Lecture 15: April 1

The Cauchy-Kovalevskaya theorem. Last time, we showed that the solution to the initial value problem

$$\frac{du}{dt} = F(u), \quad u(0) = 0,$$

is real-analytic near t = 0, provided that this is true for the function F. I also showed you Cauchy's proof, using the "method of majorants". Today, we are going to generalize this result to partial differential equations. We work on \mathbb{R}^n , with coordinates x_1, \ldots, x_n , and consider a partial differential equation of the form

$$Pu = \sum_{|\alpha| \le k} f_{\alpha} \partial^{\alpha} u = 0,$$

where each f_{α} is a real-analytic function in a neighborhood of the origin, say. (And $\partial_j = \partial/\partial x_j$, as usual.) In other words, P is a linear differential operator of order k with real-analytic coefficients. We will specify the initial conditions on the hyperplane $x_n = 0$, which is a copy of \mathbb{R}^{n-1} . They are

$$u|_{\mathbb{R}^{n-1}} = g_0, \quad \partial_n u|_{\mathbb{R}^{n-1}} = g_1, \quad \dots, \quad \partial_n^{k-1} u|_{\mathbb{R}^{n-1}} = g_{k-1}$$

where $g_0, g_1, \ldots, g_{k-1}$ are real-analytic in a neighborhood of the origin in \mathbb{R}^{n-1} . From this data, we can of course compute all partial derivatives of u of order at most k-1 on \mathbb{R}^{n-1} ; indeed, if $\alpha \in \mathbb{N}^n$ is a multi-index, then

(15.1)
$$\partial^{\alpha} u \big|_{\mathbb{R}^{n-1}} = \partial_1^{\alpha_1} \cdots \partial_{n-1}^{\alpha_{n-1}} g_{\alpha_n},$$

provided that $\alpha_n \leq k-1$.

The goal is to show that the solution u is real-analytic near the origin. For that to be true, the Taylor series of u at the origin needs to be determined by the equation Pu = 0 plus the initial conditions, and so we had better be able to compute *all* partial derivatives of u at the origin. Since we can always differentiate along \mathbb{R}^{n-1} , the real question is how to find

$$\partial_n^j u \big|_{\mathbb{R}^{n-1}}$$

for $j \ge k$. Clearly, this information has to come from Pu = 0. Since P has order k, we can rewrite Pu = 0 as

$$f_{(0,\dots,0,k)} \cdot \partial_n^k u = -\sum_{\alpha_n \le k-1} f_\alpha \partial^\alpha u_n$$

and in view of (15.1), we can solve this for $\partial_n^k u|_{\mathbb{R}^{n-1}}$ if and only if the restriction of the coefficient function $f_{(0,\ldots,0,k)}$ to \mathbb{R}^{n-1} is everywhere nonzero. (If we only care about what happens at the origin, then the condition is that $f_{(0,\ldots,0,k)}$ should be nonzero at the origin.) If that is the case, we can of course divide through by $f_{(0,\ldots,0,k)}$ and arrange that ∂_n^k appears with coefficient 1.

Definition 15.2. We say that *P* is *non-characteristic* with respect to the hypersurface $x_n = 0$ if the coefficient function $f_{(0,...,0,k)}$ is everywhere nonzero on \mathbb{R}^{n-1} .

Assuming that P is non-characteristic (and $f_{(0,...,0,k)} = 1$), we can rewrite the equation Pu = 0 in the form

$$\partial_n^k u = Qu,$$

where Q is a differential operator of order k in which ∂_n^k does not appear. We can now use this equation recursively, together with (15.1), to compute $\partial^{\alpha} u|_{\mathbb{R}^{n-1}}$ for every $\alpha \in \mathbb{N}^n$. In particular, assuming that P is non-characteristic, the equation Pu = 0 together with the initial conditions on \mathbb{R}^{n-1} give enough information to compute the Taylor series for u at the origin. We can now state the PDE version of the Cauchy-Kovalevskaya theorem. **Theorem 15.3** (Cauchy-Kovalevskaya). Let P be a linear partial differential operator of order k whose coefficients are real-analytic near the origin in \mathbb{R}^n . If P is non-characteristic with respect to $x_n = 0$, then the boundary-value problem

