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Lecture 23: May 1

Regular holonomic D-modules of normal crossing type. Let me briefly recall
what we did last time. We first showed that Pn is D-a�ne, which meant that the
global sections functor

�(Pn
,�) : Modqc(DPn) ! Mod

�
�(Pn

,DPn)
�

is an equivalence of categories. In other words, algebraic D-modules on P
n are

uniquely determined by their space of global sections, which is a module over the
ring �(Pn

,DPn). We also showed that the ring of di↵erential operators on P
n is

generated by the (n+1)2 operatorsDi,j = xi@j , subject to the commutator relations

(23.1) [Di,j , Dk,`] =

8
>>><

>>>:

Di,i �Dj,j if k = j and ` = i,

Di,` if k = j and ` 6= i,

�Dk,j if k 6= j and ` = i,

0 if k 6= j and ` 6= i,

and the extra relation ✓ = D0,0 +D1,1 + · · · +Dn,n = 0. We then showed that if
M is a regular holonomic DPn -module whose characteristic variety is contained in
the set Z(x0⇠0, x1⇠1, . . . , xn⇠n) ✓ T

⇤
P
n, then we get a decomposition

�(Pn
,M) =

M

↵2A

M↵,

where A =
�
↵ 2 k

n+1
�� ↵0 + ↵1 + · · · + ↵n = 0

 
. Here each M↵ is a finite-

dimensional k-vector space, consisting of those global sections of M on which the
n+ 1 operators Dj,j � ↵j act nilpotently.

How about the converse? Suppose we are given a collection of finite-dimensional
k-vector spaces M↵, indexed by ↵ 2 A. What extra information is needed to turn
the direct sum

M =
M

↵2A

M↵

into (the space of global sections of) a regular holonomic DPn -module of normal
crossing type? First, M should be a left module over the ring �(Pn

,DPn), and so
we need to have linear operators

Di,j : M↵ ! M↵+ei�ej

for every ↵ 2 A and every i, j 2 {0, 1, . . . , n}. These operators should satisfy the
commutator relations above, as well as the identity D0,0 +D1,1 + · · · +Dn,n = 0.
We also want M to be finitely generated, which means that finitely many of the M↵

should generate M as a �(Pn
,DPn)-module. Finally, the operator Dj,j �↵j should

act nilpotently on M↵ for every j 2 {0, 1, . . . , n}. It is then not hard to show that
the corresponding DPn -module is regular holonomic of normal crossing type.

Other variants. There are some useful variants of the classification above. One
is regular holonomic D-modules of normal crossing type on a�ne space A

n. Let
M be a holonomic DAn -module with the property that

Ch(M) ✓ Z(x1⇠1, . . . , xn⇠n) ✓ T
⇤
A

n
.

In that case, we say that M is of normal crossing type. Recall that M is regular, in
the sense of Kashiwara and Kawai, if the direct image j+M is regular on P

n, where
j : An

,! P
n is the open embedding. One can show that if M is regular holonomic

of normal crossing type on A
n, then j+M is regular holonomic of normal crossing

type on P
n. Thus we obtain a decomposition

�(An
,M) = �(Pn

, j+M) =
M

↵2kn

M↵,
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which we are now indexing by ↵ 2 k
n. (This is okay because ↵0 = �(↵1+ · · ·+↵n),

so there is no loss of information.) Again, each M↵ is a finite-dimensional k-vector
space, consisting of all global sections of M on which the n commuting operators
xj@j � ↵j act nilpotently. This time, we have

xj : M↵ ! M↵+ej and @j : M↵ ! M↵�ej

for every j = 1, . . . , n; this follows from the commutator relation [@j , xj ] = 1.
Conversely, given a collection of finite-dimensional k-vector spaces M↵, indexed by
↵ 2 k

n, and a collection of linear operators xj : M↵ ! M↵+ej and @j : M↵ ! M↵�ej

subject to the relations [@i, xj ] = �i,j , the direct sum

M =
M

↵2kn

M↵

becomes a module over the Weyl algebra �(An
,DAn); if this module is finitely

generated, and if each xj@j � ↵j acts nilpotently on M↵, then the corresponding
DAn -module is regular holonomic of normal crossing type.

