Regularity for holonomic \mathscr{D} -modules. Last time, we considered differential equations of the form Pu=0, where $P=a_0(x)\partial^m+a_1(x)\partial^{m-1}+\cdots+a_m(x)$ is a differential operator of order m with holomorphic coefficients, such that $a_0(0)=0$. We showed that all multi-valued solutions have moderate growth near the origin iff

(21.1)
$$x^{m}P = (x\partial)^{m} + b_{1}(x)(x\partial)^{m-1} + \dots + b_{m}(x),$$

with $b_1(x), \ldots, b_m(x)$ holomorphic. In that case, one says that the equation Pu = 0 has a regular singularity at the origin. Let us now reformulate this algebraic condition in terms of the left \mathscr{D}_X -module $\mathcal{M} = \mathscr{D}_X/\mathscr{D}_X P$. For the time being, \mathscr{D}_X again means the sheaf of linear differential operators with holomorphic coefficients.

We first observe that the characteristic variety of \mathcal{M} is defined by the principal symbol $\sigma_m(P) = a_0(x)\xi^m$, where x and ξ are the natural coordinates on the cotangent bundle. Since $a_0(0) = 0$, it follows that $\operatorname{Ch}(\mathcal{M})$ is the subset defined by the equation $x\xi = 0$. This means that if $F_{\bullet}\mathcal{M}$ is any good filtration of \mathcal{M} , for example the one induced by the order filtration on \mathcal{D}_X , then some power of $x\xi$ annihilates $\operatorname{gr}^F \mathcal{M}$. Let me now show you how (21.1) can be used to construct a particular good filtration with better properties.

Suppose that we have (21.1) with $b_1(x), \ldots, b_m(x)$ holomorphic. Then we can define a good filtration $F_{\bullet}\mathcal{M}$ by setting

$$F_k \mathcal{M} = \sum_{j=0}^{m-1} F_k \mathcal{D}_X \cdot (x\partial)^j + \mathcal{D}_X P.$$

It is not hard to see that this is indeed a good filtration; moreover,

$$x\partial \cdot F_k \mathcal{M} \subseteq F_k \mathcal{M}$$

for every $k \in \mathbb{N}$, by virtue of (21.1). This means that $\operatorname{gr}^F \mathcal{M}$ is annihilated by the first power of $x\xi$.

Kashiwara and Kawai introduced the notion of holonomic \mathscr{D} -modules with regular singularities as a generalization of this case. From now on, we let X be a nonsingular algebraic variety (over a field k of characteristic zero). For a coherent left \mathscr{D}_X -module \mathcal{M} , we denote by $\mathcal{I}_{\mathrm{Ch}(\mathcal{M})} \subseteq \mathscr{O}_{T^*X}$ the ideal sheaf of the characteristic variety. Recall that

$$\mathcal{I}_{\operatorname{Ch}(\mathcal{M})} = \sqrt{\operatorname{Ann}_{\operatorname{gr}^F \mathscr{D}_X} \operatorname{gr}^F \mathcal{M}},$$

where $F_{\bullet}\mathcal{M}$ is any good filtration. It follows that there is some (usually large) integer N such that $\mathcal{I}_{\operatorname{Ch}(\mathcal{M})}^N \cdot \operatorname{gr}^F \mathcal{M} = 0$. Roughly speaking, we say that \mathcal{M} is regular if we can find a good filtration for which N = 1. For technical reasons, we have to be slightly more careful. Suppose first that X is proper over $\operatorname{Spec} k$.

Definition 21.2. Let X be a nonsingular algebraic variety that is proper over Spec k. A holonomic left \mathscr{D}_X -module \mathcal{M} is called regular (in the sense of Kashiwara and Kawai) if it admits a good filtration $F_{\bullet}\mathcal{M}$ such that $\mathcal{I}_{\operatorname{Ch}(\mathcal{M})} \cdot \operatorname{gr}^F \mathcal{M} = 0$.

If $P \in F_k \mathscr{D}_X$ is a differential operator of order k, then $\sigma_k(P)$ belongs to $\mathcal{I}_{Ch(\mathcal{M})}$ if and only if $\sigma_k(P)$ vanishes along the characteristic variety of \mathcal{M} . The condition in the definition is therefore saying that whenever P is a differential operator of order k such that $\sigma_k(P)$ vanishes along $Ch(\mathcal{M})$, then

$$P \cdot F_i \mathcal{M} \subseteq F_{i+k-1} \mathcal{M}$$

for every $j \in \mathbb{Z}$.

The original definition by Kashiwara and Kawai is only asking that a good filtration with $\mathcal{I}_{Ch(\mathcal{M})} \cdot \operatorname{gr}^F \mathcal{M} = 0$ should exist locally on X; but they show that \mathcal{M} then actually has a globally defined good filtration with this property.

