Lecture 15: April 1

The Cauchy-Kovalevskaya theorem. Last time, we showed that the solution to the initial value problem

$$
\frac{d u}{d t}=F(u), \quad u(0)=0
$$

is real-analytic near $t=0$, provided that this is true for the function F. I also showed you Cauchy's proof, using the "method of majorants". Today, we are going to generalize this result to partial differential equations. We work on \mathbb{R}^{n}, with coordinates x_{1}, \ldots, x_{n}, and consider a partial differential equation of the form

$$
P u=\sum_{|\alpha| \leq k} f_{\alpha} \partial^{\alpha} u=0
$$

where each f_{α} is a real-analytic function in a neighborhood of the origin, say. (And $\partial_{j}=\partial / \partial x_{j}$, as usual.) In other words, P is a linear differential operator of order k with real-analytic coefficients. We will specify the initial conditions on the hyperplane $x_{n}=0$, which is a copy of \mathbb{R}^{n-1}. They are

$$
\left.u\right|_{\mathbb{R}^{n-1}}=g_{0},\left.\quad \partial_{n} u\right|_{\mathbb{R}^{n-1}}=g_{1}, \quad \ldots,\left.\quad \partial_{n}^{k-1} u\right|_{\mathbb{R}^{n-1}}=g_{k-1}
$$

where $g_{0}, g_{1}, \ldots, g_{k-1}$ are real-analytic in a neighborhood of the origin in \mathbb{R}^{n-1}. From this data, we can of course compute all partial derivatives of u of order at most $k-1$ on \mathbb{R}^{n-1}; indeed, if $\alpha \in \mathbb{N}^{n}$ is a multi-index, then

$$
\begin{equation*}
\left.\partial^{\alpha} u\right|_{\mathbb{R}^{n-1}}=\partial_{1}^{\alpha_{1}} \cdots \partial_{n-1}^{\alpha_{n-1}} g_{\alpha_{n}} \tag{15.1}
\end{equation*}
$$

provided that $\alpha_{n} \leq k-1$.
The goal is to show that the solution u is real-analytic near the origin. For that to be true, the Taylor series of u at the origin needs to be determined by the equation $P u=0$ plus the initial conditions, and so we had better be able to compute all partial derivatives of u at the origin. Since we can always differentiate along \mathbb{R}^{n-1}, the real question is how to find

$$
\left.\partial_{n}^{j} u\right|_{\mathbb{R}^{n-1}}
$$

for $j \geq k$. Clearly, this information has to come from $P u=0$. Since P has order k, we can rewrite $P u=0$ as

$$
f_{(0, \ldots, 0, k)} \cdot \partial_{n}^{k} u=-\sum_{\alpha_{n} \leq k-1} f_{\alpha} \partial^{\alpha} u
$$

and in view of (15.1), we can solve this for $\left.\partial_{n}^{k} u\right|_{\mathbb{R}^{n-1}}$ if and only if the restriction of the coefficient function $f_{(0, \ldots, 0, k)}$ to \mathbb{R}^{n-1} is everywhere nonzero. (If we only care about what happens at the origin, then the condition is that $f_{(0, \ldots, 0, k)}$ should be nonzero at the origin.) If that is the case, we can of course divide through by $f_{(0, \ldots, 0, k)}$ and arrange that ∂_{n}^{k} appears with coefficient 1.
Definition 15.2. We say that P is non-characteristic with respect to the hypersurface $x_{n}=0$ if the coefficient function $f_{(0, \ldots, 0, k)}$ is everywhere nonzero on \mathbb{R}^{n-1}.

Assuming that P is non-characteristic (and $f_{(0, \ldots, 0, k)}=1$), we can rewrite the equation $P u=0$ in the form

$$
\partial_{n}^{k} u=Q u
$$

where Q is a differential operator of order k in which ∂_{n}^{k} does not appear. We can now use this equation recursively, together with (15.1), to compute $\left.\partial^{\alpha} u\right|_{\mathbb{R}^{n-1}}$ for every $\alpha \in \mathbb{N}^{n}$. In particular, assuming that P is non-characteristic, the equation $P u=0$ together with the initial conditions on \mathbb{R}^{n-1} give enough information to compute the Taylor series for u at the origin. We can now state the PDE version of the Cauchy-Kovalevskaya theorem.

