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Lecture 14: March 27

Kashiwara’s equivalence. Let us start by giving the proof of Kashiwara’s equiv-
alence from last time. Here is the statement again.

Theorem (Kashiwara’s equivalence). Let i : Y ,! X be a closed embedding between

nonsingular algebraic varieties. The functor i+ gives an equivalence between the cat-

egory of coherent right DY -modules and the category of coherent right DX-modules

with support cotained in Y .

Proof. Recall that if M is a coherent right DY -module, we defined

i+M = i⇤
�
M⌦DY DY!X

�
,

where the transfer module DY!X = OY ⌦i�1OX
i
�1

DX is a (DY , i
�1

DX)-bimodule.
The first step is to construct an inverse for the functor i+. We have seen that i+M
always contains a copy of the OX -module i⇤M, and from the local description, it
is clear that i⇤M is exactly the subsheaf of i+M that is annihilated by the ideal
sheaf IY ✓ OX . Thus the inverse functor should take a coherent right DX -module
N to the subsheaf of sections that are annihilated by IY . An e�cient way to do
this is as follows. Given a coherent right DX -module N , we define

i
]
N = Homi�1DX

�
DY!X , i

�1
N
�
.

Here we use the right i�1
DX -module structure on the transfer module forHomi�1DX

.
The left DY -module on DY!X then induces a right DY -module structure on i

]
N .

We can rewrite the above definition as

i
]
N = Homi�1DX

�
OY ⌦i�1OX

i
�1

DX , i
�1

N
�
⇠= Homi�1OX

(OY , i
�1

N ),

using the adjunction between Hom and the tensor product. From the short exact
sequence 0 ! i

�1
IY ! i

�1
OX ! OY ! 0, we obtain an exact sequence

0 ! i
]
N ! i

�1
N ! Homi�1OX

(i�1
IY , i

�1
N )

and so i
]
N is exactly the subsheaf of i

�1
N annihilated by i

�1
IY . I will leave

it as an exercise to check that this isomorphism is compatible with the natural
DY -module structure on both sides.

Now the claim is that the natural morphism i
]
i+M ! M is an isomorphism for

every coherent right DY -module M, and that the natural morphism N ! i+i
]
N

is an isomorphism for every coherent right DX -module N such that SuppN ✓ Y .
This can be checked locally, and so we may assume without loss of generality
that X = SpecA is a�ne, with coordinates x1, . . . , xn 2 A, and that the closed
embedding is defined by the ideal I = (xr+1, . . . , xn) ✓ A. If we set B = A/I, we
then have Y = SpecB. In this setting, the pushforward of a right D(B)-module
M is isomorphic to M ⌦k k[@r+1, . . . , @n], and it is easy to see from this description
that the submodule annihilated by the ideal I is exactly M ⌦ 1 ⇠= M . This proves
the first isomorphism.

The proof of the second isomorphism is more interesting. Suppose that N is
a right D(A)-module with SuppN contained in the closed subscheme V (I). This
means that every s 2 N is annihilated by a su�ciently large power of I. Our goal
is to prove that N ⇠= N0 ⌦k k[@r+1, . . . , @n], where N0 =

�
s 2 N

�� sI = 0
 
. For

this, we consider the e↵ect of the operators

Tj = xj@j

on the module N . The point is that

Tj · @
er+1

r+1 · · · @
en
n = @

er+1

r+1 · · · @
en
n · (Tj � ej),
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and since Tj acts trivially on the submodule N0, we have

s⌦ @
er+1

r+1 · · · @
en
n · (Tj � ej) = 0

for every s 2 N0. This means that we can read o↵ the exponents of each monomial
from the eigenvalues of the operators Tr+1, . . . , Tn.

