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LECTURE 22: APRIL 29

Today, I would like to discuss a very useful class of examples, namely regular
holonomic Z-modules of “normal crossing type”. We will show that these objects
have a simple combinatorial description in terms of vector spaces and certain linear
maps between them. We will describe them both on affine space and on projective
space. Before we can do that, we need to review a few basic results about Z-modules
on projective space.

Z-affine varieties. We have already seen that algebraic Z-modules on affine space
are the same thing as modules over the Weyl algebra A,, (k). Somewhat surprisingly,
a similar result holds on projective space. In fact, projective space turns out to be
Z-affine, in the following sense.

Definition 22.1. A nonsingular algebraic variety X is called Z-affine if it satisfies
the following two conditions:
(a) The global section functor
I'(X,-): Modg(Z2x) — Mod(I'(X, Zx))
is exact.

(b) If I'(X, M) = 0 for some M € Mod,.(Zx), then M = 0.

Here Mod,.(Zx ) denotes the category of left Zx-modules that are quasi-coherent
as Ox-modules; earlier on, we used the term “algebraic Z-modules”.

Ezxample 22.2. Any nonsingular affine variety is Z-affine; in fact, the global sections
functor is exact on all quasi-coherent &'x-modules in that case.

Suppose that M is a left Zx-module. The space of global sections I'(X, M) is
then naturally a left module over the ring of global differential operators I'(X, 2x).
On a Z-affine variety, this gives an equivalence of categories between algebraic
Z-modules and modules over the ring I'(X, Zx).

Theorem 22.3. Let X be a nonsingular algebraic variety that is Z-affine.

(1) Any M € Mod,.(Zx) is generated by its global sections.

(2) The global sections functor

I'(X,—): Modg(Z2x) — Mod(I'(X, Zx))
is an equivalence of categories, with inverse Zx Ar(x,z5) (—)-
Proof. To simplify the notation, set R = I'(X, 2x). For (1), we need to show
that the natural morphism Zx ®p I'(X, M) — M is surjective. Let My C M be
the image. Since the global sections functor is exact by (a), we get a short exact
sequence
0—I'(X,Mp) = T'(X,M) = I'(X, M/ M) — 0.

The first two spaces are equal by construction, and so T'(X, M/M;) = 0, from
which it follows by (b) that My = M. This proves (1).

Now we turn to (2). The claim is that the inverse functor is given by sending a
left T'(X, Zx)-module V to the left Zx-module Zx ®r V. It suffices to show that
the two natural morphisms

QM Dx ®RF(X,M) — M
Bv:V =-T(X,Zx ®r V)
are isomorphisms for every M € Mod,(Zx) and every V € Mod(R). Let us first

prove that Sy is an isomorphism. This is clearly the case when V is a direct sum
of copies of R. When V is an arbitrary R-module, we choose a presentation
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where T and J are two (possibly infinite) sets. We then get the following diagram
with exact rows:

REBI R@J Vv
= = [

X, 2%") — I(X,2%’) — T(X,2x @r V) —— 0

The bottom row is exact because tensor product is right-exact, and because the
global sections functor is exact by condition (a) in the definition. Now the 5-lemma
implies that By is an isomorphism.

It remains to show that aaq is an isomorphism. We already know that a is
surjective; setting IC = ker anq, we have a short exact sequence of Zx-modules

0K —=92xrT(X,M) 5> M—=0

and therefore, again by (a), a short exact sequence of R-modules

0— T(X,K) > T(X, Z2x ®r (X, M)) 5 T(X, M) > 0.
Since we have already shown that 8 = Sp(x, a4 is an isomorphism, it follows that

I'(X,K) =0, and hence by (b) that K = 0. This concludes the proof of (2). O

As you would expect, coherent Zx-modules correspond to finitely generated
I'(X, Zx)-modules.