One can prove (with a lot of work) that direct images by proper morphisms, and inverse images by arbitrary morphisms, preserve regularity. If we used the above definition to define regularity when X is not proper, we would run into the problem that direct images by open embeddings do not necessarily preserve regularity.

Example 21.3. Consider the holonomic A_1 -module $M = A_1/A_1(\partial - 1)$. The filtration induced by the order filtration certainly has the property in the definition (and the differential equation $\partial u = u$ has a regular singularity at the origin). The problem occurs near the point at infinity. Indeed, if we consider the open embedding $\mathbb{A}^1 \hookrightarrow \mathbb{P}^1$, and look at M in the other affine chart with coordinate $y = x^{-1}$, we get $\partial_x - 1 = -y^2 \partial_y - 1$. The A_1 -module

$$A_1/A_1(y^2\partial_y+1)$$

is not regular in the above sense; indeed, the differential equation $y^2 \partial_y u + u = 0$ does not satisfy the condition in Theorem 20.4.

Example 21.4. A more well-behaved example is $M = A_1/A_1(x\partial - \alpha)$, for $\alpha \in k$. Since $x\partial x = -y\partial_y$, this becomes $A_1/A_1(y\partial_y + \alpha)$ in the chart at infinity, which again has a regular singularity.

Since we would like direct images by arbitrary morphisms to preserve regularity, we need to include open embeddings into the definition. Let X be a nonsingular algebraic variety. Since k has characteristic zero, Nagata's theorem implies that we can always embed X into a nonsingular algebraic variety \bar{X} that is proper over Spec k. We can always arrange that $\bar{X} \setminus X$ is a divisor; using embedded resolution of singularities, we can moreover achieve that this divisor only has normal crossing singularities. In either case, $j \colon X \hookrightarrow \bar{X}$ is an affine morphism, and so if \mathcal{M} is a holonomic left $\mathscr{D}_{\bar{X}}$ -module, the direct image $j_+\mathcal{M}=j_*\mathcal{M}$ is again a holonomic left $\mathscr{D}_{\bar{X}}$ -module.

Definition 21.5. Let X be a nonsingular algebraic variety. A holonomic left \mathscr{D}_X -module \mathcal{M} is called regular (in the sense of Kashiwara and Kawai) if, for any affine open embedding $j: X \hookrightarrow \bar{X}$ into a nonsingular algebraic variety \bar{X} that is proper over Spec k, the direct image $j_+\mathcal{M}$ is regular on \bar{X} .

In fact, it suffices to check this for a single embedding $j\colon X\hookrightarrow \bar X$. Here is why. Given any two affine open embeddings $j\colon X\hookrightarrow \bar X$ and $j'\colon X\hookrightarrow \bar X'$, one can take the closure of the image of $(j,j')\colon X\hookrightarrow \bar X\times \bar X'$, and resolve the resulting singularities to obtain a third embedding $j''\colon X\hookrightarrow \bar X''$ such that $j=f\circ j''$ and $j'=f'\circ j''$ for two proper morphisms $f\colon \bar X''\to X$ and $f'\colon \bar X''\to \bar X'$. Since direct images by proper morphisms preserve regularity, it follows that $j_+\mathcal M$ is regular on $\bar X$ if and only if $j'_+\mathcal M$ is regular on $\bar X'$.

Regularity and solutions. Over the complex numbers, one can also detect regularity by looking at solutions. The idea is that a left \mathscr{D}_X -module \mathcal{M} is regular if and only if all formal power series solutions of \mathcal{M} are convergent. Let us make this precise. We now assume that X is a complex manifold of dimension n, and we denote by \mathscr{D}_X the sheaf of differential operators with holomorphic coefficients. If \mathcal{M} is a holonomic left \mathscr{D}_X -module, we can define regularity as above by the (local) existence of a good filtration such that $\mathcal{I}_{\mathrm{Ch}(\mathcal{M})} \cdot \mathrm{gr}^F \mathcal{M} = 0$. Fix a point $x \in X$, and denote by $\mathscr{O}_{X,x}$ the local ring of holomorphic functions that are defined in some neighborhood of x, and by $\hat{\mathscr{O}}_{X,x}$ its completion with respect to the maximal ideal. Concretely, $\hat{\mathscr{O}}_{X,x}$ are formal power series in local coordinates x_1, \ldots, x_n , and the