Theorem 15.3 (Cauchy-Kovalevskaya). Let P be a linear partial differential operator of order k whose coefficients are real-analytic near the origin in \mathbb{R}^{n}. If P is non-characteristic with respect to $x_{n}=0$, then the boundary-value problem

$$
P u=0,\left.\quad u\right|_{\mathbb{R}^{n-1}}=g_{0},\left.\quad \partial_{n} u\right|_{\mathbb{R}^{n-1}}=g_{1}, \quad \ldots,\left.\quad \partial_{n}^{k-1} u\right|_{\mathbb{R}^{n-1}}=g_{k-1},
$$

has a unique real-analytic solution u near the origin in \mathbb{R}^{n}, for every choice of functions $g_{0}, g_{1}, \ldots, g_{k-1}$ real-analytic near the origin in \mathbb{R}^{n-1}.

Example 15.4. Here is an example to show that the solution can fail to be realanalytic if P is "characteristic". This example is due to Kovalevskaya herself. Consider the heat equation $\partial_{t} u=\partial_{x}^{2} u$ in \mathbb{R}^{2}, with coordinates (x, t). Since the equation is first-order in t, we only need a single initial condition $u(x, 0)=g(x)$. Note that the operator $P=\partial_{t}-\partial_{x}^{2}$ is characteristic with respect to $t=0$, because it has order 2 , but no term involving ∂_{t}^{2}. Here is a heuristic reason why we cannot expect u to be real-analytic in general. From the equation, we get

$$
\partial_{t}^{n} u=\partial_{x}^{2 n} u,
$$

and at $(x, t)=(0,0)$, this evaluates to $g^{(2 n)}(0)$. If the Taylor series of g at the origin has a finite radius of convergence, then

$$
\left|g^{(2 n)}(0)\right| \geq C \frac{(2 n)!}{r^{2 n}}
$$

for some $C, r>0$. But this means that the function $h(t)=u(0, t)$ cannot be real-analytic in t : indeed, from the above, we deduce that

$$
\left|h^{(n)}(0)\right| \geq C \frac{(2 n)!}{r^{2 n}}
$$

and since $(2 n)$! grows so much faster than n !, the Taylor series of $h(t)$ has radius of convergence equal to zero. For an actual example, take $g(x)=1 /\left(x^{2}+1\right)$.

Now let me give an outline of the proof of Theorem 15.3. As explained above, we can rewrite the equation $P u=0$ in the form

$$
\partial_{n}^{k} u=Q u
$$

where Q is a differential operator of order k with real-analytic coefficients, such that Q has order at most $k-1$ in ∂_{n}. Moreover, we can subtract a suitable real-analytic function from u to arrange that $g_{0}=g_{1}=\ldots=g_{k-1}=0$. We now rewrite the problem as a system of first-order PDE for $N=\binom{n+k-1}{n}+1$ unknown functions u_{1}, \ldots, u_{N}. These functions are the $N-1$ partial derivatives $\partial^{\alpha} u$ for $|\alpha| \leq k-1$, and the auxiliary $u_{N}=x_{n}$. In vector notation, the system takes the form

$$
\begin{equation*}
\frac{\partial \underline{u}}{\partial x_{n}}=\sum_{j=1}^{n-1} B_{j}\left(x_{1}, \ldots, x_{n-1}\right) \frac{\partial \underline{u}}{\partial x_{j}}+B_{0}\left(x_{1}, \ldots, x_{n-1}\right) \underline{u} \tag{15.5}
\end{equation*}
$$

where $\underline{u}=\left(u_{1}, \ldots, u_{N}\right)$, and where the coefficient matrices B_{0}, \ldots, B_{n-1} are derived from Q, hence real-analytic near the origin. Note that we threw in the function $u_{N}=x_{n}$ in order to make the coefficients be independent of x_{n}; of course, the corresponding equation is simply $\partial u_{N} / \partial x_{n}=1$. The initial condition is that \underline{u} is the zero vector for $x_{n}=0$.

Now one can again use the method of majorants to prove that \underline{u} is real-analytic near the origin in \mathbb{R}^{n}. From (15.5), all partial derivatives of \underline{u} at the origin are given by (very complicated) universal polynomials with nonnegative integer coefficients in the partial derivatives of B_{0}, \ldots, B_{n-1} at the origin. Using the fact that the coefficient matrices are real-analytic near the origin, one can again write down simple majorants for each of them, and then explicitely solve the resulting system
of first-order PDE to show that its solution \underline{v}, and hence also \underline{u}, is real-analytic near the origin.