There is also a local analytic version of the classification, for k = C. Let DCn,0

denote the ring of linear di↵erential operators with holomorphic coe�cients that
are defined in some neighborhood of the origin in C

n. We say that a holonomic
DCn,0-module M is of normal crossing type if its characteristic variety Ch(M) is
contained in the set Z(x1⇠1, . . . , xn⇠n). We say that M is regular if it satisfies
the condition from Lecture 21, meaning if there exists a good filtration F•M such
that each FkM is a finitely generated OCn,0-module stable under the action by
x1@1, . . . , xn@n. Define

M↵ =
�
s 2 M

�� (xj@j � ↵j)
m
s = 0 for j = 0, 1, . . . , n and m � 0

 
.

Each M↵ is a finite-dimensional C-vector space, and their direct sum

M =
M

↵2Cn

M↵

is a regular holonomic module over the Weyl algebra An(C), of normal crossing
type. Then one can show (with a lot of extra work) that

M ⇠= DCn,0 ⌦An(C) M.

In other words, the DCn,0-module structure on M is completely determined by the
much simpler algebraic D-module M . Note that this result is only true in the local
analytic setting. The following example explains why.

Example 23.2. Consider the DA1 -module M = DA1/DA1(@ � 1). It is easy to
see that Ch(M) is the zero section, and that M is actually a line bundle with
integrable connection. Except for regularity at infinity, M is therefore regular
holonomic of normal crossing type. But it is not true, not even Zariski-locally,
that �(A1

,M) = A1/A1(@ � 1) has a decomposition into generalized eigenspaces
for x@; in fact, you can check for yourself that x@ does not have any nontrivial
eigenvectors. What goes wrong is that we need a solution to @u = u to get an
isomorphism between M and OA1 . But the solution is u = e

x, which is not an
algebraic function, because it has an essential singularity at infinity. Another way
to say this is that M is not regular at infinity.

Solutions. Let us discuss a few more properties of the classification on A
n. For

simplicity, I will assume from now on that k = C. Consider a regular holonomic
D-module of normal crossing type, with decomposition

M =
M

↵2Cn

M↵.
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Here eachM↵ is a finite-dimensional C-vector space. By construction, xj@j�↵j acts
nilpotently on M↵, and so xj@j is an isomorphism as long as ↵j 6= 0. Consequently,

@j : M↵ ! M↵�ej and xj : M↵�ej ! M↵

are injective respectively surjective for ↵j 6= 0. Likewise, @jxj � ↵j � 1 acts nilpo-
tently on M↵, and so @jxj is an isomorphism as long as ↵j 6= �1. Thus

@j : M↵+ej ! M↵ and xj : M↵ ! M↵+ej

are surjective respectively injective for ↵j 6= �1. We can summarize this by saying
that @j : M↵ ! M↵�ej is an isomorphism for ↵j 6= 0, and that xj : M↵ ! M↵+ej

is an isomorphism for ↵j 6= �1.
This implies of course that those vector spaces M↵ with

�1  Re↵j  0 for every j = 1, . . . , n

determine all the others. Since M is finitely generated over An(C), the set

F =
�
↵ 2 C

n
�� M↵ 6= 0 and �1  Re↵j  0 for all j

 

must be finite. Thus M is generated as an An(C)-module by the direct sum of
those M↵ with ↵ 2 F .