$$Pu = 0, \quad u|_{\mathbb{R}^{n-1}} = g_0, \quad \partial_n u|_{\mathbb{R}^{n-1}} = g_1, \quad \dots, \quad \partial_n^{k-1} u|_{\mathbb{R}^{n-1}} = g_{k-1},$$

has a unique real-analytic solution u near the origin in \mathbb{R}^n , for every choice of functions $g_0, g_1, \ldots, g_{k-1}$ real-analytic near the origin in \mathbb{R}^{n-1} .

Example 15.4. Here is an example to show that the solution can fail to be realanalytic if P is "characteristic". This example is due to Kovalevskaya herself. Consider the heat equation $\partial_t u = \partial_x^2 u$ in \mathbb{R}^2 , with coordinates (x, t). Since the equation is first-order in t, we only need a single initial condition u(x,0) = g(x). Note that the operator $P = \partial_t - \partial_x^2$ is characteristic with respect to t = 0, because it has order 2, but no term involving ∂_t^2 . Here is a heuristic reason why we cannot expect u to be real-analytic in general. From the equation, we get

$$\partial_t^n u = \partial_x^{2n} u,$$

and at (x,t) = (0,0), this evaluates to $g^{(2n)}(0)$. If the Taylor series of g at the origin has a finite radius of convergence, then

$$g^{(2n)}(0)| \ge C\frac{(2n)!}{r^{2n}}$$

for some C, r > 0. But this means that the function h(t) = u(0, t) cannot be real-analytic in t: indeed, from the above, we deduce that

$$|h^{(n)}(0)| \ge C \frac{(2n)!}{r^{2n}},$$

and since (2n)! grows so much faster than n!, the Taylor series of h(t) has radius of convergence equal to zero. For an actual example, take $g(x) = 1/(x^2 + 1)$.

Now let me give an outline of the proof of Theorem 15.3. As explained above, we can rewrite the equation Pu = 0 in the form

$$\partial_n^k u = Qu,$$

where Q is a differential operator of order k with real-analytic coefficients, such that Q has order at most k-1 in ∂_n . Moreover, we can subtract a suitable real-analytic function from u to arrange that $g_0 = g_1 = \ldots = g_{k-1} = 0$. We now rewrite the problem as a system of first-order PDE for $N = \binom{n+k-1}{n} + 1$ unknown functions u_1, \ldots, u_N . These functions are the N-1 partial derivatives $\partial^{\alpha} u$ for $|\alpha| \leq k-1$, and the auxiliary $u_N = x_n$. In vector notation, the system takes the form

(15.5)
$$\frac{\partial \underline{u}}{\partial x_n} = \sum_{j=1}^{n-1} B_j(x_1, \dots, x_{n-1}) \frac{\partial \underline{u}}{\partial x_j} + B_0(x_1, \dots, x_{n-1}) \underline{u},$$

where $\underline{u} = (u_1, \ldots, u_N)$, and where the coefficient matrices B_0, \ldots, B_{n-1} are derived from Q, hence real-analytic near the origin. Note that we threw in the function $u_N = x_n$ in order to make the coefficients be independent of x_n ; of course, the corresponding equation is simply $\partial u_N / \partial x_n = 1$. The initial condition is that \underline{u} is the zero vector for $x_n = 0$.

Now one can again use the method of majorants to prove that \underline{u} is real-analytic near the origin in \mathbb{R}^n . From (15.5), all partial derivatives of \underline{u} at the origin are given by (very complicated) universal polynomials with nonnegative integer coefficients in the partial derivatives of B_0, \ldots, B_{n-1} at the origin. Using the fact that the coefficient matrices are real-analytic near the origin, one can again write down simple majorants for each of them, and then explicitly solve the resulting system of first-order PDE to show that its solution \underline{v} , and hence also \underline{u} , is real-analytic near the origin.