Non-characteristic \mathscr{D}-modules. Here is a geometric interpretation for the condition that P is non-characteristic with respect to $x_{n}=0$. If $P=\sum_{\alpha} f_{\alpha} \partial^{\alpha}$ has order k as above, then its principal symbol

$$
\sigma_{k}(P)=\sum_{|\alpha|=k} f_{\alpha}\left(x_{1}, \ldots, x_{n}\right) \cdot \xi_{1}^{\alpha_{1}} \cdots \xi_{n}^{\alpha_{n}}
$$

is a homogeneous polynomial of degree k in the variables ξ_{1}, \ldots, ξ_{n}. We said that P is non-characteristic iff $f_{(0, \ldots, 0, k)}\left(x_{1}, \ldots, x_{n-1}, 0\right) \neq 0$ for every x_{1}, \ldots, x_{n-1}. Another way of saying this is that if we set $x_{n}=0$ and assign arbitrary values to the variables $x_{1}, \ldots, x_{n-1}, \xi_{1}, \ldots, \xi_{n-1}$, then $\sigma_{k}(P)$, considered as a polynomial in the remaining variable ξ_{n}, always has degree exactly k. The geometric meaning of this condition is as follows. We have the usual maps between the cotangent bundles $T^{*} \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$ and $T^{*} \mathbb{R}^{n-1}=\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}$:

Using $x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{n}$ as coordinates on $T^{*} \mathbb{R}^{n}$, the maps are just

$$
\begin{aligned}
p_{2}\left(x_{1}, \ldots, x_{n-1}, \xi_{1}, \ldots, \xi_{n}\right) & =\left(x_{1}, \ldots, x_{n-1}, 0, \xi_{1}, \ldots, \xi_{n}\right) \\
\operatorname{di}\left(x_{1}, \ldots, x_{n-1}, \xi_{1}, \ldots, \xi_{n}\right) & =\left(x_{1}, \ldots, x_{n-1}, \xi_{1}, \ldots, \xi_{n-1}\right) .
\end{aligned}
$$

Consider the subset $\operatorname{Ch}(P) \subseteq T^{*} \mathbb{R}^{n}$ defined by the equation $\sigma_{k}(P)=0$. Setting $x_{n}=0$ and prescribing values for $x_{1}, \ldots, x_{n-1}, \xi_{1}, \ldots, \xi_{n-1}$ amounts to looking at the fibers of $p_{2}^{-1} \mathrm{Ch}(P)$ over $T^{*} \mathbb{R}^{n-1}$, and so P is non-characteristic exactly when the projection from $p_{2}^{-1} \mathrm{Ch}(P)$ to $T^{*} \mathbb{R}^{n-1}$ is a finite morphism of degree k. If we observe that $\mathrm{Ch}(P)$ is the characteristic variety of the \mathscr{D}-module $A_{n}(\mathbb{R}) / A_{n}(\mathbb{R}) P$, this finiteness condition makes sense for arbitrary coherent \mathscr{D}-modules.

Let me now give the general definition. Suppose that $f: X \rightarrow Y$ is a morphism between two nonsingular algebraic varieties. Here is the diagram of the induced morphisms between cotangent bundles:

Definition 15.6. Let \mathcal{M} be a coherent left \mathscr{D}_{Y}-module. We say that \mathcal{M} is noncharacteristic with respect to $f: X \rightarrow Y$ if the morphism

$$
d f: p_{2}^{-1} \mathrm{Ch}(\mathcal{M}) \rightarrow T^{*} X
$$

is finite over its image.
Example 15.7. Consider the closed embedding $i: \mathbb{A}_{k}^{n-1} \hookrightarrow \mathbb{A}_{k}^{n}$, defined by $x_{n}=0$. Our earlier discusion shows that if $P \in A_{n}$ is nonzero, then the left A_{n}-module $A_{n} / A_{n} P$ is non-characteristic with respect to i if and only if the differential operator P is non-characteristic with respect to $x_{n}=0$ in the classical sense.