Recall that any holonomic An-module has finite length, meaning that it has
a finite composition series whose subquotients are simple. Let us describe more
explicitly what simple regular holonomic D-modules of normal crossing type look
like. Suppose that M is simple but nonzero. Choose some ↵ 2 F , so that M↵ 6= 0
and �1  Re↵j  0 for all j. Since each xj@j �↵j acts nilpotently on M↵, we can
find a common eigenvector s 2 M↵ such that xj@js = ↵js for every j = 1, . . . , n.
Since M is simple, we must have Ans = M . Because s is an eigenvector, it is not
hard to see that Ans intersects M↵ exactly in the subspace Cs. Thus M↵ = Cs is
one-dimensional. Now there are two special cases:

(1) One case is that ↵j = 0. Then xj@js = 0, and so the submodule An(C)@js
does not contain s. Since M is simple, this forces @js = 0.

(2) The other case is that ↵j = �1. Then @jxjs = 0, and for the same reason
as before, this forces xjs = 0.

We conclude that M is generated as an An-module by s 2 M↵, and that s is
annihilated by (xj@j �↵j) for ↵j 6= �1, 0, by @j for ↵j = 0, and by xj for ↵j = �1.
It is easy to see that there cannot be any other relations, and so we get

M ⇠= An/I,

where I↵ ✓ An is the left ideal generated by the n di↵erential operators
8
><

>:

xj@j � ↵j for ↵j 6= �1, 0,

@j for ↵j = 0,

xj for ↵j = �1.

We see that M is supported on the linear subspace

SuppM↵ =
\

↵j=�1

Z(xj),

and so by Kashiwara’s equivalence, it is the pushforward of a regular holonomic
D-module of normal crossing type on SuppM↵. Outside of the union of the hyper-
planes Z(xj) with ↵j 6= �1, 0, the latter is a line bundle with integrable connection;
this connection has a regular singularity at each of the hyperplanes in question, with
monodromy e

2⇡i↵j .
Now let see what we can say about the solutions of regular holonomic D-modules

of normal crossing type on C
n. Since algebraic di↵erential equations typically do

not have algebraic solutions, we need to work in the analytic topology; we use the
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notation OCn for the sheaf of holomorphic functions on C
n, and the notation DCn

for the sheaf of di↵erential operators with holomorphic coe�cients. Let us write
M = DCn ⌦An M for the analytic DCn -module determined by the An(C)-module
M . Recall that we have the (derived) solutions functor

Sol(M) = RHomDCn
�
M,OCn

�
.

It can be computed for example by choosing a resolution ofM by free DCn -modules,
and then applying the usual solutions functor term by term. For simple modules
of normal crossing type, this is easily done. Fix a multi-index ↵ 2 F as above. To
keep the notation simple, let me set

Pj =

8
><

>:

xj@j � ↵j if ↵j 6= �1, 0,

@j if ↵j = 0,

xj if ↵j = �1.

Then our simple DCn -module has the form

M↵ = DCn/DCn(P1, . . . , Pn),

The Koszul complex for P1, . . . , Pn gives a resolution by free DCn -modules:

DCn ! D
�n
Cn ! · · · ! D

�(n2)
Cn ! D

�n
Cn ! DCn

Consequently, Sol(M↵) is represented by the complex

(23.3) OCn ! O
�n
Cn ! O

�(n2)
Cn ! · · · ! O

�n
Cn ! OCn ,

placed in degrees 0, 1, . . . , n, and with a Koszul-type di↵erential, induced by the n

operators f 7! Tjf . We are interested in computing the cohomology sheaves of this
complex.

Example 23.4. For n = 1, there are three cases. If ↵ = 0, the complex looks like

OC OC.
@

By the holomorphic Poincaré lemma (or by a direct computation with power series),
this complex only has cohomology in degree 0, where we get the constant sheaf C.
If ↵ = �1, the complex looks like

OC OC.
x

It only has cohomology in degree 1, where we get a one-dimensional skyscraper
sheaf at the origin. Lastly, if ↵ 6= �1, 0, the complex looks like

OC OC.
x@�↵

This only has cohomology in degree 0. Away from the origin, the multi-valued
holomorphic function x