Corollary 22.4. If X is D-affine, then
F(X, 7) : MOdcoh(-@X) — Modfg (F(X, QX))

is also an equivalence of categories.
Proof. We keep the notation R =T'(X, Zx). If V is a finitely generated R-module,
then Zx @i V is clearly a coherent Zx-module. Thus we only have to show that
I'(X, M) is a finitely generated R-module whenever M € Mod ., (Zx). Concretely,
we have to find finitely many global sections that generate M as a Zx-module.

Since M is coherent, the restriction of M to any affine open subset U C X is

generated as a Py-module by finitely many sections in I'(U, M). The isomorphism
Px QrT(X, M) 2 M in the theorem gives

U, Zx) @ T(X,M) =2 T(U,M),

and so M|U is generated as a Yy-module by finitely many sections in I'(X, M).
Now X is quasi-compact, hence covered by finitely many affine open subsets; it
follows that finitely many global sections generate M as a Zx-module. In other
words, we have a surjective morphism

2" — M — 0.
Because the global sections functor is exact by (a), we get a surjection
R =1(X,2%") — T'(X, M) — 0,
and so I'(X, M) is a finitely generated R-module. O
We are now going to show that projective spaces are Z-affine.
Theorem 22.5. The projective space P} is Z-affine.

Proof. Let me begin with a preliminary discussion about global sections on P". On
A" we have coordinates zg,1,...,2,. Let X C A1 be the open complement
of the origin. Then P" is the quotient of X by the G,,-action that rescales the
coordinates. We denote the quotient morphism by 7: X — P7; the open embedding
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by j: X < A™!: and the closed embedding of the origin by i: Speck — A"t!.
Here are the three morphisms in diagram form:

X Ly pntl Spec k
P’ﬂ
The Euler vector field 6 = 2¢Oy +x101+- - - +x,0, is tangent to the fibers of 7. Now

suppose that M is a left Zpn-module. Then G,,, acts on the space of global sections
of "M = Ox Qr-16,, 71 M, and this gives us a direct sum decomposition

D(X, 7" M) = P To(X, 7" M);

LEL

here G,,, acts on the subspace I';(X,7* M) with the character z — z¢. It follows
that 0 operates on T'p(X, 7* M) as multiplication by ¢. We have
(22.6) D(P*, M) = T(X, 7" M)Cm = To(X, 7" M);

indeed, pullbacks of global sections from P™ are clearly G,,-invariant, and con-
versely, any G,,-invariant section on X descends to a global section on P". Also
note that multiplication by z; takes I'y into I'y41, and multiplication by 9; takes
I'y into I'y_1; the reason is that [0, z;] = z; and [0, 0;] = —0;.
Now let us start proving that P" satisfies the two conditions in (a) and (b). We
first show that the global sections functor is exact. Let
00—+ M;— My —= M3z—0

be a short exact sequence of quasi-coherent Zp»-modules. Since 7 is smooth, the
pullback functor 7* is exact, which means that

0—)7T*M1 ~>7T*M2*>7T*M3 —0

is a short exact sequence of quasi-coherent Zx-modules. Because j: X < A™t! ig

an open embedding, j+ = Ry, (after the appropriate conversion between left and

right 2-modules). Thus we get an exact sequence of quasi-coherent Z»+1-modules
0 — jum* My = jum* My = jum*Ms — R 1M — - -

The global sections functor on the affine space A™! is exact, and so we finally
obtain an exact sequence of A, ;1-modules

0— (X, m*M;) = D(X,m*My) = (X, 7*M3) — T(A" T R'j.m* M) —

Now R'j.m*M; is a quasi-coherent Z4n+:-module supported on the origin, and
so by Kashiwara’s equivalence (from Lecture 13), it must be the direct image of a
quasi-coherent Zgpec -module. Concretely, we have

(A", RYjur* My) = k[0, D1, - .., 0] @1 V,

where V' is a k-vector space. The key point is now that 6 acts on the right-hand
side with strictly negative eigenvalues. Indeed, for any o € N**1, we have

0-8“®U:ij8j-8a®v Z (;+1)0*@v=—(la|+n+1)-9*®w.