Example 15.8. If $f: X \rightarrow Y$ is a smooth morphism, then every coherent \mathscr{D}_{Y}-module is non-characteristic with respect to f. Indeed, smoothness means that we have a short exact sequence

$$
0 \rightarrow f^{*} \Omega_{Y / k}^{1} \rightarrow \Omega_{X / k}^{1} \rightarrow \Omega_{X / Y}^{1} \rightarrow 0
$$

with $\Omega_{X / Y}^{1}$ locally free of rank $\operatorname{dim} X-\operatorname{dim} Y$. But this says that

$$
d f: X \times_{Y} T^{*} Y \rightarrow T^{*} X
$$

is a closed embedding (of codimension $\operatorname{dim} X-\operatorname{dim} Y$), and so $p_{2}^{-1} \operatorname{Ch}(\mathcal{M})$ is trivially finite over its image in $T^{*} X$.

In the following example, we compute the pullback of an A_{n}-module of the form $A_{n} / A_{n} P$ to the hypersurface $x_{n}=0$, in the case where P is non-characteristic.
Example 15.9. Consider the left A_{n}-module $M=A_{n} / A_{n} P$, where $P \in A_{n}$ is a nonzero differential operator of order $r \geq 0$. Suppose that M is non-characteristic with respect to the closed embedding $i: \mathbb{A}^{n-1} \hookrightarrow \mathbb{A}^{n}$ defined by the equation $x_{n}=0$. We claim that, in this case, the pullback $i^{*} M$ is not only coherent, but actually a free A_{n}-module of rank r. The definition of the pullback gives

$$
\begin{equation*}
i^{*} M=k\left[x_{1}, \ldots, x_{n-1}\right] \otimes_{k\left[x_{1}, \ldots, x_{n}\right]} M \cong A_{n} /\left(x_{n} A_{n}+A_{n} P\right) \tag{15.10}
\end{equation*}
$$

where the right-hand side is a left A_{n-1}-module in the obvious way. We have a morphism of left A_{n-1}-modules

$$
\begin{aligned}
\varphi: A_{n-1}^{\oplus r} & \rightarrow A_{n} /\left(x_{n} A_{n}+A_{n} P\right) \\
\left(Q_{0}, Q_{1}, \ldots, Q_{r-1}\right) & \mapsto Q_{0}+Q_{1} \partial_{n}+\cdots+Q_{r-1} \partial_{n}^{r-1}
\end{aligned}
$$

We will show that φ is an isomorphism. Let us first argue that ∂_{n}^{r} is in the image. We can write our differential operator $P \in A_{n}$ uniquely in the form

$$
P=f \partial_{n}^{r}-P_{r-1} \partial_{n}^{r-1}-\cdots-P_{1} \partial_{n}-P_{0}
$$

where $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and where $P_{0}, \ldots, P_{r-1} \in A_{n}$ do not involve ∂_{n}. The fact that P is non-characteristic means that f is nowhere vanishing on \mathbb{A}^{n-1}; after rescaling, we can assume that $f=1-x_{n} g$. Writing $P_{j}=Q_{n}+x_{n} R_{j}$, with $Q_{j} \in A_{n-1}$, we get

$$
\begin{equation*}
\partial_{n}^{r}=\sum_{j=0}^{r-1} Q_{j} \partial_{n}^{j}+x_{n}\left(g \partial_{n}^{r}+\sum_{j=0}^{r-1} R_{j} \partial_{n}^{j}\right)+P \tag{15.11}
\end{equation*}
$$

and so ∂_{n}^{r} belongs to the image of φ. Using the relation in (15.11) repeatedly, we see that this is true for all powers of ∂_{n}, and so φ is surjective.