↵ solves the equation (x@ � ↵)f = 0, and so we get a
locally constant sheaf on C

⇤, with monodromy e
2⇡i↵. At the origin, the function

x
↵ does not make sense, and in fact, the equation (x@ � ↵)f = 0 does not have

a solution that is holomorphic in a neighborhood of the origin. So in this case,
the 0-th cohomology sheaf of the complex is a so-called constructible sheaf: it is
locally constant on C

⇤, but with a di↵erent stalk at the origin. Note that in each
case, exactly one cohomology sheaf is nonzero; and if the nonzero cohomology sheaf
occurs in degree 0, it is supported on all of C; if it occurs in degree 1, then it is
supported at the origin.
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By working with power series, one can show that the complex in (23.3) is (locally)
quasi-isomorphic to a product; thus its cohomology is described by what happens
for each of the n operators Tj individually. The conclusion is that (23.3) has exactly
one nonzero cohomology sheaf, say in degree k (where k is the number of j such that
↵j = �1); moreover, that cohomology sheaf is supported on the linear subspace

\

↵j=�1

Z(xj),

whose codimension is exactly k. It is also a constructible sheaf, meaning locally
constant (of rank 0 or 1) on each stratum of the natural stratification on C

n.
From this, we can deduce what happens for Sol(M) in general. Recall that M

has a finite composition series whose subquotients M1, . . . ,Mr are simple.

Example 23.5. Suppose that M has a composition series of length two:

0 ! M1 ! M ! M2 ! 0

Since the solutions functor is contravariant, we obtain a long exact sequence

H
i�1 Sol(M1) ! H

i Sol(M2) ! H
i Sol(M) ! H

i Sol(M1) ! H
i+1 Sol(M2)

Since Sol(M1) and Sol(M2) each have only a single nonzero cohomology sheaf, it
follows that Sol(M) can have at most two nonzero cohomology sheaves, both con-
structible with respect to the natural stratification on C

n. Moreover, dimSuppHi Sol(M) �
i. The inequality can be strict, for example if Hi Sol(M2) 6= 0 and H

i�1 Sol(M1) 6=
0; then H

i Sol(M) is a quotient of the constructible sheaf Hi Sol(M2), whose sup-
port is a linear subspace of codimension i. It follows that H

i Sol(M) is still con-
structible, but its support may be smaller than than of Hi Sol(M2).

In general, we have a spectral sequence

E
p,q
1 = H

p+q Sol(Mp) =) H
p+q Sol(M).

Each Sol(Mp) has exactly one nonzero cohomology sheaf, which is constructible
for the natural stratification on C

n; if Hj Sol(Mp) 6= 0, then it is supported on a
linear subspace of codimension j. Since kernels and cokernels of morphisms between
constructible sheaves are again constructible, we see that all cohomology sheaves
of Sol(M) are constructible; it also follows, as in the example, that

codimSuppHj Sol(M) � j.

Exercises.

Exercise 23.1. Suppose that we are given a family of k-vector spaces M↵, indexed
by ↵ 2 A, and a family of linear mappings Di,j : M↵ ! M↵+ei�ej .

(1) Show that if the relations in (23.1) hold, and D0,0 +D1,1 + · · ·+Dn,n = 0,
then the direct sum

M =
M

↵2A

M↵

becomes a left module over R = �(Pn
,DPn).

(2) Suppose that M is finitely generated as an R-module, and that each oper-
ator Dj,j �↵j acts nilpotently on M↵. Show that the characteristic variety
of M = DPn ⌦R M is contained in the set Z(x0⇠0, x1⇠1, . . . , xn⇠n).

(3) Show that M is a regular holonomic DPn -module of normal crossing type.

Exercise 23.2. Find the decomposition of �(Pn
,M) in the following cases:

(1) M = OPn

(2) M = j+OU , where U = P
n
\ Z(x0x1 · · ·xn)

(3) M = i+OPn�1 , where P
n�1 = Z(x0).



119

Exercise 23.3. Let M be a regular holonomic DPn -module of normal crossing type.
Given the decomposition for �(Pn

,M), determine the resulting decomposition for
the holonomic dual of M.


