Lecture 16: April 8

Non-characteristic pullback and coherence. Recall that if $f: X \to Y$ is a morphism between nonsingular algebraic varieties, we have the following morphisms between cotangent bundles:

(16.1)
$$\begin{array}{c} X \times_Y T^*Y \xrightarrow{df} T^*X \\ \downarrow^{p_2} \\ T^*Y \end{array}$$

We said last time that a coherent left \mathscr{D}_Y -module \mathcal{M} is called *non-characteristic* with respect to f if $p_2^{-1} \operatorname{Ch}(\mathcal{M})$ is finite over its image in T^*X (under the morphism df). Here are three typical examples.

Example 16.2. If f is a smooth morphism, then df is a closed embedding, and so every coherent left \mathscr{D}_Y -module is noncharacteristic with respect to f.

Example 16.3. If \mathcal{M} is a vector bundle with integrable connection, then $\operatorname{Ch}(\mathcal{M})$ is the zero section in T^*Y . Since the zero section in $X \times_Y T^*Y$ and in T^*X are both isomorphic to X, the restriction of df to $p_2^{-1}\operatorname{Ch}(\mathcal{M})$ is an isomorphism, and so \mathcal{M} is non-characteristic with respect to any morphism f. So being non-characteristic is really a condition on the other components of the characteristic variety.

Example 16.4. The left \mathscr{D}_Y -module \mathscr{D}_Y is never non-characteristic with respect to a closed embedding $f: X \hookrightarrow Y$ (as long as dim $X < \dim Y$). Indeed, $\operatorname{Ch}(\mathcal{M}) = T^*Y$ in this case, and since df has positive-dimensional fibers, $p_2^{-1} \operatorname{Ch}(\mathcal{M})$ is not finite over its image.

Our goal for today is to show that pulling back preserves coherence in the noncharacteristic setting.

Theorem 16.5. Let $f: X \to Y$ be a morphism between nonsingular algebraic varieties, and \mathcal{M} a coherent left \mathscr{D}_Y -module. If \mathcal{M} is non-characteristic with respect to f, then the following is true.

- (a) The pullback $f^*\mathcal{M}$ is a coherent left \mathscr{D}_X -module.
- (b) One has $L^{-j}f^*\mathcal{M} = 0$ for $j \ge 1$.
- (c) One has $\operatorname{Ch}(f^*\mathcal{M}) = df(p_2^{-1}\operatorname{Ch}(\mathcal{M})).$

Note that since $df: p_2^{-1} \operatorname{Ch}(\mathcal{M}) \to T^*X$ is a finite morphism, the image is again a closed algebraic subset of T^*X . Thus the statement in (c) makes sense.

For the proof, the idea is to factor $f: X \to Y$ as a closed embedding followed by a smooth morphism, and to analyze the two cases separately.

Smooth morphisms. Suppose that $f: X \to Y$ is a smooth morphism. In the diagram in (16.1), the morphism p_2 is then also smooth, and the morphism df is a closed embedding. Now let \mathcal{M} be a coherent left \mathscr{D}_Y -module. We have

$$f^*\mathcal{M} = \mathscr{D}_{X \to Y} \otimes_{f^{-1}\mathscr{D}_Y} f^{-1}\mathcal{M} \cong \mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}\mathcal{M},$$

and since smooth morphisms are flat, the tensor product with \mathscr{O}_X is exact. In particular, the higher derived functors of the tensor product are zero, and so $L^{-j}f^*\mathcal{M} = 0$ for $j \geq 1$. This proves (b). Next, we show that $f^*\mathcal{M}$ is coherent over \mathscr{D}_X . By assumption, \mathcal{M} is coherent over \mathscr{D}_Y , and so $f^{-1}\mathcal{M}$ is coherent over $f^{-1}\mathscr{D}_Y$. Since the left \mathscr{D}_X -module structure on $f^*\mathcal{M}$ comes from $\mathscr{D}_{X\to Y}$, it is therefore enough to show that the morphism

$$\mathscr{D}_X \to \mathscr{D}_{X \to Y} = \mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}\mathscr{D}_Y, \quad P \mapsto P \cdot (1 \otimes 1)$$

