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LECTURE 14: MARCH 27

Kashiwara’s equivalence. Let us start by giving the proof of Kashiwara’s equiv-
alence from last time. Here is the statement again.

Theorem (Kashiwara’s equivalence). Leti: Y < X be a closed embedding between
nonsingular algebraic varieties. The functor iy gives an equivalence between the cat-
egory of coherent right Py -modules and the category of coherent right Zx -modules
with support cotained in'Y .

Proof. Recall that if M is a coherent right 2y -module, we defined
i+M = Z* (M ®@y @Y—)X)7

where the transfer module 2y, x = Oy ®;-1¢4, iT19x is a (Py,i~ ' Px)-bimodule.
The first step is to construct an inverse for the functor i,.. We have seen that i, M
always contains a copy of the &x-module i,M, and from the local description, it
is clear that .M is exactly the subsheaf of i, M that is annihilated by the ideal
sheaf 7y C Ox. Thus the inverse functor should take a coherent right Zx-module
N to the subsheaf of sections that are annihilated by Zy. An efficient way to do
this is as follows. Given a coherent right Zx-module N, we define

PN = Hom;-19, (.@yﬁx, ’i_l./\/) .

Here we use the right i ! Zx-module structure on the transfer module for Hom;-14, .
The left Zy-module on Py _, x then induces a right Zy-module structure on itN.
We can rewrite the above definition as

N = Homi-19 (ﬁy Qi-10x iil@Xviil'N) =Homi-10, (ﬁYyiil./\/‘)a

using the adjunction between Hom and the tensor product. From the short exact
sequence 0 — i~ 17y — i~ 10x — Oy — 0, we obtain an exact sequence

0= #*N = i N = Hom;15 (i Ty, i 'N)

and so i*\ is exactly the subsheaf of i~'N annihilated by i 'Zy. I will leave
it as an exercise to check that this isomorphism is compatible with the natural
Py -module structure on both sides.

Now the claim is that the natural morphism i, M — M is an isomorphism for
every coherent right 2y-module M, and that the natural morphism N — i, i\
is an isomorphism for every coherent right Zx-module A such that Supp N C Y.
This can be checked locally, and so we may assume without loss of generality
that X = Spec A is affine, with coordinates xy,...,z, € A, and that the closed
embedding is defined by the ideal I = (z,41,...,2,) C A. If we set B = A/I, we
then have Y = Spec B. In this setting, the pushforward of a right D(B)-module
M is isomorphic to M ®j, k[Or41,. . .,0n], and it is easy to see from this description
that the submodule annihilated by the ideal I is exactly M ® 1 = M. This proves
the first isomorphism.

The proof of the second isomorphism is more interesting. Suppose that NV is
a right D(A)-module with Supp N contained in the closed subscheme V(I). This
means that every s € N is annihilated by a sufficiently large power of I. Our goal
is to prove that N & Ny ®j, k[Or41,...,0n], where Ny = {s e N ’ sl = 0}. For
this, we consider the effect of the operators

Tj = xjﬁj
on the module N. The point is that

€r41 en __ Afr+1 €n e
Tj'ar—i-l '”871L_8r+1 ann(T’J 6]),
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and since T} acts trivially on the submodule Ny, we have
s®8ff11 8;” . (Tj —€j) =0

for every s € Ny. This means that we can read off the exponents of each monomial
from the eigenvalues of the operators T;41,...,Ty.

Now let us make this precise. The operators T;41, ..., 7, commute, and a short
calculation shows that

LT = 1) (T — ) = 25105
for every e > 0. For any s € N, we have sx?“ = 0 for e > 0, and therefore

STy (Ty — 1)+ (T — e) = sz a5t = 0.

This means that s can be written as a sum of eigenvectors of T; with eigenvalues
in N. Since T;41,...,7T, commute, we therefore obtain a decomposition

N = @ Ne'r'+1:~~7en

erq1,..,en€N

into simultaneous eigenspaces, where T; acts on Ne,_, . ., as multiplication by

e;j. Now the claim is that Ny . o = Np, and that this decomposition gives us an

isomorphism N 2 Ny Qj k[Oy41, .. .,0n] between N and the pushforward of Np.
To simplify the notation, let me assume that » = n — 1, meaning that I = (z,,)

is principal. Then the eigenspace decomposition becomes
N =@PN..
eeN

where the operator T;, = x,0, acts on N, as multiplication by e. Since T,, commutes
with #1,...,2p-1,01,...,0n_1, each N, is a D(B)-module. Suppose that we have
s € N.. Then we get s0,, € Ney1, because

80, Ty, = 8(0nxn)0n = $(xn0pn + 1)0,, = $0n(e + 1);
likewise, we get sx,, € N._1, because
&, Ty = 80 (xn0n) = 8Ty (Opx, — 1) = sxpe — sz, = sxp(e — 1).

