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Lecture 21: April 24

Regularity for holonomic D-modules. Last time, we considered di↵erential
equations of the form Pu = 0, where P = a0(x)@m + a1(x)@m�1 + · · ·+ am(x) is a
di↵erential operator of order m with holomorphic coe�cients, such that a0(0) = 0.
We showed that all multi-valued solutions have moderate growth near the origin i↵

(21.1) x
m
P = (x@)m + b1(x)(x@)

m�1 + · · ·+ bm(x),

with b1(x), . . . , bm(x) holomorphic. In that case, one says that the equation Pu =
0 has a regular singularity at the origin. Let us now reformulate this algebraic
condition in terms of the left DX -module M = DX/DXP . For the time being, DX

again means the sheaf of linear di↵erential operators with holomorphic coe�cients.
We first observe that the characteristic variety of M is defined by the principal

symbol �m(P ) = a0(x)⇠m, where x and ⇠ are the natural coordinates on the cotan-
gent bundle. Since a0(0) = 0, it follows that Ch(M) is the subset defined by the
equation x⇠ = 0. This means that if F•M is any good filtration of M, for example
the one induced by the order filtration on DX , then some power of x⇠ annihilates
grFM. Let me now show you how (21.1) can be used to construct a particular
good filtration with better properties.

Suppose that we have (21.1) with b1(x), . . . , bm(x) holomorphic. Then we can
define a good filtration F•M by setting

FkM =
m�1X

j=0

FkDX · (x@)j + DXP.

It is not hard to see that this is indeed a good filtration; moreover,

x@ · FkM ✓ FkM

for every k 2 N, by virtue of (21.1). This means that grFM is annihilated by the
first power of x⇠.

Kashiwara and Kawai introduced the notion of holonomic D-modules with reg-
ular singularities as a generalization of this case. From now on, we let X be a
nonsingular algebraic variety (over a field k of characteristic zero). For a coherent
left DX -module M, we denote by ICh(M) ✓ OT⇤X the ideal sheaf of the character-
istic variety. Recall that

ICh(M) =
q

AnngrF DX
grFM,

where F•M is any good filtration. It follows that there is some (usually large)
integer N such that I

N
Ch(M) · gr

F
M = 0. Roughly speaking, we say that M is

regular if we can find a good filtration for which N = 1. For technical reasons, we
have to be slightly more careful. Suppose first that X is proper over Spec k.

Definition 21.2. Let X be a nonsingular algebraic variety that is proper over
Spec k. A holonomic left DX -module M is called regular (in the sense of Kashiwara
and Kawai) if it admits a good filtration F•M such that ICh(M) · gr

F
M = 0.

If P 2 FkDX is a di↵erential operator of order k, then �k(P ) belongs to ICh(M)

if and only if �k(P ) vanishes along the characteristic variety of M. The condition
in the definition is therefore saying that whenever P is a di↵erential operator of
order k such that �k(P ) vanishes along Ch(M), then

P · FjM ✓ Fj+k�1M

for every j 2 Z.
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The original definition by Kashiwara and Kawai is only asking that a good
filtration with ICh(M) · gr

F
M = 0 should exist locally on X; but they show that

M then actually has a globally defined good filtration with this property.
One can prove (with a lot of work) that direct images by proper morphisms, and

inverse images by arbitrary morphisms, preserve regularity. If we used the above
definition to define regularity when X is not proper, we would run into the problem
that direct images by open embeddings do not necessarily preserve regularity.

Example 21.3. Consider the holonomic A1-module M = A1/A1(@ � 1). The filtra-
tion induced by the order filtration certainly has the property in the definition (and
the di↵erential equation @u = u has a regular singularity at the origin). The prob-
lem occurs near the point at infinity. Indeed, if we consider the open embedding
A

1
,! P

1, and look at M in the other a�ne chart with coordinate y = x
�1, we get

@x � 1 = �y
2
@y � 1. The A1-module

A1/A1(y
2
@y + 1)

is not regular in the above sense; indeed, the di↵erential equation y
2
@yu + u = 0

does not satisfy the condition in Theorem 20.4.

Example 21.4. A more well-behaved example is M = A1/A1(x@ � ↵), for ↵ 2 k.
Since x@x = �y@y, this becomes A1/A1(y@y + ↵) in the chart at infinity, which
again has a regular singularity.

Since we would like direct images by arbitrary morphisms to preserve regularity,
we need to include open embeddings into the definition. Let X be a nonsingular
algebraic variety. Since k has characteristic zero, Nagata’s theorem implies that
we can always embed X into a nonsingular algebraic variety X̄ that is proper over
Spec k. We can always arrange that X̄ \X is a divisor; using embedded resolution
of singularities, we can moreover achieve that this divisor only has normal crossing
singularities. In either case, j : X ,! X̄ is an a�ne morphism, and so if M is a
holonomic left DX -module, the direct image j+M = j⇤M is again a holonomic left
DX̄ -module.

