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LECTURE 23: MAy 1

Regular holonomic Z-modules of normal crossing type. Let me briefly recall
what we did last time. We first showed that P™ is Z-affine, which meant that the
global sections functor

I'(P"*, —): Modge(Zpn) — Mod(I‘(P”, %pm))
is an equivalence of categories. In other words, algebraic Z-modules on P™ are
uniquely determined by their space of global sections, which is a module over the

ring T'(P", Pp»). We also showed that the ring of differential operators on P™ is
generated by the (n+1)? operators D; ; = x;0;, subject to the commutator relations

D;;—D;; ifk=jand/{=1,

D; if k=4 and ¢ # 1,
(23.1) Dy, Did =4 =g ed £
—Dy, ; if k#jand £ =1,
0 if k# j and £ # 1,

and the extra relation 8 = Do+ D11+ -+ + Dy, = 0. We then showed that if
M is a regular holonomic Zpr-module whose characteristic variety is contained in
the set Z(xo&o, 211, - -, Xn&n) € T*P™, then we get a decomposition

L(P", M) = P M,
acA
where A = {a € kntl ’ ag+a; + -+ a, = O}. Here each M, is a finite-
dimensional k-vector space, consisting of those global sections of M on which the
n + 1 operators D; ; — a; act nilpotently.
How about the converse? Suppose we are given a collection of finite-dimensional
k-vector spaces M,, indexed by o € A. What extra information is needed to turn

the direct sum
M= @ M,

acA
into (the space of global sections of) a regular holonomic Zp»-module of normal
crossing type? First, M should be a left module over the ring I'(P", Zp» ), and so
we need to have linear operators

Djj: Mo — Mate,—e;

for every a € A and every 4,5 € {0,1,...,n}. These operators should satisfy the
commutator relations above, as well as the identity Do o + D11+ -+ Dy = 0.
We also want M to be finitely generated, which means that finitely many of the M,
should generate M as a I'(P", Zp» )-module. Finally, the operator D; j — c; should
act nilpotently on M, for every j € {0,1,...,n}. It is then not hard to show that
the corresponding Zpr-module is regular holonomic of normal crossing type.

Other variants. There are some useful variants of the classification above. One
is regular holonomic Z-modules of normal crossing type on affine space A™. Let
M be a holonomic Z,»-module with the property that

Ch(M) C Z(x1&1, ..., xn&n) CT*A™.
In that case, we say that M is of normal crossing type. Recall that M is regular, in
the sense of Kashiwara and Kawai, if the direct image j M is regular on P™, where
j: A™ — P™ is the open embedding. One can show that if M is regular holonomic
of normal crossing type on A", then j; M is regular holonomic of normal crossing
type on P". Thus we obtain a decomposition

F(AnaM) = F(anjJrM) = @ M,,

ackn
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which we are now indexing by o € k™. (This is okay because g = —(ay + - - -+ ),
so there is no loss of information.) Again, each M, is a finite-dimensional k-vector
space, consisting of all global sections of M on which the n commuting operators
x;0; — a; act nilpotently. This time, we have

Tj: My — Maye;, and 0j: My — My

for every j = 1,...,n; this follows from the commutator relation [9;,z,] = 1.
Conversely, given a collection of finite-dimensional k-vector spaces M, indexed by
a € k™, and a collection of linear operators x;: My — Myye; and 0;: My — My,
subject to the relations [0;, z;] = d; ;, the direct sum

M:@Ma

ackm

becomes a module over the Weyl algebra T'(A™, Zyn); if this module is finitely
generated, and if each x;0; — a; acts nilpotently on M,, then the corresponding
Pan-module is regular holonomic of normal crossing type.

There is also a local analytic version of the classification, for k = C. Let Zcn o
denote the ring of linear differential operators with holomorphic coefficients that
are defined in some neighborhood of the origin in C". We say that a holonomic
Den p-module M is of normal crossing type if its characteristic variety Ch(M) is
contained in the set Z(z1&1,...,2,&n). We say that M is regular if it satisfies
the condition from Lecture 21, meaning if there exists a good filtration Fy M such
that each FyM is a finitely generated Ocn g-module stable under the action by
2101, ...,2Tp0n. Define

Ma:{se./\/l ’ (xjaj—ozj)ms:Oforj:O,l,...,nandm>>0}.

Each M, is a finite-dimensional C-vector space, and their direct sum

M:@Ma

aeCn

is a regular holonomic module over the Weyl algebra A, (C), of normal crossing
type. Then one can show (with a lot of extra work) that

M = @Cn’o ®An((C) M.

In other words, the Zc» g-module structure on M is completely determined by the
much simpler algebraic Z-module M. Note that this result is only true in the local
analytic setting. The following example explains why.