is surjective. This can be done locally. We can therefore assume that X and Y are affine, and we can choose local coordinates $x_1, \ldots, x_{n+r} \in \Gamma(X, \mathscr{O}_X)$ and $y_1, \ldots, y_n \in \Gamma(Y, \mathscr{O}_Y)$, in such a way that the morphism on tangent sheaves

$$\mathscr{T}_X \to f^* \mathscr{T}_Y = \mathscr{O}_X \otimes_{f^{-1} \mathscr{O}_Y} f^{-1} \mathscr{T}_Y$$

maps ∂_{x_j} to $1 \otimes \partial_{y_j}$ for $1 \leq j \leq n$, and to zero otherwise. (This means that $\partial_{x_{n+1}}, \ldots, \partial_{x_{n+r}}$ generate the relative tangent sheaf $\mathscr{T}_{X/Y}$.) Now every element of $\Gamma(X, \mathscr{D}_{X \to Y})$ can be written in the form

$$\sum_{\alpha \in \mathbb{N}^n} g_\alpha \otimes \partial_{y_1}^{\alpha_1} \cdots \partial_{y_n}^{\alpha_n},$$

with $g_{\alpha} \in \Gamma(X, \mathcal{O}_X)$, and because of how we defined the \mathcal{D}_X -module structure on the transfer module, this expression equals

$$\sum_{\alpha \in \mathbb{N}^n} g_\alpha \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n} \cdot (1 \otimes 1)$$

Thus $\mathscr{D}_X \to \mathscr{D}_{X \to Y}$ is indeed surjective, with kernel generated by the relative tangent sheaf $\mathscr{T}_{X/Y}$.

It remains to prove that $\operatorname{Ch}(f^*\mathcal{M}) = df(p_2^{-1}\operatorname{Ch}(\mathcal{M}))$. Choose a good filtration $F_{\bullet}\mathcal{M}$, and observe that because f is flat, we have $f^*F_j\mathcal{M} \subseteq f^*\mathcal{M}$. If we set $\mathcal{N} = f^*\mathcal{M}$, we thus get a filtration with terms $F_j\mathcal{N} = f^*F_j\mathcal{M}$. It is clear that each $F_j\mathcal{N}$ is a coherent \mathscr{O}_X -module; moreover, flatness of f gives

$$\operatorname{gr}_j^F \mathcal{N} = F_j \mathcal{N} / F_{j-1} \mathcal{N} \cong f^* \operatorname{gr}_j^F \mathcal{M}.$$

Once we check that $F \cdot \mathcal{N}$ is a good filtration, we can use it to compute $\operatorname{Ch}(\mathcal{N})$. Working locally, we can assume that X and Y are affine, and that we have local coordinates $x_1, \ldots, x_{n+r} \in \Gamma(X, \mathscr{O}_X)$ and $y_1, \ldots, y_n \in \Gamma(Y, \mathscr{O}_Y)$ as above. To abbreviate, set $A = \Gamma(X, \mathscr{O}_X)$ and $B = \Gamma(Y, \mathscr{O}_Y)$; then A is a smooth B-algebra. We shall use the same symbol ∂_j to denote both ∂_{x_j} and ∂_{y_j} ; then the morphism on tangent sheaves takes ∂_j to $1 \otimes \partial_j$ for $1 \leq j \leq n$, and to zero otherwise.

Let us set $M = \Gamma(Y, \mathcal{M})$ and $N = \Gamma(X, \mathcal{N})$. By construction,

$$N = A \otimes_B M$$
 and $F_j N = A \otimes_B F_j M$ and $\operatorname{gr}_j^F N = A \otimes_B \operatorname{gr}_j^F M$.

As the filtration on M is good, the associated graded $\operatorname{gr}^F M$ is finitely generated over $\operatorname{gr}^F D(B) = B[\partial_1, \ldots, \partial_n]$. The left D(A)-module structure on N is given by

$$\partial_j (a \otimes m) = \begin{cases} \partial_j a \otimes m + a \otimes \partial_j m & \text{if } 1 \leq j \leq n, \\ \partial_j a \otimes m & \text{if } n+1 \leq j \leq n+r. \end{cases}$$

This formula shows that the filtration $F_{\bullet}N$ is compatible with the action by D(A). It also shows that $\partial_{n+1}, \ldots, \partial_{n+r}$ act trivially on

$$\operatorname{gr}^F N = A \otimes_B \operatorname{gr}^F M,$$

and that $\partial_1, \ldots, \partial_n$ only act on the second factor. Said differentially, we have an isomorphism of graded $A[\partial_1, \ldots, \partial_{n+r}]$ -modules