Now let us make this precise. The operators Tr+1, . . . , Tn commute, and a short
calculation shows that

Tj(Tj � 1) · · · (Tj � e) = x
e+1
j @

e+1
j

for every e � 0. For any s 2 N , we have sx
e+1
j = 0 for e � 0, and therefore

sTj(Tj � 1) · · · (Tj � e) = sx
e+1
j @

e+1
j = 0.

This means that s can be written as a sum of eigenvectors of Tj with eigenvalues
in N. Since Tr+1, . . . , Tn commute, we therefore obtain a decomposition

N =
M

er+1,...,en2N
Ner+1,...,en

into simultaneous eigenspaces, where Tj acts on Ner+1,...,en as multiplication by
ej . Now the claim is that N0,...,0 = N0, and that this decomposition gives us an
isomorphism N ⇠= N0 ⌦k k[@r+1, . . . , @n] between N and the pushforward of N0.

To simplify the notation, let me assume that r = n� 1, meaning that I = (xn)
is principal. Then the eigenspace decomposition becomes

N =
M

e2N
Ne,

where the operator Tn = xn@n acts onNe as multiplication by e. Since Tn commutes
with x1, . . . , xn�1, @1, . . . , @n�1, each Ne is a D(B)-module. Suppose that we have
s 2 Ne. Then we get s@n 2 Ne+1, because

s@nTn = s(@nxn)@n = s(xn@n + 1)@n = s@n(e+ 1);

likewise, we get sxn 2 Ne�1, because

sxnTn = sxn(xn@n) = sxn(@nxn � 1) = sxne� sxn = sxn(e� 1).

Since Ne is trivial for e  �1, we conclude that N0 =
�
s 2 N

�� sxn = 0
 
;

moreover, we see that for e � 0, the morphism

N0 ! Ne, s 7! s@
e
n,

is an isomorphism of D(B)-modules. It is now easy to check that

N0 ⌦k k[@n] ! N,

X

e2N
se ⌦ @

e
n 7!

X

e2N
se@

e
n,

is an isomorphism of D(A)-modules. This proves the second isomorphism. ⇤

Example 14.1. Kashiwara’s equivalence implies that D-modules, unlike O-modules,
never have nontrivial nilpotents. For example, the A1-module A1/x

3
A1 is isomor-

phic to three copies of A1/xA1.

Kashiwara’s equivalence suggests the following definition of the category of alge-
braic D-modules on a singular algebraic variety. Suppose that X is a nonsingular
algebraic variety, and Y ✓ X any closed subvariety. Then an algebraic DY -module
is defined to be an algebraic DX -module whose support is contained in Y . One can
use Kashiwara’s equivalence to show that the resulting category is, up to equiva-
lence, independent of the choice of nonsingular ambient variety X.
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Pulling back. Suppose that f : X ! Y is a morphism between two nonsingular
algebraic varieties. It is not hard to construct a pullback functor from algebraic
DY -modules to algebraic DX -modules. Recall that we have a natural morphism

�f : TX ! f
⇤
TY = OX ⌦f�1OY

f
�1

TY ,

dual to the pullback morphism f
⇤⌦1

Y/k ! ⌦1
X/k on Kähler di↵erentials. Now if M

is any left DY -module, then this morphism gives

f
⇤
M = OX ⌦f�1OY

f
�1

M

the structure of a left DX -module. The formula is the same as in the case of the
transfer module: one has

✓ · (g ⌦ u) = ✓(g)⌦ u+ g · �f (✓) · (1⌦ u),

where ✓ 2 TX , g 2 OX , and u 2 f
�1

M are local sections. We can say this more
compactly by noting that

f
⇤
M ⇠=

�
OX ⌦f�1OY

f
�1

DY

�
⌦f�1DY

f
�1

M = DX!Y ⌦f�1DY
f
�1

M.

The transfer module DX!Y is a (DX , f
�1

DY )-bimodule, and f
⇤
M becomes a left

DX -module through the left DX -module structure on DX!Y . Since the pullback of
a quasi-coherent OY -module is a quasi-coherent OX -module, it is clear that f

⇤
M

is again an algebraic DX -module.
Now the functor f

�1 is exact, but tensor product is only right-exact, and so
makes sense to consider also the right derived functors.