§=0 =0
The conclusion is that
0—>F0( *Ml)—>1“0( *MQ)—>F0( ,W*Mg)%o

is short exact; because of (22.6), this proves that I'(P™, —) is an exact functor.
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All that is left is to show that T'(P", M) = 0 implies M = 0. Here we argue by
contradiction and assume that M # 0. Since m: X — P” has a section over each
of the n + 1 basic affine open subsets, we must have 7* M # 0, and therefore

(X, 7m*M) =T (A", j.m* M) # 0.
It follows that there is some ¢ € Z such that I'y(X,7*M) # 0. On the other hand,

we have T'o(X, 7* M) = 0 by (22.6). We will show that this leads to a contradiction.
Suppose first that £ > 1. Take any nonzero element s € I'y(X, 7*M). Then

n
Os = ijﬁjs =/{s #0,
§=0
and so at least one 0;s € I'y_1 (X, 7* M) must be nonzero. Repeating this argument,
we eventually arrive at I'g(X, 7* M) # 0, which is a contradiction. The remaining
possibility is that £ < —1. Since s € T'(X,7*M) and 7*M is quasi-coherent, we
cannot have z;s = 0 for every j. It follows that I'y4q (X, 7* M) # 0, and as before,
this leads to a contradiction after finitely many steps. O

This result says, in particular, that coherent Zp»-modules are the same thing as
finitely generated modules over the ring of differential operators T'(P™, Zpn). Let
us briefly discuss the structure of this ring. We have

L(P", Zpn) 2 To(X, Zxpn),

where Px_pn = 7" PDpn is the transfer module. Recall from Lecture 16 that, in
the case of a smooth morphism, Zx_,p~ is the quotient of Zx by the submodule
generated by the relative tangent bundle. In our setting, Zx _,prn = Px/Px0, and
so we recover the fact, already stated in Lecture 9, that I'(P™, Zp») consists of all
differential operators on A"*! that are homogenous of degree 0, modulo multiples
of the Euler vector field 6.

One can turn this into a very concrete presentation by generators and relations,

as follows. For ¢,j5 € {0,1,...,n}, set D, ; = x;0;. A short calculation gives
D;;—D;; ifk=jand/{=r4,
D; ifk=jand{+#1,
(22.7) (D, Dig) =4 " _ J 7 .
=Dy ; if k# jand £ =1,
0 if k# j and £ # i.

We also have § = Do + D11+ -+ + Dy . Then T'(P", Zpn) is generated as a
non-commutative k-algebra by the D; ;, and all the relations are generated by the
above commutator relations and the additional relation Do o+D1 1+ -+ Dy = 0.

Regular holonomic Z-modules of normal crossing type. We now turn to
the classification of regular holonomic Z-modules of normal crossing type. Let
me first explain what I mean by “normal crossing type”. On A™, we can inter-
sect the various components of the normal crossing divisor z; ---z, = 0 to obtain
a total of 2" nonsingular closed subvarieties. (Here we use the convention that
the empty intersection equals A™.) Their conormal bundles give us 2" conical La-
grangian subvarieties of the cotangent bundle 7*A"™. In the usual coordinate system
T1y--yTn,&1,-..,&, on the cotangent bundle, the union of all these Lagrangians is
exactly the closed subset
Z(x1€1, .-, 2nén)s

indeed, on each component, we have either x; =0 or §; =0, for every j =1,...,n.
We say that a (necessarily holonomic) Zy»-module M is of normal crossing type if
its characteristic variety satisfies

Ch(M) Q Z(l‘lfl, e ,Jjnfn)
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Ezample 22.8. On A?, the condition is that the characteristic variety has at most
four irreducible components: the zero section, the conormal bundles to the two
axes, and the cotangent space to the origin.

Here is a typical example, to get started.

Ezample 22.9. Consider the A,-module M = A, /A, (2101 — a1,..., 000 — a),
where «q,...,q, € k are scalars. The characteristic variety is defined by the
principal symbols of the n operators, hence is exactly the set Z(x1&1,. .., 2n&n). In
particular, M is holonomic; I will leave it as an exercise to check that M is regular
in the sense of Kashiwara and Kawai.