Since N, is trivial for e < —1, we conclude that Ny = {s e N ’ ST, = 0};
moreover, we see that for e > 0, the morphism

No — N, s+ s0;,
is an isomorphism of D(B)-modules. It is now easy to check that

No @1k k[0n] = N, > se @05 > 5.0,

eeN eeN

is an isomorphism of D(A)-modules. This proves the second isomorphism. d

Ezxample 14.1. Kashiwara’s equivalence implies that Z-modules, unlike &-modules,
never have nontrivial nilpotents. For example, the A;-module A;/z3A; is isomor-
phic to three copies of A;/xA;.

Kashiwara’s equivalence suggests the following definition of the category of alge-
braic Z-modules on a singular algebraic variety. Suppose that X is a nonsingular
algebraic variety, and Y C X any closed subvariety. Then an algebraic Zy-module
is defined to be an algebraic Zx-module whose support is contained in Y. One can
use Kashiwara’s equivalence to show that the resulting category is, up to equiva-
lence, independent of the choice of nonsingular ambient variety X.
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Pulling back. Suppose that f: X — Y is a morphism between two nonsingular
algebraic varieties. It is not hard to construct a pullback functor from algebraic
Py-modules to algebraic Zx-modules. Recall that we have a natural morphism

62 Ix = [*Fy = Ox @10, [ Ty,

dual to the pullback morphism f*Q3, e Q% /. on Kéhler differentials. Now if M

is any left Zy-module, then this morphism gives
f*./\/l =0x Qf-10y f_l./\/l

the structure of a left Zx-module. The formula is the same as in the case of the
transfer module: one has

0-(g@u)=0(g)@u+g-dp(0) - (1®u),

where 6 € Jx, g € Ox, and u € f~' M are local sections. We can say this more
compactly by noting that

FM=(Ox @10, ' Dy) Qp-19y fTIM=Dx0y @p-19y 7M.

The transfer module Zx .,y is a (Zx, f 1%y )-bimodule, and f* M becomes a left
P x-module through the left Zx-module structure on Zx_,y. Since the pullback of
a quasi-coherent Oy-module is a quasi-coherent &'x-module, it is clear that f*M
is again an algebraic Zx-module.

Now the functor f~! is exact, but tensor product is only right-exact, and so
makes sense to consider also the right derived functors.

Definition 14.2. We define the inverse image of a left Zy-module M by the
formula f*M = Px_,y ® -1, f~*M. For j > 0, we define L™7 f*M as the j-th
right derived functor of f*.

As usual, L™7 f* M is computed by choosing a resolution of M by Zy-modules
that are locally free (or flat) over Oy ; alternatively, we can choose a resolution of
Dxy.

Example 14.3. Suppose that & is a locally free Oy-module with an integrable
connection V: & — Q%, /K Doy &, viewed as a left Zy-module. The inverse image
is then simply the usual pullback f*&, together with the integrable connection

PV FE = P @0y 116 = Qi Goy 16,
viewed as a left Zx-module.

Ezample 14.4. Consider the left A;-module M = A;/A;z and its pullback to the
origin in A}v. The corresponding morphism of k-algebras is k[z] — k; using the free
resolution
for k, the derived functors of the pullback are computed by the complex

Al/Ale i) Al/AliC,

where the map is P — xP. The kernel is isomorphic to k, generated by the image
of 1 € A;; the cokernel is trivial, because 1 = —z0 modulo A;z. Thus L%*M =0
and L™1*M = k.

In Lecture 12, I said that the definition of the pushforward functor (in the case
of a closed embedding) was motivated by the pushforward of distributions. So why
do I not talk about pulling back functions before introducing the pullback functor?
The reason is that pulling back Z-modules does not correspond to pulling back
functions; as we will see next week, the actual meaning is much more interesting.
For now, let me just point out one difference between the two functors: pulling
back does not necessarily preserve coherence.
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Ezample 14.5. Consider the embedding Speck < A} of the origin, corresponding
to the morphism of k-algebras k[z] — k. The pullback of 1 is the k-module
k ®k[a) A1(k) = A1(k)/xAq(k). This is infinite-dimensional, because the elements
1,0,02,... are all linearly independent, and in particular, it is not coherent over k.

In general, the pullback of a Zx-module of the form Zx/Zx (P, ..., Py,) is not
coherent, and so we cannot interpret it as pulling back functions and looking at the
differential equations they satisfy.