Non-characteristic \mathscr{D} -modules. Here is a geometric interpretation for the condition that P is non-characteristic with respect to $x_n = 0$. If $P = \sum_{\alpha} f_{\alpha} \partial^{\alpha}$ has order k as above, then its principal symbol

$$\sigma_k(P) = \sum_{|\alpha|=k} f_{\alpha}(x_1, \dots, x_n) \cdot \xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n}$$

is a homogeneous polynomial of degree k in the variables ξ_1, \ldots, ξ_n . We said that P is non-characteristic iff $f_{(0,\ldots,0,k)}(x_1,\ldots,x_{n-1},0) \neq 0$ for every x_1,\ldots,x_{n-1} . Another way of saying this is that if we set $x_n = 0$ and assign arbitrary values to the variables $x_1, \ldots, x_{n-1}, \xi_1, \ldots, \xi_{n-1}$, then $\sigma_k(P)$, considered as a polynomial in the remaining variable ξ_n , always has degree exactly k. The geometric meaning of this condition is as follows. We have the usual maps between the cotangent bundles $T^*\mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^n$ and $T^*\mathbb{R}^{n-1} = \mathbb{R}^{n-1} \times \mathbb{R}^{n-1}$:

$$\mathbb{R}^{n-1} \times_{\mathbb{R}^n} T^* \mathbb{R}^n \xrightarrow{di} T^* \mathbb{R}^{n-1}$$
$$\downarrow^{p_2}$$
$$T^* \mathbb{R}^n$$

Using $x_1, \ldots, x_n, \xi_1, \ldots, \xi_n$ as coordinates on $T^* \mathbb{R}^n$, the maps are just

$$p_2(x_1, \dots, x_{n-1}, \xi_1, \dots, \xi_n) = (x_1, \dots, x_{n-1}, 0, \xi_1, \dots, \xi_n)$$
$$di(x_1, \dots, x_{n-1}, \xi_1, \dots, \xi_n) = (x_1, \dots, x_{n-1}, \xi_1, \dots, \xi_{n-1}).$$

Consider the subset $\operatorname{Ch}(P) \subseteq T^* \mathbb{R}^n$ defined by the equation $\sigma_k(P) = 0$. Setting $x_n = 0$ and prescribing values for $x_1, \ldots, x_{n-1}, \xi_1, \ldots, \xi_{n-1}$ amounts to looking at the fibers of $p_2^{-1} \operatorname{Ch}(P)$ over $T^* \mathbb{R}^{n-1}$, and so P is non-characteristic exactly when the projection from $p_2^{-1} \operatorname{Ch}(P)$ to $T^* \mathbb{R}^{n-1}$ is a finite morphism of degree k. If we observe that $\operatorname{Ch}(P)$ is the characteristic variety of the \mathscr{D} -module $A_n(\mathbb{R})/A_n(\mathbb{R})P$, this finiteness condition makes sense for arbitrary coherent \mathscr{D} -modules.

Let me now give the general definition. Suppose that $f: X \to Y$ is a morphism between two nonsingular algebraic varieties. Here is the diagram of the induced morphisms between cotangent bundles:

$$\begin{array}{ccc} X \times_Y T^*Y & \stackrel{df}{\longrightarrow} T^*X \\ & \downarrow^{p_2} \\ & T^*Y \end{array}$$

Definition 15.6. Let \mathcal{M} be a coherent left \mathscr{D}_Y -module. We say that \mathcal{M} is *non-characteristic* with respect to $f: X \to Y$ if the morphism

$$df: p_2^{-1} \operatorname{Ch}(\mathcal{M}) \to T^*X$$

is finite over its image.

Example 15.7. Consider the closed embedding $i: \mathbb{A}_k^{n-1} \hookrightarrow \mathbb{A}_k^n$, defined by $x_n = 0$. Our earlier discussion shows that if $P \in A_n$ is nonzero, then the left A_n -module A_n/A_nP is non-characteristic with respect to i if and only if the differential operator P is non-characteristic with respect to $x_n = 0$ in the classical sense.