The analogous definition on P™ has to include the hyperplane at infinity. In ho-
mogeneous coordinates xg, x1, ..., Ty, we are therefore looking at the closed subset

Z(xoéo, x1&1, - - - nén) € TP,

note that even though the cotangent bundle is not trivial, the notation still makes
sense because each x;0; is a globally defined vector field on P". We then say that
a (necessarily holonomic) Zp»-module M is of normal crossing type if

Ch(M) C Z(z0€0, 115 - - -, Tn&n)-

Our goal is to describe explicitly all regular holonomic Zpr-modules of normal
crossing type, at least when k is algebraically closed. It will help us that P™ is
P-aftine. Our starting point is the following lemma.

Lemma 22.10. Let M be a holonomic left Dprn-module that is regular and of nor-
mal crossing type. Then there is a finite-dimensional k-vector space V- C T'(P™, M)
that generates T'(P™, M) as a T'(P™, Dpn)-module, and is preserved by o0y, . . . , £ 0.

Proof. Regularity means that there is a global good filtration FyM such that
Zen(am) annihilates gr” M. Since Ch(M) C Z(20&o, 211, - - -, #,&y), this says con-
cretely that we have
for every j =0,1,...,n and ¢ € Z. Since F;M is a coherent Oprn-module,

re", ;M) CT(P", M)

is a finite-dimensional k-vector space that is preserved by x¢0dp,...,x,0,. We
showed during the proof of Corollary 22.4 that M is generated as a Zpr-module
by finitely many global sections. If we choose i large enough, these sections will be
global sections of F; M, and so the subspace V = I'(P", F; M) actually generates
(P, M) as a module over T'(P™, Zpn). O

Now z¢0y, . . ., n 0y, are commuting endomorphisms of the finite-dimensional k-
vector space V. Assuming that k is algebraically closed, we get a decomposition

v= P V.
a€kntt
into generalized eigenspaces, where V,, C V consists of all vectors v € V' such that
(2;0; —a;)™v =0for j =0,1,...,n and m > 0. In other words, x;0; — «; acts
nilpotently on the subspace V,,. Of course, only finitely many of the V,, are actually
nonzero; also note that we must have ag + a1 + - - - + a,, = 0, due to the fact that
0 = x90y + - -+ + x,0, acts trivially on V. If we define

A:{aek”H|ao+a1+~-+an:0},

then the direct sum above is actually indexed by a finite subset of A. Since V'
generates I'(P", M), we get a similar decomposition for the entire space of global
sections.
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Lemma 22.11. Let M be a holonomic left Ppn-module that is regular and of
normal crossing type, and set M = T'(P", M). We have a decomposition

M= M,
acA
into finite-dimensional k-vector spaces My, such that the operator x;0; — «; acts
nilpotently on M, for 7 =0,1,... n.
Proof. To be completely precise, we define, for every a € A, the subspace
M, = {SGM | (x;0; —aj)™s=0for j=0,1,...,n andm>>0}.

Since different M, are easily seen to be linearly independent, it suffices to prove
that every s € M can be written as a sum of elements in finitely many M,. This
is true for elements of V' by the discussion above; and for other elements, it follows
from the fact that M is generated by V as a T'(P", Zp» )-module. Indeed, T'(P", Zpn)
is generated as a k-algebra by the operators D; ; = x;0;, and since we already have
the desired decomposition for elements of V', we only have to prove that
Di,j . Ma c Ma+ejfeia

where e; is the i-th coordinate vector in k"*1. But as xx0; = Dy, this follows
immediately from the commutator relations

0 ifk=1i=j,

D, . if k=7 and k # 1,

[Dij, Dril =<4 7 . : .
—D;; ifk=idiandk#j,
0 if k#£1i,7.

that we had proved earlier.

Exercises.

Ezercise 22.1. Verify the relations in (22.7), and prove that T'(P™, Zp») does have
the claimed presentation by generators and relations.