subring $\mathcal{O}_{X,x}$ consists of those power series that actually converge in a neighbrhood of the given point. The stalk \mathcal{M}_x is a holonomic left $\mathcal{D}_{X,x}$ -module. In particular, it is coherent, and so we can think of \mathcal{M}_x as being obtained from a system of linear partial differential equations (by choosing a presentation of \mathcal{M}_x). As we discussed in Lecture 1, the space of holomorphic solutions to the system can be described as

$$\operatorname{Hom}_{\mathscr{D}_{X,x}}(\mathcal{M}_x,\mathscr{O}_{X,x}).$$

Roughly speaking, regularity of \mathcal{M} means that the natural morphism

$$\operatorname{Hom}_{\mathscr{D}_{X,x}}(\mathcal{M}_x,\mathscr{O}_{X,x}) \hookrightarrow \operatorname{Hom}_{\mathscr{D}_{X,x}}(\mathcal{M}_x,\hat{\mathscr{O}}_{X,x})$$

is an isomorphism. In other words, every convergent power series solution actually converges. This is not quite true, but it becomes true if we replace the naive solution functor by its derived version

$$\mathbf{R} \operatorname{Hom}_{\mathscr{D}_{X,x}}(\mathcal{M}_x, \mathscr{O}_{X,x}).$$

Concretely, this is computed by choosing a resolution of \mathcal{M}_x by free $\mathscr{D}_{X,x}$ -modules of finite rank, and then applying the functor $\operatorname{Hom}_{\mathscr{D}_{X,x}}(-,\mathscr{O}_{X,x})$.

Theorem 21.6 (Kashiwara-Kawai). Let X be a complex manifold, and \mathcal{M} a holonomic left \mathcal{D}_X -module. Then \mathcal{M} is regular, in the sense that it (locally) admits a good filtration $F_{\bullet}\mathcal{M}$ with $\mathcal{I}_{Ch(\mathcal{M})} \cdot \operatorname{gr}^F \mathcal{M} = 0$, iff the morphism

$$\mathbf{R}\operatorname{Hom}_{\mathscr{D}_{X,x}}(\mathcal{M}_x,\mathscr{O}_{X,x})\to\mathbf{R}\operatorname{Hom}_{\mathscr{D}_{X,x}}(\mathcal{M}_x,\hat{\mathscr{O}}_{X,x})$$

is an isomorphism in the derived category, for every point $x \in X$.

We do not have the tools to prove this, so let me instead illustrate the result by a simple example.

Example 21.7. On $X = \mathbb{C}$, consider the left \mathscr{D} -module $\mathcal{M} = \mathscr{D}/\mathscr{D}(x^2\partial - 1)$, which is clearly not regular at the point x = 0. Let us see how the solution functor detects this. A free resolution of \mathcal{M} is given by

$$\mathscr{D} \xrightarrow{x^2 \partial -1} \mathscr{D}$$

and so we need to compare the cohomology of the two complexes

$$\begin{array}{ccc}
\mathscr{O} & \xrightarrow{x^2 \partial - 1} \mathscr{O} \\
\downarrow & & \downarrow \\
\hat{\mathscr{O}} & \xrightarrow{x^2 \partial - 1} \hat{\mathscr{O}}
\end{array}$$

The horizontal differential takes a (convergent) power series $\sum_{n=0}^{\infty} a_n x^n$ to the (convergent) power series

$$(x^{2}\partial - 1)\sum_{n=0}^{\infty} a_{n}x^{n} = \sum_{n=0}^{\infty} ((n-1)a_{n-1} - a_{n})x^{n}$$

where $a_{-1} = 0$ (to simplify the notation). It is easy to see that the kernel of $x^2 \partial - 1$ is trivial: from the relations $(n-1)a_{n-1} - a_n = 0$ for every $n \in \mathbb{N}$, one obtains $a_0 = a_1 = a_2 = \cdots = 0$.

The behavior of the cokernel is more interesting. On $\hat{\mathcal{O}}$, the operator $x^2\partial - 1$ is surjective. Indeed, if $\sum_{n=0}^{\infty} b_n x^n$ is any formal power series, then the equation

$$\sum_{n=0}^{\infty} b_n x^n = (x^2 \partial - 1) \sum_{n=0}^{\infty} a_n x^n$$

means that $(n-1)a_{n-1}-a_n=b_n$, and this can be solved recursively. But on \mathcal{O} , the operator is no longer surjective. For instance, if we try to solve

$$x = (x^2 \partial - 1) \sum_{n=0}^{\infty} a_n x^n,$$

we obtain $a_0=0$, $a_1=-1$, and $a_n=(n-1)a_{n-1}$ for $n\geq 2$, from which it follows that $a_n=-(n-1)!$ for $n\geq 1$. The resulting series

$$-\sum_{n=1}^{\infty} (n-1)! \cdot x^n$$

clearly has radius of convergence equal to zero.