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Lecture 17: April 10

Direct images in general. We are now going to define the direct image functor
for (right) D-modules for an arbitrary morphism f : X ! Y between nonsingular
algebraic varieties. Let M be a right DX -module. By analogy with the case of
closed embeddings, the direct image should be

f⇤
�
M⌦DX DX!Y

�
.

Recall that the transfer module DX!Y = OX ⌦f�1OY
f
�1

DY is a (DX , f
�1

DY )-
bimodule, and so the direct image is again a right DY -module. The problem with
this definition is that the resulting functor is neither right nor left exact, and there-
fore not suitable from a homological algebra standpoint. (The reason is that we are
mixing the right exact functor ⌦ with the left exact functor f⇤.) This problem can
be fixed by working in the derived category; in fact, Sato, who founded algebraic
analysis, independently invented the theory of derived categories for his needs.

Derived categories. Let me very briefly review some basic facts. Let X be a
topological space, and RX a sheaf of (maybe noncommutative) rings on X. We
denote by Mod(RX) the category of (sheaves of) left RX -modules; this is an abelian
category. Note that right RX -modules are the same thing as left modules over the
opposite ring R

op
X . We use the notation

D
b(RX)

for the derived category of cohomologically bounded complexes of left RX -modules.
The objects of this category are complexes of left RX -modules, with the property
that only finitely many of the cohomology sheaves are nonzero. The set of mor-
phisms between two objects takes more time to describe, and this is where the
action is happening. Recall that when we compute a derived functor, we have to
replace a sheaf (or complex of sheaves) by a suitable resolution: injective resolu-
tions in the case of pushforward, flat resolutions in the case of tensor product, etc.
The reason for introducing the derived category is that one wants to have a place
where a sheaf (or complex of sheaves) is isomorphic to any of its resolutions.

Example 17.1. Suppose that we choose an injective resolution

0 ! F ! I
0
! I

1
! · · ·

for a sheaf of OX -modules, say. Homological algebra shows that any two such
resolutions are the same up to homotopy, meaning that if J • is another injective
resolution of F , then there is a morphism of complexes I

•
! J

•, unique up to
homotopy; and its composition with the morphism going the other way is homotopic
to the identity morphism. But F is not isomorphic to the complex I

•; all one has is
a quasi-isomorphism, meaning a morphism of complexes that induces isomorphisms
on cohomology sheaves. So if we want F to be isomorphic to I

•, then we need to
work up to homotopy and somehow create an inverse for the morphism F ! I

•.

Back to D
b(RX). The set of morphisms between two objects is obtained by a

two-step procedure: starting from all morphisms of complexes, one first identifies
morphisms that are homotopy equivalent, and then one formally adjoins inverses
for all quasi-isomorphisms. As I said, this construction makes sure that a sheaf (or
complex of sheaves) is isomorphic to any of its resolutions by a unique isomorphism.

Concerning the existence of resolutions, one has the following basic fact:

(1) Every RX -module can be embedded into an injective RX -module.
(2) Every RX -module is a quotient of a flat RX -module.

One can then use the Cartan-Eilenberg construction to show that every cohomo-
logically bounded complex of RX -modules has both injective and flat resolutions.
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The direct image functor. We can now define the direct image functor for an
arbitrary morphism f : X ! Y between nonsingular algebraic varieties. The con-
struction is done in two stages. First, we have a functor

D
b(Dop

X ) ! D
b(f�1

D
op
Y ), M

•
7! M

• L
⌦DX DX!Y ,

obtained by taking the derived tensor product with the transfer module DX!Y .
Concretely, this means that we choose a flat resolution for the complex of right
DX -modules M•, and then tensor this resolution with DX!Y . For the time being,
we do not make any quasi-coherence assumptions. Second, we have a functor

D
b(f�1

D
op
Y ) ! D

b(Dop
Y ), N

•
7! Rf⇤N

•
,

obtained by applying the derived pushforward functor for sheaves. Concretely,
this means that we choose an injective resolution for the complex of right f�1

DY -
modules N

•, and then apply the usual pushforward functor f⇤ to each sheaf in
the complex. Each sheaf in the resulting complex is naturally a right DY -module
through the morphism DY ! f⇤f

�1
DY .

One has to show that both functors are well-defined and “exact”, meaning that
they preserve distinguished triangles (which are the derived category version of
short exact sequences of complexes). We define the pushforward functor as the
composition of the two functors above.

Definition 17.2. Let f : X ! Y be a morphism between nonsingular algebraic
varieties. The pushforward is the exact functor

f+ : Db(Dop
X ) ! D

b(Dop
Y ), f+M

• = Rf⇤
�
M

• L
⌦DX DX!Y

�

between derived categories.