It remains to prove that φ is injective. This is equivalent to saying that if

$$
Q_{0}+Q_{1} \partial_{n}+\cdots+Q_{r-1} \partial_{n}^{r-1}=x_{n} S+T P
$$

for some $Q_{0}, \ldots, Q_{r-1} \in A_{n-1}$ and $S, T \in A_{n}$, then actually $Q_{0}=\cdots=Q_{r-1}=0$. We can write $T=x_{n} T_{0}+T_{1}$, in such a way that x_{n} does not appear in T_{1}; since $x_{n} S+T P=x_{n}\left(S+T_{0}\right)+T_{1} P$, we can therefore assume without loss of generality that T does not involve x_{n}. Now suppose, for the sake of contradiction, that $T \neq 0$. On the right-hand side of the equation, ∂_{n}^{r} appears with a nonzero coefficient: indeed, P contains $\left(1-x_{n} g\right) \partial_{n}^{r}$, and since T does not involve x_{n}, it is not possible to cancel this term against anything from $x_{n} S$. But this clearly contradicts the fact that ∂_{n}^{r} does not appear on the left-hand side of the equation. The conclusion is that $T=0$; and then also $Q_{0}=\cdots=Q_{r-1}=0$, because the right-hand side is divisible by x_{n}, whereas the left-hand side does not involve x_{n}.

The preceding example, together with the Cauchy-Kovalevskaya theorem, sheds some light on what the pullback of \mathscr{D}-modules has to do with differential equations.

Example 15.12. Continuing with the previous example, let us take $k=\mathbb{R}$. Set $\mathcal{M}=\mathscr{D}_{\mathbb{R}^{n}} / \mathscr{D}_{\mathbb{R}^{n}} P$. Let us denote by $\mathscr{R}_{\mathbb{R}^{n}}$ the sheaf of real-analytic functions on \mathbb{R}^{n}; it is a left $\mathscr{D}_{\mathbb{R}^{n}}$-module in the obvious way. Recall from Lecture 1 that real-analytic solutions to the equation $P u=0$ on an open subset $U \subseteq \mathbb{R}^{n}$ correspond naturally
to morphisms of left $\mathscr{D}_{\mathbb{R}^{n}}$-modules $\mathcal{M} \rightarrow \mathscr{R}_{\mathbb{R}^{n}}$ over U; here the morphism takes the generator $1 \in \Gamma\left(U, \mathscr{D}_{\mathbb{R}^{n}}\right)$ to the corresponding function $u \in \Gamma\left(U, \mathscr{R}_{\mathbb{R}^{n}}\right)$.

In this notation, the Cauchy-Kovalevskaya theorem says that if $V \subseteq \mathbb{R}^{n-1}$ is an open subset, and $g_{0}, g_{1}, \ldots, g_{r-1} \in \Gamma\left(V, \mathscr{R}_{\mathbb{R}^{n-1}}\right)$ are arbitrary real-analytic functions on V, there is an open subset $U \subseteq \mathbb{R}^{n}$ with $U \cap \mathbb{R}^{n-1}=V$, and a real-analytic function $u \in \Gamma\left(U, \mathscr{R}_{\mathbb{R}^{n}}\right)$, such that $P u=0$ and

$$
\left.\partial_{n}^{j} u\right|_{\mathbb{R}^{n-1}}=g_{j} \quad \text { for } j=0,1, \ldots, r-1
$$

By what we have just said, u may be viewed as a section of the sheaf

$$
i^{-1} \mathcal{H o m}_{\mathscr{D}_{\mathbb{R}^{n}}}\left(\mathcal{M}, \mathscr{R}_{\mathbb{R}^{n}}\right)
$$

on the open subset V. Now we have a natural morphism of sheaves

$$
i^{-1} \mathcal{H o m}_{\mathscr{D}_{\mathbb{R}^{n}}}\left(\mathcal{M}, \mathscr{R}_{\mathbb{R}^{n}}\right) \rightarrow \mathcal{H o m}_{\mathscr{D}_{\mathbb{R}^{n-1}}}\left(i^{*} \mathcal{M}, i^{*} \mathscr{R}_{\mathbb{R}^{n}}\right) \rightarrow \mathcal{H o m}_{\mathscr{D}_{\mathbb{R}^{n-1}}}\left(i^{*} \mathcal{M}, \mathscr{R}_{\mathbb{R}^{n-1}}\right)
$$

it works by applying the pullback functor i^{*} to a morphism of left $\mathscr{D}_{\mathbb{R}^{n}}$-modules $\mathcal{M} \rightarrow \mathscr{R}_{\mathbb{R}^{n}}$, and then composing with the restriction morphism $i^{*} \mathscr{R}_{\mathbb{R}^{n}} \rightarrow \mathscr{R}_{\mathbb{R}^{n-1}}$. The preceding example shows that $i^{*} \mathcal{M}$ is a free $\mathscr{D}_{\mathbb{R}^{n-1}-\text { module of rank } r \text {, generated }}$ by the images of $1, \partial_{n}, \ldots, \partial_{n}^{r-1}$. Thus

