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Lecture 19: April 17

Proof of Theorem 18.5. Today, we are going to finish the proof of Theorem 18.5.
The statement is that, for any morphism f : X ! Y between nonsingular algebraic
varieties, one has:

(a) f+ : Db
h(D

op
X ) ! D

b
h(D

op
Y )

(b) Lf⇤ : Db
h(DY ) ! D

b
h(DX)

Last time, I sketched the argument that reduces both statements to the special case
of a coordinate projection p : An+1

! A
n. Let me first fill in the proof of a crucial

lemma that we used.

Lemma 19.1. Let i : X ,! Y be a closed embedding of codimension one, and

j : U = Y \X ,! Y the complementary open embedding. Then for any holonomic

right DY -module M, one has an exact sequence

0 ! i+(L
�1

i
⇤
M) ! M ! j+(M

��
U
) ! i+(L

0
i
⇤
M) ! 0.

We had defined the pullback functor for left D-modules. To compute Li⇤M,
one first converts M into a left DY -module by HomDY (D

!
Y ,M), then applies the

pullback functor Li⇤, and then converts the resulting left DX -module back into a
right DX -module by tensoring with D

!
X .

Proof. We are only going to prove the local version, since that is all that we need
for the proof of Theorem 18.5. Suppose then that Y is a�ne, with coordinates
y0, y1, . . . , yn, and that X is the closed subscheme defined by y0 = 0. Set A =
�(Y,OY ) and M = �(Y,M), which is a holonomic right D(A)-module. After
carrying out the left-right conversions, Li⇤M corresponds to the complex of D(B)-
modules

(19.2) M M
y0

placed in degrees �1 and 0; here B = �(X,OX). On the other hand, j is a�ne,
and so j+(M

��
U
) = j⇤(M

��
U
) is the localization

M ⌦A A[y�1
0 ].

We therefore have to analyze the kernel and cokernel of the natural morphism

' : M ! M ⌦A A[y�1
0 ].

Let us first consider ker'. It consists of all m 2 M such that my
`
0 = 0 for some

` � 1. This submodule is supported on X, and by Kashiwara’s equivalence, it is
the direct image of a D(B)-module M0. Here

M0 =
�
m 2 M

�� my0 = 0
 

which is the D(B)-module corresponding to L
�1

i
⇤
M by (19.2). Next, we consider

coker'. It consists of all finite sums of the form
X

j�0

mj ⌦ y
�j
0 ,

with mj 2 M , modulo the image of M . This is again the direct image of a D(B)-
module M1, by Kashiwara’s equivalence, where M1 is the submodule annihilated
by y0. A short computation gives

M1 =
�
m0 ⌦ 1 +m1 ⌦ y

�1
0

�� m0,m1 2 M
 
/M ⇠= M/My0,

and again by (19.2), this is the D(B)-module corresponding to L
0
i
⇤
M. ⇤
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In fact, the lemma generalizes to arbitrary closed embeddings i : X ,! Y . If we
again let j : U ,! Y be the open embedding of the complement U = Y \X, then
we have a distinguished triangle (= short exact sequence)

RHX(F ) ! F ! Rj⇤(F
��
U
) ! RHX(F )[1],

for every sheaf of OY -modules F , where where HX is the functor of “sections
with support in X”. Concretely, RHX(F ) is computed by choosing an injective
resolution of F and applying the functor HX to each sheaf in the resolution. When
M is a right DY -module, we have Rj⇤(M

��
U
) = j+(M

��
U
), and the distinguished

triangle becomes

RHX(M) ! M ! j+(M
��
U
)RHX(M)[1].

Then the fancy version of the lemma is that RHX(M) is isomorphic to i+Ri
⇤
M,

up to a shift by the codimension dimY � dimX.

Coordinate projections. To prove Theorem 18.5, it remains to treat the case of
a coordinate projection p : An+1

! A
n. We need to show that if M is a holonomic

right DAn+1 -module, then all cohomology sheaves of p+M are holonomic DAn -
modules. This brings us back to modules over the Weyl algebra. Let us first look
at a concrete example.

Example 19.3. Consider the special case p : A1
! Spec k. The pushforward of a

right A1-module M is computed by the Spencer complex

M M
@

and the theorem is claiming that whenM is holonomic, both the kernel and cokernel
of multiplication by @ are finite-dimensional k-vector spaces. One approach would
be to take a good filtration F•M and pass to the associated graded k[x, @]-module
grFM . Its support is one-dimensional, but unfortunately, the kernel and cokernel
of multiplication by @ can fail to be finite-dimensional. (This happens for example
with M = k[x].)