The following lemma is obvious from the definition.

Lemma 14.6. If f: X — Y and g: Y — Z are morphisms between nonsingular
algebraic varieties, then one has a natural isomorphism of functors (go f)* = f*g*.

We can factor any morphism f: X — Y through its graph as
X Y Xxy 2y

as a closed embedding i followed by a smooth morphism ps (actually, a projection
in a product). Because of the lemma, this means that it suffices to understand the
pullback functor in the case of closed embeddings and smooth morphisms.

Non-characteristic inverse image. I am now going to describe a condition un-
der which f* preserves coherence. This will also help us understand what the pull-
back functor is doing in terms of differential equations. To do this, we revisit a very
pretty classical result about differential equations, called the Cauchy-Kovalevskaya
theorem. Let’s begin with the case of ordinary differential equations.

Theorem 14.7 (Cauchy-Kovalevskaya). Consider the initial value problem
d
= Fu), u(0)=0,

for a real function u. If F': (—e,e) — R is real-analytic near 0, then the solution u

is also real-analytic near 0.

Proof. Although it is not directly connected with Z-modules, let me show you the
proof, because it is very beautiful. The proof is basically Cauchy’s original proof.
How do we show that u is real-analytic? We have to prove that the Taylor series

(oo} tn
> u(0)
— n!
converges in a neighborhood of 0, and for that, we need to compute the values of
all the derivatives u(™)(0). The differential equation gives
u = F(u)
u' = F'(u)u' = F'(u)F(u)
u" = F"(w)u'F(u) + (F'(w))*u’ = F"(u)(F(u))® + (F'(w))F(u).
and so on. In principle, we can compute u(™ (0) for every n > 0, but the formulas
get very complicated, and so trying to prove the convergence of the series looks
pretty hopeless. Still, what we get is that
u™ = P, (F(u), F'(u),..., F""Y(u),

where P, is a polynomial with nonnegative integer coefficients. These polynomials
are universal, in the sense that they do not depend on the given function F. For
example, Py(x,y) = yx and P3(z,y,z) = z2? + y?x. Because P, has nonnegative
coeflicients, this gives us an upper bound

[ut™(0)] < Pu(IEO), [E(0)],..., [FT~D(0)])
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on the derivatives of u, using the initial condition «(0) = 0. Now Cauchy makes
the following brilliant observation. Suppose that we have another function G with
the property that |F(™(0)| < G(™(0) for every n > 0. Then

[u™(0)] < Pu(G(0),G(0),...,G"D(0)) = 0™ (0),

where v is the solution to the initial value problem
% =G(v), wv(0)=0.

The reason is again that P, has nonnegative coefficients, and that the same poly-

nomial P,, works for both F' and G. Such a function G is called a “majorant”, and

the proof is known as the method of majorants. Suppose that we manage to find G

in such a way that the function v is real-analytic. Then the Taylor series

oo tn
> v 0)
"e0 n.

has a positive radius of convergence, and since |u(™ (0)| < v(™(0) for every n > 0,
the same is true for the series

oo t"
Sl (0)|
ne0 n:

This is sufficient to conclude that u is real-analytic in a neighborhood of 0.

It remains to construct a suitable majorant G. By assumption, F' is real-analytic
near 0, and so its Taylor series
N g o)
> Fm(0) —

n=0

has a positive radius of convergence. By comparing this series with a geometric
series, we find that there are constants C' > 0 and r > 0 such that |[F((0)] <
Cnl/r™ for every n > 0. We can then take

G(t) = C,i (i)" o

because G(™(0) = Cn!/r™ > |F(™(0)| by construction. The solution of the corre-
sponding initial value problem

dv Cr

i ’ 0) = 07

da r—wv v(0)
is easily found using separation of variables; the result is that v = r—r\/1 — 2Ct/r.
This is evidently real-analytic for |¢| < r/2C, and so we are done. O

Exercises.

Ezercise 14.1. Let X = Spec A and Y = Spec B, where B = A/I for anideal I C A
and both A and B are nonsingular. Let N be a right D(A)-module.

(a) Show that Ng = {s€ N | sI =0} is a B-module, and that the map
No®p T — Ny, S®9l—>55(0),

makes Ny into a right D(B)-module, where ¢: Dery(B) — B ®4 Der(A)
is the induced morphism between derivations.
(b) Check that the isomorphism of B-modules

HomD(A) (B XA D(A),N) = HOHlA(B,N) = Ny

is actually an isomorphism of right D(B)-modules.
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Ezercise 14.2. If T = x0, prove the identities
To* =0T —¢) and T(T —1)---(T —e) = 219!

for every e > 0.



