = p(Ch(N)),
where p: T*X — X is the projection.
Since Ch(AN) is conical, its image in X is always a closed algebraic subset. It
follows that Supp A is the complement of the largest Zariski-open subset U C X
such that A/ ’U is trivial. Since every section of i; M is annihilated by a sufficiently

large power of Zy, it is clear that Supp(i; M) C Y. (This allows follows from
Proposition 13.10, of course.)

Theorem 13.12 (Kashiwara’s equivalence). The functor iy is an equivalence of
categories between the category of (coherent) right Dy -modules and the category of
(coherent) right Px-modules with support contained in'Y .

We will give the proof next time.
Exercises.

Ezxercise 13.1. Suppose that X = Spec A is affine, and that Y is the closed sub-
scheme defined by an ideal I C A, so that Y = Spec B for B = A/I. Show that
the morphism Derg(B) — B ®4 Derg(A) puts a left D(B)-module structure on
B ®4 D(A), and that it commutes with the natural right D(A)-module structure.

Ezxercise 13.2. Let X = Spec A, with local coordinates x1,...,z, € A, and let
I = (%p41,...,25). Show that if M is a finitely generated right D(B)-module,
where B = A/I, then M Q, k[Or+1,...,2y,] is finitely generated as a right D(A)-
module.

Ezercise 13.3. Let M be a graded B0y, ..., d,]-module. Show that
Annypp, o, (M ®k k[Or41,- - ,8n])
= (Tyg1y-- - @n) +A[O1,...,0n] - Annp, ... 0, M,
as ideals in A[01,...,0y].



