
99

Lecture 20: April 22

Fuchsian di↵erential equations. Our next topic is regularity. Let me try to
motivate the definition by talking about another classical topic, namely Fuchsian
di↵erential equations. We work over the complex numbers, and take X to be a
small open disk containing the origin in C. Consider a di↵erential equation of the
form Pu = 0, where

P = a0(x)@
m + a1(x)@

m�1 + · · ·+ am(x)

is a di↵erential operator of order m with holomorphic coe�cients aj(x). If a0(0) 6=
0, then the equation has m linearly independent holomorphic solutions, determined
by the initial conditions u(0), u0(0), . . . , u(m�1)(0). Another way to say this is that
the DX -module DX/DXP is isomorphic to O

�m
X , where the isomorphism takes a

vector (u0, . . . , um�1) to the image of u0 + u1@ + · · ·+ um�1@
m�1. Here DX is the

sheaf of linear di↵erential operators with holomorphic coe�cients.
If a0(0) = 0, then the story becomes more complicated.

Example 20.1. Suppose that P = x@ � ↵ for some ↵ 2 C. Here the solution
u = x

↵ = e
↵ log x is really only defined on sectors, because of the term log x.

Example 20.2. Suppose that P = x
2
@ � 1. Here the solution u = e

�1/x is single-
valued, but has an essential singularity at the origin. This is bad.

We need some terminology to talk about the solutions to the equation Pu = 0.
Let us denote by R the ring of holomorphic functions on X, and by K its fraction
field; elements of K are meromorphic functions. Further, we use R̃ to denote the
ring of multi-valued holomorphic functions on X\{0}; by this we mean holomorphic
functions on the universal covering space. Using the exponential function

C ! C
⇤
, t 7! e

2⇡it
,

the universal covering space of a disk of radius r minus the origin is the half-plane
Im t >

1
2⇡ log(1/r). This means that R̃ is the ring of holomorphic functions on a

suitable half-plane. For example, log x = 2⇡it and x
↵ = e

2⇡i↵t belong to R̃.
We want to avoid essential singularities; this can be done by controlling the rate

of growth of solutions near the origin. We say that a multi-valued holomorphic
function f 2 R̃ has moderate growth near the origin if on any sector

S =
�
x 2 C

�� 0 < |x| < " and ✓0  arg x  ✓1

 
,

there is an integer k � 0 and a constant C � 0 such that

|f(x)| 
C

|x|k

for every x 2 S. Let R̃
mod

✓ R̃ be the subring of multi-valued functions with
moderate growth near the origin. The functions x↵ and (log x)` belong to R̃

mod for
every ↵ 2 C and ` 2 N.

Example 20.3. Suppose that f is a single-valued holomorphic function on the punc-
tured disk X \ {0}. Then f has moderate growth near the origin i↵ f is meromor-
phic; the reason is that xk

f extends to a holomorphic function on X by Riemann’s
extension theorem. Thus moderate growth prevents essential singularities.

Let me now remind you of the classical theorem by Fuchs. After shrinking X,
if necessary, we can assume that the origin is the only zero of a0(x); we can then
divide through by a0(x) to get a di↵erential operator with meromorphic coe�cients.

Theorem 20.4 (Fuchs). Let P = @
m + a1(x)@m�1 + · · ·+ am(x) be a di↵erential

operator of order m with aj(x) 2 K. The following two conditions are equivalent:
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(a) All multi-valued solutions u 2 R̃ of the di↵erential equation Pu = 0 have

moderate growth near the origin.

(b) For j = 1, . . . , n, the function aj(x) has a pole of order at most j at the

origin.

If the conditions in the theorem are satisfied, the di↵erential equation Pu = 0
is said to be regular at the origin. There is another way to formulate the algebraic
condition in (b). Using identity x

j
@
j = (x@)(x@ � 1) · · · (x@ � j + 1), we get

x
m
P = (x@)m + b1(x)(x@)

m�1 + · · ·+ bm(x),

and (b) becomes the condition that b1(x), · · · , bm(x) are holomorphic functions.

Systems of di↵erential equations and regularity. We will prove Theorem 20.4
by turning the problem into a system of first-order di↵erential equations. If we set
u1 = u, u2 = @u, . . . , um = @

m�1
u, then Pu = 0 is of course equivalent to the

system of m first-order equations

@u1 = u2

@u2 = u3

...

@um�1 = um

@um = �(amu1 + · · ·+ a1um)

More generally, let us consider a first-order system of the form

@ui =
mX

j=1

ai,juj , i = 1, . . . ,m,

with m unknown functions u1, . . . , um and meromorphic coe�cients ai,j 2 K. We
can also write this in the form @U = AU , where U is the column vector with entries
u1, . . . , um, and A is an m⇥m-matrix whose entries are meromorphic functions.