Example 15.8. If $f: X \to Y$ is a smooth morphism, then every coherent \mathscr{D}_Y -module is non-characteristic with respect to f. Indeed, smoothness means that we have a short exact sequence

$$0 \to f^* \Omega^1_{Y/k} \to \Omega^1_{X/k} \to \Omega^1_{X/Y} \to 0,$$

with $\Omega^1_{X/Y}$ locally free of rank dim $X - \dim Y$. But this says that

$$df: X \times_Y T^*Y \to T^*X$$

is a closed embedding (of codimension dim X-dim Y), and so p_2^{-1} Ch(\mathcal{M}) is trivially finite over its image in T^*X .

In the following example, we compute the pullback of an A_n -module of the form A_n/A_nP to the hypersurface $x_n = 0$, in the case where P is non-characteristic.

Example 15.9. Consider the left A_n -module $M = A_n/A_nP$, where $P \in A_n$ is a nonzero differential operator of order $r \ge 0$. Suppose that M is non-characteristic with respect to the closed embedding $i: \mathbb{A}^{n-1} \hookrightarrow \mathbb{A}^n$ defined by the equation $x_n = 0$. We claim that, in this case, the pullback i^*M is not only coherent, but actually a free A_n -module of rank r. The definition of the pullback gives

(15.10)
$$i^*M = k[x_1, \dots, x_{n-1}] \otimes_{k[x_1, \dots, x_n]} M \cong A_n/(x_nA_n + A_nP),$$

where the right-hand side is a left A_{n-1} -module in the obvious way. We have a morphism of left A_{n-1} -modules

$$\varphi \colon A_{n-1}^{\oplus r} \to A_n / (x_n A_n + A_n P)$$
$$(Q_0, Q_1, \dots, Q_{r-1}) \mapsto Q_0 + Q_1 \partial_n + \dots + Q_{r-1} \partial_n^{r-1}.$$

We will show that φ is an isomorphism. Let us first argue that ∂_n^r is in the image. We can write our differential operator $P \in A_n$ uniquely in the form

$$P = f\partial_n^r - P_{r-1}\partial_n^{r-1} - \dots - P_1\partial_n - P_0,$$

where $f \in k[x_1, \ldots, x_n]$ and where $P_0, \ldots, P_{r-1} \in A_n$ do not involve ∂_n . The fact that P is non-characteristic means that f is nowhere vanishing on \mathbb{A}^{n-1} ; after rescaling, we can assume that $f = 1 - x_n g$. Writing $P_j = Q_n + x_n R_j$, with $Q_j \in A_{n-1}$, we get

(15.11)
$$\partial_n^r = \sum_{j=0}^{r-1} Q_j \partial_n^j + x_n \left(g \partial_n^r + \sum_{j=0}^{r-1} R_j \partial_n^j \right) + P,$$

and so ∂_n^r belongs to the image of φ . Using the relation in (15.11) repeatedly, we see that this is true for all powers of ∂_n , and so φ is surjective.

It remains to prove that φ is injective. This is equivalent to saying that if

$$Q_0 + Q_1\partial_n + \dots + Q_{r-1}\partial_n^{r-1} = x_nS + TP$$

for some $Q_0, \ldots, Q_{r-1} \in A_{n-1}$ and $S, T \in A_n$, then actually $Q_0 = \cdots = Q_{r-1} = 0$. We can write $T = x_n T_0 + T_1$, in such a way that x_n does not appear in T_1 ; since $x_n S + TP = x_n(S + T_0) + T_1P$, we can therefore assume without loss of generality that T does not involve x_n . Now suppose, for the sake of contradiction, that $T \neq 0$. On the right-hand side of the equation, ∂_n^r appears with a nonzero coefficient: indeed, P contains $(1 - x_n g)\partial_n^r$, and since T does not involve x_n , it is not possible to cancel this term against anything from $x_n S$. But this clearly contradicts the fact that ∂_n^r does not appear on the left-hand side of the equation. The conclusion is that T = 0; and then also $Q_0 = \cdots = Q_{r-1} = 0$, because the right-hand side is divisible by x_n , whereas the left-hand side does not involve x_n .