Ezample 23.2. Consider the Zji-module M = Dy1/P;1(0 — 1). It is easy to
see that Ch(M) is the zero section, and that M is actually a line bundle with
integrable connection. Except for regularity at infinity, M is therefore regular
holonomic of normal crossing type. But it is not true, not even Zariski-locally,
that T'(A', M) = A;/A;1(0 — 1) has a decomposition into generalized eigenspaces
for z0; in fact, you can check for yourself that x0 does not have any nontrivial
eigenvectors. What goes wrong is that we need a solution to du = u to get an
isomorphism between M and &,:. But the solution is u = e®, which is not an
algebraic function, because it has an essential singularity at infinity. Another way
to say this is that M is not regular at infinity.

Solutions. Let us discuss a few more properties of the classification on A™. For
simplicity, I will assume from now on that k = C. Consider a regular holonomic
Z-module of normal crossing type, with decomposition

M = @Ma.

aecCnr
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Here each M, is a finite-dimensional C-vector space. By construction, x;0; —a; acts
nilpotently on M,, and so x;0; is an isomorphism as long as «; # 0. Consequently,

0j: Mo — My—e; and xj: My, — M,

are injective respectively surjective for «; # 0. Likewise, 0j2; — a; — 1 acts nilpo-
tently on M, and so J;x; is an isomorphism as long as «; # —1. Thus

0j: Moye; = Mo and  xj: My — Meyye,

are surjective respectively injective for a; # —1. We can summarize this by saying
that 0;: My — Mg, is an isomorphism for a; # 0, and that z;: My — Maqe,
is an isomorphism for a; # —1.

This implies of course that those vector spaces M, with

—1<Rea; <0 foreveryj=1,...,n
determine all the others. Since M is finitely generated over A, (C), the set
F:{QG(C" | Ma#OandflgReajg()forallj}

must be finite. Thus M is generated as an A, (C)-module by the direct sum of
those M, with o € F.
Recall that any holonomic A,-module has finite length, meaning that it has
a finite composition series whose subquotients are simple. Let us describe more
explicitly what simple regular holonomic Z-modules of normal crossing type look
like. Suppose that M is simple but nonzero. Choose some a € F, so that M, # 0
and —1 < Rea; <0 for all j. Since each x;0; — «; acts nilpotently on M, we can
find a common eigenvector s € M, such that z;0;s = ;s for every j =1,...,n.
Since M is simple, we must have A, s = M. Because s is an eigenvector, it is not
hard to see that A, s intersects M, exactly in the subspace Cs. Thus M, = Cs is
one-dimensional. Now there are two special cases:
(1) One case is that a; = 0. Then z;0;s = 0, and so the submodule A, (C)9;s
does not contain s. Since M is simple, this forces 9;5 = 0.
(2) The other case is that o; = —1. Then 0;x;s = 0, and for the same reason
as before, this forces ;5 = 0.

We conclude that M is generated as an A,-module by s € M,, and that s is
annihilated by (z,;0; — «;) for a; # —1,0, by 0, for a; = 0, and by z; for a; = —1.
It is easy to see that there cannot be any other relations, and so we get
M=A,/I,
where I, C A, is the left ideal generated by the n differential operators
z;0; —ay; for a5 #—1,0,
0 for a; = 0,
x; for a; = —1.
We see that M is supported on the linear subspace
Supp M, = ﬂ Z(z),
(e %] =—1
and so by Kashiwara’s equivalence, it is the pushforward of a regular holonomic
2-module of normal crossing type on Supp M,. Outside of the union of the hyper-
planes Z(z;) with o; # —1, 0, the latter is a line bundle with integrable connection;
this connection has a regular singularity at each of the hyperplanes in question, with
monodromy €™,
Now let see what we can say about the solutions of regular holonomic Z-modules

of normal crossing type on C". Since algebraic differential equations typically do
not have algebraic solutions, we need to work in the analytic topology; we use the
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notation Ocn for the sheaf of holomorphic functions on C”, and the notation Zc¢n
for the sheaf of differential operators with holomorphic coefficients. Let us write
M = Den ®4, M for the analytic Zen-module determined by the A, (C)-module
M. Recall that we have the (derived) solutions functor

Sol(M) = RHomg,.. (M, Ocr).

It can be computed for example by choosing a resolution of M by free Zcn-modules,
and then applying the usual solutions functor term by term. For simple modules
of normal crossing type, this is easily done. Fix a multi-index a € F' as above. To
keep the notation simple, let me set

xj(’)j — Oéj if aj 75 —1707
P]’ = Bj if Q= 0,

l‘j if OZj =-—1.
Then our simple Z¢cn-module has the form
Mo = Den | Den (P, ..., Pr),

The Koszul complex for Py, ..., P, gives a resolution by free Zcn-modules:

Den — DET — -+ — 93(2') — P& = Den
Consequently, Sol(M,,) is represented by the complex

(23.3) Ocn — OS5 — ﬁg@ — = OS5 — Ocn,

placed in degrees 0, 1,...,n, and with a Koszul-type differential, induced by the n
operators f +— T;f. We are interested in computing the cohomology sheaves of this
complex.