Let me show you an ad-hoc argument for why

ker @ =
�
m 2 M

�� m@ = 0
 

has finite dimension over k. Consider the A1-submodule

ker @ ·A1 ✓ M

generated by ker @. Since M is finitely generated over A1, this submodule is also
finitely generated. The commutation relation [@, x] = 1 implies that, for any m 2

ker @ and any P 2 A1, the element m · P equals m · f(x) for some polynomial
f(x) 2 k[x]; and if this element is nonzero, then by applying a suitable power of
@, one can recover m. Since ker @ · A1 is finitely generated over A1, it follows that
ker @ must be finitely generated over k, hence finite-dimensional.

Bernstein’s idea for the general case is to use an algebraic analogue of the Fourier
transform. Recall that the usual Fourier transform (on functions) interchanges
partial derivatives and multiplication by coordinate functions. We can imitate this
algebraically by the following definition. Let M be a right An-module. Its Fourier
transform is a left An-module M̂ , defined as follows: as a k-vector space, one has
M̂ = M , but with An-action defined by

xj ·m = m@j and @j ·m = mxj .

To show that this gives M̂ the structure of a left An-module, one has to check the
relation [@i, xj ] = �i,j . This holds because

[@i, xj ] ·m = @i(xjm)� xj(@im) = m@jxi �mxi@j = m[@j , xi] = �i,jm.
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Its usefulness for studying direct images comes from the following lemma.

Lemma 19.4. Consider a coordinate projection and its dual closed embedding

p : An+1
! A

n
, p(x0, x1, . . . , xn) = (x1, . . . , xn),

i : An
,! A

n+1
, i(x1, . . . , xn) = (0, x1, . . . , xn).

If M is a holonomic right An+1-module, then

H
j
p+M

⇠=
◊�
L
j
i
⇤
M̂

for every j 2 Z.

Proof. By pretty much the same calculation that we did in Lecture 17, the direct
image p+M is computed by the relative version of the Spencer complex; in the case
at hand, this is the complex of right An-modules

M M
@0

Its cohomology lives in degree �1 and 0:

H
j
p+M =

8
><

>:

ker(@0 : M ! M) if j = �1,

coker(@0 : M ! M) if j = 0,

0 otherwise.

The right An-module structure on H
j
p+M is induced by the right An+1-module

structure on M in the obvious way. On the other hand, the inverse image Li⇤M̂ is
computed by the complex of left An-modules

M̂ M̂.
x0

Its cohomology also lives in degree �1 and 0:

L
j
i
⇤
M̂ =

8
><

>:

ker(x0 : M̂ ! M̂) if j = �1,

coker(x0 : M̂ ! M̂) if j = 0,

0 otherwise.

Here the left An-module structure on L
j
i
⇤
M̂ is induced by the left An+1-module

structure on M̂ in the obvious way. Since left multiplication by x0 on M̂ is, by
definition, the same as right multiplication by @0 on M , we have Hj

p+M = L
j
i
⇤
M̂

as k-vector spaces. The additional Fourier transform makes sure that the right
An-module structures on both sides agree. ⇤

The Fourier transform preserves holonomicity.

Lemma 19.5. A right An-module M is holonomic if and only if its Fourier trans-

form M̂ is holonomic as a left An-module.

Proof. We use the characterization of holonomicity in terms of Hilbert polynomials
(from Lecture 3). Recall the definition of the Bernstein filtration

F
B
j An =

n
P =

X
c↵,�x

↵
@
�
��� |↵|+ |�|  j

o
.

If F•M is a good filtration, compatible with the Bernstein filtration, then for j � 0,
the function j 7! dimk FjM is a polynomial in j; the degree of this polynomial is
denoted by d(M). We showed in Lecture 6 that M is holonomic (in the sense that
its characteristic variety has dimension n) if and only if d(M) = n. The proof of
the lemma is now a triviality: simply observe that a good filtration F•M is also a
good filtration F•M̂ , due to the fact that the Bernstein filtration is symmetric in
x1, . . . , xn and @1, . . . , @n. It follows that d(M) = d(M̂), and so M is holonomic i↵
M̂ is holonomic. ⇤
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The last thing we need to check is that localization preserves holonomicity.