Definition 14.2. We define the inverse image of a left DY -module M by the
formula f

⇤
M = DX!Y ⌦f�1DY

f
�1

M. For j � 0, we define L
�j

f
⇤
M as the j-th

right derived functor of f⇤.

As usual, L�j
f
⇤
M is computed by choosing a resolution of M by DY -modules

that are locally free (or flat) over OY ; alternatively, we can choose a resolution of
DX!Y .

Example 14.3. Suppose that E is a locally free OY -module with an integrable
connection r : E ! ⌦1

Y/k ⌦OY E , viewed as a left DY -module. The inverse image
is then simply the usual pullback f

⇤
E , together with the integrable connection

f
⇤
r : f⇤

E ! f
⇤⌦1

Y/k ⌦OX f
⇤
E ! ⌦1

X/k ⌦OX f
⇤
E ,

viewed as a left DX -module.

Example 14.4. Consider the left A1-module M = A1/A1x and its pullback to the
origin in A1

k. The corresponding morphism of k-algebras is k[x] ! k; using the free
resolution

k[x]
x
�! k[x]

for k, the derived functors of the pullback are computed by the complex

A1/A1x
x
�! A1/A1x,

where the map is P 7! xP . The kernel is isomorphic to k, generated by the image
of 1 2 A1; the cokernel is trivial, because 1 = �x@ modulo A1x. Thus L0

i
⇤
M = 0

and L
�1

i
⇤
M = k.

In Lecture 12, I said that the definition of the pushforward functor (in the case
of a closed embedding) was motivated by the pushforward of distributions. So why
do I not talk about pulling back functions before introducing the pullback functor?
The reason is that pulling back D-modules does not correspond to pulling back
functions; as we will see next week, the actual meaning is much more interesting.
For now, let me just point out one di↵erence between the two functors: pulling
back does not necessarily preserve coherence.
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Example 14.5. Consider the embedding Spec k ,! A1
k of the origin, corresponding

to the morphism of k-algebras k[x] ! k. The pullback of DA1
k
is the k-module

k ⌦k[x] A1(k) = A1(k)/xA1(k). This is infinite-dimensional, because the elements
1, @, @2

, . . . are all linearly independent, and in particular, it is not coherent over k.

In general, the pullback of a DX -module of the form DX/DX(P1, . . . , Pm) is not
coherent, and so we cannot interpret it as pulling back functions and looking at the
di↵erential equations they satisfy.

The following lemma is obvious from the definition.

Lemma 14.6. If f : X ! Y and g : Y ! Z are morphisms between nonsingular

algebraic varieties, then one has a natural isomorphism of functors (g �f)⇤ = f
⇤
g
⇤
.

We can factor any morphism f : X ! Y through its graph as

X X ⇥ Y Y
if p2

as a closed embedding if followed by a smooth morphism p2 (actually, a projection
in a product). Because of the lemma, this means that it su�ces to understand the
pullback functor in the case of closed embeddings and smooth morphisms.

Non-characteristic inverse image. I am now going to describe a condition un-
der which f

⇤ preserves coherence. This will also help us understand what the pull-
back functor is doing in terms of di↵erential equations. To do this, we revisit a very
pretty classical result about di↵erential equations, called the Cauchy-Kovalevskaya

theorem. Let’s begin with the case of ordinary di↵erential equations.

Theorem 14.7 (Cauchy-Kovalevskaya). Consider the initial value problem

du

dt
= F (u), u(0) = 0,

for a real function u. If F : (�", ") ! R is real-analytic near 0, then the solution u

is also real-analytic near 0.