Ezxample 23.4. For n = 1, there are three cases. If a = 0, the complex looks like
ﬁ(c L ﬁ(c.

By the holomorphic Poincaré lemma (or by a direct computation with power series),
this complex only has cohomology in degree 0, where we get the constant sheaf C.
If o = —1, the complex looks like

ﬁc =z ﬁc.

It only has cohomology in degree 1, where we get a one-dimensional skyscraper
sheaf at the origin. Lastly, if a # —1, 0, the complex looks like
Oc 22=% 0.

This only has cohomology in degree 0. Away from the origin, the multi-valued
holomorphic function z® solves the equation (zd — a)f = 0, and so we get a
locally constant sheaf on C*, with monodromy e>™*®. At the origin, the function
x® does not make sense, and in fact, the equation (20 — «)f = 0 does not have
a solution that is holomorphic in a neighborhood of the origin. So in this case,
the 0-th cohomology sheaf of the complex is a so-called constructible sheaf: it is
locally constant on C*, but with a different stalk at the origin. Note that in each
case, exactly one cohomology sheaf is nonzero; and if the nonzero cohomology sheaf
occurs in degree 0, it is supported on all of C; if it occurs in degree 1, then it is
supported at the origin.
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By working with power series, one can show that the complex in (23.3) is (locally)
quasi-isomorphic to a product; thus its cohomology is described by what happens
for each of the n operators Tj individually. The conclusion is that (23.3) has exactly
one nonzero cohomology sheaf, say in degree k (where k is the number of j such that
a; = —1); moreover, that cohomology sheaf is supported on the linear subspace

N Z()),
oj=—
whose codimension is exactly k. It is also a constructible sheaf, meaning locally
constant (of rank 0 or 1) on each stratum of the natural stratification on C™.
From this, we can deduce what happens for Sol(M) in general. Recall that M
has a finite composition series whose subquotients My, ..., M, are simple.

Example 23.5. Suppose that M has a composition series of length two:
0> M - M—=>My—0
Since the solutions functor is contravariant, we obtain a long exact sequence
H 7 Sol(M1) — H' Sol(Ms) — HPSol(M) — HP Sol(M;) — HT! Sol(My)

Since Sol(M;) and Sol(M3) each have only a single nonzero cohomology sheaf, it

follows that Sol(M) can have at most two nonzero cohomology sheaves, both con-
structible with respect to the natural stratification on C". Moreover, dim Supp H* Sol(M) >
i. The inequality can be strict, for example if H¢ Sol(Myz) # 0 and H = Sol(M;) #

0; then H? Sol(M) is a quotient of the constructible sheaf H? Sol(M3), whose sup-

port is a linear subspace of codimension 4. It follows that H¢Sol(M) is still con-
structible, but its support may be smaller than than of H*Sol(My).

In general, we have a spectral sequence
EP? = HPTISol(M,,) = HP 9 Sol(M).
Each Sol(M,,) has exactly one nonzero cohomology sheaf, which is constructible
for the natural stratification on C"; if H7 Sol(M,,) # 0, then it is supported on a
linear subspace of codimension j. Since kernels and cokernels of morphisms between

constructible sheaves are again constructible, we see that all cohomology sheaves
of Sol(M) are constructible; it also follows, as in the example, that

codim Supp H’ Sol(M) > j.
Exercises.

Ezxercise 23.1. Suppose that we are given a family of k-vector spaces M, indexed
by a € A, and a family of linear mappings D; j: Mo — Maye,—e;-
(1) Show that if the relations in (23.1) hold, and Do+ D11 +---+ Dy =0,
then the direct sum
M= M,

acA
becomes a left module over R = I'(P", Zpx).

(2) Suppose that M is finitely generated as an R-module, and that each oper-
ator D; ; — «; acts nilpotently on M,. Show that the characteristic variety
of M = Zpn @ M is contained in the set Z(zo&o, 2181, - .., Tn&n)-

(3) Show that M is a regular holonomic Zp-»-module of normal crossing type.

Ezercise 23.2. Find the decomposition of I'(P", M) in the following cases:
(2) M =j, 0y, where U =P"\ Z(xoz1 - 2p)
(3) M =iy Opn-1, where P~ = Z(z).



119

Exercise 23.3. Let M be a regular holonomic Zpn-module of normal crossing type.
Given the decomposition for I'(P", M), determine the resulting decomposition for
the holonomic dual of M.