Lemma 19.6. Let M be a holonomic left An+1-module. Then

N = k[x0, . . . , xn, x
�1
0 ]⌦k[x0,...,xn] M

is again a holonomic An+1-module.

Proof. The argument is the same as in the proof of Proposition 3.10. We are going
to make use of the numerical criterion for holonomicity in Lemma 3.11: Suppose
that N is a left An+1-module, and F•N a filtration compatible with the Bernstein
filtration on An+1, such that

dimk FjN 
c

(n+ 1)!
j
n+1 + c1(j + 1)n

for some constants c, c1 � 1. Then N is holonomic.
A suitable filtration on N is obtained by setting

FjN = x
�j
0 ⌦ F2jM

for every j � 0. It is easy to see that this filtration is compatible with the Bernstein
filtration. Let us check that it is exhaustive. Any element of N can be written in
the form x

�j
0 ⌦m for some m 2 M and some j � 0. Since F•M is exhaustive, we

have m 2 FkM for some k � 0. Now

y
�j
0 ⌦m = y

�(j+`)
0 ⌦ (y`0m),

and since y`0m 2 Fk+`M , this element will belong to Fj+`N as long as k+`  2(j+`)
or, equivalently, as long as ` � k � 2j.

Let us count dimensions. Since M is holonomic, we have dimk FjM = �(j),
where �(t) 2 Q[t] is a polynomial of degree d(M) = n+ 1. But then

dimk FjN = dimk F2jM = �(2j)

is still a polynomial of degree n+1; by the numerical criterion, this implies that N
is again holonomic. ⇤

Let us now put everything together and prove Theorem 18.5. By the argument
from last time, it su�ces to show that if M is a holonomic right An+1-module, and

p : An+1
! A

n
, p(x0, x1, . . . , xn) = (x1, . . . , xn)

the coordinate projection, then H
j
p+M is holonomic for every j 2 Z. Let M̂ be

the Fourier transform of M ; by Lemma 19.5, this is a holonomic left An+1-module.
According to Lemma 19.4, we have

H
j
p+M

⇠=
◊�
L
j
i
⇤
M̂,

and so again by Lemma 19.5, it will be enough to prove that each L
j
i
⇤
M̂ is a

holonomic left An-module. By Lemma 19.1, the two potentially nonzero modules
(for j = �1 and j = 0) are the kernel and cokernel of the morphism

M̂ ! k[x0, . . . , xn, x
�1
0 ]⌦k[x0,...,xn] M̂.

The localization is again holonomic (by Lemma 19.6), and so the kernel and cokernel
are holonomic modules. This su�ces to conclude the proof.
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Consequences. Let me point out a few interesting consequences of the result we
have just proved.

First, consider the case where f : X ! Spec k is the morphism to a point. Given
a holonomic right DX -module M, the direct image f+M is computed as the hyper-
cohomology of the Spencer complex Sp(M). Thus Theorem 18.5 is saying that the
hypercohomology of Sp(M) is a finite-dimensional k-vector space. In the special
case M = !X , this says that the algebraic de Rham cohomology groups Hj

dR(X/k)
are finite-dimensional even if X is not proper. (When k = C, this also follows from
the isomorphism H

j
dR(X/C) ⇠= H

j(X,C) and some basic facts about the topology
of nonsingular algebraic varietes.) One way to think about this is to consider the
hypercohomology of Sp(M) as being something like the cohomology of X with co-
e�cients in M; the theorem is claiming that this cohomology is finite-dimensional
whenever M is holonomic.

Second, consider the case of a closed embedding i : Z ,! X. Here, the statement
is that Li⇤M is holonomic for every holonomic left DX -module M, even if M does
not have the non-characteristic property. In particular, we can pull back along

ix : Spec k ,! X

for any closed point x 2 X(k), and for any holonomic DY -module M, or any
complex in D

b
h(DY ), the inverse image Li⇤xM is holonomic on Spec k, hence has

finite-dimensional cohomology. This is another important finiteness property of
holonomic modules. It is obvious on the open subset where M is a vector bundle
with integrable connection, but not at other points of Y .

Note. In fact, one can show that when k is algebraically closed, holonomic com-
plexes are characterized by this finiteness property: an object M

•
2 D

b
coh(DX)

belongs to the subcategory D
b
h(DX) if, and only if, for every closed point x 2 X(k),

the complex Li⇤xM
• has finite-dimensional cohomology. We don’t have time to

prove this, unfortunately.