Note that the general definition involves first choosing a flat resolution for the

complex M
•, and then a second injective resolution for M• L

⌦DX DX!Y . Of course,
this is only for theoretical purposes; in practice, we factor f into a closed embed-
ding followed by a projection, and there are simple formulas for computing the
pushforward in both cases.

Example 17.3. Another word about resolutions. In the case of DX -modules, one can
use results about OX -modules to get resolutions very easily. For example, suppose
that we want to represent a quasi-coherent right DX -module M as a quotient of a
flat DX -module. Pick a quasi-coherent OX -module F ✓ M that generates M as
a DX -module. If M is a coherent DX -module, we can choose F to be a coherent
OX -module; in general, F = M will always do the job. Now pick a flat OX -module
E that maps onto F . Then the composition

E ⌦OX DX ! F ⌦OX DX ! M

is surjective, and E ⌦OX DX is flat as a right DX -module.

Here are some concrete examples of the pushforward functor.

Example 17.4. Suppose that i : X ,! Y is a closed embedding. In this case, the
transfer module DX!Y is locally free (as a left DX -module), and tensoring with
DX!Y is therefore exact. The pushforward functor i⇤ is also exact, and so we have

i+M
• = i⇤

�
M

•
⌦DX DX!Y

�
.

This agrees with our earlier definition in the case of a single DX -module; in the
case of a complex, we simply apply the naive pushforward functor for a closed
embedding term by term.
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Example 17.5. Suppose that j : U ,! Y is an open embedding. Then

DU!Y = OU ⌦j�1OY
j
�1

DY
⇠= DU ,

by the basic properties of DY from Lecture 9. This shows that the pushforward
functor agrees with Rj⇤ in this case. Generally speaking, j⇤ is exact when the com-
plement Y \ U is a divisor; otherwise, there might be higher derived functors. The
localization k[x1, . . . , xn, p

�1] that we analyzed in Lecture 3 is a concrete example,
namely the pushforward of k[x1, . . . , xn] along the open embedding An

\Z(p) ,! A
n.

Example 17.6. Let’s consider the case where f : X ! Spec k is the morphism to a
point. In this case, the pushforward f+M should be viewed as something like the
cohomology of X with coe�cients in a right DX -module M. The transfer module

DX!Spec k = OX ⌦f�1OSpec k
f
�1

DSpec k
⇠= OX

is just OX in this case; it has the structure of a left DX -module (and a right
k-module). To compute the pushforward

f+M = Rf⇤
�
M

L
⌦DX OX

�
,

we can use a resolution of OX by left DX -modules. Such a resolution is furnished
by the Spencer complex

Sp(DX) =
h
DX ⌦OX

n̂

TX ! · · · ! DX ⌦OX

2̂

TX ! DX ⌦OX TX ! DX

i
,

which lives in degrees �n, . . . ,�1, 0. The Spencer complex maps to OX via the
DX -linear map DX ! OX that takes P 2 DX to P (1) 2 OX . This is surjective,
and the kernel is generated by TX . The general formula for the di↵erentials

d : DX ⌦OX

k+1̂

TX ! DX ⌦OX

k̂

TX

in the Spencer complex is as follows:

d
�
P ⌦ ✓0 ^ ✓1 ^ · · · ^ ✓k

�
=

kX

i=0

(�1)i(P✓i)⌦ ✓0 ^ · · · ^ “✓i ^ · · · ^ ✓k

+
X

0i<jk

(�1)i+j
P ⌦ [✓i, ✓j ] ^ ✓0 ^ · · · ^ “✓i ^ · · · ^ “✓j ^ · · · ^ ✓k

In local coordinates x1, . . . , xn, the tangent sheaf is a free OX -module with basis
@1, . . . , @n, and the above formula simplifies to

d
�
P ⌦ @i0 ^ @i1 ^ · · · ^ @ik

�
=

kX

j=0

(�1)j(P@ij )⌦ @i0 ^ · · · ^”@ij ^ · · · ^ @ik .

Except for the fact that DX is noncommutative, this is the same formula as for the
di↵erentials in a Koszul complex. Let us check that the Spencer complex resolves
OX . From the formula for the di↵erentials, it is clear that we can filter Sp(DX) by
the family of subcomplexes

Fp Sp(DX) =
h
Fp�nDX ⌦OX

n̂

TX ! · · · ! Fp�1DX ⌦OX TX ! FpDX

i
.

The description of the di↵erential in local coordinates shows that the associated
graded complex

grF• Sp(DX) =
h
grF•�nDX ⌦OX

n̂

TX ! · · · ! grF•�1DX ⌦OX TX ! grF• DX

i
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identifies with the Koszul complex for the regular sequence @1, . . . , @n 2 grF1 DX ,
and is therefore a resolution of OX as a graded grFDX -module. This proves that
the Spencer complex resolves OX as a left DX -module.