(16.6)
$$\operatorname{gr}^{F} N \cong A[\partial_{1}, \dots, \partial_{n}] \otimes_{B[\partial_{1}, \dots, \partial_{n}]} \operatorname{gr}^{F} M,$$

with $A[\partial_1, \ldots, \partial_{n+r}]$ acting on the first factor in the obvious way. This says that $\operatorname{gr}^F N$ is finitely generated over $A[\partial_1, \ldots, \partial_{n+r}]$, and so $F_{\bullet}N$ is a good filtration.

It is now easy to compute the characteristic variety $Ch(\mathcal{N})$. If we rewrite the diagram in (16.1) in terms of rings, we get

$$Spec A[\partial_1, \dots, \partial_n] \xrightarrow{df} Spec A[\partial_1, \dots, \partial_{n+r}]$$
$$\downarrow^{p_2}$$
$$Spec B[\partial_1, \dots, \partial_n]$$

with p_2 induced by the morphism of rings $B \to A$, and df induced by the quotient morphism $A[\partial_1, \ldots, \partial_{n+r}] \to A[\partial_1, \ldots, \partial_n]$. Thus (16.6) says that the coherent sheaf on $T^*X = \operatorname{Spec} A[\partial_1, \ldots, \partial_{n+r}]$ corresponding to $\operatorname{gr}^F N$ is obtained by first pulling back $\operatorname{gr}^F M$ along p_2 , and then pushing forward along df. Globally,

$$\widetilde{\operatorname{gr}^F \mathcal{N}} \cong df_* p_2^* \widetilde{\operatorname{gr}^F \mathcal{M}},$$

and since p_2 is surjective and df a closed embedding, we get

$$\operatorname{Ch}(\mathcal{N}) = df(p_2^{-1}\operatorname{Ch}(\mathcal{M})),$$

proving (c) for all smooth morphisms.

Factorizing through the graph. Using the graph embedding, we can write any morphism $f: X \to Y$ as the composition of a closed embedding $i: X \hookrightarrow Z$ and a smooth morphism $g: Z \to Y$. (Here $Z = X \times Y$, of course, but let me write Z to simplify the notation.) We already know that $\mathcal{N} = g^* \mathcal{M}$ is coherent over \mathscr{D}_Z , and that $\operatorname{Ch}(\mathcal{N}) = dg(p_2^{-1}\operatorname{Ch}(\mathcal{M}))$. Using the big diagram

$$\begin{array}{c} \overset{df}{} \\ X \times_Y T^*Y & \longrightarrow X \times_Z T^*Z \xrightarrow{di} T^*Z \\ \downarrow^{i \times \mathrm{id}} & \downarrow^{p_2} \\ Z \times_Y T^*Y & \overset{dg}{\longrightarrow} T^*Z \\ \downarrow^{p_2} \\ T^*Y \end{array}$$

from last time, we see that $p_2^{-1} \operatorname{Ch}(\mathcal{N})$ is finite over its image in T^*X (under the morphism di); this says that \mathcal{N} is non-characteristic with respect to the closed embedding $i: X \hookrightarrow Z$. As $f^*\mathcal{M} \cong i^*\mathcal{N}$, this reduces the proof of Theorem 16.5 to the case of a closed embedding.

Closed embeddings. Suppose now that $f: X \to Y$ is a closed embedding. We are only going to treat the case where dim $X = \dim Y - 1$; to go from there to the general case, one uses the fact that f can be locally factored as a composition of dim $Y - \dim X$ closed embeddings of codimension one (because closed embeddings between nonsingular algebraic varieties are locally complete intersections).