Example 20.5. If condition (b) is satisfied, we can instead look at the m functions
v1 = u, v2 = x@u, . . . , vm = (x@)m�1

u; the equation Pu = 0 is then also equivalent
to the following system:

x@v1 = v2

x@v2 = v3

...

x@vm�1 = vm

x@vm = �(bmv1 + · · ·+ b1vm)

In matrix notation, this becomes x@V = BV , where the entries of the m⇥m-matrix
B are now holomorphic functions.

Now let us describe the multi-valued solutions of such a system @U = AU . We
can pull the system back to the universal covering space ofX\{0}, which amounts to
setting x = e

2⇡it. This gives us a system of first-order equations with holomorphic
coe�cients on a half-space; by Cauchy’s theorem, it has m linearly independent
holomorphic solutions ũ

1
, . . . , ũ

m; here each ũ
j is a column vector with entries in

R̃. Let us denote by S̃(t) the m ⇥m-matrix whose columns are ũ
1
, . . . , ũ

m. Since
the coe�cients of the system are invariant under the substitution t 7! t + 1, the
columns of S̃(t+ 1) form another basis for the vector space of solutions, and so

S̃(t+ 1) = S̃(t)C
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for a certain matrix C 2 GLn(C). This matrix is called the monodromy matrix

of the system, because it describes how the multi-valued solutions to the system
transform when going around the origin.

Choose a matrix � with the property that C = e
2⇡i�; such a matrix always

exists, and is unique if we require that the eigenvalues of � have their real part in a
fixed interval of unit lengt, such as [0, 1). The matrix S̃(t)e�2⇡it� is now invariant
under the substitution t 7! t+ 1, and so

S̃(t)e�2⇡it� = ⌃(e2⇡it),

where ⌃(x) is an m⇥m-matrix whose entries are holomorphic functions on X \{0}.
Replacing 2⇡it by log x, we see that the columns of the matrix

S(x) = ⌃(x)elog x�

form a basis for the space of multi-valued solutions to the system @U = AU .
Changing the basis in the vector space of solutions amounts to conjugating C and

� by the change-of-basis matrix. Since we are working over C, we can therefore
choose our basis in such a way that � is in Jordan canonical form. Thus � is
block-diagonal, with blocks of the type

0

BBBBB@

↵ 1
↵ 1

. . .
. . .
↵ 1

↵

1

CCCCCA

which means that elog x� is block-diagonal, with blocks of the type

x
↵
·

0

BBBBB@

1 L1(x) L2(x) · · · Lm�1(x)
1 L1(x) · · · Lm�2(x)

. . .
. . .

...
1 L1(x)

1

1

CCCCCA

where now Lj(x) = 1
j! (log x)

j . This gives a fairly concrete description of what
multi-valued solutions look like.

Example 20.6. A corollary of the discussion so far is that any m-th order di↵eren-
tial equation of the form Pu = 0 has a solution of the form x

↵
h(x), where h(x)

is holomorphic outside the origin, and ↵ 2 C has the property that e
2⇡i↵ is an

eigenvalue of the monodromy matrix C.

Now our goal is to prove a version of Theorem 20.4 for systems.

Definition 20.7. We say that two systems @U = AU and @V = BV are equivalent
if there is a matrix M(x) 2 GLm(K) with meromorphic entries such that

B = @M ·M
�1 +MAM

�1
.

This means that U solves the first system i↵ V = MU solves the second one.

Here is the analogue of Theorem 20.4 for systems.

Theorem 20.8. Let A be an m⇥m-matrix with entries in K. The following three

conditions are equivalent:

(a) All multi-valued solutions of @U = AU have moderate growth near the

origin, meaning that the individual components of U do.

(b) The system @U = AU is equivalent to a system of the form @V = x
�1�V ,

where � is an m⇥m-matrix with constant entries.
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(c) The system @U = AU is equivalent to a system of the form @V = x
�1

BV ,

where B is an m⇥m-matrix with holomorphic entries.

A system satisfying these equivalent conditions is called regular at the origin.

Proof. Let us show that (a) implies (b). We already know that a fundamental
system of solutions is of the form S(x) = ⌃(x)elog x�. By assumption, the entries
of the matrix S(x) have moderate growth near the origin. Since powers of log x
have moderate growth, it follows that the entries of

⌃(x) = S(x)e� log x�

also have moderate growth near the origin. The entries of ⌃(x) are therefore mero-
morphic functions, and so ⌃(x) 2 GLm(K). After replacing U by V = ⌃�1(x)U ,
we obtain the equivalent system

@V =
1

x
�V,

which is what we wanted to show.
It is clear that (b) implies (c), and so it remains to prove that (c) implies (a).