Proof. Although it is not directly connected with D-modules, let me show you the
proof, because it is very beautiful. The proof is basically Cauchy’s original proof.
How do we show that u is real-analytic? We have to prove that the Taylor series

1X

n=0

u
(n)(0)

t
n

n!

converges in a neighborhood of 0, and for that, we need to compute the values of
all the derivatives u(n)(0). The di↵erential equation gives

u
0 = F (u)

u
00 = F

0(u)u0 = F
0(u)F (u)

u
000 = F

00(u)u0
F (u) + (F 0(u))2u0 = F

00(u)(F (u))2 + (F 0(u))2F (u).

and so on. In principle, we can compute u
(n)(0) for every n � 0, but the formulas

get very complicated, and so trying to prove the convergence of the series looks
pretty hopeless. Still, what we get is that

u
(n) = Pn

�
F (u), F 0(u), . . . , F (n�1)(u)

�
,

where Pn is a polynomial with nonnegative integer coe�cients. These polynomials
are universal, in the sense that they do not depend on the given function F . For
example, P2(x, y) = yx and P3(x, y, z) = zx

2 + y
2
x. Because Pn has nonnegative

coe�cients, this gives us an upper bound

|u
(n)(0)|  Pn

�
|F (0)|, |F 0(0)|, . . . , |F (n�1)(0)|

�
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on the derivatives of u, using the initial condition u(0) = 0. Now Cauchy makes
the following brilliant observation. Suppose that we have another function G with
the property that |F (n)(0)|  G

(n)(0) for every n � 0. Then

|u
(n)(0)|  Pn

�
G(0), G0(0), . . . , G(n�1)(0)

�
= v

(n)(0),

where v is the solution to the initial value problem

dv

dt
= G(v), v(0) = 0.

The reason is again that Pn has nonnegative coe�cients, and that the same poly-
nomial Pn works for both F and G. Such a function G is called a “majorant”, and
the proof is known as the method of majorants. Suppose that we manage to find G

in such a way that the function v is real-analytic. Then the Taylor series
1X

n=0

v
(n)(0)

t
n

n!

has a positive radius of convergence, and since |u
(n)(0)|  v

(n)(0) for every n � 0,
the same is true for the series

1X

n=0

|u
(n)(0)|

t
n

n!
.

This is su�cient to conclude that u is real-analytic in a neighborhood of 0.
It remains to construct a suitable majorant G. By assumption, F is real-analytic

near 0, and so its Taylor series
1X

n=0

F
(n)(0)

t
n

n!

has a positive radius of convergence. By comparing this series with a geometric
series, we find that there are constants C > 0 and r > 0 such that |F

(n)(0)| 
Cn!/rn for every n � 0. We can then take

G(t) = C

1X

n=0

✓
t

r

◆n

=
Cr

r � t
,

because G
(n)(0) = Cn!/rn � |F

(n)(0)| by construction. The solution of the corre-
sponding initial value problem

dv

dt
=

Cr

r � v
, v(0) = 0,

is easily found using separation of variables; the result is that v = r�r

p
1� 2Ct/r.

This is evidently real-analytic for |t| < r/2C, and so we are done. ⇤
Exercises.

Exercise 14.1. Let X = SpecA and Y = SpecB, where B = A/I for an ideal I ✓ A

and both A and B are nonsingular. Let N be a right D(A)-module.

(a) Show that N0 =
�
s 2 N

�� sI = 0
 
is a B-module, and that the map

N0 ⌦B TB ! N0, s⌦ ✓ 7! s · �(✓),

makes N0 into a right D(B)-module, where � : Derk(B) ! B ⌦A Derk(A)
is the induced morphism between derivations.

(b) Check that the isomorphism of B-modules

HomD(A)

�
B ⌦A D(A), N

�
⇠= HomA(B,N) ⇠= N0

is actually an isomorphism of right D(B)-modules.
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Exercise 14.2. If T = x@, prove the identities

T@
e = @

e(T � e) and T (T � 1) · · · (T � e) = x
e+1

@
e+1

for every e � 0.