The problem is local, and so we can assume that Y is affine, with $B = \Gamma(Y, \mathcal{O}_Y)$. Choose local coordinates $y_0, y_1, \ldots, y_n \in B$, in such a way that X is defined by the equation $y_0 = 0$; then $A = \Gamma(X, \mathcal{O}_X) \cong B/By_0$, and the images $x_1, \ldots, x_n \in A$ of $y_1, \ldots, y_n \in B$ are local coordinates on X. The morphism on tangent sheaves

$$\mathscr{T}_X \to f^* \mathscr{T}_Y = \mathscr{O}_X \otimes_{f^{-1} \mathscr{O}_Y} f^{-1} \mathscr{T}_Y$$

takes ∂_{x_j} to $1 \otimes \partial_{y_j}$ for $1 \leq j \leq n$. (The remaining vector field ∂_{y_0} is not in the image; it generates the normal bundle.) We again write ∂_j for both ∂_{x_j} and ∂_{y_j} , so

that the morphism on tangent sheaves takes ∂_j to $1 \otimes \partial_j$. With this notation, the diagram in (16.1) becomes

(16.7)

$$\begin{aligned}
\operatorname{Spec} A[\partial_0, \dots, \partial_n] & \xrightarrow{df} \operatorname{Spec} A[\partial_1, \dots, \partial_n] \\
& \downarrow^{p_2} \\
\operatorname{Spec} B[\partial_0, \dots, \partial_n].
\end{aligned}$$

This time, p_2 is a closed embedding and df is smooth of relative dimension one. We are going to use the following basic fact from algebraic geometry.

Lemma 16.8. Let B be a finitely generated A-algebra.

- (1) If B is integral over A, then every finitely generated B-module M is also finitely generated as an A-module.
- (2) If M is a finitely generated B-module such that Supp M is finite over Spec A, then M is also finitely generated as an A-module.

Proof. The first assertion follows from the fact that B itself is finitely generated as an A-module. To prove the second assertion, we may replace B by the quotient ring $B/\operatorname{Ann}_B(M)$ and assume without loss of generality that $\operatorname{Ann}_B(M) = 0$. The support of M is then the reduced closed subscheme defined by the nilradical of B, and so the hypothesis says that $B/\operatorname{Nil} B$ is integral over A. This means that for every $b \in B$, there is a monic polynomial $h(t) \in A[t]$ such that $h(b) \in \operatorname{Nil} B$. But then $h(b)^m = 0$ for some $m \geq 1$, and so b is integral over A. We now conclude from the first assertion that M is finitely generated as an A-module.

Now let \mathcal{M} be a coherent left \mathscr{D}_Y -module that is non-characteristic with respect to f. Set $M = \Gamma(Y, \mathcal{M})$, which is a finitely generated module over the ring of differential operators $D(B) = \Gamma(Y, \mathscr{D}_Y)$. The following lemma expresses the noncharacteristic property of M in terms of differential operators.

Lemma 16.9. For every $u \in M$, there exists a nontrivial differential operator $P \in D(B)$ that is non-characteristic with respect to $y_0 = 0$ and satisfies Pu = 0.

Proof. The submodule $D(B)u \subseteq M$ is isomorphic to D(B)/I, where

 $I = \left\{ P \in D(B) \mid Pu = 0 \right\}$

is a left ideal in D(B). The characteristic variety of D(B)/I is contained in that of M, and so D(B)/I is again non-characteristic with respect to f. As a subset of $T^*Y = \operatorname{Spec} B[\partial_0, \ldots, \partial_n]$, the characteristic variety of D(B)/I is cut out by the principal symbols $\sigma(P) \in B[\partial_0, \ldots, \partial_n]$ of all the differential operators $P \in I$. Its preimage under p_2 is therefore cut out by their images in $A[\partial_0, \ldots, \partial_n]$. Because this subset is finite over $\operatorname{Spec} A[\partial_1, \ldots, \partial_n]$, we can argue as in the preceding lemma to show that there is a monic polynomial h(t) of some degree $d \geq 1$, with coefficients in the ring $A[\partial_1, \ldots, \partial_n]$, such that $h(\partial_0) \in A[\partial_0, \ldots, \partial_n]$ belongs to the ideal generated by $\sigma(P)$ for $P \in I$. Keeping all terms in $h(\partial_0)$ that are homogeneous of degree d, we conclude that there exists a differential operator $P \in I$ of order d, such that the image of $\sigma(P)$ in $A[\partial_0, \ldots, \partial_n]$ contains the term ∂_0^d . But this says exactly that Pis non-characteristic with respect to $y_0 = 0$.

Note. Since M is finitely generated over D(B), the lemma implies that there exist finitely many differential operators $P_1, \ldots, P_r \in D(B)$, all non-characteristic with respect to $y_0 = 0$, and a surjective morphism

$$\bigoplus_{i=1}^{r} D(B)/D(B)P_i \to M.$$

By applying the same observation to the kernel, one can in fact show that M admits a resolution by non-characteristic D(B)-modules of the form D(B)/D(B)P.