The preceding example, together with the Cauchy-Kovalevskaya theorem, sheds some light on what the pullback of \mathcal{D} -modules has to do with differential equations.

Example 15.12. Continuing with the previous example, let us take $k = \mathbb{R}$. Set $\mathcal{M} = \mathscr{D}_{\mathbb{R}^n} / \mathscr{D}_{\mathbb{R}^n} P$. Let us denote by $\mathscr{R}_{\mathbb{R}^n}$ the sheaf of real-analytic functions on \mathbb{R}^n ; it is a left $\mathscr{D}_{\mathbb{R}^n}$ -module in the obvious way. Recall from Lecture 1 that real-analytic solutions to the equation Pu = 0 on an open subset $U \subseteq \mathbb{R}^n$ correspond naturally

to morphisms of left $\mathscr{D}_{\mathbb{R}^n}$ -modules $\mathcal{M} \to \mathscr{R}_{\mathbb{R}^n}$ over U; here the morphism takes the generator $1 \in \Gamma(U, \mathscr{D}_{\mathbb{R}^n})$ to the corresponding function $u \in \Gamma(U, \mathscr{R}_{\mathbb{R}^n})$.

In this notation, the Cauchy-Kovalevskaya theorem says that if $V \subseteq \mathbb{R}^{n-1}$ is an open subset, and $g_0, g_1, \ldots, g_{r-1} \in \Gamma(V, \mathscr{R}_{\mathbb{R}^{n-1}})$ are arbitrary real-analytic functions on V, there is an open subset $U \subseteq \mathbb{R}^n$ with $U \cap \mathbb{R}^{n-1} = V$, and a real-analytic function $u \in \Gamma(U, \mathscr{R}_{\mathbb{R}^n})$, such that Pu = 0 and

$$\partial_n^j u \big|_{\mathbb{R}^{n-1}} = g_j \quad \text{for } j = 0, 1, \dots, r-1.$$

By what we have just said, u may be viewed as a section of the sheaf

$$i^{-1}\mathcal{H}om_{\mathscr{D}_{\mathbb{R}^n}}(\mathcal{M},\mathscr{R}_{\mathbb{R}^n})$$

on the open subset V. Now we have a natural morphism of sheaves

 $i^{-1}\mathcal{H}om_{\mathscr{D}_{\mathbb{R}^n}}(\mathcal{M},\mathscr{R}_{\mathbb{R}^n}) \to \mathcal{H}om_{\mathscr{D}_{\mathbb{R}^{n-1}}}(i^*\mathcal{M},i^*\mathscr{R}_{\mathbb{R}^n}) \to \mathcal{H}om_{\mathscr{D}_{\mathbb{R}^{n-1}}}(i^*\mathcal{M},\mathscr{R}_{\mathbb{R}^{n-1}});$ it works by applying the pullback functor i^* to a morphism of left $\mathscr{D}_{\mathbb{R}^n}$ -modules $\mathcal{M} \to \mathscr{R}_{\mathbb{R}^n}$, and then composing with the restriction morphism $i^*\mathscr{R}_{\mathbb{R}^n} \to \mathscr{R}_{\mathbb{R}^{n-1}}.$ The preceding example shows that $i^*\mathcal{M}$ is a free $\mathscr{D}_{\mathbb{R}^{n-1}}$ -module of rank r, generated by the images of $1, \partial_n, \ldots, \partial_n^{r-1}$. Thus

$$\mathcal{H}om_{\mathscr{D}_{\mathbb{R}^{n-1}}}(i^*\mathcal{M},\mathscr{R}_{\mathbb{R}^{n-1}})\cong\mathscr{R}_{\mathbb{R}^{n-1}}^{\oplus r},$$

and one checks that the resulting morphism

$$\mathcal{H}^{-1}\mathcal{H}om_{\mathscr{D}_{\mathbb{R}^n}}\left(\mathcal{M},\mathscr{R}_{\mathbb{R}^n}\right)\to\mathscr{R}_{\mathbb{R}^{n-1}}^{\oplus r}$$

takes u to its boundary values

$$u|_{\mathbb{R}^{n-1}}, \partial_n u|_{\mathbb{R}^{n-1}}, \cdots, \partial_n^{r-1} u|_{\mathbb{R}^{n-1}}$$