Let V be any multi-valued solution of the system x@V = BV . Here V is a column
vector with entries v1, . . . , vm 2 R̃. To prove that v1, . . . , vm 2 R̃

mod , we need to
understand their asymptotic behavior on any sector

S =
�
x 2 C

�� 0 < |x| < " and ✓0  arg(x)  ✓1

 
.

Let us set kV k
2 = |v1|

2 + · · · + |vm|
2 and x = re

i✓. Since the entries of B are
holomorphic, they are bounded on S. A short calculation using @V = x

�1
BV gives

@

@r
kV k 

1

2kV k

mX

j=1

2|vj |

����
@vj

@r

���� 

vuut
mX

j=1

����
@vj

@x

����
2


C

r
kV k,

where C � 0 is an upper bound for the matrix norm of B on the sector S. After
integrating over r, this becomes

kV (rei✓)k  kV (r0e
i✓)k+

Z r0

r

C

s
kV (sei✓)k ds,

for any 0 < r  r0 < ". Now we apply Grönwall’s inequality to conclude that

kV (rei✓)k  kV (r0e
i✓)k exp

Z r0

r

C

s
ds = kV (r0e

i✓)k
⇣
r0

r

⌘C
.

This means exactly that all entries of V have moderate growth at the origin. ⇤
Note. Grönwall’s inequality says that an integral inequality of the form

f(t)  C +

Z t

t0

g(s)f(s) ds

for a real function f(t) implies that

f(t)  C exp

Z t

t0

g(s) ds.

We are now in a position to prove the theorem of Fuchs from the beginning.

Proof of Theorem 20.4. Consider a di↵erential operator

P = @
m + a1(x)@

m�1 + · · ·+ am(x),

with aj 2 K. Suppose that each aj has a pole of order at most j at the origin. As
we remarked before, we can rewrite x

m
P = (x@)m + b1(x)(x@)m�1 + · · · + bm(x),

with bj 2 R holomorphic. Setting v1 = u, v2 = x@u, . . . , vm = (x@)m�1
u, it follows
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that the column vector V = (v1, . . . , vm) solves a system of the form @V = x
�1

BV .
By Theorem 20.8, the multi-valued functions v1, . . . , vn have moderate growth near
the origin, and so in particular u 2 R̃

mod .
Let us prove the converse. Suppose that all multi-valued solutions of Pu = 0

have moderate growth near the origin. If we write the corresponding system in the
form @U = AU , then we have

t
m + a1t

m�1 + · · ·+ am = det(t id�A),

and so we can recover the coe�cients of P from the characteristic polynomial of the
matrix A. It is not hard to see that all solutions of @U = AU also have moderate
growth near the origin. By Theorem 20.8, our system is equivalent to a system
of the form @V = x

�1�V , where � is an m ⇥ m-matrix with constant entries.
Consequently, there exists a matrix M 2 GLm(K) such that

A = @M ·M
�1 +

1

x
M�M�1

,

After clearing denominators, we get M = x
`
N , with N 2 GLm(R). Then

A =
1

x

⇣
N�N�1 + ` id

⌘
+ @N ·N

�1
,

and if we now compute the characteristic polynomial, we find that the j-th coe�-
cient aj has a pole of order at most j at x = 0 (being equal to a sum of j⇥j-minors
of the matrix on the right-hand side). ⇤

The theorem we have just proved has another interesting consequence.

Corollary 20.9. Two regular systems are equivalent if and only if their monodromy

matrices are conjugate.

Proof. The proof of Theorem 20.8 shows that any regular system is equivalent to
a system of the form

@U =
1

x
�U,

where � is an m⇥m-matrix with constant entries, such that the monodromy matrix
of the system is e

2⇡i�. If two such systems have conjugate monodromy matrices,
then they are easily seen to be equivalent (via a constant matrix M .) To prove the
converse, it is of course enough to consider systems of this special type. Suppose
that two such systems with matrices � and �0 are equivalent. This means that
there exists a matrix M 2 GLm(K) such that

1

x
�0 = @M ·M

�1 +
1

x
M�M�1

.

Write M = x
`
N , with N 2 GLm(R). After clearing denominators, we get

�0 = x@N ·N
�1 +N(�+ ` id)N�1

,

and since � and �0 are constant, we can now set x = 0 to obtain

�0 = N(�+ ` id)N�1
.

Since e
2⇡i` = 1, this implies that e2⇡i�

0
= Ne

2⇡i�
N

�1. ⇤
Exercises.

Exercise 20.1. Show directly that if two systems @U = AU and @V = BV are
equivalent, then their monodromy matrices are conjugate to each other.