Now let us continue with the proof of Theorem 16.5. The derived functors $L^{-j}f^*\mathcal{M}$ are computed, in our local coordinates, by the complex of D(A)-modules

$$M \xrightarrow{y_0} M.$$

To show that $L^{-j}f^*\mathcal{M} = 0$ for every $j \geq 1$, we only have to argue that multiplication by y_0 is injective. Suppose that we have some $u \in M$ with $y_0u = 0$. By the lemma, we can find a differential operator $P \in D(B)$, say of degree $d \geq 0$, such that Pu = 0 and such that P is non-characteristic with respect to $y_0 = 0$. Concretely, this means that the coefficient of ∂_0^d is constant modulo y_0 . As $y_0u = 0$, we can therefore assume without loss of generality that ∂_0^d appear with coefficient 1 in P. Let us choose P in such a way that d is minimal. The commutator $[y_0, P]$ contains the term $-d\partial_0^{d-1}$, and since

$$[y_0, P]u = y_0 P u - P y_0 u = 0,$$

we conclude by minimality that d = 0, and hence that u = 0. This proves (b).

To prove the other two assertions, we choose a good filtration $F_{\bullet}M$, with $\operatorname{gr}^{F}M$ finitely generated over $\operatorname{gr}^{F}D(B) = B[\partial_{0}, \ldots, \partial_{n}]$. Set $\mathcal{N} = f^{*}\mathcal{M}$ and $N = \Gamma(X, \mathcal{N})$, so that

$$N = A \otimes_B M.$$

This time, tensoring with A is no longer an exact functor, but we can still define a filtration on N by setting

$$F_j N = \operatorname{im} (A \otimes_B F_j M \to A \otimes_B M).$$

With this definition, each $\operatorname{gr}_{j}^{F}N$ is a quotient of $B\otimes_{A}\operatorname{gr}_{j}^{F}M$, and by exactly the same calculation as before, the $A[\partial_{1},\ldots,\partial_{n}]$ -module $\operatorname{gr}^{F}N$ is a quotient of $A\otimes_{B}\operatorname{gr}^{F}M$, considered as an $A[\partial_{1},\ldots,\partial_{n}]$ -module through the morphism in (16.7).

Now I claim that $A \otimes_B \operatorname{gr}^F M$ is finitely generated over $A[\partial_1, \ldots, \partial_n]$. Indeed, $\operatorname{gr}^F M$ is finitely generated over $B[\partial_0, \ldots, \partial_n]$ (because $F_{\bullet}M$ is good), and so $A \otimes_B$ $\operatorname{gr}^F M$ is finitely generated over $A[\partial_0, \ldots, \partial_n]$. By the non-characteristic property, the support inside Spec $A[\partial_0, \ldots, \partial_n]$ is finite over Spec $A[\partial_1, \ldots, \partial_n]$, and so the claim follows from Lemma 16.9. Therefore $\operatorname{gr}^F N$, which is a quotient, is also finitely generated over $A[\partial_1, \ldots, \partial_n]$, proving that $\mathcal{N} = f^*\mathcal{M}$ is coherent over \mathscr{D}_X . This argument also shows that

$$\operatorname{Ch}(\mathcal{N}) \subseteq df(p_2^{-1}\operatorname{Ch}(\mathcal{M})),$$

because the support of $A \otimes_B \operatorname{gr}^F M$ contains the support of the quotient module $\operatorname{gr}^F N$. Some extra work is required to show that the two sides are actually equal. (In brief, one has to construct a good filtration $F_{\bullet}M$ such that $\operatorname{gr}_i^F N = A \otimes_B \operatorname{gr}_i^F M$.)

Exercises.

Exercise 16.1. Suppose that $X \subseteq \mathbb{A}^n$ is a nonsingular subvariety. Determine the set of hyperplanes $H \subseteq \mathbb{A}^n$ such that $p_2^{-1}(T_X^*\mathbb{A}^n)$ is finite over its image in T^*H .

$$\begin{array}{ccc} H \times_{\mathbb{A}^n} T^* \mathbb{A}^n & \longrightarrow T^* H \\ & & \downarrow^{p_2} \\ & & T^* \mathbb{A}^n \end{array}$$