Definition 21.5. Let X be a nonsingular algebraic variety. A holonomic left DX -
module M is called regular (in the sense of Kashiwara and Kawai) if, for any a�ne
open embedding j : X ,! X̄ into a nonsingular algebraic variety X̄ that is proper
over Spec k, the direct image j+M is regular on X̄.

In fact, it su�ces to check this for a single embedding j : X ,! X̄. Here is
why. Given any two a�ne open embeddings j : X ,! X̄ and j

0 : X ,! X̄
0, one can

take the closure of the image of (j, j0) : X ,! X̄ ⇥ X̄
0, and resolve the resulting

singularities to obtain a third embedding j
00 : X ,! X̄

00 such that j = f � j
00 and

j
0 = f

0
� j

00 for two proper morphisms f : X̄ 00
! X and f

0 : X̄ 00
! X̄

0. Since direct
images by proper morphisms preserve regularity, it follows that j+M is regular on
X̄ if and only if j0+M is regular on X̄

0.

Regularity and solutions. Over the complex numbers, one can also detect reg-
ularity by looking at solutions. The idea is that a left DX -module M is regular
if and only if all formal power series solutions of M are convergent. Let us make
this precise. We now assume that X is a complex manifold of dimension n, and we
denote by DX the sheaf of di↵erential operators with holomorphic coe�cients. If
M is a holonomic left DX -module, we can define regularity as above by the (local)
existence of a good filtration such that ICh(M) ·gr

F
M = 0. Fix a point x 2 X, and

denote by OX,x the local ring of holomorphic functions that are defined in some

neighborhood of x, and by ÔX,x its completion with respect to the maximal ideal.

Concretely, ÔX,x are formal power series in local coordinates x1, . . . , xn, and the
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subring OX,x consists of those power series that actually converge in a neighorhood
of the given point. The stalk Mx is a holonomic left DX,x-module. In particular,
it is coherent, and so we can think of Mx as being obtained from a system of linear
partial di↵erential equations (by choosing a presentation of Mx). As we discussed
in Lecture 1, the space of holomorphic solutions to the system can be described as

HomDX,x(Mx,OX,x).

Roughly speaking, regularity of M means that the natural morphism

HomDX,x(Mx,OX,x) ,! HomDX,x(Mx, ÔX,x)

is an isomorphism. In other words, every convergent power series solution actually
converges. This is not quite true, but it becomes true if we replace the naive solution
functor by its derived version

RHomDX,x(Mx,OX,x).

Concretetly, this is computed by choosing a resolution of Mx by free DX,x-modules
of finite rank, and then applying the functor HomDX,x(�,OX,x).

Theorem 21.6 (Kashiwara-Kawai). Let X be a complex manifold, and M a holo-

nomic left DX-module. Then M is regular, in the sense that it (locally) admits a

good filtration F•M with ICh(M) · gr
F
M = 0, i↵ the morphism

RHomDX,x(Mx,OX,x) ! RHomDX,x(Mx, ÔX,x)

is an isomorphism in the derived category, for every point x 2 X.

We do not have the tools to prove this, so let me instead illustrate the result by
a simple example.

Example 21.7. On X = C, consider the left D-module M = D/D(x2
@ � 1), which

is clearly not regular at the point x = 0. Let us see how the solution functor detects
this. A free resolution of M is given by

D D
x2@�1

and so we need to compare the cohomology of the two complexes

O O

Ô Ô

x2@�1

x2@�1

The horizontal di↵erential takes a (convergent) power series
P1

n=0 anx
n to the

(convergent) power series

(x2
@ � 1)

1X

n=0

anx
n =

1X

n=0

�
(n� 1)an�1 � an

�
x
n

where a�1 = 0 (to simplify the notation). It is easy to see that the kernel of x2
@�1

is trivial: from the relations (n � 1)an�1 � an = 0 for every n 2 N, one obtains
a0 = a1 = a2 = · · · = 0.

The behavior of the cokernel is more interesting. On Ô, the operator x2
@ � 1 is

surjective. Indeed, if
P1

n=0 bnx
n is any formal power series, then the equation

1X

n=0

bnx
n = (x2

@ � 1)
1X

n=0

anx
n
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means that (n � 1)an�1 � an = bn, and this can be solved recursively. But on O,
the operator is no longer surjective. For instance, if we try to solve

x = (x2
@ � 1)

1X

n=0

anx
n
,

we obtain a0 = 0, a1 = �1, and an = (n� 1)an�1 for n � 2, from which it follows
that an = �(n� 1)! for n � 1. The resulting series

�

1X

n=1

(n� 1)! · xn

clearly has radius of convergence equal to zero.