$$
\mathcal{H o m}_{\mathscr{D}_{\mathbb{R}^{n-1}}}\left(i^{*} \mathcal{M}, \mathscr{R}_{\mathbb{R}^{n-1}}\right) \cong \mathscr{R}_{\mathbb{R}^{n-1}}^{\oplus r}
$$

and one checks that the resulting morphism

$$
i^{-1} \mathcal{H o m}_{\mathscr{D}_{\mathbb{R}^{n}}}\left(\mathcal{M}, \mathscr{R}_{\mathbb{R}^{n}}\right) \rightarrow \mathscr{R}_{\mathbb{R}^{n-1}}^{\oplus r}
$$

takes u to its boundary values

$$
\left.u\right|_{\mathbb{R}^{n-1}},\left.\partial_{n} u\right|_{\mathbb{R}^{n-1}}, \cdots,\left.\partial_{n}^{r-1} u\right|_{\mathbb{R}^{n-1}}
$$

This means that we can interpret the Cauchy-Kovalevskaya theorem, in more fancy language, as the statement that the morphism

$$
i^{-1} \mathcal{H o m}_{\mathscr{D}_{\mathbb{R}^{n}}}\left(\mathcal{M}, \mathscr{R}_{\mathbb{R}^{n}}\right) \rightarrow \mathcal{H o m}_{\mathscr{D}_{\mathbb{R}^{n-1}}}\left(i^{*} \mathcal{M}, \mathscr{R}_{\mathbb{R}^{n-1}}\right)
$$

is an isomorphism of sheaves on \mathbb{R}^{n-1}. This tells us that the \mathscr{D}-module pullback $i^{*} \mathcal{M}$ has to do with the boundary conditions for the partial differential equation $P u=0$; the fact that $i^{*} \mathcal{M}$ is free of rank r means that we can specify r independent real-analytic functions as boundary conditions.

Non-characteristic pullback. Our next goal is to show that if $f: X \rightarrow Y$ is a morphism between nonsingular algebraic varieties, and if \mathcal{M} is a coherent left \mathscr{D}_{Y}-module that is non-characteristic with respect to f, then the pullback $f^{*} \mathcal{M}$ is coherent over \mathscr{D}_{X}. To simplify the analysis, we are going to factor f through its graph. Let us see how this factorization interacts with being non-characteristic.

Suppose for a moment that we have an arbitrary factorization

with Z nonsingular. We can then draw the following big diagram of induced morphisms between cotangent bundles:

If $h: Z \rightarrow Y$ is a smooth morphism, then $d h$ is a closed embedding, and so its base change along $g: X \rightarrow Z$, which is denoted by q in the diagram above, is also a closed embedding. Since $d f=d g \circ q$, we see that the subset $p_{2}^{-1} \mathrm{Ch}(\mathcal{M})$ of $X \times_{Y} T^{*} Y$ is finite over $T^{*} Z$ if and only if its image under q is finite over $T^{*} Z$. This observation can be used to reduce the study of non-characteristic pullback to two special cases: smooth morphisms and closed embeddings.

Exercises.

Exercise 15.1. On \mathbb{R}^{n}, we use coordinates x_{1}, \ldots, x_{n}. Let $\mathcal{M}=\mathscr{D}_{\mathbb{R}^{n}} / \mathscr{D}_{\mathbb{R}^{n}} P$, where P is a differential operator of order r that is non-characteristic with respect to $x_{n}=0$. Show that the morphism

$$
i^{-1} \mathcal{H o m}_{\mathscr{R}_{\mathbb{R}^{n}}}\left(\mathcal{M}, \mathscr{R}_{\mathbb{R}^{n}}\right) \rightarrow \mathscr{R}_{\mathbb{R}^{n-1}}^{\oplus r}
$$

in Example 15.12 takes a real-analytic solution to the equation $P u=0$ to the r-vector of its normal derivatives

$$
\left.u\right|_{\mathbb{R}^{n-1}},\left.\partial_{n} u\right|_{\mathbb{R}^{n-1}}, \cdots,\left.\partial_{n}^{r-1} u\right|_{\mathbb{R}^{n-1}}
$$