This means that we can interpret the Cauchy-Kovalevskaya theorem, in more fancy language, as the statement that the morphism

$$i^{-1}\mathcal{H}om_{\mathscr{D}_{\mathbb{R}^n}}(\mathcal{M},\mathscr{R}_{\mathbb{R}^n}) \to \mathcal{H}om_{\mathscr{D}_{\mathbb{R}^{n-1}}}(i^*\mathcal{M},\mathscr{R}_{\mathbb{R}^{n-1}})$$

is an isomorphism of sheaves on \mathbb{R}^{n-1} . This tells us that the \mathscr{D} -module pullback $i^*\mathcal{M}$ has to do with the *boundary conditions* for the partial differential equation Pu = 0; the fact that $i^*\mathcal{M}$ is free of rank r means that we can specify r independent real-analytic functions as boundary conditions.

Non-characteristic pullback. Our next goal is to show that if $f: X \to Y$ is a morphism between nonsingular algebraic varieties, and if \mathcal{M} is a coherent left \mathscr{D}_Y -module that is non-characteristic with respect to f, then the pullback $f^*\mathcal{M}$ is coherent over \mathscr{D}_X . To simplify the analysis, we are going to factor f through its graph. Let us see how this factorization interacts with being non-characteristic.

Suppose for a moment that we have an arbitrary factorization

$$X \xrightarrow{g} Z \xrightarrow{h} Y$$

with Z nonsingular. We can then draw the following big diagram of induced morphisms between cotangent bundles:

$$\begin{array}{c} \stackrel{df}{} \\ X \times_Y T^*Y \xrightarrow{q} X \times_Z T^*Z \xrightarrow{dg} T^*Z \\ \downarrow g \times \mathrm{id} & \downarrow p_2 \\ Z \times_Y T^*Y \xrightarrow{dh} T^*Z \\ \downarrow p_2 \\ T^*Y \end{array}$$

If $h: Z \to Y$ is a smooth morphism, then dh is a closed embedding, and so its base change along $g: X \to Z$, which is denoted by q in the diagram above, is also a closed embedding. Since $df = dg \circ q$, we see that the subset $p_2^{-1} \operatorname{Ch}(\mathcal{M})$ of $X \times_Y T^*Y$ is finite over T^*Z if and only if its image under q is finite over T^*Z . This observation can be used to reduce the study of non-characteristic pullback to two special cases: smooth morphisms and closed embeddings.

Exercises.

Exercise 15.1. On \mathbb{R}^n , we use coordinates x_1, \ldots, x_n . Let $\mathcal{M} = \mathscr{D}_{\mathbb{R}^n} / \mathscr{D}_{\mathbb{R}^n} P$, where P is a differential operator of order r that is non-characteristic with respect to $x_n = 0$. Show that the morphism

$$i^{-1}\mathcal{H}om_{\mathscr{D}_{\mathbb{R}^n}}(\mathcal{M},\mathscr{R}_{\mathbb{R}^n}) \to \mathscr{R}_{\mathbb{R}^{n-1}}^{\oplus r}$$

in Example 15.12 takes a real-analytic solution to the equation Pu = 0 to the *r*-vector of its normal derivatives

$$u\big|_{\mathbb{R}^{n-1}}, \partial_n u\big|_{\mathbb{R}^{n-1}}, \cdots, \partial_n^{r-1} u\big|_{\mathbb{R}^{n-1}}.$$