Since each term of the Spencer complex is a locally free DX -module, we get

f+M
⇠= Rf⇤

�
M⌦DX Sp(DX)

�
= Rf⇤ Sp(M),

where the Spencer complex of M is defined analogously by

Sp(M) =
h
M⌦OX

n̂

TX ! · · · ! MX ⌦OX

2̂

TX ! MX ⌦OX TX ! M

i
,

with the same formula for the di↵erentials. The pushforward of a right DX -module
is therefore equal to the hypercohomology of its Spencer complex Sp(M).

Example 17.7. In the case of !X , you can check that the Spencer complex Sp(!X)
is isomorphic to the algebraic de Rham complex

DR(OX) =
h
OX ! ⌦1

X/k ! · · · ! ⌦n
X/k

i
.

The j-th hypercohomology group of the de Rham complex is denoted by H
j
dR(X/k)

and is called the j-th algebraic de Rham cohomology of X. When X is defined over
the complex numbers, Grothendieck’s comparison theorem tells us thatHj

dR(X/C) ⇠=
H

j(X,C) is isomorphic to the singular cohomology of X, considered as a complex
manifold.

Let us check that the pushforward functor is compatible with composition of
morphisms.

Proposition 17.8. Let f : X ! Y and g : Y ! Z be morphisms between nonsingu-

lar algebraic varieties. Then one has g+ � f+
⇠= (g � f)+, as functors from D

b(Dop
X )

to D
b(Dop

Z ).

Proof. Let M•
2 D

b(Dop
X ) be any complex of right DX -modules. By definition,

g+

�
f+M

•� = Rg⇤

⇣
Rf⇤

�
M

• L
⌦DX DX!Y

� L
⌦DY DY!Z

⌘

(g � f)+M
• = R(g � f)⇤

�
M

• L
⌦DX DX!Z

�
.

We clearly need a relation among the three transfer modules to compare these two
expressions. Here is the relevant computation:

DX!Z = OX ⌦(g�f)�1OZ
(g � f)�1

DZ

⇠= OX ⌦f�1OY

�
f
�1

OY ⌦f�1g�1OZ
f
�1

g
�1

DZ

�

⇠= OX ⌦f�1OY
f
�1
�
OY ⌦g�1OZ

g
�1

DZ

�

= OX ⌦f�1OY
f
�1

DY!Z

⇠=
�
OX ⌦f�1OY

f
�1

DY

�
⌦f�1DY

f
�1

DY!Z

= DX!Y ⌦f�1DY
f
�1

DY!Z

In fact, since DZ is locally free as an OZ-module, the higher derived functors of all
the tensor products in the above calculation are trivial, and we even have

(17.9) DX!Z
⇠= DX!Y

L
⌦f�1DY

f
�1

DY!Z .

Because R(g � f)⇤ ⇠= Rg⇤ �Rf⇤, it will therefore be enough to show that

Rf⇤
�
M

• L
⌦DX DX!Y

� L
⌦DY DY!Z ! Rf⇤

�
M

• L
⌦DX DX!Y

L
⌦f�1DY

f
�1

DY!Z

�
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is an isomorphism (in the derived category of right g�1
DZ-modules). Setting

A = M
• L
⌦DX DX!Y 2 D

b(f�1
D

op
Y ) and B = DY!Z 2 D

b(DY ),

this is a consequence of the “projection formula” in the following lemma. ⇤
Lemma 17.10. If A 2 D

b(f�1
D

op
Y ) and B 2 D

b(DY ), then

Rf⇤A
L
⌦DY B ! Rf⇤

�
A

L
⌦f�1DY

f
�1

B
�

is an isomorphism.

Proof. This is a local question, and so we can assume that Y is a�ne. We can then
resolve B by a complex of free DY -modules, and thereby reduce the problem to the
case where B is a free DY -module. But the result is obvious in that case because
all the functors preserve direct sums. ⇤
Exercises.

Exercise 17.1. The de Rham complex of a left DX -module M is defined as

DR(M) =
h
M ! ⌦1

X/k ⌦OX M ! · · · ! ⌦n
X/k ⌦OX M

i
,

with di↵erentials given in local coordinates x1, . . . , xn by the formula

d(↵⌦m) = d↵⌦m+ (�1)deg↵
nX

j=1

dz j ^ ↵⌦ (@jm).

Here n = dimX. Recall from Lecture 12 that D
!
X ⌦DX M ⇠= !X ⌦OX M has the

structure of a right DX -module. Show that the Spencer complex of D
!
X ⌦DX M is

isomorphic to the de Rham complex of M.

Exercise 17.2. Continuing from the previous exercise, show that

H
�n DR(M) =

�
s 2 �(X,M)

�� @1s = · · · = @ns = 0
 

is the space of global sections of M that are annihilated by all vector fields.


